
https://doi.org/10.1007/s11280-018-0563-4

Online delivery route recommendation in spatial
crowdsourcing

Dezhi Sun1 ·Ke Xu1 ·Hao Cheng1 ·Yuanyuan Zhang2 ·
Tianshu Song1 ·Rui Liu1 ·Yi Xu1

Received: 25 February 2018 / Revised: 30 March 2018 / Accepted: 5 April 2018

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract With the emergence of many crowdsourcing platforms, crowdsourcing has gained
much attention. Spatial crowdsourcing is a rapidly developing extension of the traditional
crowdsourcing, and its goal is to organize workers to perform spatial tasks. Route recom-
mendation is an important concern in spatial crowdsourcing. In this paper, we define a
novel problem called the Online Delivery Route Recommendation (OnlineDRR) problem,
in which the income of a single worker is maximized under online scenarios. It is proved
that no deterministic online algorithm for this problem has a constant competitive ratio. We

This article belongs to the Topical Collection: Special Issue on BigDataManagement and Intelligent Analytics
Guest Editors: Junping Du, Panos Kalnis, Wenling Li, and Shuo Shang

� Rui Liu
lr@buaa.edu.cn

Dezhi Sun
buaasun@buaa.edu.cn

Ke Xu
kexu@buaa.edu.cn

Hao Cheng
chengh@buaa.edu.cn

Yuanyuan Zhang
zhangyuanyuan@datang.com

Tianshu Song
songts@buaa.edu.cn

Yi Xu
xuy@buaa.edu.cn

1 State Key Laboratory of Software Development Environment, School of Computer Science
and Engineering, Beihang University, Beijing, China

2 China Academy of Telecommunications Technology and Datang Telecom Technology, Industry
Group, Beijing, China

World Wide Web (2019) 22:2083–2104

/
Published online: 28 May 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0563-4&domain=pdf
mailto: lr@buaa.edu.cn
mailto: buaasun@buaa.edu.cn
mailto: kexu@buaa.edu.cn
mailto: chengh@buaa.edu.cn
mailto: zhangyuanyuan@datang.com
mailto: songts@buaa.edu.cn
mailto: xuy@buaa.edu.cn

propose an algorithm to balance three influence factors on a worker’s choice in terms of
which task to undertake next. In order to overcome its drawbacks resulting from the dynamic
nature of tasks, we devise an extended version which attaches gradually increased impor-
tance to the destination of the worker over time. Extensive experiments are conducted on
both synthetic and real-world datasets and the results prove the algorithms proposed in this
paper are effective and efficient.

Keywords Route recommendation · Spatial crowdsourcing · Online algorithms

1 Introduction

In recent years, crowdsourcing has gained much attention, many crowdsourcing platforms
have sprung up, such as Amazon Mechanical Turk (MTurk) [1]. As an extension of the
traditional crowdsourcing, spatial crowdsourcing (a.k.a. mobile crowdsourcing) is devel-
oping rapidly, attributing to the widespread use of smartphones. Spatial crowdsourcing is
characterized by organizing crowd workers (workers for short) on a mobile platform to
perform spatial tasks by physically visiting the task-specific locations [44]. Some represen-
tative examples of spatial crowdsourcing include citizen sensing(i.e. organizing participants
to collect sensor data from their surrounding env,ironment using mobile devices), location
based services. Many studies have investigated the problem of spatial data management [17,
18, 23, 38, 53, 56, 57].

On spatial crowdsourcing platforms, there is a phenomenon that some workers are effi-
cient in terms of the money they make, while the others aren’t. In other words, some workers
can make more money during the same time period than others. Based on this observation,
route recommendation or task recommendation in spatial crowdsourcing has been studied
in [2, 5, 10, 16, 24, 28, 55, 60]. However, [2, 5] only study the offline scenario where all
tasks are known in advance. Considering that in real-world applications, tasks on spatial
crowdsourcing platforms are often released dynamically. Different from [12], tasks in spa-
tial crowdsourcing are changed in both time and space. We study route recommendation
under online scenarios, where future tasks are not known in advance. In addition, the task
in [5, 16] is of a visit type, which means the task can be finished by a worker physically
visiting the task-specific location. But in this paper, we tackle those delivery-type tasks that
have a origin and a destination. An example of delivery tasks is ride requests, which ask a
dirver to pick up someone at some place and drop off the passengers at anonther place. If
not explicitly specified, we use the word task to refer to a delivery-type task in this paper.

Example 1 Figure 1 shows an example of a worker w and a set of tasks T = {t1, t2, · · · , t5}.
Each task is associated with two locations, its origin sti and destination eti and the time
when each task is released is shown in Table 1. We assume that the worker w moves a length
unit per hour, and the payoff of each task is directly proportional to the Euclidean distance
between its origin and destination. Accordingly, the more time w spends on accomplishing
tasks from their origins to destinations (valid work time), the more money w will make. In
this example, w plans to start working at location (4,4) from 8:00 and arrive at (2,7) before
18:30, and he/she ignores those tasks whose origins are 3 length units away. One possible
route is Rw

1 = 〈t1, t5〉. In other words, w first chooses the task t1, so he/she heads for st1
and then et1 , and after w finishes t1 at about 11:14, w has to wait at location (2, 6) until
t5 is released. Then w chooses to handle the task t5 and leaves for st5 and et5 successively.

World Wide Web (2019) 22:2083–21042084

Figure 1 An example of T and w

After that, w waits at (2,8) but there is no suitable task for w. w starts to head for his/her
destination at 17:30 because if he/she keeps waiting at (2,8), he/she won’t be able to get
to (2,7) on time. So the valid work time of w is the sum of the time of moving from st1
to et1 and from st5 to et5 , which amounts to 2

√
5 (≈ 4.47) hours. Note that the deadline

constraints of t1 and t5 are both satisfied in this case. However, the optimal route w can take
is Rw

opt = 〈t3, t4, t5〉. In the optimal case, w successively visits st3 , et3 , st4 , et4 , st5 , et5 and
still has enough time to travel to his/her destination. Along this route, the valid work time
of w is

√
2 + 2

√
5 (≈ 5.89) hours and all the tasks in Rw

opt can be finished before their
respective deadlines.

