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Abstract In this paper, we plan to predict a ranking on e-books by analyzing the implicit
user behavior, and the goal of our work is to optimize the ranking results to be close to
that of the ground truth ranking where e-books are ordered by their corresponding reader
number. As far as we know, there exist little work on predicting the future e-book ranking.
To this end, through analyzing various user behavior from a popular e-book reading mobile
APP, we construct three groups of features that are related to e-book ranking, where some
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features are created based on the popular metrics from the e-commerce, e.g., conversion
rates. Then, we firstly propose a baseline method by using the idea of learning to rank (L2R),
where we train the ranking model for each e-book by taking all its past user feedback within
a time interval into consideration. Then we further propose TDLR: a Time Decay based
Learning to Rank method, where we separately train the ranking model on each day and
combine these models by gradually decaying the importance of them over time. Through
extensive experimental studies on the real-world dataset, our approach TDLR is proved to
significantly improve the e-book ranking quality more than 10% when compared with the
L2R method where no time decay is considered.

Keywords E-book ranking · Ranking prediction · Implicit user behavior

1 Introduction

Nowadays, due to the portability and searchability of electronic books (e-books), it is com-
mon to see people holding their mobile phones or Kindles reading e-books on the bus,
train, airplane and even while standing in line. To make people aware of the popularity of
e-books, e-book selling web sites like Amazon often give rankings on e-books in different
viewpoints, e.g., best sellers in the day or best rated books so far. In the meantime, a lot of
sellers get hooked on the ranking due to the reason that better ranking equates better expo-
sure to the readers, which will in turn drive more traffic and sales producing more revenues
over time for the seller, i.e., the higher the e-book ranks, the more profits the seller gains.

However, most existing e-book rankings are generated based on sales or other statistics
over past days or weeks, which is unable to reveal the accurate future popularity of e-books.
What is more important, traditional statistical rankings fail to maximize the effect of attract-
ing more users to read more e-books since it is likely that books in the statistical ranking
list had been read by many readers and their future reading quantity in terms of the number
of readers will drop while some other newly issued e-books that may become popular in the
future have their reading quantity increased. In order to further boost this implicit trend, we
plan to predict (or we can say “recommend”) an e-book ranking, which not only disclose
some future reading tendency but also maximize the total reading quantity for the e-books
in the ranking list, i.e., the total number of readers in the predicted ranking is close to that
of ground truth ranking. Besides, knowing future ranking for e-books in advance has many
other benefits, e.g., the bookstore can stock more books that may be popular in the future
based on the performance of their corresponding electronic versions; the reading interest
overall could be captured by investigating the future e-book rankings; users may find more
interesting e-books to read and etc.

Ranking problems have been widely studied in web search engine field, but the ranking
methods from this area usually require users to provide a query, and the items within the
results must have some inner connections, e.g., the content similarity between two web
pages. Hence, these ranking techniques could not directly be applied to our e-book ranking
prediction problem where no specific query is needed and the relations between different e-
books are ignored. Another popular way to solve the problem of e-book ranking prediction is
to use the idea of collaborative filtering [9], where the user-item rating matrix [13] is utilized
to make top k recommendations for users. Unfortunately, ratings are not always available. To
tackle this problem, implicit user feedback generated during the interaction between users
and the systems have been incorporated into the ranking and recommendation and achieve
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great success [2, 8]. However, these methods seldom consider the behavior changes over
time which is important for us to improve the prediction quality in e-book ranking problem.

In our work, we also assume that a user’s behavior to an e-book implies his preference
to the e-book. Therefore, we investigate the implicit feedback from different viewpoints,
namely features, and incorporate them into the e-book ranking prediction problem. It is
important to note that, the goal of our work is to make the total reading quantity of pre-
dicted e-book ranking list close to that of the ground truth ranking, i.e., the actual ranking
for the future. To this end, we collect a real-world dataset from a popular e-book reading
mobile APP, and firstly created three groups of features based on the user reading behavior
and some popular metrics that are commonly used in e-commerce, including (1) statistical
features based on counting different types of behavior, (2) conversion rates which measures
what happens when users are at an e-book, and (3) some ratio features that are used to cap-
ture more advanced characteristics of an e-book, such as the reader retention. Then based on
these features, we propose a baseline method by adopting the idea of learning to rank (L2R)
[23] to perform e-book ranking prediction, where the top-K prediction on a given date takes
the role of queries in L2R and the e-books themselves can take the role of documents. In this
baseline method, L2R does not take the temporal dynamics of user behavior into consider-
ation, and some hidden trends that can influence the final ranking quality still need to be
further revealed. Hence, we present TDLR: a Time Decay based Learning to Rank method,
which can improve the e-book ranking quality by gradually decaying the importance of past
implicit feedback over time. Specifically, TDLR firstly trains the ranking model for each
book on each day, then computes a composite rating score for each e-book by assigning
different weights to the ratings that derived from each learned ranking model before the
prediction date, and then combining them in a linear way. The weights are determined by a
carefully designed time decay function. Through extensive experimental evaluations, TDLR
had been demonstrated to be more effective than pure L2R in terms of ranking quality. In
general, the contributions in this paper can be summarized as follows:

1. As far as we know, we are the first to propose the problem of e-book ranking prediction,
and solving this problem has many benefits for both book sellers and readers.

