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Abstract Location-based publish/subscribe plays a significant role in mobile information
disseminations. In this light, we propose and study a novel problem of processing location-
based top-k subscriptions over spatio-temporal data streams. We define a new type of
approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword
Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal
messages by considering textual similarity, spatial proximity, and information freshness.
Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-
Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by
taking the triggering score of other subscriptions into account. The group filtering effi-
cacy can be substantially improved by sacrificing the publishing result quality with a
bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate
the performance of the developed solutions.

Keywords Publish/Subscribe · Subscription · Location · Stream

This article belongs to the Topical Collection: Special Issue on Big Data Management and Intelligent
Analytics
Guest Editors: Junping Du, Panos Kalnis, Wenling Li, and Shuo Shang

� Shuo Shang
jedi.shang@gmail.com

Lisi Chen
lisi@uow.edu.au

1 University of Wollongong, Wollongong, Australia

2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

World Wide Web (2019) 22:2153–2175

/
Published online: 26 April 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0564-3&domain=pdf
mailto: jedi.shang@gmail.com
mailto: lisi@uow.edu.au


1 Introduction

With the development of Location-based services (LBS), user generated content on the
Web has been increasingly associated with geo-locations. Massive amount of data that con-
tain both text information and geographical location information are being generated at an
unprecedented scale on the Web. For example, Tweets, each containing no more than char-
acters, can be associated with locations as illustrated in Figure 1, and some social photo
sharing websites (e.g., Instagram) contain photos with both textual description tags and
location.

We refer to such data with text, location, and timestamp as spatio-temporal messages.
These spatio-temporal messages cover a wide range of topics. For example, Tweets often
offer the quickest first-hand reports of news events [49], comments and reviews representing
public idea, bursty events, etc. Users are interested in receiving up-to-date tweets such that
their locations are close to a user specified location and their texts are interesting to users [7,
49]. For example, a user may want to be updated with tweets near her home on the topic
“dengue spread”, or a user may be interested in tweets whose locations are close to her
office and are related to “ice-cream sales” As another application example, a user may be
interested in recent tweets whose locations are close to a POI and whose text is relevant
to the description of the POI; furthermore, a POI service provider (e.g., Yelp) may want to
annotate each POI with its up-to-date relevant tweets for providing users a better service.
In these applications, users may not want to be overwhelmed by a large number of tweets.
Instead, users would prefer to being updated with the top-k most relevant tweets in terms of
distance, text relevance and recency, which is also one of the key indicators of relevance for
tweets.

To solve this problem, some existing studies [7, 50] develop location-based top-k pub-
lish/subscribe systems that focus on processing a large number of location-based top-k
subscriptions over geo-textual data streams. Specifically, such location-based top-k sub-
scription is treated as a continuous query and tweets are treated as published spatio-temporal
messages. The subscription takes into account the following three aspects in evaluating the
relevance with a spatio-temporal message: (1) text similarity; (2) spatial proximity; and (3)
freshness of spatio-temporal message. The location-based top-k subscription continuously
maintains its up-to-date top-k results over a stream of spatio-temporal messages. A sub-
scription is triggered by a new published message if and only if the new message scores
higher than the current k-th top result message. As a result, when a new message arrives
we need to evaluate each subscription and compute their relevance score to check if their
relevance score is higher than the k-th result maintained by the subscription. Such one-by-
one evaluation is very time-consuming especially when the number of subscriptions is very
large (i.e., more than 1M). To enable the group evaluation, existing studies develop a grouping
filtering technique [7] or hybrid indexing scheme [50] to accelerate the subscription

Figure 1 Tweet with location
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matching process. Nevertheless, the improvement of performance of processing a large
number of location-based top-k subscriptions is still limited. Consequently, we need to
develop a more efficient way to process such large set of subscriptions with excellent
scalability.

To address the challenge, we define a new type of approximate location-based top-k sub-
scription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription. Instead of
having a static triggering condition as the original location-based top-k subscription (i.e.,
the new message scores higher than the current k-th top result message), the triggering con-
dition for ATSK is dynamic. In particular, it can automatically adjust the score of triggering
condition by taking the score of other subscriptions into account. As a result, the group fil-
tering efficacy can be substantially improved by sacrificing the publishing result quality.
Note that the approximate location-based top-k subscription enables users to pre-define an
approximation ratio to guarantee the publishing result quality.

For efficiently maintaining the up-to-date results of a large number of ATSK subscriptions
over a stream of spatio-temporal messages, we define Approximate Conditional Influence
Ring (ACIR) to represent each ATSK subscription. Based on the concept of ACIR, we
develop hybrid indexing structure to group similar subscriptions and generate effective
group filtering conditions to help filter out a group of subscriptions when a new message
arrives. The proposed technique is featured by the following key technical components.
1) We propose a new concept to describe each ATSK subscription, namely the Approxi-
mate Conditional Influence Ring, based on which we develop an approach to determining
whether a new spatio-temporal message is a result of a ATSK subscription. 2) We propose the
Approximate Conditional Influence Ring based Quad-tree indexing structure for organizing
the ATSK subscriptions based on the ACIRs of subscriptions. 3) We develop a spatial-aware
inverted file technique to organize the ATSK subscriptions associated with a spatial cell in
the CIQ-tree.

The rest of this paper is organized as follows. Section 1 introduces preliminaries and
framework of processing ATSK subscriptions. Section 2 defines the ATSK subscription.
Section 3 details our proposed solution. Section 4 presents the experimental studies.
Section 5 reviews the related work, and Section 6 concludes the paper.

2 Problem statement

We introduce the spatio-temporal message, Exact Temporal Spatial-Keyword Top-k Sub-
scription (ETSK), and Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription.
In particular, spatio-temporal messages and ETSK subscriptions are defined based on
existing work [7].