As discussed above, different strategies may vary greatly in regard to efficiency. The
question then arises: is it possible to recommend a worker some tasks in order to max-
imize his/her income? The challenges of route recommendation in spatial crowdsourcing
are two-fold. First, some experienced workers can often make a better schedule so as to
make better use of his/her working time to finish more tasks. However, such experience is
gained from long-term observation and practice and can hardly be modeled. Secondly, tasks
on most spatial crowdsourcing platforms can appear dynamically anytime and anywhere,

Table 1 Release Times,
Deadlines and Rewards of Tasks Task t1 t2 t3 t4 t5

Release time 7:30 7:30 7:30 10:30 12:30

Deadline 11:30 13:00 11:00 14:30 17:30

Reward
√
5 2

√
2

√
2

√
5

√
5

World Wide Web (2019) 22:2083–2104 2085

which would further make route recommendation harder. For example, if we recommend a
task to a worker and the worker accepts it, and after he/she finishes this task, there are no
available task in his/her vicinity, the worker would have to travel a long way to reach his/her
next task. So in task recommendation, it’s essential to take the future into consideration due
to the uncertainty of the task’s release time and location.

In this paper, we propose a method to recommend an appropriate route to a single worker
in spatial crowdsourcing while taking into account: (a) the distance between the worker’s
location and the origin of each feasible task, (b) the distance between the origin and desti-
nation of each feasible task, and (c) the future demand originating from the destination of
each task. These three aspects are fused using three parameters according to the importance
of each concern, in order to recommend a best route to a single worker in the dynamics
of tasks. In a basic version of this method, we tune the parameters based on the histori-
cal data. However, due to the lack of historical data and the dynamic nature of tasks, the
basic version may not achieve good results under some circumstances. We further propose
an algorithm which considers the destination based on the actual situation of worker. This
algorithm proves to be effective to achieve better results than other heuristic algorithms as
well as robust to cope with the dynamics of spatial crowdsourcing.

To the best of our knowledge, our work is the first to make delivery route recom-
mendation for a single worker in spatial crowdsourcing under online scenarios. Extensive
experiments are conducted on a synthesized dataset and a large scale New York City dataset.
The experiments show that our algorithm is scalable and efficient, capable of processing
thousands of tasks qucikly. In summary, the contributions of this paper include:

– We define the Online Delivery Route Recommendation (OnlineDRR) problem to
accommodate the real-world need to make a plan for a worker in spatial crowdsourc-
ing in order to maximize the worker’s income. We prove that the offline version of this
problem is NP-hard and no deterministic online algorithm for the OnlineDRR problem
can achieve a constant competitive ratio.

– We propose an effective algorithm to consider three influence factors on a worker’s
choice in terms of which task to undertake next. The parameters are tuned using histor-
ical data in the basic version of this algorithm. We also devise an advanced version to
overcome the drawbacks of the basic version which may not achieve good results under
some circumstances. The advanced version of this algorithm considers the destination
of the worker in order to align the recommended route with his/her destination.

– We conduct extensive experiments on both synthetic and real datasets. The experimen-
tal results verify the effectiveness and efficiency of our proposed algorithms.

The rest of this paper is organized as follows. We define our problem in Section 2, and pro-
pose two heuristics and our algorithms in Section 3. Section 4 presents the experimental evalua-
tion. We discuss the related work in Section 5 and finally conclude the paper in Section 6.

2 Preliminaries

In this section, we define some terminologies and formally give the definition of the Online-
DRR problem. Then, we prove the offline version of this problem is NP-hard and there is no
deterministic online algorithm for the OnlineDRR problem that has a good competitive ratio.

World Wide Web (2019) 22:2083–21042086

2.1 Problem definitions

Definition 1 (Task) A task t , denoted as 〈st , et , at , dt , rt 〉, starting from the location st , and
ending at the location et , with a reward of rt , is released on the platform at time at and can
only be finished by a worker before the deadline dt , otherwise it will disappear from the
platform thereafter.

Definition 2 (Worker) A worker w, who arrives at the platform with initial location sw
at time aw and plans to get to the location ew before the deadline dw , is denoted as
〈sw, ew, aw, dw, rw〉. rw is the radius of the worker’s circular service area with his/her
location as its center. Specifically, a worker w is only eligible to undertake those tasks
originating from his/her service area.

Definition 3 (Route) Given a worker w and a set of tasks T , a route Rw = 〈t1, t2, · · · , tn〉
is an ordered sequence of tasks if n < |T |, ti ∈ T , ti �= tj for i �= j .

The time that w arrives at each ti in Rw is hard to formulated due to the online nature
of tasks. When w finishes a task t and there is no available tasks in w’s vicinity, he/she can
stay at et until the next available task is released, or he/she can roam around. Even if there is
some other avilable tasks around w after he/she finishes the last task, w can wait for a more
suitable task to show up. Different algorithms may have different strategies, so we don’t
give the definition of the arrival time of a task.

A route Rw is valid for a worker w, if and only if w can finish all the tasks in Rw in order
by every time reaching the starting point of a task and then the end point of the task before
heading for the next task without overunning his/her time budget dw −aw , i.e., for each task
ti in Rw , f (ti) ≤ dti , where f (t) represents the finish time of the task t . We use c(a, b) to
represent the travel cost for a worker from the location a to b. For simplicity and without
loss of generality, we assume that c(a, b) euqals the Euclidean distance between a and b.

The total income of w along a valid route Rw , represented by I (Rw), is defined as the
sum of rti for each ti in Rw , i.e., I (Rw) = ∑

ti∈Rw

rti .

Definition 4 (Online Delivery Route Recommendation Problem) Given a worker w and a
set of tasks T , of which all the tasks are released in an online manner, the goal of the Online
Delivery Route Recommendation (OnlineDRR) problem is to find a valid route Rw such
that the total income of w is maximized.

2.2 Hardness of the problem

In this subsection, we prove the Offline Delivery Route Recommendation (OfflineDRR)
problem is NP-hard. First, we give the definition of the OfflineDRR Problem.

Definition 5 (Offline Delivery Route Recommendation Problem) Given a worker w and
a set of tasks T , with the spatiotemporal information of all tasks in T is known a priori,
the goal of the Offline Delivery Route Recommendation (OfflineDRR) problem is to find a
valid route Rw such that the total income of w is maximized.

World Wide Web (2019) 22:2083–2104 2087

We prove that the OfflineDRR problem is NP-hard by reducing a variant of orienteering
problem [8] to it. This variant is called Directed Orienteering Problem with Time Windows
and Service Time (DOP-TW-ST-R) and is defined as follows.

