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Abstract Point-of-interest (POI) recommendation has attracted much interest recently
because of its significant business potential. Data used in POI recommendation (e.g., user-
location check-in matrix) are much more sparse than that used in traditional item (e.g., book
and movie) recommendation, which leads to more serious cold start problem. Social POI
recommendation has proved to be an effective solution, but most existing works assume
that recommenders have access to all required data. This is very rare in practice because
these data are generally owned by different entities who are not willing to share their data
with others due to privacy and legal concerns. In this paper, we first propose PLAS, a pro-
tocol which enables effective POI recommendation without disclosing the sensitive data of
every party getting involved in the recommendation. We formally show PLAS is secure in
the semi-honest adversary model. To improve its performance. We then adopt the technique
of cloaking area by which expensive distance computation over encrypted data is replaced
by cheap operation over plaintext. In addition, we utilize the sparsity of check-ins to selec-
tively publish data, thus reducing encryption cost and avoiding unnecessary computation
over ciphertext. Experiments on two real datasets show that our protocol is feasible and can
scale to large POI recommendation problems in practice.
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1 Introduction

The explosive growth of mobile devices and ubiquitous Internet access results in an emerg-
ing location-based service (LBS) market. This kind of services stimulates the accumulation
of POI related data. For example, Foursquare announced in 2016 that it has logged more
than 100 million POIs worldwide, with more than 600 million photos and 87 million tips,
contributed by more than 50 million users. These check-in data reflect users’ preferences
for places and thus provide a good opportunity for personalized POI recommendation. Like
most recommender systems, POI recommendation is significant for both users and LBS
providers as it not only helps users to explore new or relevant locations without spending
much time on searching but also enables LBS providers to carry out precision marketing for
specific POIs [5, 10].

Although developing a personalized POI recommendation can benefit both user’s out-
door activities and LBS provider’s market competition, it is challenging due to the following
reasons. First, a user’s check-in decision making process is very complex and could be
influenced by many kinds of factors. For example, different friends will have a different
influence on a user’s check-in behaviors, thus it will be difficult to generate a influence
model for each user. Also the geographical distance might have a great impact on user’s POI
decision. A user often prefers a nearby place to a faraway one. Besides, the extreme sparsity
of check-in data makes the cold start problem more serious, which is a big challenge in POI
recommendation. Compared with the user-item rating matrix in conventional recommender
systems, the user location check-in matrix in POI recommendation is usually much more
sparse. For example, the density of Gowalla data set is 2.08 × 10−4, while the sparsity of
Netflix data set is around 0.01.

In the literature, some works propose to solve the cold start problem in POI recommen-
dation using social network [30, 31, 38]. For example, [8] present a solution to simulate
the influence of social networks on POI for the better POI recommendation. Meanwhile,
some studies such as [19, 39] also take into account geographical influence to assist POI
recommendation. A common (implicit) assumption of most existing works is that the recom-
mender owns all of the data, for example, social network and check-ins. It is however rarely
the case in practice. Generally, these data are owned by different entities. For example, user
check-ins are usually owned by an LBS provider like Foursquare, while social networks are
typically owned by a social networking service provider like Facebook. Clearly, a social
POI recommender cannot adopt existing techniques directly because it does not always have
all these data in hand. This problem will be exacerbated when data owners are reluctant to
share their data with the recommender due to privacy concerns.

In order to protect individual privacy and to boost the willingness of each data owner to
cooperate with the POI recommender, some studies [15, 18, 20, 25] have been reported in
recent years. In [18], Liu et al. focus on the privacy of users’ social network, but ingores
the privacy of location, which is also important to location owners. [20, 25] both adopt
homomorphic encryption to protect the privacy of two sides in the recommendation process.
Without considering user’s current location, however, the result of POI recommendation
will be meaningless sometimes as the recommended POIs may be too far away for users
to visit. What’s more, homomorphic encryption is very time consuming, so it is difficult to
apply these protocols to large recommendation problems .
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To overcome the above shortcomings, in this paper, we first utilize homomorphic encryp-
tion to design a secure location-aware social recommendation protocol called PLAS, which
can protect the sensitive data of every entity getting involved in the process of POI
recommendation. Considering homomorphic encryption is very expensive in terms of com-
putation, we also propose two optimizations which can greatly reduce the computation cost
of PLAS and make it scalable to large recommendation problems. First, we adopt and adapt
cloaking areas to protect users’ exact positions, thus avoiding expensive distance calculation
over encrypted data. Second, we explore the sparsity of check-ins and propose two meth-
ods to selectively publish some useful check-ins, thus avoiding unnecessary computations
over encrypted data. The main contributions of our work in this paper can be summarized
as follows:

1. We consider privacy-preserving location-aware social POI recommendation, a novel
and practical problem setting in which data used for recommendation are distributed
among multi-parties who are not willing to share their data in the clear due to privacy
concerns.

2. We propose PLAS, a secure protocol for the above problem. PLAS adopts Paillier cryp-
tosystem to encrypt private data and utilizes the homomorphic property of Paillier to
make recommendation computable over encrypted data.