2. Motivated by the performance indicator in e-commerce, we designed three groups of
features by studying various user reading behavior, where some of these features are
used in e-book ranking domain for the first time.

3. To solve the proposed problem, instead of merely relying on one relevance criterion,
e.g., the number of readers for an e-book, we firstly proposed a learning to rank based
method to predict the e-book ranking by taking into account of multiple features that
are related to e-book ranking, then an improved method named TDLR was present to
further improve the ranking quality by decaying the importance of past implicit user
feedback in the construction of ranking model.

4. Based on the metric of Normalized Discounted Cumulative Gain (NDCG), we per-
formed extensive experimental evaluations on real-world data. The experiment results
show that our TDLR method can outperform traditional learning to rank method by
10.7% when solving the e-book ranking prediction problem.

The rest of the paper is organized as follows. In Section 2, we introduce the dataset and
perform data analysis to validate our motivation. The feature engineering based on the user
behavior is detailed in Section 3. Then we present the method for predicting e-book ranking in
Section 4. Section 5 shows the experimental results and evaluations. Relatedwork is reviewed
in Section 6. Finally in Section 7, we conclude and describe future research directions.
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2 Preliminaries

In this section, we firstly overview the dataset used throughout the paper, and then we
perform a data analysis to show the motivation of our work, i.e., the difference between
statistical ranking and predicted ranking in terms of the reading quantity.

2.1 Dataset and preprocessing

The dataset we use is from a popular e-reading mobile app which has millions of users, and
its backend log records all predefined behavior for each user since he or she starts to read
with this app.

For the sake of focusing on our problem, we extracted following four fields from original
logs for each user: (1) userID, the unique identification for the user; (2) bookID, the unique
identification for the book; (3) eventID, corresponds to a kind of predefined user behav-
ior, and (4) timeStamp, the time stamp that this event or behavior occurs and it is accurate
to a second. For a single user, the order of these records represents his temporal behavior
sequence. Note that, there were actually more than ten kinds of behavior predefined in origi-
nal log system. But, due to the reason that some behavior is similar or lacks of corresponding
records, we finally choose following six kinds of reading behavior in our work: (1) add the
e-book to the reading list, (2) remove the e-book from the reading list, (3) download the
e-book, (4) click the e-book cover, (5) turn the page, and (6) click the e-book catalog.

We will use this preprocessed data set for analysis in the rest of this paper and for privacy
and contract reasons, we hide some confidential information which will not prevent readers
from understanding the data itself, such as user name and book name (we use their IDs
instead).

2.2 Data analysis

Next, we perform data analysis to demonstrate the motivation of our work by answering fol-
lowing two questions: (1) Do e-book ranking results change frequently over time? (2) How
ineffective the statistical ranking is?

2.2.1 Daily changes of e-book ranking

To answer the first question, we perform two tasks for two consecutive daily e-book top-k
rankings by calculating the probabilities of the top ranked e-books that: (1) only appear in
the ranking list of the second day; and (2) appear in both two days but their orders in the
ranking list are changed. To this end, we sort the e-books in descending order by the number
of corresponding readers on each day, and then a daily top-k ranking could be derived. Here
we simply take k=10 for observation.

Through observing a whole month’s daily top-10 rankings, we find that the proportion
of e-books that newly appear in top-10 ranking on the second day of any two consecutive
days is 19%, i.e., 1.9 e-books in average which were not ranked among top-10 on first day
and they will jump to the top-10 on the next day. Furthermore, we also discover that 72%
of e-books in average have their orders changed when compared with their corresponding
orders one day before, which is a quite different case. Hence, from above observations, we
can infer that e-book ranking varies much as time goes by and traditional ranking based on
past statistics cannot reflect the future ranking accurately.
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Figure 1 Using statistical ranking for prediction

2.2.2 Pitfall of statistical ranking

For the second question, considering that the real e-book ranking on the (i+1)th day can
only be captured by the end of the day, we use the statistics collected from past i days to
derive a top-10 ranking as a prediction for the (i+1)th day, and compare it with the actual
top-10 which is made based on the statistics on the (i+1)th day. The difference of above two
ranking methods is shown in Figure 1, where the dotted line represents the total number of
readers (Y-axis) for top 10 e-books, which were selected by using the statistics from the past
week, on different days (X-axis), while the reader number for actual top-10 e-book ranking
on each day is plotted in solid line.