Definition 6 (Directed Orienteering Problemwith TimeWindows, Service Time and Range)
Given a directed graph with n nodes, which are numbered from 1 to n and each of which has
a score si ≥ 0 (s1 = sn = 0), a time window [t1i , t2i], denoting the earliest and latest time
that the node i can be served, and a service time sti , the DOP-TW-ST-R is to find a route,
starting from the node 1 and ending at the node n, such that the total score is maximized and
the total length is no greater than TMAX and the distance beween each adjacent node pair is
no greater than the range rMAX.

Lemma 1 The DOP-TW-ST-R is NP-hard.

Proof We prove the NP-hardness of the DOP-TW-ST-R by reducing the orienteering prob-
lem. Given n nodes numbered from 1 to n, each of which has a score si ≥ 0 (s1 = sn = 0),
the orienteering problem is to find a route from the node 1 to the node n such that the total
score is maximized and the total length is no greater than TMAX. We consider a special case
of the DOP-TW-ST-R, where for any two nodes i, j , the length of the edge (i, j) equals
that of (j, i), and the time window for each node is [0, TMAX], and the service time of each
node is 0, and the range rMAX is the maximum distance between any two nodes. Then the
orienteering problem, which is NP-hard [8], is equivalent to the aforementioned special case
of the DOP-TW-ST-R, so we can reduce the orienteering problem to the special case of the
DOP-TW-ST-R. Therefore, the DOP-TW-ST-R is NP-hard.

Theorem 1 The OfflineDRR problem is NP-hard.

Proof For an instance I of the DOP-TW-ST-R, we map the first node to the worker’s start
location, the last node to the worker’s destination, and the other n − 2 nodes to tasks. The
service radius of the worker is rMAX and the deadline of the worker is TMAX. For a node
i (1 ≤ i ≤ n), we map it to a task ti . Let the reward of ti be the score of the node i in I ,
the travel cost from the task’s origin to its destination c(sti , eti) be the service time of the
node i, c(sw, sti) be the length of the edge (1, i), c(eti , ew) be the length of the edge (i, n),
the release time and deadline of ti be t1i , t2i + sti in I , respectively. For any two node i,
j (1 ≤ i, j ≤ n), let c(eti , stj) be the length of the edge (i, j). Now we get an instance I ′
of the OfflineDRR problem. As long as there exists a route in I ′ with total income as T ,
there must be a route in I collecting a total score of T , and vice versa. So the DOP-TW-
ST-R can be reduced to the OfflineDRR problem. Since the DOP-TW-ST-R is NP-hard, the
OfflineDRR problem is also NP-hard.

In this paper, we study the OnlineDRR problem, in which the algorithms have no knowl-
edge of the prospective tasks. The performance of online algorithms is usually measured
by competitive ratios [15]. For our OnlineDRR problem, an algorithm ALG is called c-
competitive, if ALG(σ) ≤ c · OPT(σ) holds for any input σ , where ALG(σ) and OPT(σ)

denote the worker’s total incomes gained by ALG and optimal offline algorithm OPT,

World Wide Web (2019) 22:2083–21042088

respectively. The competitive ratio of ALG is the infimum over all c such that ALG is
c-competitive. We now show that no deterministic online algorithm can achieve a good
competitive ratio for the OnlineDRR problem.

Theorem 2 No deterministic online algorithm for the OnlineDRR problem has a constant
competitive ratio.

Proof To prove there does not exist a deterministic online algorithm that is c-competitive, it
suffices to find an input which can make the competitive ratio of the algorithm as low as pos-
sible. Without loss of generality, we only consider locations on the positive axis and assume
that the worker moves a length unit per time unit. At time 0, a workerw = 〈0, n, 0, n + 1, n〉
appears at the location 0 and needs to reach the location n before time n + 1.

The adversary releases a task t1 = 〈δ, 1, 0, 1, 1 − δ〉 at time 0, and the task originates
from position δ and should be finished at position 1 before time 1. In terms of w’s position
at time 1 (say x), there are two cases: (1) x = 0, or (2) x > 0. Then the adversary can
release another task accordingly to make the competitive ratio unboundedly small.

Case 1 (x = 0) In this case, the adversary will release anthother task t2 =
〈1, n, 1, n, n − 1〉 (see Figure 2a). Sincew cannot arrive at position n before time n,w is not
eligible to undertake t2. So w will end up finishing no tasks, i.e., I (Rw

ALG) = 0, where Rw
ALG

represents the w’s route given by ALG. However, the optimal offline algorithm OPT, which
knows both tasks in advance, will give a better routeRw

OPT = 〈t1, t2〉, and hencew can finish
both tasks, and I (Rw

OPT) = n − δ. In this case, the ratio between these two results is

I (Rw
ALG)

I (Rw
OPT)

= 0

n − δ
= 0.

Case 2 (x > 0) In this case, the adversary will release a task t2 = 〈0, n, 1, n + 1, n〉
(see Figure 2b). If w accepts t2, then w wouldn’t be able to reach position n before his/her
deadline. So w can only finish at most one task, i.e. t1, and I (Rw

ALG) ≤ 1 − δ. However,
with both tasks known in advance, OPT will recommend w to wait at position 0 until t2
are released and thus the total income achieved by OPT is I (Rw

OPT) = n. Since n can be
arbitrarily large, the ratio between them can be arbitrarily small, i.e.,

I (Rw
ALG)

I (Rw
OPT)

= 1 − δ

n
→ 0.

Figure 2 Different cases of releasing t2 in the adversarial analysis

World Wide Web (2019) 22:2083–2104 2089

3 Algorithms

In this section, we present a set of solutions to the online delivery route recommendation
problem.

3.1 The baseline approach

As defined in the OnlineDRR problem, the goal is to maximize the total income of a worker
w. A natural way is to find the longest task every time the worker needs to make a choice.
When there exist some tasks with the same length, the worker selects the nearest task. Based
on this strategy, the workers will gain the maximum income at one time. However, this
method does not consider the distance between the worker and the task, so it may take
more time for a worker to go to the starting point of a task and he/she would have less
time to finish the remaining tasks. Notice that for any task the worker chooses, he/she must
have time to go to his destination after finishing this task, or he/she will not accept that
task.