3. We design two methods to optimize the performance of PLAS. On one hand, expen-
sive distance computation over encrypted data required in PLAS is replaced by cheap
computation over plaintext thanks to the technique of cloaking area. On the other hand,
the sparsity of check-in data are explored to design two selective data publication
methods which greatly reduces unnecessary publication of check-ins and unnecessary
computation on encrypted data.

4. We theoretically analyze the security and complexity of the proposed protocol and empir-
ically evaluate the performance of our protocol with different optimizations on two
real-world datasets. Experiments demonstrates our protocol is practical in real applications.

The rest of paper is organized as follows. Section 2 reviews related work and some back-
ground knowledge. Section 3 formalizes our problem. In Section 4, we present PLAS, a
secure protocol for location-aware social POI recommendation. In Section 5, we propose
two methods which can greatly improve the performance of PLAS. Finally, we report the
experimental results in Section 6 and conclude our work in Section 7.

2 Related work and preliminary

2.1 Related work

POI recommendation has drawn lots of attention recently in both research community and
industry [4, 27]. In [19, 40, 41], they focus on the effect of geographical-influence on POI
recommendation and propose different methods to utilize the geographical neighborhood
characteristics. In [1, 17], more weight is given to the influence of potential check-ins from
friends. Moreover, there has been many studies combing geographical-influence and social-
network-influence, such as [14, 42]. With rich data and advanced data processing methods
[9, 36], more accurate and personalized POI recommendation can be achieved. However,
privacy issues always exist in the process of data collecting, but all the above studies did not
take privacy protection into consideration.
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Some approaches have been proposed to provide privacy protection for location-based
problems. Mix zone [3, 11], k-anonymity [2, 28] and differential privacy [6] are typical
methods to guarantee data privacy during location-related queries. However, all of them
need a trusted third party to maintain all users’ location. In [12], the authors present a solu-
tion based on two encryption schemes, Paillier and Rabin, which allows a user to get the
exact location to his/her query. In POI recommendation, user location plays an important
role, which is a big difference from traditional item recommendation. Lots of approaches
aim to solve location-based problems such as fast neighbor searching. In [22, 33–35, 37,
43], some hashing methods are proposed to realize fast neighbor search for a variety of big
data. These methods are desirable from both accuracy and efficiency aspects, even for some
complicated data such as image and video. However, all the above approaches cannot be
applied to our problem as the data in our setting are distributed among multiple parties.

Privacy is also an important problem in other kinds of recommendation. In [7], the
authors present a solution for privacy preserving recommendation via homomorphic encryp-
tion and data packing. McSherry and Mironov [26] integrate differential privacy into
non-social recommender systems. However, their approach will lead to an unacceptable
loss of utility when applied to social recommendation. To overcome this weakness, Jor-
gensen and Yu [16] incorporate a clustering procedure that groups users according to the
natural community structure of the social network and significantly reduces the amount of
noise. However, all these studies also assume that the data are hold by a single party, which
sometimes cannot be met in practice.

2.2 Preliminary

In this paper, we achieve privacy-preserving by using a cryptographic tool called Paillier
cryptosystem [29], which are briefly introduced as follows.

Paillier is a public-key cryptosystem whose security is based on an assumption related
(but not known to be equivalent) to the hardness of factoring. It consists of the following
three algorithms:

– Key generation: Choose two distinct large random primes p, q and compute N = p∗g.
Choose an element g ∈ Z∗

N2 . The public key pk is (N, g) and the secret key sk is (p, q).
– Encryption E: Let m be a message in ZN . It is encrypted by selecting a random number

r in Z∗
N and computing

c = E(m) = gmrNmod N2 (1)
where N and g are from the public key pk and c is the ciphertext of m.

– Decryption D: The ciphertext c is decrypted by computing

m = D(m) = (cλ modN2) − 1

(gλ modN2) − 1
mod N (2)

where λ = lcm(p − 1, q − 1) can be computed from the private key sk.

One of the most important properties of Paillier cryptosystem is homomorphic addition.
Specifically, multiplying an encryption of m1 and an encryption of m2 results in an encryp-
tion of m1 + m2, and raising an encryption of m to a constant k results in an encryption of
km, that is,

E(m1)E(m2) = E(m1 + m2) (3)
E(m)k = E(km) (4)

Besides, Paillier is semantic secure, that is, an adversary cannot learn any partial informa-
tion about the plaintext from the ciphertext. As a result, it is also a probabilistic encryption
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scheme, which means when encrypting the same message several times, it will produce
different ciphertexts. This is clear from (1) where a random number r is used in encryption.