Definition 1 Spatio-temporal Message. A spatio-temporal message is represented with a
triple m = 〈ψ, ρ, tc〉, where m.ψ is a set of terms, m.ρ is a geographical point location with
latitude and longitude, and tc is the creation time of message m.

In this paper, we consider a stream of spatio-temporal messages. For instance, it can be
geo-tagged tweets in Twitter, geo-tagged photos with tags in Instagram, check-ins with text
descriptions in Foursquare, geo-tagged webpages, etc.

Intuitively, given a stream of spatio-temporal messages, an Exact Temporal Spatial-
Keyword Top-k Subscription (ETSK) is to continuously retrieve k messages over time such
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that these messages are temporally most relevant to the subscription (i.e., their textual infor-
mation is highly relevant to the subscription keywords, their locations are close to the
subscription location, and they are fresh). Notice that apart from text similarity and spa-
tial proximity, freshness is important for spatio-temporal data streams. For example, tweets
are inclined to refer to some specific trending event and their relevance to a subscription
declines as time elapses. Next, we define Approximate Temporal Spatial-Keyword Top-k
Subscription (ATSK), which maintains an approximate result set of k most relevant messages
over spatio-temporal data streams.

2.1 Exact temporal spatial-keyword top-k subscription

We present the concept of triggering condition, which is regarded as a preliminary of
publish/subscribe systems, and the definition of ETSK subscription.

Definition 2 Triggering Condition. Let s be a subscription, m be a message from data
streams, and B(m, s) be a Boolean expression. If m will be delivered to s if and only if
B(m, s) is true, B(m, s) is considered to be the triggering condition of s.

Next, based on existing work [7] we define Exact Temporal Spatial-Keyword Top-k
Subscription (ETSK ) and its triggering condition.

Definition 3 Exact Temporal Spatial-Keyword Top-k Subscription (ETSK). An ETSK
subscription s = 〈ψ, ρ, k〉, contains a set of subscription keywords/terms, s.ψ , a location
s.ρ, and the number of messages to be maintained as results, s.k. The messages returned
at time te are ranked according to the temporal spatial-keyword similarity score, which is
defined by

Stsk(m, s, te) = Ssk(m, s)·St (m.tc, te) (1)

where Ssk(m, s) computes the spatial-keyword similarity between subscription s and object
m and St (m.tc, te) computes the message freshness.

When a new message mn arrives, an ETSK s will be triggered by mn if:

Stsk(mn, s, tcur ) ≥ Stsk(me, s, tcur ), (2)

where me denotes the message with the k-th highest spatial-keyword similarity score in the
result set of s.

Following previous work (e.g., [4]) we compute the spatial-keyword similarity Ssk(m, s)

between s and m as follows.

Ssk(m, s) = α · SD(m.ρ, s.ρ) + (1 − α) · TR(m.ψ, s.ψ), (3)

where SD(m.ρ, s.ρ) is the proximity score between subscription s and message m,
TR(m.ψ, s.ψ) indicates the text similarity between m and s, and α ∈ (0, 1) denotes a pref-
erence parameter that balances the weight between spatial proximity and text similarity.
The proximity score is computed by the normalized Euclidian distance: SD(m.ρ, s.ρ) =
1- dist(m.ρ,s.ρ)

distmax
,where dist(m.ρ, s.ρ) is the Euclidian distance between m and s, and distmax

can be the maximal possible distance in the spatial area. The text similarity is calculated by
using an information retrieval model, such as language models [11], cosine similarity [33],
or BM25 [10], and is normalized to a scale between 0 and 1. Here we use language models
because it is originally defined for modeling the relevance between a keyword-based query
and a textual document.
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The freshness of message m is calculated by exponential decay function, which is defined
as (4):

St (m.tc, te) = D−(te−m.tc), (4)

where D is base number that determines the rate of the freshness decay. The function is
monotonically decrease with te − m.tc. It is introduced in [19] and is applied [1, 4, 22] as
the measurement of recency for streaming data. Based on the experimental studies [12], the
exponential decay function has been shown to be effective in blending the freshness and
text similarity of textual documents.

2.2 Approximate temporal spatial-keyword top-k subscription

We proceed to define Approximate Temporal Spatial-Keyword Top-k Subscription (ATSK)
and its triggering condition.

Definition 4 Approximate Temporal Spatial-Keyword Top-k Subscription (ATSK). An
ATSK subscription s = 〈ψ, ρ, k〉, contains a set of terms, s.ψ , a location s.ρ, and the number
of messages to be maintained as results, s.k. The messages returned at time te are ranked
according to the temporal spatial-keyword similarity score, which is defined by

Stsk(m, s, te) = Ssk(m, s)·St (m.tc, te) (5)

where Ssk(m, s) computes the spatial-keyword similarity between subscription s and
message m and St (m.tc, te) computes the message freshness.

Let AStsk(m, s, tcur ) be the approximate spatial-keyword similarity score computed
by our approximate subscription matching algorithm. When a new message mn arrives,
whether s will be triggered by mn is dependent by the spatial-keyword similarity score
between s and mn, which is classified by the following scenarios:

(1) If AStsk(m, s, tcur ) ≥ (1 + ε) × Stsk(m, s, tcur ), m will be delivered to s;
(2) If (1 − ε) × Stsk(m, s, tcur ) ≤ AStsk(m, s, tcur ) < (1 + ε) × Stsk(m, s, tcur ), m will

either be delivered to s or be filtered out by s;
(3) If AStsk(m, s, tcur ) ≤ (1 − ε) × Stsk(m, s, tcur ), m will be filtered out by s.