Algorithm 1: Baseline Approach

input : ,

output:

0;

;

while do

if then
break;

update ;

update ;

if 0 and then

foreach do
if and and

then

;

if then

;

continue;

Find the task with maximum distance;

;

;

;

if then

;

return

World Wide Web (2019) 22:2083–21042090

Algorithm 1 illustrates the procedure of the baseline approach for the OnlineDRR prob-
lem. We use currentT ime to represent the current system time. In lines 1-2, we represent
the time when the worker is ready to take a task as idleT ime, and the valid candidate task
sets for choosing as Scandidate. In lines 3-17, we continue to find the valid tasks one by
one before the deadline of the worker. Specifically, we check every task whether the worker
could accept it which means he would have enough time to go back to his destination if he
accepts this task. In lines 3-4, we check the deadline constraint of the worker. If there is
no enough time for the work to go back to his destination, the worker would stop accept-
ing the task and go to his destination. In lines 6-7, we keep on updating the task set T

and the system time currentT ime. In line 12, if the set Scandidate is empty which means
there is no suitable task at that time, the worker would keep on waiting until there is a new
suitable task. In line 15, if the set Scandidate is not empty, then the worker would select
the one with maximum distance. Then we update set Rw and the idleT ime of the worker.
In line 19, when currentT ime is greater than idleT ime, that means there is no siutable
tasks at that time and the worker is waiting for tasks, we should set idleT ime to the cur-
rent system time. The algorithm will end when currentT ime exceeds the deadline of the
worker.

Example 2 Suppose we have the scenario shown in Example 1, the worker w starts to work
at location (4,4) and there is a set of tasks T = {t1, t2, · · · , t5} with different release times.
If the worker w adopts the baseline approach, he/she would choose the longest task one by
one in a greedy way. First, the worker chooses task t2 which has the longest distance. Then
when w arrives at the destination of task t2, there is only one task remaining which is t4, but
the worker does not have enough time to finish it before its deadline. So he/she has to wait
until there is a suitable task he could finish. Unfortunately, no task could be done before the
deadline. So he/she has to head for his/her destination in order to get to the destination on
time. Consequently, the worker w can only finish one task t2. In the end, the recommended
route for w is t2.

3.2 Greedy algorithm

As illustrated in the baseline approach, it does not consider the distance between the worker
w and remaining tasks. The greedy algorithm aims at reducing useless movements between
the worker and tasks. It finds the nearest task in the service range of the worker which refers
to the nearest neighbor query [11, 33].

Algorithm 2 illustrates the procedure of the greedy algorithm. The execution process is
similar to the baseline aproach. In lines 3-17, we try to find the valid tasks one by one
before the deadline of the worker. In lines 3-4, we check the deadline constraint of the
worker. In lines 6-7, we keep on updating the task set T and the system time currentT ime.
In lines 8-11, we try to set up the set Scandidate which contains tasks satisfy the time con-
straints. In line 12, if the set Scandidate is empty which means there is no suitable task
at that time, he would keep on waiting until there is a new suitable task. In line 15, if
the set Scandidate is not empty, the worker will choose the task nearest to he/she in the
set Scandidate. The algorithm will end when currentT ime exceeds the deadline of the
worker.

World Wide Web (2019) 22:2083–2104 2091

Algorithm 2: Greedy Algorithm

input : ,

output:

0;

;

while do

if then
break;

update ;

update ;

if 0 and then

foreach do
if and and

then

;

if then

;

continue;

Find the task nearest to worker w;

;

;

;

if then

;

return

Example 3 We still consider the scenario in Example 1, the worker w starts to work at
location (4,4) and there is a set of tasks T = {t1, t2, · · · , t5} with different release times.
If the worker w uses the greedy algorithm, he/she would choose the nearest order one by
one. First, w would choose task t1 which is the nearest from he/she. Then when he/she
arrives at the destination of task t1, there is no available task in his/her service area. He/she
needs to wait until t5 is released, and then finishes t5. There is no more tasks after w

finishes task t5, so this process is finished. In the end, the recommended route for w

is t1 → t5.

3.3 Prediction based route recommendation algorithm

The baseline approach selects the longest task every time, but it does not consider the dis-
tance between the worker and tasks. The greedy algorithm chooses the nearest task instead,
but it does not consider the reward of every task. In the same time, they do not consider the
future demand around the destination of each task. In this paper, we propose a prediction

World Wide Web (2019) 22:2083–21042092

based route recommendation algorithm. We take into account these three factors: (a) the
distance between the worker’s location and the origin of each feasible task, (b) the distance
between the origin and destination of each feasible task, and (c) the future demand origi-
nating from the destination of each task. Similar to [46], we define the unit original task
demand around the destination of each task as UOTD(eti). In the online scenario, the tasks
can not been known in advance but we can use the state-of-the-art [46] to predict the unit
original task demand. UOTD is useful for the worker to have more knowledge about the
demand around the destination of each task. If a worker goes to somewhere with no task,
he/she would have to wait or go to somewhere else. Obviously, this obstructs the worker
from making more money. So if a worker goes to a place with many potential tasks in vicin-
ity, he/she would have more chance to choose a suitable task in order to get more rewards.
In this paper we take into account these three factors mentioned above so as to recommend
better route for the worker. We define online route recommendation score function f(w,ti)
as follows.

f (w, t i) = α

(

1 − c(w, st i)

rw

)

+ β
c(st i , et i)

̂MaxD
+ γ

UOT D(et i)

N
(1)

where α, β, γ ∈(0,1) are parameters to balance these three factors: the distance between
the worker’s location and the origin of each feasible task, the distance between the origin
and destination of each feasible task, and the future demand originating from the desti-
nation of each task. The parameters should satisfy α + β + γ = 1; c(w, st i) represents
the spatial distance between worker and the start position of task and is normalized by
rw which represents the service range of the worker w; c(st i , et i) represents the spatial

distance of task ti and is normalized by ̂MaxD which represents the maximum dis-
tance of all tasks. Similarly, UOTD(et i) represents the unit original task demand around
the destination of task ti and it is normalized by N which represents the sum of all
tasks.

Algorithm 3 illustrates the procedure of the prediction based route recommendation
algorithm for the OnlineDRR problem. In lines 1-2, we represent the time when the
worker is ready to take a task as idleT ime, and the valid candidate task sets for choos-
ing as Scandidate. In lines 3-23, we continue to find the valid task one by one. In lines
3-4, we check the deadline constraint of the worker. In lines 10-11, We check every task
whether the worker would have enough time to go back to his destination if he accepts
this task, and we add valid tasks into set Scandidate. If the set Scandidate is empty, the
worker would keep on waiting until there is new suitable task. In lines 15-17, for each
task t in set Scandidate, we first compute the unit original task demand around the desti-
nation of each task UOT D(eti), then we compute the online route recommendation score
for each valid task. In lines 18-19, we put the task with highest score value into set Rw .
Then we initialize Scandidate again, update idleT ime. In lines 23-24, when currentT ime

is greater than idleT ime, the worker is waiting for tasks and we set idleT ime to the cur-
rent system time. The algorithm will end when currentT ime exceeds the deadline of the
worker.