3 Problem definition

3.1 System model

Figure 1 shows the system model of our location-aware social POI recommendation where
the recommender R wants to recommend a set of POIs to a user u. The recommendation
algorithm adopted by R is a variation of the well-known collaborative filtering (CF) that
has been widely used recently by commercial recommender systems (e.g., Amazon and
Netflix). More specifically, the conventional CF is enhanced as follows. To solve the cold
start problem, the similarity between two users is measured by their social relations, instead
of their check-in histories. Besides, the distance between a user’s current location and the
recommended POI is considered in the recommendation, as in practice users are often not
willing to visit POIs that are far away. Formally, the score of recommending a POI p to a
user u is calculated as follows:

su,p =
∑

v∈U,v �=u

ωu,v × cv,p × fu,p (5)

where ωu,v is the similarity between u and v based on their social relations, cv,p is the num-
ber of check-in that v has ever done at p, and fu,p is the geographical-influence between
u’s current location and p. To model geographical-influence, we assume that every user has

Figure 1 System model
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a willing range r , i.e., the maximum distance that he/she is willing to travel. Then fu,p is
calculated as follows:

fu,p =
{
1 − du,p

r
, du,p ≤ r

0 , du,p > r
(6)

where du,p is the distance between u and p. When du,p is larger than r , fu,p is set to 0,
so the score su,p equals to 0, indicating that it is meaningless to recommend p to u as it is
beyond the range that u is willing to travel.

Once all scores are evaluated, a set of POIs with the highest scores are recommended to
the user u. It is significant to examine the data required in this recommendation procedure.
From (5) and (6), there are three types of data: check-in data, social data, and geographical
data of user u. In our problem setting, these data belong to different entities and they are
defined as follows.

Definition 1 (Check-in data). The check-in data hold by a location-based service (LBS)
provider L is a |U | × |P | matrix C where U is a set of users and P is a set of POIs. Each
entry cu,p ∈ C is the number of check-ins that user u ∈ U has ever done at the location
p ∈ P , indicating u has not visited p if cu,p = 0 and otherwise the check-in frequency u

has on p.

Definition 2 (Social data). The social data hold by a social networking service (SNS)
provider S is an undirected graph G = (U, E) where U is a set of users, and E ⊆ U × U is
a set of edges. An edge (u, v) ∈ E indicates that two users u, v ∈ U has some kind of social
relation and the weight ωu,v assigned to this edge represents the social similarity between
them.

Definition 3 (Geographical data of user u). The geographical data hold by a user u is his/her
current position lu and willing range r . This data can be also accessed by the recommender
R as a prerequisite for using the recommendation service provided by R.

It is clear from the above definitions that the data used in the recommendation belong to
different parties. These data are not easy to collect and maintain, and sometimes are even
regarded as trade secrets, so it is unrealistic to assume that L and S are willing to share
their data with R. Consequently, we have to face a challenging problem, privacy-preserving
location-aware social POI recommendation. Informally, we need to make recommendations
while keeping the data of each parties secret. To formally define this problem, we first
introduce the adversary model and security definition in the next subsection.

3.2 Adversary model and security definition

In this paper, we consider a typical adversary model, that is, the semi-honest model [13],
that has been widely accepted in a variety of privacy-preserving problem domains [21, 23,
24]. Specifically, all parties in this model are assumed to be semi-honest, that is, they follow
the recommendation protocol exactly as specified, but may try to learn as much as possible
about other parties’ private input from what they see during the protocol’s execution. We
also assume that no two of them collude. As stated in [32], the assumption of non-collusion
between two well-established companies (real examples for R, L, and S are Google Place,
Foursquare, and Facebook, respectively) is reasonable as the collusion will damage their
reputation and consequently reduce their revenues.
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Further we adopt the well-known real-ideal paradigm [13] to define the security of a
protocol. Intuitively, a protocol is secure or privacy-preserving if every party involved in the
protocol learns no more knowledge from the execution of the protocol than the knowledge
that this party is entitled to know. This can be formally defined by the real-ideal paradigm
as follows: for all adversaries, there exists a probabilistic polynomial-time simulator, so that
the view of the adversary in the real world and the view of the simulator in the ideal world
are computationally indistinguishable.

Let F(x1, · · · , xn) = (F1, · · · ,Fn) be an n-ary functionality, where xi and Fi are the

i-th party Pi’s input and output, respectively. For I = {i1, · · · , it } ⊆ [n] def= {1, · · · , n},
let FI denote the subsequence Fi1 , · · · ,Fit . Let � be a n-party protocol for comput-
ing F . The view of Pi during an execution of � on x = {x1, · · · , xn}, denoted as
view�

i (x), is (xi, r, mi) where r represents the outcome of Pi’s internal coin tosses and

mi represents the messages that it has received. For I = {i1, · · · , it }, let view�
I (x)

def=
(I, view�

i1
(x), · · · , view�

it
(x)). The security of � is formally defined as follows:

Definition 4 (Secure protocol under semi-honest model [13]) A protocol � privately
computes F if there exists a probabilistic polynomial-time simulator S, such that for every
I ⊆ [n], it holds that:

S(I, (xi1 , · · · , xit ),FI (x)) ≡ view�
I (x) (7)

where ≡ denotes computational indistinguishability.

The above equation asserts that the view of every party in I can be efficiently simulated
based on its input and output. That is, it cannot derive extra information during an execution
of the protocol �, indicating � is secure or privacy-preserving.