As we can see from Figure 1, there exists a big gap between two rankings for all days.
For example, on day 4, the total number of readers for the top-10 e-books listed in the
actual ranking is 25% more than that of top-10 e-books from the statistical ranking derived
from past days. The main reason behind this is that some inner reading trends have been
concealed by statistics. Next, we dig into more details of our data for further explaining why
statistical ranking is ineffective. In Table 1, each column shows the daily reader number
for three books (e-book names are anonymous with no impact on our work). By using
statistics over past 4 days (Sum column), i.e., day(i-4) to day (i-1), we can get the ranking
of “B1,B3,B2” (based on 359 > 209 > 156). However, we can clearly see that e-book B2
has an increasing reader number as approaching day (i), while B1 shows a decreasing trend
and B3 is relatively stable. So, intuitively, B2 should be ranked higher and in fact, the actual
ranking on day (i) as shown in Table 1 should be “B2,B3,B1” (due to 80 > 48 > 29).

Table 1 Inner reading trends hidden by statistics

e-book Day (i-4) Day (i-3) Day (i-2) Day (i-1) Sum Day (i)

B1 142 98 77 42 359 29

B2 13 30 42 71 156 80

B3 51 44 62 52 209 48
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Last but not least, higher rank for an e-book can in turn bring more traffic or profits for
its providers, which is also ignored by the statistical ranking based on the above analysis.
Hence, the rest of this paper targets to design a more effective e-book ranking method to
reveal the above hidden trends from the historical user reading behavior and minimize the
reading quantity (in terms of the reader number) gap between the predicted and the ground
truth top-k rankings.

3 Feature engineering

In this section, motivated by performance metrics that are widely used in e-commerce, we
present the features that may have impact on e-book ranking prediction. These features
are categorized into three groups according to the characteristics they try to capture for a
given e-book, i.e., (1) statistical features, such as the number of downloads, (2) conversion
rates, such as the proportion of readers who take action to read the e-book, and (3) ratio
based features, which refer to more advanced features that are created based on former two
categories, e.g., rate of return within a week. Note that, though the e-book ranking prediction
can be made per hour or per day, we plan to update the e-book ranking daily in our work
since it is more common in real-world. Hence, the statistical features and conversion rates
features are extracted from the original user behavior by the day. But the ratio based features
are extracted by spanning a couple of days.

Statistical Features Usually, time and frequency are two important types of user behavior.
For example, dwell time on items have been converted into user-rating matrix for help-
ing improve recommendation performance [31], and the frequency at which users access
their online social networks has been well studied since frequent repeated activities natu-
rally serve as good targets for advertisements [3]. However, there was no such feedback in
original data and it is far from trivial to create them. Next, based on the original behavior
recorded, we mainly introduce how we create the features of the time spent for reading an
e-book and the frequency a user reads the same book. Then the rest features could be easily
built based on them.

First of all, we need to compute the user dwell time on a single page before next page
turning occurs. To do this, we retrieve the data that contains the same behavior of turning the
page, and then we can get the dwell time on a single page of one e-book by calculating the
time stamp difference between two adjacent records. For example, there are two adjacent
records of page turning behavior for the same user on an e-book, and their timeStamp values
are “017/07/04 13:27:05” and “2017/07/04 13:27:09”, the difference of them is 4 seconds
which will be considered as the time spent on a single page.

However, we find there are some unusual cases where the difference could be very huge,
e.g., hours or days, which will not be regarded as the dwell time for a single page since
its corresponding adjacent records actually represent different reading behavior in different
periods. Hence, we need to further find out the range of reasonable dwell time for a common
person to read a single page. By analyzing the statistics of each book page for all users, as
shown in Figure 2, we find that 80% page dwell time is less than 300 seconds. According to
Pareto theorem, we will regard dwell time that exceeds 300s as the outlier, i.e., two different
reading behaviors, and preclude them from consideration. Similarly, page dwell time that is
lower than 2s is also ignored, since it maybe caused by user quickly turning the page that
has been read before and this is not the normal reading behavior.
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Figure 2 Statistics for dwell time on a single page

As a result of above processing, page dwell time between “(2s, 300s)” is chosen for
evaluation. For the time difference that is over 300s, we will mark corresponding records as
reading the e-book twice, i.e, the user reads this e-book in different periods for twice. In this
way, we can derive the reading frequency for each user to each e-book he reads. Moreover,
the total reading time spent on an e-book for a user can be calculated by accumulating each
page dwell time of the book. Next, based on the aforementioned two types of user behavior,
i.e., dwell time and reading frequency, we can further create more statistical features for
each e-book. As shown in Table 2, the feature names and their descriptions are given, and
they are self-explanatory.