In our applications, the typical arrival rate of spatio-temporal messages (e.g., tweets) is
in the scale of millions a day, while new ETSK or ATSK subscriptions are added at the
rate of tens of thousands a day, and we may serve millions of ETSK or ATSK subscriptions
at one time. We thus aim to develop a scalable solution to maintain the up-to-date results
for a large number of ETSK or ATSK subscriptions over a data stream of spatio-temporal
messages. It is possible for millions of subscriptions to be fitted into the available mem-
ory of modern servers. Hence, our solution is developed for in-memory setting. In the rare
case that the ETSK or ATSK subscriptions cannot fit into memory, we can employ our pro-
posed solution on multiple servers, each processing a subset of ETSK or ATSK subscriptions
independently.

We would like to minimize the following costs: (1) CPU cost for subscription match-
ing, which can be regarded as the runtime for finding the set of subscriptions that can
include an incoming message as their top-k results; (2) CPU cost for result update,
which is the time spent for updating the result of each subscription when a message
arrives.
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3 Framework for ATSK subscription processing

3.1 Preliminaries

We aim at the problem of continuous delivery of up-to-date top-k spatio-temporal messages
for a large number of ATSK subscriptions over a stream of spatio-temporal messages. Before
presenting our method to process ATSK subscriptions, we first introduce the baseline method
and an advanced method to process ETSK subscriptions developed by Chen et al. [7].

3.1.1 Baseline of ETSK processing

A straightforward approach for processing ETSK works as follows: For each new spatio-
temporal message m (i.e., arriving at timestamp tcur ) compute its temporal spatial-keyword
similarity score with each subscription s, Stsk(m, s, tcur ); If the score is greater than the
score with the temporal spatial-keyword similarity score of the k-th result of subscription
s (at timestamp tcur ), message m will be used to update the top-k results for s. Note that
the temporal spatial-keyword similarity score of the k-th result of subscription s (at times-
tamp tcur ) declines as time passes. As a consequence, for each new message we need to
compute its score with respect to each subscription, and for each subscription we need to
re-compute the temporal spatial-keyword score of its k-th result. Therefore, the straightfor-
ward approach is computationally prohibitive especially when the number of subscription
is huge and the spatio-temporal messages arrive at a high rate.

3.1.2 Advanced method of ETSK processing

Chen et al. [7] develop a more efficient mechanism to process ETSK subscriptions over
spatio-temporal message streams, where both new subscriptions and new messages arrive
in a streaming manner. Figure 2 shows our proposed architecture for processing ETSK
subscriptions. To index the spatial aspect of ETSK subscriptions, each subscription is repre-
sented by a set of Conditional Influence Regions (CIRs) based on the Quad-tree cells. The
CIRs of all ETSK subscriptions are indexed by a CIQ-tree. Each ETSK subscription main-
tains the current top-k results over the stream of spatio-temporal messages. It is challenging
to develop an index that can be used to efficiently maintain the up-to-date results for ETSK
subscriptions over a stream of spatio-temporal messages because the indexing scheme is

UsersETSK Subscription

Sub 
Index

subscription table

Msg
Index

Cost-Model based
Algorithm for Sub 

Insertion

New msg

subscription
updated result

C I R

Figure 2 Framework for Processing ETSK subscriptions
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required to take spatial, textual, and temporal aspects into account while computing the
similarity score of a spatio-temporal message for a subscription.

The cost model for subscription insertion is used to decide how to index each subscription
into the CIQ-tree. The cost model for subscription update is used to decide how to maintain
the CIQ-tree in response to the update of the top-k results for a ETSK subscription.

The CIQ-tree and the corresponding cost models are the main components developed
by Chen et al. [7]. The subscription table maintains the basic information of all subscrip-
tions and their current results, including the subscription location, subscription keywords,
subscription preference parameter α, and the minimum temporal spatial-keyword similarity
score in the results of the subscription. Additionally, a complementary index for spatio-
temporal messages is maintained for initializing the top-k result when a new subscription
arrives. The problem of efficiently indexing spatio-temporal messages is beyond the scope
of this work.

3.2 Overview of ATSK subscription processing

The difference between ETSK and ATSK subscriptions is that an ATSK subscription will
be triggered by a new message whose temporal spatial-keyword similarity score is ε-
approximately greater than the k-th result of the subscription. While an ETSK subscription
will be triggered by a new message whose temporal spatial-keyword similarity score is
exactly greater than the k-th result of the subscription. The ε-approximation property of the
ATSK subscription allows us to develop a more effective group filtering technique by taking
advantage of an approximate filtering condition generated by the ε-approximation property.
The major challenge here is to develop an effective way to represent each ATSK subscription
and to propose corresponding group filtering condition with much more filtering power in
comparison to that of an ETSK subscription. Figure 3 illustrates the framework of process-
ing ATSK subscriptions. We can see that the procedure of processing ATSK subscriptions is
similar to the processing of ETSK subscriptions [7] but with the following differences:

(1) Subscription representation. Because the triggering conditions of ATSK subscription
and ETSK subscription are different, the conditional influence region defined by Chen
et al. [7] is inapplicable. Consequently, we need to develop a new way to represent the
spatial, textual, and temporal aspects of each ATSK subscription. Here we propose the
approximate conditional influence ring to define each ATSK;

UsersATSK Subscription

Sub 
Index

subscription table

Msg
Index

Grouping Algorithm

New msg

subscription
updated result

A C I R

Figure 3 Framework for Processing ETSK subscriptions
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(2) Group filtering technique. Because of the differences of triggering conditions, a new
grouping mechanism is required to be developed for enabling the group filtering of
a batch of ATSK subscriptions when a new message arrives. In addition, we need to
generate ATSK based group filtering conditions accordingly.