3.3 Problem statement

We first review the required private data when making recommendation for a given user u.
ForR, its private data are u’s location lu and willing range r . For S, its private data are social
similarity ωu,v between u and any other user v. For L, its private data are the number of
check-ins cv,l for any user v. Based on this observation and the security definition presented
in last subsection, we formally define the problem of privacy-preserving location-aware
social POI recommendation.

Definition 5 (Privacy-preserving location-aware social POI recommendation) Given the
private check-in data hold by L, the private social data hold by S, and the private geograph-
ical data of user u hold by R, find a k-size ordered POI set Lk = {li1 , li2 , ..., lik } for u, such
that:

1. du,l ≤ r for all l ∈ Lk ,
2. su,li ≥ su,lj for li ∈ Lk and lj ∈ L \ Lk ,
3. su,l1 ≥ su,l2 ≥ ... ≥ su,lik

,
4. equation (7) holds.

In the above definition, the first requirement is about location-aware, that is, the rec-
ommended POIs must be in u’s willing range with respect to his/her current location. The
second requirement indicates that the recommended Lk should be top-k POIs while the
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third says that the recommendation result should be ordered to facilitate u’s decision mak-
ing about where to go. The last requirement is about security, that is, the private data of
every party should be protected during the procedure of POI recommendation.

4 Secure protocol for location-aware social POI recommendation

In this section, we present a fully secure protocol PLAS for location-aware social POI
recommendation. We describe the details of PLAS in Section 4.1, prove its security in Sec-
tion 4.2, and finally analyze its complexity in Section 4.3. Table 1 summarizes the major
notations used in this paper.

4.1 Protocol

PLAS adopts Paillier cryptosystem to protect the private data of every party getting involved
in the recommendation. The principle idea is to encrypt private data and then utilize the
homomorphic property of Paillier to make the whole recommendation algorithm com-
putable over encrypted data. In particular, using the homomorphic addition property shown
in (3) and (4), (5) can be rewritten over encrypted data as follows:

E(su,p) = (
∏

v

(E(cv,p))ωu,v )fu,p (8)

Following the above equation, Figure 2 describes from a high level view how PLAS
works and Algorithm 1 shows its detailed procedure. We explain it in details as follows.. At
first, R encrypts u’s location lu = (xu, yu) using S’s pulibc key and sends three ciphertexts
ES(x2

u + y2
u), ES(xu), and ES(yu) to L. Upon receiving these data, L calculates the square

of du,p in the encrypted form as follows:

ES(d2
u,p) = ES(x2

u + y2
u)ES(xu)

−2xpES(yu)
−2ypES(x2

p + y2
p) (9)

by noting that d2
u,p = (xu−xp)2+(yu−yp)2 holds over the plaintext. This encrypted square

distance is then masked by R using a random noise m, as shown in the following equation:

ES(d̄2
u,p) = ES(d2

u,p)ES(m) (10)

Table 1 Summary of notation

Notation Meaning

R POI recommender

L location-based service provider

S social networking service provider

ωu,v social similarity between u and v

cu,p number of check-ins that user u has ever done at p

fu,p geographical-influence between u and p

su,p score of recommending p to u

s̄u,p masked score of recommending p to u

EL(x) encryption of message x using L’s public key

ES(x) encryption of message x using S’s public key
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Figure 2 Overview of Paillier protocol

The purpose of masking is to ensure there is no information leakage during later decryp-
tion. Now, R sends the masked square distance to S for decryption. With the secret key, S
is able to obtain the masked square distance in the clear. After that, R removes the mask by
subtracting the added noise and calculates fu,p according to (6).

Next, to calculate scores su,p, L encrypts its private data C using its own public key and
sends the encrypted C to S. For every POI p, S calculates as follows a weighted sum of
number of check-ins where the weights are the social similarities it has:

EL(su,p) =
∏

v∈U\{u}
(EL(cv,p))ωu,v (11)

Based on this intermediate result, R only needs to do some simple exponentiation to
obtain the final value of su,p (in the encrypted form), as long as it knows fu,p in the clear,
and fu,p can be calculated as discussed above.

Holding encrypted score EL(su,p) for every p, R’s next job is to find top-k POIs
with the highest scores. This can be done similarly using the mask-decrypt-unmask idea.
Specifically, R masks EL(su,p) for every p as follows:

EL(s̄u,p) = EL(su,p)EL(m) (12)

where m is a random noise chosen by R. By decrypting EL(s̄u,p), L obtains s̄u,p, a masked
score that recommending p to u. By unmasking these scores, it is easy for R to find top-k
POIs for u.