World Wide Web (2019) 22:2083–2104 2093

Algorithm 3: Prediction Based Route Recommendation Algorithm

input : ,

output:

0;

;

while do

if then
break;

update ;

update ;

if 0 and then

foreach do
if and and

then

;

if then

;

continue;

foreach do

compute ;

1 ;

;

;

;

;

if then

;

return

Example 4 We still consider the scenario shown in Example 1, the worker w starts to work
at location (4,4) and there is a set of tasks T = {t1, t2, · · · , t5} with different release times.
If the workerw follows the prediction based route recommendation algorithm, he/she would
choose task t3, which is neither the nearest nor the longest task. Then he would choose task
t4 after he arrived at the destination of task t3. There is still time for him to finish task t5
after he arrives at the destination of task t4, so he finishes task t5 also. The prediction based
route recommendation algorithm ends until the worker returns his/her destination. The final
route is t3 → t4 → t5, and is optimal.

3.4 Extended prediction based route recommendation algorithm

Although the prediction based route recommendation algorithm considers the three factors
mentioned above, but it does not consider the end point of the worker w. It is possible
that w goes far away from his/her destination when the time is close to the deadline. In
this case the worker will have no other choice except going back to the destination. Then
his/her total reward will be less because he/she spends a lot of time returning to his/her

World Wide Web (2019) 22:2083–21042094

destination without finishing tasks. To overcome the shortcomings of the above method, we
propose an extended prediction based route recommendation algorithm. We define online
route recommendation score function g(w, t i) as follows.

g(w, t i) = μf (w, t i) + (1 − μ)
c(et i , ew)

exp(dw − cT)
(2)

The basic idea of the extended prediction based route recommendation algorithm is that
we consider the impact of the distance between the destination of each task et i and the des-
tination of the worker ew . When there are two tasks with the same three factors mentioned
above, the worker will choose the closest one to his destination. The importance of the dis-
tance between the destination of each task et i and the destination of worker ew will grow
over time via exponential function. cT is a parameter in exponential function which means
current time. When the time is near deadline, a task which is nearer to the destination of
workerw would get higher recommendation score, that will ensure the worker chooses tasks
near his destination when the time is running out.

Algorithm 4: Extended Prediction Based Route Recommendation Algorithm

input : , ,

output:

0;

;

while do

if then
break;

update ;

update ;

if 0 and then

foreach do
if and and

then

;

if then

;

continue;

foreach do

compute ;

;

;

;

;

;

;

if then

;

return

World Wide Web (2019) 22:2083–2104 2095

Algorithm 4 illustrates the procedure of the extended prediction based route recom-
mendation algorithm for the OnlineDRR problem. In lines 1-17, EPBR is similar to PBR.
Specifically, in lines 1-2, we represent the time when the worker is ready to take a task as
idleT ime, and the valid candidate task sets for choosing as Scandidate. In lines 3-24, we
continue to find the valid task one by one. In lines 3-4, we check the deadline constraint of
the worker. In lines 10-11, We check every task whether the worker would have enough time
to go back to his destination if he accepts this task, and we add valid tasks into set Scandidate.
If the set Scandidate is empty, the worker would keep on waiting until there is new suit-
able task. In lines 15-17, for each task t in set Scandidate, we first compute the unit original
task demand around the destination of each task UOT D(eti), then we compute the online
route recommendation score for each valid task. Next, we compute new recommendation
score g(w, t i) which considers the distance between the destination of each task et i and the
destination of worker ew . After that, we select the task with the highest recommendation
score value and add it into set Scandidate. In lines 23-24, when currentT ime is greater than
idleT ime, the worker is waiting for tasks and we set idleT ime to the current system time.
The algorithm will end when currentT ime exceeds the deadline of the worker.

Example 5 We still consider the scenario shown in Example 1, the worker w starts to work
at location (4,4) and there is a set of tasks T = {t1, t2, · · · , t5} with different release times.
If we set the value of μ to 1, the result is the same with the prediction based route recom-
mendation algorithm in this case. The final route is t3 → t4 → t5, and is optimal. However,
we should notice that the destination of the worker is arbitrary set up by the worker. The
extended prediction based route recommendation algorithm considers the distance between
the destination of each task et i and the destination of the worker ew . It would be much more
helpful for a worker to select a task near his destination when approaching the deadline. The
difference between the results of the two algorithms can be observed in the experimental
section.

4 Experiments

4.1 Experimental settings

In this section, we describe our experimental settings for evaluating our proposed algo-
rithms.

Datasets We use both synthetic and real datasets for evaluating our algorithms. We use
New York City TCL Trip Record dataset [20] which contains nine-year taxi records in New
York City. Each record contains pick-up and drop-off times, and coordinates, as well as the
fare amount of each trip record.

For the synthetic dataset, we generate tasks following normal distribution. Both the
worker and tasks are located in a 50*50 gird. The configuration of the synthetic dataset is
shown in Table 2. Default values are denoted in bold font. We test our proposed algorithms
via varying 6 parameters: the service range of the worker rw , the mean and standard devi-
ation of coordinate values of tasks’ start points, S̄, δs , respectively, the mean and standard
deviation of the length of all tasks, D̄, δd , respectively, and the number of all tasks |T |.

In addtion, four algorithms mentioned in this paper are all implemented in C++, and the
experiments were performed on a machine with Intel i5 2.70GHZ 2-core CPU and 8GB
memory.

World Wide Web (2019) 22:2083–21042096

Table 2 Synthetic Dataset
Factor Settings

rw 5, 10, 15, 20, 25

S̄ 5, 15, 25, 35, 45

δs 5, 10, 15, 20, 25

D̄ 3, 6, 9, 12, 15

δd 1, 2, 3, 4, 5

|T | 1000, 2000, 3000, 4000, 5000

4.2 Experiment results

In this section, we evaluate our proposed algorithms in terms of the income of the worker,
running time, and memory cost. We define the reward of each task as utility, and its value
is set as the non-idle time of the worker in the experimental settings. The income of
the worker can be obtained by the total utility score he gets within his time budget. We
show the results of utility normalized by the time budget of the worker. We test our algo-
rithms via varying 6 parameters mentioned above. Longest Order First(LOF) is the baseline
method, which chooses the task with maximum distance. The greedy algorithm selects
the nearest task when it satisfies the constraints. We show the best performance results of
PBR(Prediction Based Recommendation) and EPBR(Extended Prediction Based Recom-
mendation). In order to acquire accuracy and stability, we carefully tuning the balance factor
α, β, γ, μ based on grid search.