Conversion Rates Features The conversion rate is the proportion of conversions among
total number of visitors for a website or an app, where a conversion refers to any desired
action that managers want the user to take. Conversion rates have been one of the most
popular and important tools in e-commerce [12] to gauge the success of websites or apps
and identify areas for improvement. This motivated us to test them in the domain of e-
book ranking. The general intuition behind them is that the conversion rate can not only

Table 2 Statistical features

Feature Description

s-arlist n. of times added to the reading list

s-rrlist n. of times removed from the reading list

s-downl n. of downloads

s-bcc n. times the book cover had been clicked

s-rq reading quantity (i.e., overall reading frequencies)

s-acc the amount of catalog clicks

s-prb n. of people that have read the book

s-trt the total reading time

s-pabr n. of people that have added the book to the reading list

s-prbr n. of people that have removed the book from the reading list

s-pdb n. of people that have downloaded the book
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Table 3 Conversion rates features

Feature Description (Symbols ‘%c’ stands for the conversion rate)

c-qr %c of reading quantity: s-rq/s-prb

c-tr %c of spent reading time: s-trt/s-prb

c-par %c of adding to the reading list: s-pabr/s-prb

c-prr %c of removing from the reading list: s-prbr/s-prb

c-pdr %c of downloads: s-pdb/s-prb

indicate some level of engagement with the e-book but also can track for assessing whether
the corresponding user feedback works for e-book ranking. We use five conversion rates
features which are shown in Table 3, and this is the first time for these features to be used
in e-book ranking prediction.

Ratio based Features In order to further capture as many as possible characteristics for e-
book ranking, we also investigate some more advanced performance metrics that are popular
used in e-commerce, e.g., the rate of return and user retention. Drawing on the experience
of the successful use of these advanced features, we also design three similar features that
can intuitively reflect how well the given e-book can retain its readers:

– Rate of return, which is the number of users that read the given e-book repeatedly
within one week divided by the total number of readers for the e-book within the same
duration.

– Reader retention, which refers to the number of readers that read the e-book for consecu-
tive two days divided by the number of the readers that read the e-book in the second day.

– Bounce rate, which is the percentage of readers to a given e-book who has only read
the e-book once during one week.

Unlike former two groups of daily features, these features are created by spanning a
couple of days. As far as we know, we are the first to test them in e-book ranking domain.

Feature Normalization Since three groups of features have different scales, e.g., ratio
based features vary from 0 to 1 while statistical features are often larger than 1. Therefore,
it is necessary to normalize these features so that our model can work properly. The method
of normalization is feature scaling where we rescale each feature to the range in [0, 1]. The
formula is given as follows:

x′ = x − min(x)

max(x) − min(x)
(1)

where x is the original value of a sample, x′ is the normalized value of the sample, and
min(x) is the minimal value of the feature while max(x) is the maximum.

4 Predicting e-book ranking

This section presents two techniques to solve the problem of e-book ranking prediction.
The first baseline method utilizes the common machine learning based ranking idea, i.e.,
learning to rank (L2R) [23] , on a pair of ranking days, while the second one considers the
temporal character of user feedback and combines a time decay function with the learning
to rank model to improve the ranking results.
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4.1 Predicting with learning to rank

In our problem, the optimal ordering of e-books could be judged by the number of readers
for the top-K ranked e-books, i.e., the more readers the better. However, as demonstrated in
Section 2.2, merely relying on the statistics for historical user behavior can not help us to
achieve the goal since the future popularity of e-books has many signals that are hidden in
the user behavior. Hence, it is natural to treat the construction of e-book ranking model as a
supervised machine learning problem, and then the idea of learning to rank (L2R) can be a
good start.

In L2R, each query-document pair consists of a set of features of a document and a
numerical or ordinal score denoting how relevant the document is to a query. Then a set
of such pairs will be used to train a machine learning model to predict the relevance of
other documents that haven’t been scored. To apply the idea of L2R to our e-book ranking
prediction problem, the role of queries in L2R can then be taken by top-K ranking prediction
on someday and the role of documents can be taken by e-books. Specifically, each e-book
(f, r) to be ranked can be represented by a feature vector f consisting of the created features
in Section 3, and a ordinal score r describing its relevance rating, i.e., higher score indicates
higher rank. In our work, the training data for L2R consists of two parts where the feature
vector f of an e-book is the average of n days before day(i) and its corresponding ranking
score r is from day(i). In the meantime, the validation data is composed of e-book features
from day(i) and the e-book ordering based on the reader number from day(i+1), i.e., the day
to be predicated. Based on this, we can perform L2R on the training data before day(i) for
learning the ranking model by using any supervised machine learning classification method,
e.g., Random Forest [4], and then apply this model to the e-books of day(i) to generate
a predicted rating score for each e-book, which can be used as a comprehensive rating
criterion to generate the final ranking list for day(i+1).

It is important to note that since we feed the learned model with a set of e-books Di

on day(i), the predicted e-book ranking list RLi+1 on day(i+1) can only contain the e-
books that had feedback on day(i), i.e., RLi+1 ⊂ Di . Here a question may arise: Is it still
meaningful to do the prediction for future even if there will be no new e-book shown in the
list? The answer is yes: for an e-book that had not been read by any one in the first day,
the odds of jumping up into the top-K rankings are very small, and it is reasonable for us to
exclude this abnormal case from consideration.