World Wide Web (2019) 22:863–883 871



Algorithm 1 PLAS: A protocol for privacy-preserving location-aware social POI
recommendation

Input: ’s location hold by , check-ins hold by , and social similarity hold by
Output: top- POIs

1: Key generation: and generate their Paillier key pairs and distribute their public
keys to others

2: encrypts 2 2 , , and by ’s public key and sends the results to
3: for each POI (1 )do
4: encrypts 2 2 by
5: computes
6: end for
7: sends all to
8: masks square distance as and sends it to
9: decrypts masked square distance to and returns it to
10: calculates corresponding between POIs and user
11: encrypts every check-in as and sends it to
12: calculates
13: sends all POI scores to
14: calculates final scores
15: masks to and sends to
16: decrypts and sends to
17: unmasks and finds top- POIs

4.2 Security analysis

In this section, we show the security of PLAS. Informally, PLAS is secure due to two rea-
sons: 1) the parties who do not have the secret key cannot deduce any information from
the encrypted data they received, which is guaranteed by the security of Paillier cryptosys-
tem; 2) the data received by the parties who have the secret key are masked by random
noise added by other parties, so no information leakage would occur considering that no
two parties are allowed to collude as assumed by the system model.

We give below a formal security analysis based on simulator. Note that we only need to
show the view of every party in PLAS can be efficiently simulated based on its input and
output only.

We first consider L. During an execution of PLAS, the messages received by L can be
divided into two groups: one is three ciphertexts about u’s location and the other is |P |
ciphertexts about the masked scores. As the former is encrypted by S’s public key and the
latter by L’s public key, its view is viewL = {ES(x2

u + y2
u), ES(xu), ES(yu), s̄u,p|p ∈ P }.

To construct a probabilistic polynomial-time simulator SL that can simulate L’s view, we
let SL generate |P | + 3 random numbers uniformly distributed in ZN . It is easy to verify
that these numbers are computationally indistinguishable from viewL due to the semantic
security of Paillier cryptosystem and the randomness of s̄u,p caused by randommask chosen
by R.

Next we show that there is a probabilistic polynomial-time simulator SS which can
simulate S’s view efficiently. Similar to the case of L, what S receives during an execu-
tion of PLAS is |U ||P | encrypted check-ins in the form of EL(cu,p) and |P | encrypted
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Table 2 Computation cost of PLAS

enc. dec. mul. exp.

R |P | 0 |P | + |P | |P |
S 0 |P | |P ||U | |P ||U |
L |P | + |P ||U | |P | 3|P | 2|P |

masked square distances in the form of d̄2
u,p. Clearly, in this case, we simply let SS generate

|U ||P | + |P | random numbers uniformly distributed in ZN to simulate viewS .
The case of R is a little bit complicated as it can learn some intermediate result, denoted

as K , during an execution of PLAS. The proof presented below first shows it is possible
to construct a probabilistic polynomial-time simulator SR to simulate R’s view efficiently
based on K , and then demonstrates the probability that R learns the private data of L or
S from K is negligible. Based on the messages received by R, it is clear that viewR =
{EL(su,p)|p ∈ P } ⋃{d2

u,p|p ∈ P } ⋃{su,p|p ∈ P }. To simulate it, we let SR generate
|P | random numbers uniformly distributed in ZN and a 2|P |-size set of fixed numbers,
that is, K = {d2

u,p, su,p|p ∈ P }. It is easy to see that these views are computationally
indistinguishable since Paillier are semantic secure. Now consider what L can learn from
K . For every d2

u,p, R can construct a equation (xp − xu)
2 + (yp − yu)

2 = d2
u,p. There are

two variables xp and yp in this equation, and clearly R can learn the location of p if the
equation has a unique solution. For positive du,p, however, this equation has infinitely many
solutions, so R cannot learn the private data of L. The case of su,p is similar, so the proof is
omitted here.

Based on the above discussion, we can conclude that PLAS is secure in the semi-honest
model.

4.3 Complexity analysis

Table 2 shows the computation cost of PLAS in terms of the number of encryptions, decryp-
tions, multiplications (over ciphertext), and exponentiations ( over ciphertext) performed
by different parties. We ignore common operations on plaintext as their cost are negligible
compared with the aforementioned four operations on ciphertext. Clearly, L has the most
computation complexity among all parties. In step 1, L needs to encrypt |P ||U | check-ins
and in step 4 it needs to execute |P | encryption, 3|P | multiplications, 2|P | exponentiations
to calculate the square distance. Moreover, in step 8, L needs to decrypt |P | masked scores.
For S, it needs to execute |P ||U | multiplications and exponentiations to calculate scores in
step 2, and decrypts |P | masked square distance ciphertexts in step 6. In steps 5 and 7, R

needs to execute |P | multiplications and encryptions to mask square distance and score.
Table 3 shows the computation cost of every party during the execution of PLAS. The

communication cost of PLAS largely comes from the ciphertexts transferred between differ-
ent parties. For L, it needs to receive total 4|P | ciphertexts in step 4 and step 8. In addition,
it needs to send |P ||U | ciphertexts in step 1 and |P | ciphertexts in step 4. For S, it receives

Table 3 Communication cost of PLAS

L S R

PLAS |P |(|U | + 5) |P |(|U | + 2) 4|P |
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|P ||U | ciphertexts and sends |P | ciphertexts in step 2 and receives |P | ciphertexts in step
6. For R, it receives |P | ciphertexts in step 3 and step 5 and sends |P | ciphertexts in step 5
and step 7.