Effect of rw We first study the effect of varying the parameter rw, the results are shown
in Figure 3a and c. From the utility result shown in Figure 3a, we can observe that EPBR

Figure 3 Results on varying rw and |T |

World Wide Web (2019) 22:2083–2104 2097

performs better than the others and PBR is the second best. At first when the range is small,
there is not enough tasks to choose, so the utility is low for all of them. The utility is higher
with the increase of range for PBR and EPBR. When the range is larger than 15, there is
more tasks to choose. The utility of LOF decreases because no-load distance will arise since
the worker chooses to do the longest task. Greedy performs better than LOF when the range
is larger than 15. The running time cost of Greedy and LOF are nearly the same. PBR and
EPBR needs to compute the task demand around the destination of each chosen task and
compute the highest score to recommend, so it takes more time than others.

Effect of |T |. We then study the effect of varying the parameter |T |, the results are shown
in Figure 3d and f. From the utility result shown in Figure 3d, we can observe that the
utilities of all algorithms get higher when the number of tasks increases. When |T | increases,
there are more tasks in the grid so it is beneficial to the worker to choose better tasks. At the
same time, the running time cost and memory cost of all algorithms grows as the number of
tasks increases because more tasks need more time to process and more memory to store.

Effect of S̄. We then study the effect of varying the parameter S̄, the results are shown in
Figure 4a and c. From the utility result shown in Figure 4a, we can observe that all four
algorithms performs better when the mean coordinates of start points is 25. As it is the
center of the grid, there is more tasks to choose so it is reasonable to get higher utility value.
In contrast, the utility decreases when the coordinate becomes farther from center. At the
same time, EPBR still performs the best. The running time cost and memory cost of all
algorithms nearly remains unchanged.

Effect of δs We then study the effect of varying the parameter δs , the results are shown in
Figure 4d and f. From the utility result shown in Figure 4d, we can observe that the utility

Figure 4 Results on varying S̄ and δs

World Wide Web (2019) 22:2083–21042098

varies when δs changes. The utilities of Greedy and LOF are higher alternately. For PBR
and EPBR, the utility is higher when the variance is smaller. Similar to the results of effect
of S̄, the running time cost and memory cost of all algorithms nearly remains unchanged.

Effect of D̄ We then study the effect of varying the parameter D̄, the results are shown in
Figure 5a and c. From the utility result shown in Figure 5a, we can observe that the utility
rises when the mean length of tasks increases. It is reasonable because the workers could
get more reward each time when the average length of tasks increases, since the reward of
a task is usually related to its length. When the average length of tasks is greater than 9,
LOF performs better than Greedy. PBR and EPBR performs much better than the other two
algorithmsconsistently.The runtimeandmemory cost of all the algorithms fluctuate as D̄ changes.

Effect of δd . We then study the effect of varying the parameter δd , the results are shown
in Figure 5d and f. From the utility result shown in Figure 5d, we can observe that there
is no much change for all four algorithms. The utility basically maintains stable for each
algorithm. The utility of PBR and EPBR will decrease with the increase of the variance of
tasks, but PBR and EPBR still performances much better than LOF and Greedy.

Real dataset Next we evaluate the proposed algorithms on the real dataset. There is a
lot of work on mobile data processing [31–34, 54, 59]. After preprocessing, every order
is extracted with pick-up/drop-off time, coordinate and taxi billing information. We select
2500 orders from New York City TCL Trip Record dataset as the task set every time and
test 100 times. In the same time, we set the maximum wait time of each task as 5 minutes.
When a task is not chosen since it has existed for 5 minutes, it will become invalid. The
start point of the worker is initialized randomly. The values of parameters α, β, γ , μ are
set to 0.5, 0.2, 0.3, 0.7, respectively. We test these four algorithms by varying the range of

Figure 5 Results on varying D̄ and δd

World Wide Web (2019) 22:2083–2104 2099

Figure 6 Results on the real dataset

worker and the number of orders. The experimental results based on real data are shown
in Figure 6. As shown in Figure 6a, the utility on real data is not as high as synthetic data
due to the density of tasks, and we can observe from Figure 6a, the utility of EPBR is still
the highest which proves it is effective. The running time cost and memory cost of PBR is
similar to EPBR. The running time cost and memory cost of Greedy and LOF are almost
the same always. At the same time, the running time cost and memory cost of all algorithms
grows as the number of tasks increases and all algorithms run fast.

5 Related work

5.1 Spatial crowdsourcing

Spatial data management and analysis is always one of fundamental topics in database and
data mining communities [4, 22, 26, 27, 29, 35–37, 58]. In recent years, spatial crowd-
sourcing has been studied widely. One of the most important issues in crowdsourcing
is task assignment [45, 47, 48]. For online scenarios, Tong [48] studies task assignment
in crowdsourcing with workers arriving dynamically and [47] presents a comprehensive
experimental comparison of online matching algorithms in spatial crowdsourcing.

Spatial crowdsourcing has attracted much interest from the industry as well as research
communities with the development of smartphones. Task assignment [3, 7, 14, 39, 41, 49] is a
primary focus in spatial crowdsourcing. Kazemi and Shahabi [14] define a maximum task
assignment problem which aims to maximize the number of assigned tasks. Different from
the offline scenarios adopted by the aforementioned work, task assignment under online sce-
narios has also been investigated and the problem is often formulated as a bipartite matching

World Wide Web (2019) 22:2083–21042100

problem [40, 42, 47, 48, 50]. Tong et al. [48] first identify the global online microtask allo-
cation in spatial crowdsourcing and presented an algorithm with 1

4 competitive ratio. The
difference of our work from task assignment lies in that most studies on task assignment
optimizes the total number of assigned tasks or the total weighted value of assignment from
the platform’s perspective while in this paper, we try to maximize a single worker’s income.

