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Abstract Cross-modal retrieval has become a highlighted research topic, to provide flexible
retrieval experience across multimedia data such as image, video, text and audio. The core
of existing cross-modal retrieval approaches is to narrow down the gap between different
modalities either by finding a maximally correlated embedding space. Recently, researchers
leverage Deep Neural Network (DNN) to learn nonlinear transformations for each modality
to obtain transformed features in a common subspace where cross-modal matching can be
performed. However, the statistical characteristics of the original features for each modality
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are not explicitly preserved in the learned subspace. Inspired by recent advances in adver-
sarial learning, we propose a novel Deep Adversarial Metric Learning approach, termed
DAML for cross-modal retrieval. DAML nonlinearly maps labeled data pairs of different
modalities into a shared latent feature subspace, under which the intra-class variation is
minimized and the inter-class variation is maximized, and the difference of each data pair
captured from two modalities of the same class is minimized, respectively. In addition to
maximizing the correlations between modalities, we add an additional regularization by
introducing adversarial learning. In particular, we introduce a modality classifier to pre-
dict the modality of a transformed feature, which ensures that the transformed features are
also statistically indistinguishable. Experiments on three popular multimodal datasets show
that DAML achieves superior performance compared to several state of the art cross-modal
retrieval methods.

Keywords Cross-modal retrieval · Adversarial learning · Metric learning

1 Introduction

Over the past few years, multi-modal data, i.e. media data of various types but homogeneous
topic, has been growing rapidly with the emerging development of social media websites
(e.g., Twitter, Facebook, Youtube, Instagram, etc), where users are allowed to retrieve infor-
mation from these heterogeneous data using their preferred queries [22, 26, 28, 29, 49]. In
order to maximally benefit from the richness of multimedia data and make optimal use of
the rapidly developing multimedia technology, automated mechanisms are needed to estab-
lish a similarity link from one multimedia item to another if they are related to each other,
independent of the type of modalities, such as text, visual or audio, present in the items.
In order to provide an answer to the above challenge, research towards reliable solutions
for cross-modal retrieval, that are able to operate across modality boundaries, has gained
significant attraction recently.

The primary issue in cross-modal retrieval lies within the fact that features of differ-
ent modalities have very different statistical characteristics, indicating its impossibility to
directly compare features of different modalities. Current research has been focused on
two aspects: correlation maximization [9, 22, 48, 49] and feature selection [35, 40, 42,
43, 45, 46] [2]. Subspace learning and dictionary learning are popular approaches. With
subspace learning, a common subspace and corresponding transforms are learned so that
the transformed features are maximally correlated [22]. With dictionary learning, multiple
dictionaries are jointly learned by correlating the sparse coefficients obtained on the train-
ing data [49]. Mixed norm regularization has been added to improve feature selection [9,
35, 42, 43]. These methods achieve considerable performance; however, most of them are
supervised and require labeled data, which could be hard to obtain in the real world.

In the deep learning realm, several unsupervised models based on canonical correlation
analysis (CCA) [10] or autoencoder have been proposed to learn modality invariant fea-
tures [1, 5, 31, 44] without supervising labels. These models generate representations in an
embedding space shared by different modalities and optimizations are performed to maxi-
mize the correlation for the shared representation. The core of these approaches is to close
the gap between different modalities by finding certain transforms under which the trans-
formed features are maximally correlated. These transforms are expected to be modality
invariant so that the transformed features have similar statistical characteristics and cannot
be distinguished from each other. However, existing approaches fail to explicitly address the
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statistical aspect of the transformed features, especially the intra-modal discriminativeness
and the inter-modal consistence, hence these features can still be statistically different.

In order to address the statistical aspect of the feature transforms, we propose a novel
DNN based approach, termed Deep Adversarial Metric Learning (DAML), for cross-modal
retrieval task. DAML is inspired by the recent advance in domain adaptation [6] where
adversarial learning is utilized to avoid domain shift and to facilitate generation of domain
invariant features. Besides, to enforce statistical similarity between transformed features of
different modalities, similarity between their distributions must be measured in a certain
way. In our proposed DAML, we also employ the coupled metric learning technique [15]
to learn an appropriate similarity measure that preserves the statistical similarity between
transformed features of different modalities.