4 Representing ATSK subscriptions

In this section, we first present the concept of approximate conditional influence ring.
Next we introduce how to represent an ATSK subscription by using a set of approximate
conditional influence rings.

4.1 Approximate conditional influence rings

We propose the concept of Approximate Conditional Influence Ring (ACIR) to answer the
ATSK subscription.

Our idea is inspired by the concept of influence region that is widely employed for pro-
cessing continuous k nearest neighbor (CkNN) queries. Each CkNN is associated with a
circular influence region that is centered at the query location, and whose radius is the
distance from the query location to its kth nearest neighbor.

Based on the influence regions, they build different types of spatial index (e.g. grid, quad-
tree, and etc.) to store those regions for matching an geographical object with the queries.
For example, if we use the grid index to store the influence regions, when a message m

arrives, we just need to search in the gird cell c where m is located and check the queries
of which influence regions have overlapping areas with c. If a spatial object falls in the
influence region of a subscription, the object becomes a result of the subscription; otherwise,
it cannot be a result. The influence regions of CkNN queries can be organized by a spatial
indexing technique (e.g., grid cell), and we can easily find the queries for which a new
object is a result.

Such method can avoid a great proportion of unnecessary subscription evaluations and is
used by most of the techniques for processing CkNN queries. For the textual part, inverted
file is the most efficient indexing scheme for text information retrieval, which is widely
used and optimized to solve various types of text-relevant problems.

However, the influence region cannot be directly used for representing ETSK and ATSK
subscriptions. To represent an ETSK subscription, Chen et al. [7] use conditional influ-
ence region (CIR) for the propose. Specifically, each ETSK subscription is represented by
a set of CIRs according a simple spatial-partitioning based indexing structure (i.e.,quad-
tree). Each CIR denotes an influence region regarding a particular score of textual similarity
and freshness. With the help of CIRs, irrelevant incoming messages can be filtered out in
advance.

Recall that the triggering condition of ETSK is based on an exact temporal spatial-
keyword similarity score (i.e., the score of the k-th message in the result set), while the
triggering condition of ATSK is based on a temporal spatial-keyword similarity score range.
Consequently, it is impossible to generate a set of CIRs for each ATSK subscription. To
solve this problem, we propose approximate conditional influence ring (ACIR) to represent
each ATSK subscription. The major difference between a CIR and an ACIR is that an ACIR
has two boundary circles (i.e., an inner circle and an outer circle) while CIR just has one
boundary circle.
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Next, we formally define the approximate conditional influence ring, and then explain
how it may help process the ATSK subscription.

Definition 5 Approximate Conditional Influence Ring. Let Rq be the list of up-to-date
top-k spatio-temporal messages for an ATSK subscription s. The approximate conditional
influence ring of s at time t and textual similarity score tr is denoted by a ring centered at
the location of s. In particular, the radius of the inner circle of the ring is rins (tr, t) and the
radius of the outer circle of the ring is rout

s (tr, t).

rins (tr, t) = (1 − ε) · (
Ssk(q, Rq [k]) · b−(t−Rq [k].ct )

α
− 1 − α

α
· tr)distmax, (6)

rout
s (tr, t) = (1 + ε) · (

Ssk(q, Rq [k]) · b−(t−Rq [k].ct )

α
− 1 − α

α
· tr)distmax, (7)

where Rq [k] is the kth result of subscription s.
The approximate conditional influence ring is denoted by ACIq(tr, tcur ).

Like the influence region of CkNN query, the approximate conditional influence ring is
expected for narrowing the scope of subscription evaluation when organized by proposed
indexing scheme.

Property Consider a new spatio-temporal message m arriving at time t and suppose that
its the text relevance to a ATSK subscription s is tr . Message m becomes a top-k result of s

iff m falls in the approximate conditional influence ring ACIq(tr, tcur ).
From (6) and (7), we can see that rins (tr, t) and rout

s (tr, t) increase as the time elapses,
and a greater value of tr results in the greater values of rins (tr, t) and rout

s (tr, t). Example 1
demonstrates the approximate conditional influence ring.

Example 1 Let m0, m1 and m2 be three spatio-temporal messages such that tr0 =
T R(m0.ψ, s.ψ), tr1 = T R(m1.ψ, s.ψ) = T R(m2.ψ, s.ψ), and tr0 < tr1. Assume that t0
and t1 are two timestamps and t0 < t1. Table 1 and Figure 4 illustrate the influence regions of
subscription s under different timestamps and different values of text similarity. We observe
that region radius becomes larger as time elapses and a greater value of tr corresponds to a
greater radius (Table 2).

From Figure 4 we can see that the approximate conditional influence rings are based
on the text relevance of tr0 at time t and t ′ respectively, and the corresponding radii of
inner/outer radii of approximate conditional influence rings are shown in Table 1. We find
that m0 falls outside the outer circle of ACI(tr0, t0) and ACI(tr0, t1). As a result, m0 cannot
be a result of s at timestamps t0 or t1. We also find that m1 falls between in inner and outer

Table 1 Table of frequently used notations

Notation Description

SD(m.ρ, s.ρ) spatial proximity score between m and s

T R(m.ψ, s.ψ) text similarity score between m and s

Stk(m, s) spatial-keyword similarity between m and s

Stsk(m, s, t) temporal spatial-keyword similarity between m and s at time t

AStsk(m, s, t) approx. temporal spatial-keyword similarity between m and s at time t

tcur current timestamp

World Wide Web (2019) 22:2153–2175 2161



s

r1
in

r1'
m1

m0

r0
in r0

out

r0
out’

r0
in’

r1
out

r1
in’

r1
out’

m2

Figure 4 Approximate conditional influence rings of subscription s

circles of ACI(tr1, t0). Consequently, m1 may or may not be a result of s at timestamps t0.
While if m1 arrives at timestamp t1, it will definitely be a result of s because m1 located
inside the inner circle of ACI(tr1, t1).