5 Optimization

Though PLAS can protect the private data of every party got involved in the procedure of
recommendation, it does not scale well to large problems due to its high computational
complexity. From the discussion presented in Section 4.3, we can see that the heavy compu-
tational cost mainly comes from two tasks in PLAS: geographical-influence estimation and
check-ins publication. In the former task, the distance between u and every POI p ∈ |P |
needs to be calculated over encrypted data. In the latter task, |P ||U | check-ins need to
be encrypted to enable subsequent computation. In this section we propose two methods
to reduce these expensive operations at the cost of sacrificing some security, resulting in
weaker secure protocols. This strategy, that is, a trade-off between security and efficiency,
is common in practice. In Section 5.1, geographical-influence is estimated over cloaking
area in the clear rather than ciphertexts generated by Paillier. In Section 5.2, the sparsity
of check-in matrix is explored and only a small portion of check-ins are encrypted and
published.

5.1 Geographical-influence estimation based on cloaking area

In PLAS, u’s location is fully protected by Paillier encryption. To reduce computational cost,
we use cloaking area, a technique proposed in [28], to protect u’s location. The principle
idea is that instead of giving u’s exact location to L, R sends L an area g such that: 1)
u is in g; and 2) g can meet some security requirements. Based on g, L can estimate the
approximate distance between u and a POI p without learning u’s exact location. Here,
the security of g is judged from two aspects: 1) there are at least k users in g; and 2) g’s
area is larger than a threshold A. The first property ensures that u is indistinguishable from
other k − 1 users in the same area even the adversary has some background knowledge, for
example, he/she knows a user must be in a location in g. Note that when k = 1, the adversary
can immediately learn u’s location. The second property ensures that the adversary cannot
learn u’s location when g is very small but crowded (that is, there are more than k users
in g). Note that, the security of cloaking area depends on the values of k and A, and they
should be set appropriately according to specific applications. To guarantee such an area
always exists, k and A should be less than the total users registered in R and the total spatial
area, respectively.

Algorithm 2 shows how to find a cloaking area for a user. As a prerequisite, R divides
the entire area into a grid with a set of cells. For each cell g, R maintains a list T recording
users who are currently in g and an indicator I whose initial value is 0 and will be set to 1
once it is visited. The algorithm checks in lines 1-2 whether the current area g satisfies the
specified security requirements and return g if yes. Otherwise, g is expanded by adding a
neighbor cell gN that has not been visited before. When g has more than one new neighbor,
the one with most users is selected if the number of users in g is less than k (line 5), as
we want to keep g as small as possible to avoid unnecessary computation later, or the one
nearest to u is selected when g’s area is less than A (line 7), as we want to make g’s center
as near to u as possible to improve the accuracy of geographical-influence estimation. Lines
10-19 address the case when g’s area cannot meet security requirement and line 21 deal with
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the case when a larger g containing more users is needed. Given a user u, this algorithm
takes gu, k,A as input where gu is the cell where u is located in.

Algorithm 2 getArea( ): Construct a cloaking area for a user
Input: Area , security parameters and
Output: A cloaking area satisfies security requirement

1: if and then
2: return
3: end if
4: if then
5: A new neighbor cell of which has the most users
6: else
7: A new neighbor cell of which is nearest to
8: end if
9:

10: if then
11: if then
12: return
13: else
14: while do
15: A new neighbor cell of which is nearest to
16:
17: end while
18: return
19: end if
20: else
21: return getArea( )
22: end if

Once the cloaking area g for a user u has been figured out, it is sent toL for geographical-
influence estimation. In particular, L uses the distance between gc and p to approximate the
distance between u and p. Next, L sends all approximated distances to R for subsequent
geographical-influence estimation. A special case needs to be noted where the actual dis-
tance du,p is less than u’s willing range r but the approximated distance dgc,p is larger than
r . If (6) is still used in this case, then p will be filtered out, making the recommendation
result inaccurate. To address this problem, (6) is modified as follows:

fu,p =
{
1 − dgc,p

r+max{d(gc,ge)} , dgc,p ≤ r + max{d(gc, ge)}
0 , dgc,p > r + max{d(gc, ge)} (13)

where max{d(gc, ge)} is the maximum distance between the center of g to its edges. The
new equation ensures that POIs within u’s willing range are still under consideration when
u’s location is hidden in a cloaking area.

Using cloaking area, the estimation of geographical-influence is carried out completely
over plaintext, so its computation cost is negligible compared with the cost of encryption
and decryption required in PLAS. In terms of security, the adversary now can learn the
area where u is located in, but the property that the cloaking area has still provides flexible
security for private data.
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5.2 Selective publication of check-ins

Recall that all |U ||P | elements in the check-in matrix are encrypted and published in PLAS,
which incurs prohibitive cost in the process of data publication as well as subsequent score
computation. However, encrypting all check-ins is not necessary, for example, only POIs
within u’s willing range need to be published to S, as it is meaningless to compute the
score of POIs beyond u’s willing range. Even after some POIs are filtering out based on u’s
willing range, however, the remaining check-in matrix is still large yet sparse. To further
improve computation efficiency, the sparsity of check-in matrix C can be utilized since the
zeros in C does not contribute to the score computation. A straightforward way is then to
only publish non-zero check-ins in C, and this can avoid all unnecessary computation over
encrypted data. This method, however, will let the adversary learn additional information,
that is, some users must visited some POIs.