4.2 TDLR: time decay based learning to rank

In above pure L2R based baseline method, since the temporal dynamics of user behavior are
ignored, some trends for implicit feedback over time are hidden and intuitively, it is possible
for us to further improve the ranking quality by taking them into account. To this end, we
present our second solution - TDLR: a Time Decay based Learning to Rank method. TDLR
can achieve the improvement on ranking by gradually decaying the importance of past user
behavior as time goes by. Next, we detail TDLR from two aspects: the design of time decay
function and TDLR based ranking.

4.2.1 Time decay function design

Intuitively, the user feedback that occurred long time ago has less impact on the future e-
book ranking prediction than those happened in a shorter time, i.e., the behavior influence
will decay over time. However, the way how time decay varies. Usually, there are three main
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Figure 3 Time decay patterns

patterns: linear, concave and convex. As illustrated in Figure 3, linear pattern is the simplest
form to model a constant rate of decay, while the concave and convex decay functions
are just two opposite patterns for describing how the decay speed grows as time goes by,
e.g., first slow then fast for concave (Figure 3b). Psychologically, the behavior that occurs
closer to the prediction date has bigger influence. Hence, in our work, we choose the convex
pattern, where the decay initially decreases ver slowly then speeds up (Figure 3c), as the
time decay model for user behavior.

Specifically, we adopt a variant of Sigmoid function for our problem. As shown in (2),
|tj − ti | represents the interval of two different dates tj and ti . For example, suppose we
are going to predict the e-book ranking on July 13th (tj ), and there is a behavior model had
been trained on July 11th (ti), then we can apply the interval of these two dates, i.e., 2 days,
to (2) and get the decayed importance of the model learned on July 11th. Note that, due to
the numerator 2 in (2), the importance range derived from it is (0, 1] where “0” indicates
the model can contribute none to the prediction while “1” denotes the greatest importance.
In addition, α is used to control the slope of decay curve shown in Figure 3c, i.e., bigger α

indicates faster decay speed in the beginning, and its corresponding curve becomes steeper
as well.

DecayFunc(|tj − ti |) = 2

1 + eα|tj −ti | α > 0 (2)

4.2.2 TDLR based ranking

The main idea of TDLR is to combine the time decay function with learning to rank to
perform e-book ranking prediction by incorporating the implicit user feedback which is
influenced by the temporal factor. Note that, unlike pure L2R method in Section 4.1 where
only a whole ranking model was learned over n days before day(i) (suppose day(i+1) is the
day to be predicted), TDLR learns ranking model for each e-book on each day before day(i),
i.e., for an e-book, there will be different ranking models on different days. Based on the set
of learned models, the workflow of TDLR ranking prediction for day(i+1) is demonstrated
in Figure 4.

Suppose we are going to predict the e-book ranking on day(i+1), as shown in Figure 4,
TDLR takes as the input the dataset of day(i), denoted by Di , and an integer number n

indicating the number of days to be considered for e-book ranking prediction. The output of
TDLR is a relevance rating r(c,w) with the range of (0, 1) for each e-book in Di . r(c,w)

will be viewed as the ordering basis in our work. Within TDLR, Di is fed into each learned
model of n days before day(i+1), i.e., Modeli−n+1 to Modeli , and then a corresponding
group of intermediate relevance scores {c1, c2, ...cn} for each e-book is derived. Here, each
score is also in the range of (0, 1) and we consider that they have some impact on the final
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Figure 4 Workflow of TDLR

relevance rating r(c,w). In the end, the final relevance rating r(c,w) can be computed by
using (3), where the weight vector {w1, w2, ..., wn} is generated based on the time decay
function DecayFunc and hence, each wj(1 ≤ j ≤ n) represents the importance of the
relevance score of ci that is generated based on the model of day(i).

r(c,w) = wncn + wn−1cn−1 + ... + w1c1 (3)

Since the final relevance rating r(c,w) is defined to be between 0 and 1, we can also view
it as the possibility to be ordered to the top. To make the range of (3) between 0 and 1, we
only need to make the sum of {w1, w2, ..., wn} equal to 1 due to that each relevance score
c derived from the model on each day is in the range of (0, 1). Hence, we normalize the
decayed value for each ci with (4).

wi = DecayFunc(i)
∑n

j=1DecayFunc(j)
(4)

5 Experimental evaluation

In this section, based on the real log from a popular e-book reading mobile APP described in
Section 2, we perform detailed experimental evaluations from following aspects: (1) Feature
analysis, where we study different impact from three groups of features; (2) Effect of time
decay, where we study how the time decay function described in Section 4.2.1 influence
the ranking results; (3) Comparison study, where we compare our TDLR against traditional
learning to rank methods without time decay and other TDLR variants equipped with differ-
ent classification methods. In our experiments, we totally collected 30 consecutive days of
log data from July 1st to July 30th 2013, i.e., a whole month, and we only consider e-books
that have been read for more than 20 days and active users who have feedback no less than
20 days. Hence, after cleaning the collected data by removing inactive users and abnormal
records, 10,667 users and 14,260 e-books in total are left for analysis. Based on this, we
split the data to five parts and conduct 5-fold cross validation. For each fold, as mentioned
in Section 4.1, the test dataset that contains the e-book to be ranked and their ground truth
rankings is from day(i−1) and day(i), while the training dataset contains 10 consecutive
days before the prediction date day(i).
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The Learning to Rank strategy we used is point-wise which essentially looks at a single
document at a time in the loss function. Due to that a point-wise L2R using Random Forests
(RF) has been shown relatively effective in several real world benchmarks [20], we also
choose this method as our main ranking strategy in our experiments (and without specific
note, TDLR is integrated with RF by default). The implementation of RF and other machine
learning methods used in this paper is provided by Scikit-learn [22] in Python, and without
specific explanation, the parameter settings for those methods are used by default.