4.2 Utilizing approximate conditional influence rings

According to Definition 5, the radii of ACIRs of a subscription s depend on not only the
spatial-keyword similarity score between s and its k-th result (in Rs), but also the text simi-
larity between s and an incoming spatio-temporal message m and the arrival time of m. This
makes it inapplicable to generate an ACIR and then use the region to decide whether an
incoming spatio-temporal message is a new result of s (in the similar way as the influence
region is used for the CkNN subscription).

To this end, we propose a novel way of generating conditional influence regions and
utilizing them for processing ATSK subscriptions. Our high-level idea comprises three
steps: 1) for an ATSK subscription s, and a spatial cell c, we generate two circle regions,
whose radiuses are the minimum distance between s and cell c, and the maximum distance

Table 2 Approximate conditional influence rings of subscription s

Outer Radius Inner Radius Timestamp Text Similarity

rout
0 rin

0 t tr0

rout ′
0 rin′

0 t ′ tr0

rout
1 rin

1 t tr1

rout ′
1 rin′

1 t ′ tr1
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between s and c, respectively; 2) for each of the two circles, we generate a conditional
influence region, and compute its corresponding text relevance score tr with respect to a
past timestamp, e.g., the creation time (Rs[k].ct ) of the kth result message in Rs ; 3) for a
new spatio-temporal message m that arrives at time t and falls in the cell c, we design an
approach that is able to “map” the spatial-textual score between m and subscription s at time
t to a backdated equivalent score at time Rs[k].ct ; this enables us to compare the backdated
equivalent score with the scores computed at step 2) to decide whether m is a result of s.
We proceed to detail the three steps.

Step 1 Given a spatial cell c and an ATSK subscription s, we generate the following two
circle regions: (1) minimum circle: its radius is the the minimum distance between
s and cell c, and the radius is denoted by minD(s, c). When subscription s is located
in cell c, minD(s, c) = 0; (2) maximum circle: its radius is the maximum distance
between s and any location in cell c, and the radius is denoted by maxD(s, c).
Figure 5a illustrates the two circles when s is located within c and Figure 5b
illustrates the case when s is not located within c.

Step 2 Based on the two circles generated in Step 1, we generate two conditional influence
regions. Recall that the text similarity tr and the time t are given and we compute
the radius of the corresponding inner circle. In contrast, here we know the radius
(minD(s, c) or maxD(s, c)) and the time is the creation time (Rs[k].ct ) of the k-th
result message in Rs , and we want to compute the corresponding text relevance
score.

Definition 6 Minimum Approximate Conditional Text Similarity and Maximum
Approximate Conditional Text Similarity. Given subscription s, cell c, time Rs[k].ct , and
their minimum circle minD(s, c), based on (12), the corresponding text relevance score is
computed by

minAT(s, c) = 1

1 − ε
·
(
Ssk(s, tb)

1 + α
+ α · minD(s, c)

1 + α

)
. (8)

Figure 5 Two inner circles for given s and c

World Wide Web (2019) 22:2153–2175 2163



The text similarity score is called minimum approximate conditional text similarity. Given
subscription s, cell c, time Rs[k].ct , and their maximum inner circle maxD(s, c), based on
(12), the corresponding text similarity score is computed by

maxAT(s, c) = 1

1 − ε
·
(
Ssk(s, tb)

1 + α
+ α · maxD(s, c)

1 + α

)
, (9)

The text similarity score is called maximum approximate conditional text similarity.

Step 3 This step is to utilize the minimum approximate conditional text similarity and
maximum approximate conditional text similarity to check whether a new spatio-
temporal message m is a result for subscription s if m falls in the spatial area
of c. Recall that the two inner circles of approximate conditional influence rings
correspond to the timestamp Rs[k].ct . However, the arrival time of m, denoted
by tcur , is different from Rs[k].ct , and thus the spatial-keyword similarity score
between m and s is not comparable with the score between m and its k-th results
at time Rs[k].ct .

To make the two scores comparable, our idea is to design a method that can be
used to “map” the spatial-textual score between m and subscription s at time tcur to
a backdated equivalent score at time Rs[k].ct ; and then we are able to compare the
backdated equivalent score with the scores computed at step 2) to decide whether
m is a result of s. The mapping is defined as follows.

Definition 7 Backdated Equivalent Text Relevance Score. Given an ATSK subscription
s at time tcur , the backdated equivalent text relevance score at time tb is defined by

TRtb (m.ψ, s.ψ) = TR(m.ψ, s.ψ) · Dtcur−tb (10)

With the mapped score, we have the following lemma to determine whether m is a result.

Lemma 1 Let m be an incoming spatio-temporal message located in the spatial cell c.
We have (1) when TRtb (m.ψ, s.ψ) < minAT(s, c), m is not be a result of s; (2) when
TRtb (m.ψ, s.ψ) ≥ maxAT(s, c), m must be a new result of s; (3) when minAT(s, c) ≤
TRtb (m.ψ, s.ψ) < maxT(s, c), m may be a result of s.

Proof We can easily proof this lemma based on Definitions 5 and 8.