Different from task assignment problem, the issue of route recommendation in spatial
crowdsourcing is less studied [2, 5, 16, 30]. [5] focus on offline scenarios, while tasks arrive
dynamically in real applications. Considering the reality, tasks are specified with a deadline.
In this paper, tasks will expire after their deadlines. Li et al. [16] is the cloest one to our
work, considering online scenarios, the biggest difference lies in that tasks in this paper are
of delivery type while they are visit-type in [16]. Furthermore, how to make a plan for a
worker in spatial crowdsourcing in order to maximize the worker’s income is a challenging
problem.

5.2 Orienteering problem

The orienteering problem is a routing problem with a time budget and its goal is to deter-
mine which nodes to visit and in which order so that the total score is maximized [8].
Vansteenwegen et al. [51] and Gunawan et al. [9] presented a comprehensive survey about
the orienteering problem and many typical variants of it. There are some time-related vari-
ants such as the Orienteering Problem with Time Windows (OPTW) [13] where each node
can only be visited during a particular time range, and the Time Dependent Orienteering
Problem (TDOP) [6] where the cost between two nodes depends on time. Varakantham et
al. [52] addressed the problem of crowd congestion and provided route guidance to multiple
selfish users. The closest variant of the orienteering problem to our OnlineDRR problem
is the DOP-TW-ST-R (see Definition 6) where each node is associated with a service time
and a time window and is on a directed graph metric space. But to the best of our knowl-
edge, the DOP-TW-ST-R has not been studied in existing literature. In addition, for most
variants of the orienteering problem, online algorithms are seldom devised. In other words,
most studies on time-related variants of the orienteering problem only focus on a offline
scenario, where the spatiotemporal information of nodes is known in advance.

5.3 Route recommendation

With the application of online to offline mode, route recommendation [19, 21, 25, 28, 43, 55,
61] is becoming more and more important nowdays. Shang [25] proposed collective travel
planning query in spatial networks so as to offer societal and environmental benefits. Liu
et al. [19] presented a novel route recommendation, syste,m to provide self-drive tourists.
This is helpful for reducing the traffic jams and queuing time. Su et al. [43] presented a
crowd-based route recommendation system which evaluates the quality of recommended
routes. The most satisfactory routes with high score will be recommended to users. Qu et
al. [21] developed a cost-effective recommender system for taxi drivers so as to maximize
their profits. They provided a net profit objective function for evaluating routes. In addition,
[61] propose a personalized and time-sensitive route recommendation system which con-
sider users’ personal preferences and the temporal contexts. They propose a route generation
algorithm to form routes under time-sensitive constraints. In this paper, we propose predic-
tion based route recommendation algorithms and our work aims to maximize the benefits
of the worker under online scenario. Our work considers three factors mentioned above: (a)

World Wide Web (2019) 22:2083–2104 2101

the distance between the worker’s location and the origin of each feasible task, (b) the dis-
tance between the origin and destination of each feasible task, and (c) the future demand
originating from the destination of each task.

6 Conclusion

In this paper, we propose a novel problem called the Online Delivery Route Recom-
mendation (OnlineDRR) problem. We first give the definition of online delivery route
recommendation problem, and prove the Offine Delivery Route Recommendation (Offine-
DRR) problem is NP-hard. Then we prove there does not exist a deterministic online
algorithm has a constant competitive ratio for the OnlineDRR problem. we presented a
set of solutions to the online delivery route recommendation problem, including a baseline
approach, Greedy, Prediction Based Route Recommendation Algorithm(PBR), Extended
Prediction Based Route Recommendation Algorithm(EPBR). We verify the effectiveness
and efficiency of the proposed algorithms through extensive experiments on real and
synthetic datasets. The EPBR algorithm is the most effective and is also efficient enough.

References

1. Amazon mechanical turk. https://www.mturk.com/
2. Chen, C., Cheng, S., Lau, H.C., Misra, A.: Towards city-scale mobile crowdsourcing: Task recommenda-

tions under trajectory uncertainties. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1113–1119 (2015)

3. Cheng, Y., Yuan, Y., Chen, L., Giraud-Carrier, C.G., Wang, G.: Complex event-participant planning and
its incremental variant. In: ICDE. IEEE, pp. 859–870 (2017)

4. Cheng, Y., Yuan, Y., Chen, L., Wang, G., Giraud-Carrier, C.G., Sun, Y.: Distr: A distributed method for
the reachability query over large uncertain graphs. IEEE Trans. Parallel Distrib. Syst. 27(11), 3172–3185
(2016)

5. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-selected tasks in spa-
tial crowdsourcing. In: Proceedings of the 21st acm sigspatial international conference on advances in
geographic information systems. ACM, pp. 324–333 (2013)

6. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. Inf. Process. Lett.
83(2), 57–62 (2002)

7. Gao, D., Tong, Y., She, J., Song, T., Chen, L., Xu, K.: Top-k team recommendation and its variants in
spatial crowdsourcing. Data Sci. Eng. 2(2), 136–150 (2017)

8. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. 34(3), 307–318 (1987)
9. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey of recent variants, solution

approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)
10. Guo, D., Zhu, Y., Xu, W., Shang, S., Ding, Z.: How to find appropriate automobile exhibition halls:

Towards a personalized recommendation service for auto show. Neurocomputing 213, 95–101 (2016)
11. Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.: Discovering neighborhood pattern queries by sample

answers in knowledge base. In: 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, pp. 1014–1025 (2016)

12. Hu, S., Wen, J., Dou, Z., Shang, S.: Following the dynamic block on the Web. World Wide Web 19(6),
1077–1101 (2016)

13. Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J. Oper. Res. Soc. 43(6),
629–635 (1992)

14. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: Proceed-
ings of the 20th international conference on advances in geographic information systems. ACM, pp.
189–198 (2012)

15. Krumke, S.O.: Online optimization: Competitive analysis and beyond. ZIB (2006)
16. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowdsourcing task workers.

In: International Symposium on Spatial and Temporal Databases. Springer, pp. 137–156 (2015)

World Wide Web (2019) 22:2083–21042102

https://www.mturk.com/

17. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with
worker and task privacy protection. GeoInformatica online first, 1–28 (2017)

18. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online
amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng.
28(11), 2827–2841 (2016)

19. Liu, L., Xu, J., Liao, S.S., Chen, H.: A real-time personalized route recommendation system for self-drive
tourists based on vehicle to vehicle communication. Expert Syst. Appl. 41(7), 3409–3417 (2014)

20. nyc. http://www.nyc.gov/html/tlc/html/home/home.shtml
21. Qu, M., Zhu, H., Liu, J., Liu, G., Xiong, H.: A cost-effective recommender system for taxi drivers.