For evaluation methodology, we exploit the metric of Normalized Discounted Cumula-
tive Gain at top K (NDCG@K) [29]. This metric is the most popular measure of ranking
quality and it takes the position of an e-book in the consideration of the usefulness of
ranking. NDCG is the normalized value of DCG which is formally defined as follows:

DCG@K =
K∑

i=1

2ri − 1

log2(i + 1)
(5)

where ri represents the relevance values of documents in IR. Here, we take the role of ri as
the true rating score for the e-book at position i in the predicted ranking. In our experiments,
the true rating score ri is given by (6):

ri = K − i + 1 (6)

where i is the true ranking position, and K is the number of e-books to be ranked. For
example, for a top-K (K=10) e-book ranking task, the first ranked e-book in the ground
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Figure 5 Feature Analysis in terms of NDCG@K v.s. α (decay day = 6)
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truth ranking will be assigned a rating score of 10 (10 − 1 + 1) while the tenth book has a
rating score of 1. An ideal DCG for top-K (IDCG@K) ranking is defined as the DCG@K
of the ground truth ranking, then NDCG@K can be calculated by (7).

NDCG@K = DCG@K

IDCG@K
(7)

5.1 Feature analysis

To analyze the impact of each group of features, we compare following four alternatives
of TDLR: (1) TDLR-ALL, where we take all features into consideration in the construc-
tion of ranking model; (2) TDLR-NoStatistics, where we exclude the statistical features;
(3) TDLR-NoConversion, where no conversion rate feature is considered; and (4) TDRF-
NoRatio, where the ratio based features are excluded. Figures 5 and 6 both show how above
four TDLR alternatives behave in terms of NDCG@K, the difference between them is the
parameter setting for the time decay function, i.e., α and decay day |tj − ti | of (2). Specifi-
cally, we perform four tests by using different α values while fix |tj − ti | to 6 in Figures 5,
and 6 contains tests under different decay day with fixed α = 0.1. From two figures, we
can get following observations.

As we can see from Figures 5 and 6 TDLR-ALL outperforms other three alternatives
in all cases, which implies that all features we designed contribute to the improve-
ment of NDCG@K. Specifically, TDLR-NoConversion and TDLR-NoRatio have little less
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Figure 6 Feature Analysis in terms of NDCG@K v.s. decay day (α = 0.1)
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NDCG@K than TDLR-ALL. However, compared with each other, they have a trend of
fluctuation, i.e., sometimes TDLR-NoConversion outperforms TDLR-NoRatio and some-
times vice versa. It means that conversion rates features and ratio-based features are indeed
helpful to improve the quality of rank prediction, but the contribution of them somehow
varies at different cases so that we can not tell the importance of them exactly. In addition,
there is a surprising observation that the NDCG@K of TDLR-NoStatistics is significantly
lower than TDLR-ALL. It indicates that statistical features contribute the most for predic-
tion. The reason behind this is that statistical features are good at capturing how attractive
the e-books are to readers. For example, prb represents the number of readers for e-books. It
directly reflects the attraction of books. The more readers is, the more attractive an e-book
is. Besides, we will rank e-books by mistake if we merely consider conversion rates fea-
tures and ratio-based features. For example, there are two e-books that one of them has been
read by one reader while the other one has been read by 1,000 readers, but it is possible that
they have the same value of c-qr. We can not distinguish them by c-qr, which may results
in wrong rank prediction result. This phenomenon tells us that in our practical scenarios,
although these statistical features such as prb are easy to get, they are the most useful to
improve the rank prediction.