4.2.1 Mapping to backdated equivalent scores at a uniform time

Our three step idea and the mapping technique enable us to utilize the ACIR to check
whether a message is a result of subscription s. Recall for each subscription we need to
map its spatial-keyword similarity with a new message m back to the similarity value at
the creation time of its kth result Rs[k].ct . However, we need to handle a large number
of subscriptions, rather than a single subscription, and the k-th results of these subscrip-
tions may have different timestamps. Hence, it is expensive to map the spatial-keyword
similarity to each of different timestamps. To address the problem, our idea is to map
Approximate Minimum Conditional Text Similarity and Approximate Maximum Condi-
tional Text Similarity of all the subscriptions to their backdated equivalent scores at a single
backdated time, denoted by tb. Different subscriptions may have different values of tu(s),
which make it difficult to compute the text similarity required for updating each subscription
(since we have to compute them one by one based on unique tu(s) for each subscription).
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So we convert minACIR(s, c, tu) and maxACIR(s, c, tu) of different subscriptions into
minACIR(s, c, tb) and maxACIR(s, c, tb) respectively by using the backdated equivalent
subscription update threshold, which is defined in Definition 8, instead of the subscription
update threshold, where tb is a subscription-independent backdated time.

Definition 8 Backdated Equivalent Score. Let s be an ATSK subscription, the backdated
equivalent subscription update threshold at time tb is defined as (11)

BUT (s, tb) = UT (s) · Dtcur−tb (11)

Based on (11), we map the update thresholds of all subscriptions to a previous predefined
timestamp tb and use BUT (s, tb) to replace UT ′(s), that is:

RACIR(s, tr, t)

distmax
= BUT (s, tb) · Dtb−t

α
− 1 − α

α
· tr. (12)

Since we have minACIR(s, c, tb) and maxACIR(s, c, tb) with a unified timestamp tb,
we can derive their corresponding values of text relevance based on (12). Consequently, we
have the following definition.

Definition 9 Minimum and Maximum Border Score. The minimum border score of
subscription s under cell c at time tb, denoted by BSmin(s, c, tb), is the corresponding
text relevance w.r.t. minACIR(s, c, tb). And denoted by BSmax(s, c, tb) the maximum
border score of s under c is the corresponding text relevance w.r.t. maxACIR(s, c, tb).
Equation (13) and (14) compute BSmin(s, c, tb) and BSmax(s, c, tb) respectively.

BSmin(s, c, tb) = BUT (s, tb) · Dtb−tcur

1 + α
+ α · RminACIR(s, c, tb)

1 + α
, (13)

BSmax(s, c, tb) = BUT (s, tb) · Dtb−tcur

1 + α
+ α · RmaxACIR(s, c, tb)

1 + α
, (14)

where RminACIR(s, c, tb) and RmaxACIR(s, c, tb) denote the radius of minACIR(q, c, tb)

and maxCIR(s, c, tb) respectively.

For each subscription s, we select a set of cells, which may from different layers of
the quad-tree, to generate corresponding BSmin(s, c, tb) and BSmax(s, c, tb) respectively on
each selected cell c. Now we proceed to discuss how to store a subscription on a selected
cell.

Based on (13) (resp. (14)), BSmin(q, c, tb) (resp.BSmax(q, c, tb)) can be regarded as
the sum of the following two parts, namely BUT (q, tb) · Dtb−tcur /(1 + α) and α ·
RminCIR(s, c, tb)/(1 + α), where BUT (s, tb) · Dtb−tcur /(1 + α) is dependent on the cur-
rent time tcur and α · RminCIR(s, c, tb)/(1 + α) (resp. α · RmaxCIR(s, c, tb)/(1 + α)) is
time-independent.

We separately store the following values for each subscription s on each relevant cell c

and then organize them together with hierarchical based inverted file: (1) BUT (s, tb)/(1 +
α); (2) α · RminCIR(s, c, tb)/(1 + α); (3) α · RmaxCIR(s, c, tb)/(1 + α). Notice that we do
not maintain the real-time values of the border scores, instead, we store the border scores at
a pre-defined backdated time tb, just as (1), and calculate the current border scores as soon
as a new message arrives. The reason is that it is impractical to maintain the real-time values
of BSmin(s, c, tb) and BSmax(s, c, tb).
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4.3 IQ*-tree

We proceed to describe the structure of the IQ*-tree, which is a hybrid spatial keyword
indexing structure and basically consists of the quad-tree and hierarchical inverted file. It is
used for indexing conditional influence regions of the ATSK subscription.

After having BSmin(s, c, tb) and BSmax(s, c, tb) for the subscription s under cell c, we
notice that incoming spatio-temporal messages may fall in any cells in the spatial index,
and each subscription s may have different values of BSmin(s, c, tb) and BSmax(s, c, tb) for
different c. If we use the grid index to store each subscription, then all the cells in the grid
will be associated by the subscription. It is hard to determine an optimal granularity of grid
index because different subscriptions may have their unique values of optimal granularity
based on their locations, keywords, and preference parameters. Consequently, we use the
quad-tree to index the subscriptions, which is a space partitioning based hierarchical index
structure.

The reasons for using quad-tree to organize the spatial information of the ATSK subscrip-
tion are summarized as follows. First, quad-tree has a space based partitioning scheme that
allows ATSK subscription to be indexed in mutually-exclusive cells. In contrast, the bound-
ing rectangles of the R-tree are dependent on the location distribution of messages, and
they may overlap with each other. As a result, it is difficult to use the R-tree to index the
conditional influence regions. Second, we can use diverse indexing granularity for differ-
ent ATSK subscription by considering the spatial distribution, text distribution, and different
values of the subscription performance parameter α. This is important to the performance
of both stream message assignment and subscription result update. Note that different from
many applications that only keep the leaf level quad-tree cells, we need to keep all the cells
including both leaf cells and internal cells.

The next problem is how to organize the subscriptions in each cell c. According to our
problem definition, the messages that do not contain any subscription keyword will never be
considered as subscription result. So we just need to evaluate the subscriptions containing at
least one common keyword with the incoming message. In order to filter the subscriptions
without common keyword with the message in advance, we organize the subscriptions in
hierarchical inverted lists for each cell.