In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, pp. 45–54 (2014)

22. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE
Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017)

23. Shang, S., Chen, L., Wei, Z., Guo, D., Wen, J.: Dynamic shortest path monitoring in spatial networks. J.
Comput. Sci. Technol. 31(4), 637–648 (2016)

24. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial
networks. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA,
USA, April 19-22, 2017, pp. 59–60 (2017)

25. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial
networks. IEEE Trans. Knowl. Data Eng. 28(5), 1132–1146 (2016)

26. Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial
networks. PVLDB 10(11), 1178–1189 (2017)

27. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in
spatial networks. VLDB J. 23(3), 449–468 (2014)

28. Shang, S., Guo, D., Liu, J., Wen, J.: Prediction-based unobstructed route planning. Neurocomputing 213,
147–154 (2016)

29. Shang, S., Guo, D., Liu, J., Zheng, K., Wen, J.: Finding regions of interest using location based social
media. Neurocomputing 173, 118–123 (2016)

30. Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-
aware spatial networks. GeoInformatica 19(4), 723–746 (2015)

31. Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks, in
SSTD, pp. 128–145 (2013)

32. Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks, in
MDM, pp. 247–250 (2013)

33. Shang, S., Wei, Z., Wen, J., Zhu, S.: Probabilistic nearest neighbor query in traffic-aware spatial net-
works. In: Web Technologies and Applications - 18th Asia-Pacific Web Conference, APWeb 2016,
Suzhou, China, September 23-25, 2016. Proceedings, Part I, pp. 3–14 (2016)

34. Shang, S., Xie, K., Zheng, K., Liu, J., Wen, J.: VID join: Mapping trajectories to points of interest to
support location-based services. J. Comput. Sci. Technol. 30(4), 725–744 (2015)

35. Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: PNN query processing on compressed
trajectories. GeoInformatica 16(3), 467–496 (2012)

36. Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations: reverse path
nearest neighbor query in road networks, in ACM SIGSPATIAL, pp. 181–190 (2011)

37. Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters
in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)

38. Shang, S., Zhu, S., Guo, D., Lu, M.: Discovery of probabilistic nearest neighbors in traffic-aware spatial
networks. World Wide Web 20(5), 1135–1151 (2017)

39. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In: SIGMOD. ACM, pp.
1629–1643 (2015)

40. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement and its variant for
online setting. IEEE Trans. Knowl. Data Eng. 28(9), 2281–2295 (2016)

41. She, J., Tong, Y., Chen, L., Song, T.: Feedback-aware social event-participant arrangement. In: SIGMOD.
ACM, pp. 851–865 (2017)

42. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic online matching in real-time
spatial crowdsourcing. In: ICDE. IEEE, pp. 1009–1020 (2017)

43. Su, H., Zheng, K., Huang, J., Jeung, H., Chen, L., Zhou, X.: Crowdplanner: A crowd-based route recom-
mendation system. In: 2014 IEEE 30th international conference on Data engineering (icde). IEEE, pp.
1144–1155 (2014)

44. Tong, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: Challenges, techniques, and applications.
Proceedings of the VLDB Endowment 10(12), 1988–1991 (2017)

World Wide Web (2019) 22:2083–2104 2103

http://www.nyc.gov/html/tlc/html/home/home.shtml

45. Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, W.: Slade: A smart large-scale
task decomposer in crowdsourcing, IEEE Transactions on Knowledge and Data Engineering.
https://doi.org/10.1109/TKDE.2018.2797962 (2018)

46. Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye, J., Lv, W.: The simpler the better: a unified
approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
pp. 1653–1662 (2017)

47. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in real-time spatial data:
experiments and analysis. Proceedings of the Vldb Endowment 9(12), 1053–1064 (2016)

48. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation in spatial crowd-
sourcing. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, pp. 49–60
(2016)

49. Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social networks: the max-
min approach. World Wide Web 19(6), 1151–1177 (2016)

50. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online task assignment in
real-time spatial data. Proceedings of the VLDB Endowment 10(11), 1334–1345 (2017)

51. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: A survey. Eur. J.
Oper. Res. 209(1), 1–10 (2011)

52. Varakantham, P., Mostafa, H., Fu, N., Lau, H.C.: Direct: A scalable approach for route guidance in selfish
orienteering problems (2015)

53. Wang, Y., Li, J., Zhong, Y., Zhu, S., Guo, D., Shang, S.: Discovery of accessible locations using region-
based geo-social data. World Wide Web, pp. 1–16 (2018)

54. Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks.
ACM Trans. Database Syst. 37(4), 29:1–29:31 (2012)

55. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-
varying uncertainty. In: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014,
IL, USA, March 31 - April 4, 2014, pp. 136–147 (2014)

56. Zheng, B., Wang, H., Zheng, K., Su, H., Liu, K., Shang, S.: Sharkdb: an in-memory column-oriented
storage for trajectory analysis. World Wide Web 21(2), 455–485 (2018)

57. Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword
queries. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea,
April 13-17, 2015, pp. 423–434 (2015)

58. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories, in
ICDE, pp. 242–253 (2013)

59. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over
trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)

60. Zhu, S., Wang, Y., Shang, S., Zhao, G., Wang, J.: Probabilistic routing using multimodal data.
Neurocomputing 253, 49–55 (2017)

61. Zhu, X., Hao, R., Chi, H., Du, X.: Fineroute: Personalized and time-aware route recommendation based
on check-ins. IEEE Trans. Veh. Technol. 66(11), 10461–10469 (2017)

World Wide Web (2019) 22:2083–21042104

https://doi.org/10.1109/TKDE.2018.2797962

	Online delivery route recommendation in spatial crowdsourcing
	Abstract
	Introduction
	Preliminaries
	Problem definitions
	Hardness of the problem
	Case 1 (x=0)
	Case 2 (x>0)

	Algorithms
	The baseline approach
	Greedy algorithm
	Prediction based route recommendation algorithm
	Extended prediction based route recommendation algorithm

	Experiments
	Experimental settings
	Datasets

	Experiment results
	Effect of rw
	Effect of |T|.
	Effect of .
	Effect of s
	Effect of
	Effect of d.
	Real dataset

	Related work
	Spatial crowdsourcing
	Orienteering problem
	Route recommendation

	Conclusion
	References