Table 4 Time decay effect result

Decay day 1 2 3 4 5

k=10 α = 0.1 0.8617 0.9115 0.9561 0.9345 0.9607

α = 0.5 0.8617 0.9114 0.9348 0.9359 0.9614

α = 1 0.8617 0.9109 0.9115 0.9114 0.9157

α = 2 0.8617 0.8617 0.8741 0.8741 0.8741

k=50 α = 0.1 0.8747 0.9222 0.9663 0.9446 0.9707

α = 0.5 0.8747 0.9224 0.9452 0.9461 0.9717

α = 1 0.8747 0.9219 0.9223 0.9221 0.9264

α = 2 0.8747 0.8864 0.8863 0.8863 0.8863

k=100 α = 0.1 0.8763 0.9236 0.9682 0.9466 0.9726

α = 0.5 0.8763 0.9237 0.9467 0.9481 0.9736

α = 1 0.8763 0.9233 0.9237 0.9239 0.9282

α = 2 0.8763 0.8880 0.8880 0.8880 0.8880

Decay day 6 7 8 9 10

k=10 α = 0.1 0.9217 0.9212 0.9226 0.9228 0.9229

α = 0.5 0.9658 0.9657 0.9657 0.9657 0.9657

α = 1 0.9158 0.9158 0.9158 0.9158 0.9158

α = 2 0.8741 0.8741 0.8741 0.8741 0.8741

k=50 α = 0.1 0.9325 0.9319 0.9333 0.9336 0.9337

α = 0.5 0.9760 0.9758 0.9757 0.9757 0.9757

α = 1 0.9264 0.9264 0.9264 0.9264 0.9264

α = 2 0.8863 0.8863 0.8863 0.8863 0.8863

k=100 α = 0.1 0.9344 0.9338 0.9353 0.9355 0.9356

α = 0.5 0.9779 0.9776 0.9776 0.9776 0.9776

α = 1 0.9283 0.9283 0.9283 0.9283 0.9283

α = 2 0.8880 0.8880 0.8880 0.8880 0.8880
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Based on above evaluation results, for the rest experiments, we take all features into
consideration for ranking model training.

5.2 Time decay effect study

In TDLRmodel, |tj −ti | determines howmany days of learned ranking models it would take
into account for decaying, while α controls how fast the importance of each model decay
over time. We now look forward to evaluating the relation between these two important
parameters and determine the best parameter settings to optimize the ranking quality of
TDLR. To this end, we randomly choose five days for testing, they are July 20, July 22, July
24, July 26 and July 28 respectively. And for each day, we divide the test to three cases by
varying the number of e-books to be ranked, i.e., K . Table 4 shows the detailed result under
different α and decay day settings. Two main observations can be derived from it.

Firstly, the most important thing is that TDLR model has the best performance when
α = 0.5 and |tj − ti | is 6 at all cases. It is necessary to state that the values of NDCG@K
when decay day = 1 are the same under different α. The reason behind this is that when
decay day = 1, we actually only utilize the model from the previous day and the weight of
it is 1.

Secondly, TDLR models with different values of α have different improvement. As we
can see from the Table 4, NDCG@K of the TDLR with α = 2 grew slowly when decay
day increased while TDLR with other α grew significantly when decay day = 2. It can be
explained by the reason that the TDLR with α = 2 attaches less importance to historical
data. The Figure 7 shows the graphic representation of decay functions with different α.
We can see that the value of decay function with α = 2 decays very fast. Therefore, the

Table 5 Time decay effect
conclusion Parameter Range Optimal setting

α 0.1 ∼ 2 0.5

Decay day 1 ∼ 10 6

World Wide Web (2019) 22:637–655 651



weights of historical models are very small, which results in little influence on the final
TDLR model. What’s more, we can see that TDLR model with a certain α will converge
to a stable value when the value of decay day exceeds 6. It means that the models of long
time ago are useless to improve the quality of rank prediction. In practice, it is reasonable
to consider the models of past few days. Finally, based on the results shown in Table 4, we
conclude the values of α and decay day, as shown in Table 5. Empirically, we use α = 0.5
and decay day = 6 in following experiments to optimize the ranking quality of TDLR.

5.3 Comparison study

In this section, we perform comparison studies by answering following two questions:
(1) How well TDLR performs when compared with the baseline method of L2R (denoted
by Pure-L2R) and the statistical method? (2) How TDLR works for different supervised
machine learning methods? To answer the second question, besides Random Forest, we also
integrate TDLR with other popular classification algorithms, e.g., Support Vector Machine
(SVM) [7], Bay-es [6], and Gradient Boost Decision Tree (GBDT). Note that, all features
are used in the construction of ranking models for all the methods, and all TDLR based
methods use the parameter setting of α = 0.5 and |tj − ti | = 6.

Figure 8a plots the NDCG@K of statistical method, Pure-L2R and TDLR. For the sake
of equality, we take previous six days data into consideration for Pure-L2R method. We can
see that the NDCG@K of Pure-L2R and TDLR are both better than that of the statistical
method, and meanwhile TDLR has the best performance in all cases. Specifically, TDLR
outperforms the statistical method and Pure-L2R by 13.3% and 10.7% respectively. Hence,
TDLR can predict better ranking results than other two methods.

Figure 8b shows the NDCG@K of different TDLR variants which are equipped with
different classification methods. Here, we explicitly use TDLR-RF to represent the TDLR
with Random Forest. Obviously, TDLR-RF is the best choice among all the methods for
e-book ranking prediction, and this is due to the reason that random forests is an ensemble
learning method for classification [35], which can use multiple decision trees to obtain
better predictive performance. Since detailed technical explanations for this comparison are
beyond our concern, we will not discuss them more here.