4.4 Multi-level inverted file

Each node of the IQ*-tree corresponds to a multi-level inverted file for indexing the text
information of the ATSK subscriptions associated at the node. Each inverted file consists of
the hierarchical inverted lists for each subscription keyword.

Figure 6 illustrates the structure of the hierarchical inverted lists and the postings. We can
see that the hierarchical inverted list is basically a binary tree where each leaf node points to
a posting list, which contains at most pmax postings. Each posting stores the subscription id
and the pointers to corresponding subscriptions in the subscription list. Note that each sub-
scription may have different subscription ids under different quad-tree cells. This is because
the subscription id is assigned based on the value of α ·RminACIR(s, c, tb)/(1+α) and each
subscription bears unique value under different cells.

In order to help prune the queries in the subtree rooted at the nodes of the inverted
list that cannot make the incoming spatio-temporal message be the subscription results,
each node c is augmented with the following values: (1) minID and maxID, which
respectively indicate the minimum and maximum ids of the subscriptions in the subtree
rooted at node c; (2) minNBUT and maxNBUT , which are the minimum and maximum
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Figure 6 Structure of the hierarchical inverted list

values of BUT (s, tb)/(1 − s.α) where s ∈ Sc and Sc represents the subscriptions that
belong to the subtree rooted at node n; (3) minminNR, which is the minimum value of
α ·RminACIR(s, c, tb)/(1+α) for all s ∈ Sc; (4) maxmaxNR, which is the maximum value
of α · RmaxACIR(s, c, tb)/(1 + α) for all q ∈ Sc.

Since the text relevance between a subscription and an spatio-temporal message is related
to both the number of subscription keywords and the number of message keywords, stor-
ing the subscriptions according to the number of subscription keywords in the first place
can help estimate the bound of text relevance between a subscription and a message. Con-
sequently, we make ATSK subscriptions firstly classified according to their numbers of
subscription keywords. As Figure 7, we build separate IQ*-trees for the subscriptions with
a particular number of subscription keywords.

1 ... n2

IQ*-tree

...

Index the subscriptions that 

# subscription keywords = n

# subscription keywords

Figure 7 Subscription Classification based on # subscription keywords
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5 Experimental study

5.1 Baselines

We discuss how to exploit existing techniques for maintaining the real-time results for ATSK
subscriptions over a stream of spatio-temporal messages. No structure and algorithm exist
for solving the problem. Hence we develop some baselines utilizing existing structures for
spatial and text retrieval.

A straightforward baseline is to use the inverted file to index the ATSK subscriptions.
The posting of each subscription contains the corresponding subscription id. We also
maintain a global subscription table. For each subscription s, the table stores the sub-
scription id, Sbsk(s, Rs[k], tb), s.ρ, s.α, and the current subscription results of s. When
a spatio-temporal message m arrives, we traverse the postings lists associated with the
terms in the message in the Document-at-a-Time (DAAT) manner. For each posting, we
get the subscription information from the subscription table based on its subscription id for
computing the temporal spatial-keyword similarity score between m and the subscription
(Stsk(m, s, tcur )). Then we compare Stsk(m, s, tcur ) with Stsk(s, Rs[k], tcur ), which is com-
puted from Sbsk(s, Rs[k], tb), and we determine whether m is a result of s. If so, we update
the result set of s with m in the subscription table.

5.2 Experimental settings

Our experiments are conducted on two real datasets: FSQ and TWE. FSQ is a real-life
dataset collected from Foursquare, which contains 4 million worldwide check-ins with both
location and text description. The dataset TWE is a larger real-life dataset that comprises 40
million tweets with geo-locations.

The ATSK subscriptions are generated as follows. For each check-in (resp. tweet
with geo-location), we randomly select a number of keywords from the check-in (resp.
tweet) keywords, and the subscription location is the same as the corresponding check-
in (resp. tweet with geo-location) location. Note that both the check-ins description
and the tweets posted by the user may reveal the interests of the user and their loca-
tions are likely to represent the active spots of the user, and thus the subscription
generated in this way would be close to real subscriptions. In addition, each check-
in description together with its location is considered to be a spatio-temporal message
on FSQ, and each tweet with geo-location is regarded as a spatio-temporal message on
TWE.

Default value for each parameter involved in the experiments are presented in Table 3.

Table 3 Experimental parameter settings

Parameter Setting Default

Number of subscription keywords 1 – 5 random from 1 to 5

Preference parameter α 0.1 – 0.9 random from 0.1 to 0.9

Number of maintained results 10 – 30 random from 10 to 30

Number of postings in each block N.A. FSQ:128 TWE:1024

Approximation ratio ε 0.05 – 0.2 0.1

Number of indexed subscriptions N.A. FSQ:2M TWE 10M
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5.3 Experimental result

A1 the time effect In this set of experiments, each index runs for 4,000 seconds on
both FSQ and TWE. At the beginning, each algorithm is initialized with 2,000,000 and
10,000,000 subscriptions respectively for FSQ and TWE. During each second 5 spatio-
temporal messages are issued and 5 subscriptions are issued and expired respectively. We
report the average runtime for processing a message and the average runtime for inserting
a subscription during each period of 500 seconds. Note that the decaying scale is set to 0.5.
The value of decaying scale is related to the exponential decay function, which has been
presented in (4). If we set the decaying scale to ds , then D−�tsim = ds , where �tsim is the
duration of the simulation. In our experimental setting, �tsim = 4000.

From Figure 8, we notice that both CIR and ACIR outperform the two baselines signif-
icantly in message processing, and ACIR exhibits the best performance. The reasons could
be explained as follows.