Following the idea of k-anonymity, we propose a method called KAP which selectively
publishes some check-ins to deal with the above problem. Specifically, the matrix C is first
divided into 	 |U |

k

 sub matrices such that each matrix Ci has k rows (the last matrix can be

padded to ensure k rows). For each Ci , if a column is all zeros, that is, the corresponding
POI has not been visited by any of these k users, it is deleted from the matrix to avoid
necessary check-ins publication. Note that such a deletion is safe from the security point
of view as knowing that a user does not visit some POIs does not contribute to the success
of inferring which POIs the user has visited and how often. Finally, these 	 |U |

k

 matrices

are encrypted by Paillier for publication. Figure 3 illustrates how KAP works on a 9 × 10
matrix when k = 3. In C2, p6 has not been visited by any user, so the column of p6 is
deleted. Using KAP, 18 elements are removed from C, resulting in 20% decrease in the
number of encryption. By grouping k users together and deleting only the column with k

zeros, the adversary cannot conclude whether or not a user has visited a POI according to
the encrypted check-in matrix. On the other hand, these k users are indistinguishable due to
the same POI set and the semantic security of Paillier cryptosystem.

The sub matrices returned by KAP are still sparse sometimes as users are grouped
together at random. To further improve the performance of selective publication, we pro-
pose another publication method called SKAP in which users are sorted before grouping so

Figure 3 k-anonymity publication of check-ins
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Figure 4 k-anonymity publication of sorted check-ins

that more columns with all zeros may exist in the sub matrices. Here we adopt Hamming
distance as the metric for sorting. Informally, the Hamming distance between two strings of
equal length is the number of positions at which the corresponding symbols are different. At
first, a row of C, that is, a user’s check-in at |P | POIs, is mapped to a |P |-bits string where 1
represents a non-zero check-in and 0 otherwise. Then, all rows in C are sorted based on the
Hamming distance between their corresponding bit strings. The remaining procedure is the
same as KAP and is omitted here. Figure 4 depicts how SKAP works on the same matrix
shown in Figure 3 when k = 3. Now 33 elements are removed from C, which is better than
KAP.

6 Performance evaluation

6.1 Experimental setting

To the best of our knowledge, this is the first piece of work towards privacy-preserving
location-aware social POI recommendation. Hence we only evaluate in this paper the perfor-
mance of PLAS and the proposed optimizations. In particular, we consider three variations
of PLAS: 1) PLAS-CA in which the geographical-influence estimation in PLAS is opti-
mized by cloaking area; 2) PLAS-CA-KAP in which the geographical-influence estimation
in PLAS is optimized by cloaking area and the check-ins publication in PLAS is performed
by KAP; and 3) PLAS-CA-SKAP in which the geographical-influence estimation in PLAS
is optimized by cloaking area and the check-ins publication in PLAS is performed by SKAP.
It should be noted that we do not evaluate PLAS without any optimization as the data sets
we used are too big to make PLAS completed in a reasonable time. This is just the reason
we need optimization. These three protocols are evaluated on two real datasets: Gowalla1

and Yelp.2 The check-in matrix in Gowalla contains 151,075 POIs and 6,160 users, and in
Yelp contains 15,583 POIs and 70,817 users.

1https://snap.stanford.edu/data/loc-gowalla.html
2https://www.yelp.com/datasetchallenge
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Several parameters are varied in experiments to show the dynamic performance of dif-
ferent protocols. In particular, a user’s willing range r varies from 1km to 6km, and 4km is
the default value unless specified otherwise. The parameter k required in the selective pub-
lication of check-ins belongs to k = {20, 40, 60, 80, 100} and 40 is the default value unless
specified otherwise. For security parameter of Paillier, we refer to NIST recommendations
(2016)3 and set the key length to be 1024 as it is appropriate for current applications. All
experiments are performed on a server with 40 2.4GHz CPUs, 64GB RAM, JDK 7 and
Linux version 3.10.

As our work focuses on efficiency, we consider two metrics: CPU time and communica-
tion cost. The CPU time of a protocol is defined to be the sum of computation of every party
involved in the protocol. It is reasonable here because the computation tasks performed by
different parties in all the protocols are actually in a sequential order. Moreover, we only
consider on-line CPU time, which means that the CPU time of all computation tasks that
can be done off-line are not counted here. Moreover, we ignore the CPU time of plaintext
calculation, such as finding top-k scores in the clear and computing cloaking area, because
it is negligible compared to the CPU time of ciphertext calculation. The communication cost
of a protocol is defined to be the amount of data that need to be transferred over network
during the execution of the protocol. We evaluate this cost as it will lead to some amount of
network time of data transmission. We do not evaluate the communication time directly as
it is network-dependent.