Finally, according to above experiments, the TDLR method proposed in our work out-
performs other baseline methods and can achieve the best performance when predicting the
e-book ranking.
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6 Related work

As far as we know, there is little work directly related to e-book ranking prediction. How-
ever, ranking on other items have been studied in a variety of other research areas and
applications, such as QoS ranking [18, 34] in service computing, ranking the given answers
in Q&A forums [10, 28], ranking spatial keyword queries [33] and scientific paper rank-
ing [15]. Specifically, Zheng et al. [34] proposed a QoS ranking prediction framework by
utilizing the past service usage experiences of consumers. They proposed a personalized
ranking prediction framework and predicted QoS ranking for each individual. However, in
our problem, we try to rank e-books for all readers rather than individuals. Dalip et al. [8]
tried to rank answers for a Q&A forum by using L2R with random forest. They extracted
eight groups of features from several aspects and used random forest to learn a ranking
model and then predict answers for each question. Though they use L2R like we do, there
is no temporal factor considered in their method. Hassan et al. solved the problem of rank-
ing prediction on scientific articles [25] where they argue that the future references is more
useful than the past citations, and based on the citation of different papers, some link rela-
tions could be created in their problem and then PageRank [21] based method is adopted
to solve their problem. However, PageRank cannot be applied in our work since there is
no such link between two e-books in our problem setting. Compared with above work, the
research object we are facing is totally different, hence the features must be designed and
created from scratch, which can directly distinguish our work from them.

Since the essence of our problem is ranking, the methods used for solving rank-
ing problem are also related to our work. Basically, there are two main categories:
(1) recommendation systems, which refer to inferring users’ personal preference [27] and
recommending special items to users [26]. (2) information retrieval, where web search
engines retrieve documents that are relevant to queries [33].

For the first category of recommendation systems, a widely used method to recommend
is collaborative filtering [9, 16, 24], which builds a model according to each user’s rating
to a set of items. Then this model is used to predict items that a user may be interested
in. However, it is difficult to obtain users’ rating in many applications. Therefore, there
is a second method to recommend, named content-based filtering. Content-based filtering
are based on several keywords of one item and a profile of the user’s preferences [1, 19].
This method tries to recommend items that are similar to those that a user like before by
comparing keywords. However, in our problem, there is neither users’ rating nor keywords
of books. Though there exists some work utilizing implicit feedback from users to infer
users’ preference [14, 30, 31], they focus on different targets or merely one feature, e.g.,
dwell time. While in our work, we not only consider different types of user feedback but
also investigate the temporal dynamics of them, which haven’t been well studied in this
category of work.

For the second category of information retrieval, ranking is the central part of many
problems in this field. Usually, computing numerical scores for query/document pairs with
cosine similarity or other similarity measurements is the first step for ranking. However, tra-
ditional similarity methods focus on one criterion which is not reliable in many scenarios.
Hence, a machine learning based ranking method, named learning to rank (L2R) was pro-
posed. Unlike the collaborative filtering, L2R often utilizes some implicit features to learn
a rank model. For example, Joachims T. presents an approach to learn retrieval functions
and optimizing the retrieval quality of search engines using clickthrough data [11] .Y. Lv et
al. utilized L2R to identify a list of related news and recommend to a user after he or she
has read a current news article [17]. Yu et al. [32] presented a method incorporating visual
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features and click features to learn to rank for image retrieval. Cao et al. [5] firstly proposed
list-wise approach to learning to rank which aimed to improve the ranking quality of L2R.
We also use L2R idea in our work, but we equip L2R with time decay function and make
it even more powerful for ranking, and this can distinguish our work from the work in this
category.

In summary, the problem we want to solve in this paper could be distinguished from
previous research from two main aspects: (1) as far as we know, there is little work had been
done on the problem of e-book ranking prediction, the features of e-book reading have not
been thoroughly studied before; (2) to the best of our knowledge, we are the first to integrate
time decay with L2R method when perform ranking tasks.

7 Conclusions

In this paper, we proposed the e-book ranking problem which hasn’t been well addressed
so far. In order to solve this problem, we firstly extracted three groups of features, named
statistical features, conversion rates features and ratio based features. Then we proposed
two methods based on the idea of learning to rank (L2R). In the first baseline method, we
directly utilized above features to train a ranking model. To further improve the ranking
quality, we then presented the second method of TDLR: a Time Decay based Learning to
Rank, where a time decay function is integrated to gradually decrease the importance of
past feedback over time. According to the experiments, we obtained following conclusions:
(1) All features we extracted work well in our problem ; (2) TDLRmethod outperforms pure
L2R method by 10.7% average in terms of NDCG@K; (3) TDLR method using Random
Forest is the best choice for our problem.

As future work, we are going to further study the users’ behavior on reading e-book and
explore more reliable features to improve the quality of ranking. Moreover, we intend to
inspect more insights on the relation between the ranking quality and temporal behavior.
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