For IFL, we need to check each postings in the postings lists the contain the keyword of
the incoming spatio-temporal message. Its pruning technique is not able to consider the spa-
tial proximity between the subscriptions and incoming messages. So the performance is the
worst. In addition, ACIR performs moderately better than CIR. Such performance improve-
ment is contributed by the grouping technique that takes advantage of the Approximate
Conditional Influence Rings. Furthermore, we notice that the runtime of message process-
ing for all structures exhibits an increasing trend as the time elapses. This is because that
based on the exponential decaying function the values of Rs[k] for the subscriptions whose
results are not updated will decrease as the time goes by, which may increase the number of
subscriptions that can regard an incoming message as their results.

Figure 9 demonstrates the time cost of subscription insertion for each method. Because
CIR and ACIR store subscriptions in the postings list maintained by each associating cell,
the time costs of subscription insertion for CIR and ACIR are higher than IFL. However,
according to the real-world publish/subscribe scenario, the frequency of subscription inser-
tion is much lower than that of new messages. Consequently, the overall performance for
CIR and ACIR still substantially outperforms the baseline.

A2 the number of subscription keywords This set of experiments investigates the effect
of the number of keywords on each method. Figure 10 demonstrates that all of the methods
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Figure 9 Effect of time for subscription insert

exhibit an increasing trend for the runtime of message processing as we increase the number
of subscription keywords. The reason is that increasing the number of subscription keywords
results in the increasing of the number of postings for indexing the subscription, which will
extend posting lists.

A3 effect of α This set of experiments evaluates the effect of the subscription preference
parameter α. A greater value of α denotes the greater weight on the spatial proximity. While
a smaller value of α indicates more emphasis on the text similarity. We observe the similar
trends on both datasets. More weight put on the spatial aspect will lower the textual pruning
effectiveness and vice-versa (Fig. 11).

A4 effect of k This experiment evaluates the performance w.r.t. the number of results
maintained by each subscription. From Figure 12 we can find that the runtime for message
processing slightly increases as we increase k. It can be explained by the fact that higher
value of k is likely to induce the lower temporal spatial-keyword similarity score of the k-th
message.
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6 Related work

Top-k spatial keyword search Top-k spatial keyword query returns k most spatial-
textual relevant geo-textual objects that are ranked by both spatial proximity and text
relevancy between them and the query. A number of geo-textual indices have been devel-
oped to efficiently answer top-k spatial keyword queries [11, 18, 33, 61, 62]. There exits no
sensible way to adopt these indexes to handle a stream of ATSK subscriptions. Moreover,
Wu et al. [54] consider the problem of continuously answering moving top-k spatial key-
word queries over a set of static geo-textual objects. The solution is to compute the safe zone
based on a variant of Voronoi cells. The problem and solution are very different from ours.

Content based top-k publish/subscribe Existing work on top-k publish/subscribe sys-
tems [2, 5, 14, 15, 32, 49] make published items trigger a subscription if it ranks among
the top-k published items. The top-k publish/subscribe system [49] is similar to our setting,
where the published items are tweets and the subscriptions are news. The published items
do not have a fixed expiration time. Instead, time is a part of the relevance score, which
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decays as time passes. Older items retire from the top-k only when new items that score
higher arrive and take their places. The inverted files are used as the indexes and the classic
information retrieval methods are adapted for the filtering.

Some proposals on publish/subscribe [3, 20] in the literature consider spatio-temporal
documents. The subscription contains a spatial circle and a set of keywords, and the pub-
lished items are spatio-temporal documents. Published items trigger a subscription when
they match both the keywords and spatial region of the subscription. In the setting, each
subscription has a region and a set of keywords, and the problem is to maintain an index on
the subscriptions such that the subscriptions matching an incoming spatio-temporal docu-
ment can be efficiently retrieved. To do this, Chen et al. [3] present a hybrid index based on
Quad-tree and Inverted files, and Li et al. [20] present a hybrid index based on R-tree and
Inverted files. The problem is much easier than that for the top-k publish/subscribe, and the
indexing methods and subscription matching algorithms cannot be employed to handle our
subscriptions.

A different type of ranked publish/subscribe systems is introduced [31], which produces
a ranked list of subscriptions for a published item, while we produce a ranked set of pub-
lished items for each subscription. The subscriptions [31] are defined as interval ranges, and
published items are points that match the intervals. The setting is very different from that in
our work.

In the future, it is of interest to integrate text data with multiple spatial queries. First,
it is of interest to integrate spatial trajectory data [23–26, 28, 29, 38, 45, 46, 48, 63, 64]
with text data and to conduct novel spatio-textual trajectory search, recommendation, and
analysis studies. Second, it is of interest to use POI data and geo-tagged social media data to
discover significant locations/regions [13, 34, 35, 40, 44, 47, 51, 59]. Third, it is of interest
to study integrate text data to routing problem [36, 37, 39, 41–43, 55, 58, 65] and to study
spatio-textual routing problem. Fourth, it is of interest to consider streaming data sampling
and analysis, and other query types [6, 8, 9, 16, 17, 21, 27, 30, 52, 53, 56, 57, 60].

7 Conclusions

We consider the problem of maintaining up-to-date most relevant spatio-temporal messages
for a large number of location-based top-k subscriptions with a guaranteed approximation
ratio of temporal spatial-keyword similarity sores between subscription and new messages.
We define a brand new type of location-based top-k subscription, the ATSK subscription,
that can automatically adjust the score of triggering condition by taking the scores of other
subscriptions into account. As a result, the group filtering efficacy can be substantially
improved at the cost of sacrificing the publishing result quality in a controlled range. We
propose an efficient approach to processing a large number of ATSK subscriptions. The
experimental results on two real-world datasets show that our solution is able to achieve a
reduction of the processing time by 20%–70% compared with two baselines.
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