6.2 Experimental results

6.2.1 Performance on Gowalla

Figure 5 depicts the CPU time and communication cost of three protocols on Gowalla
dataset by varying the willing range from 1km to 6km. As seen from the left side of Fig-
ure 5, the CPU time of all three protocols increase when the willing range gets large. This
is because there are more candidate POIs (and also more users visiting these POIs) in the
bigger range, so more scores need to be evaluated over encrypted data. Further, selective
publication of check-ins (i.e., KAP or SKAP) is more effective on a larger willing range,
as in this case check-ins are more sparse. For example, when the willing range is 6km, the
adoption of KAP can save about 67% CPU time. Note that we do not show the performance
of PLAS here as it has a considerable amount of CPU time due to the big check-in matrix,
but the cloaking area indeed greatly reduces computation cost as shown theoretically before.
From the right side of Figure 5, it is clear that all three protocols incur more communica-
tion cost as the willing range becomes larger. However, we observe a much slow increase
in communication cost when we selectively publish check-ins, as only a small portion of
check-ins needs to be published considering the sparsity of check-in data.

In Figure 5, we can also observe that PLAS-CA-SKAP is slightly better than PLAS-CA-
KAP. To highlight the difference between them and also to study the impact of parameter
k on them, we show in Figure 6 their CPU time and communication cost by varying the
value of k. As expected, when k becomes larger, their CPU time and communication cost
both increase, as the sub matrices are more sparse and those new zeros introduce more
computation and communication. Moreover, PLAS-CA-SKAP is always better than the
PLAS-CA-KAP no matter how k changes, and this superiority becomes more significant

3https://www.keylength.com/
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Figure 5 Performance on Gowalla

for large k, which demonstrates that sorting users based on the Hamming distance of their
check-ins is useful for publication.

6.2.2 Performance on Yelp

Figure 7 illustrates the CPU time and communication cost of the protocols performing on
Yelp dataset by varying the willing range from 1km to 6km. Similar to previous results on
Gowalla dataset, the CPU time of all protocols increase as the willing range increases. Also,
the k-anonymity publishing protocols have a better performance than PLAS-CA, and all the
POI recommendation can be performed within 100 seconds when r = 4km, no matter PLAS-
CA, PLAS-CA-KAP and PLAS-CA-SKAP. However, as we can see, due to the extreme
increase of users when we increase the willing range, the CPU time of basic protocol also
increase a lot, which is especially seen from the range of 5km to 6km. The right figure of
Figure 7 shows the communication cost of the proposed protocols on Yelp dataset by vary-
ing the willing range from 1km to 6km. Here, we observe the similar communication cost
conclusions like in Gowalla dataset, that all protocols have the increasing communication
cost with the willing range increasing, especially in PLAS-CA. The k-anonymity publishing
protocols can effectively reduce the impact of extreme spareness and have less than 400MB
communication cost when the willing range is 6km.

Figure 8 highlights the difference between PLAS-CA-KAP and PLAS-CA-SKAP from
CPU time and communication respectively. Adopting the HAMMING DISTANCE makes
PLAS-CA-SKAP performing better than PLAS-CA-KAP and the smaller k is, the more
unnecessary computation is avoided, which can save computing costs and communication
costs.
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Figure 6 Effect of k on selective publication of Gowalla
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6.2.3 Effects of parallel computing

As mentioned earlier, the expensive operations including encryption, decryption, multipli-
cation, and exponentiation over ciphertext can be parallelized since they are performed on
independent data. Therefore the efficiency of the proposed protocols can be improved by
parallel computing. Figure 9 shows the performance of PLAS-CA and PLAS-CA-KAP on
Gowalla. In the case of one thread, PLAS-CA and PLAS-CA-KAP needs about 240 and
90 seconds, respectively, when the willing range is 6km. When 16 threads are used, their
CPU time are roughly 18 and 8 seconds, respectively. For PLAS-CA, the speed up is about
13. For PLAS-CA-KAP, the speed up is about 11. We also test parallel computing on Yelp
dataset, and the result is depicted in Figure 10. When single thread is used, PLAS-CA needs
about 243 seconds while the PLAS-CA-KAP needs 73 seconds. For the 16 threads case,
PLAS-CA needs 20 seconds and PLAS-CA-KAP needs 6.5 seconds. The speed up for them
are 12 and 11, respectively. Based on the speed up on two data sets, we can conclude that
the proposed protocols have a good scalability.

7 Conclusion

In location-aware social POI recommendation, it is common that the data used for recom-
mendation are distributed among multiple parties and the privacy of every party needs to
be respected. To address this challenging problem, we have presented a protocol PLAS
which protects private data by semantic secure Paillier and computes the scores of POIs
completely over encrypted data using Paillier’s homomorphic property. To improve the per-
formance of PLAS, we have also proposed two optimization methods. One is cloaking area
based on which geographical-influence can be approximately estimated on plaintext. The
other is selective check-ins publication which greatly reduces not only the encryption cost of
check-in data but also subsequent computation cost of POI scores over encrypted data. Their
effectiveness have been demonstrated by experiments on two real datasets. In summary,
our approach is secure, efficient, and can scale to large POI recommendation problems in
practice.
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