Figure 1 illustrates the general framework of DAML. Similar to [1, 5, 38, 44], we adopt
two feed-forward networks as the image and text feature mappings in DAML to nonlin-
early transform the respective features to a common subspace, under which the intra-class
variation is minimized and the inter-class variation is maximized. In addition to requiring
the transformed features to be maximally correlated, we also require them to be statistically
indistinguishable in the subspace, i.e. the difference of each sample pair captured from two
modalities of the same class is minimized. To achieve this, we introduce modality classi-
fier to identify the source modality of a transformed feature. These components are trained
under the adversarial learning framework. This is quite different from previous methods
where no requirement is placed on the statistical characteristics of the transformed features.
By doing so, we explicitly require that mapped features of different modalities have similar
statistical distributions. The adversary introduced by the modality classifier can be seen as a
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Figure 1 The general architecture of the proposed DAML consists of four major components: image feature
projection, text feature projection, modality classifier, cross-modal similarity metric, which together form a
standard feed-forward architecture. The image and text features are mapped to the common subspace with
successive two-fold procedure. One branch termed cross-modal similarity metric proceeds the feature dis-
crimination and feature correlation jointly in the subspace, and the other branch termed modality classifier
accounts for the diversity between the representations of different modalities in the subspace. Adversarial
learning manner is adopted to jointly optimized the two branches during training
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regularization term in the subspace learning procedure of the proposed method. Therefore,
it ensures that the transformed features of different modalities can be directly compared in
the subspace with their intrinsic characteristics are well preserved.

This paper is an extension and improvement of our previous method termed UCAL pre-
sented in [11]. The main differences between the proposed DAML and previous UCAL can
be summarized as the following three aspects: 1) our proposed DAML is a supervised cross-
modal learning approach that incrementally incorporates the discriminativeness of class
labels in the learned transformed features, while UCAL is an unsupervised method that lim-
itedly maximizing the correlation of inter-modal data; 2) our proposed DAML also employs
coupled metric learning technique to learn appropriate distance metric that preserve the sta-
tistical distribution of multimodal data; 3) the parameter learning algorithm that learns the
optimal neural network weights developed for the proposed DAML is also different from
that in UCAL, since the weights play the roles of both transformations and distance metric
in DAML. Comprehensive evaluation on three benchmark datasets illustrates that our pro-
posed DAML significantly outperforms previous UCAL and several other state of the art
cross-modal retrieval approaches.

The rest of paper is organized as follows. In Section 2, we discusses previous work in
cross-modal retrieval and adversarial learning. We describe details of the proposed method
in Section 3 and present the experimental results in Section 4. Finally, the conclusion is
made in Section 5.

2 Related work

2.1 Cross-modal retrieval

As for the traditional cross-modal retrieval methods, one popular group is subspace learning
based methods, such as Canonical Correlation Analysis (CCA) [10] and its extensions [7,
22, 23, 48]. By assuming that the representations in different features spaces are correlated
through certain common information, Rasiwasia et al. [22] proposed to learn the subspace
by maximizing the correlation between the image feature and the text feature spaces through
CCA. Sharma et al. [23] proposed multiview extensions to CCA, LDA and Marginal Fisher
Analysis (MFA), i.e. Generalized Multiview Analysis (GMA), Generalized Multiview LDA
(GMLDA) and Generalized Multiview MFA (GMMFA), and showed that they performed
well on cross-modal retrieval problems.

It is notable that dictionary learning has been introduced to address the fact that the sub-
space assumption could be restrictive for some real world multimodal data. Zhuang et al.
[49] extends unimodal dictionary learning framework to multimodal data. Instead of inde-
pendently learning the dictionary and corresponding coefficients for a single modality, the
coefficients for different modalities are correlated using a linear mapping; l1,2 norm was
also used to discover inter-modality structures. As pointed out by Gu et al. [9], both sub-
space and dictionary learning have problem with feature selection: either all features are
linearly combined or only some components are selected from a feature vector. To tackle
this, they formulated subspace learning using graph embedding and applied l2,1 regulariza-
tion to jointly perform feature selection and subspace learning. Tian et al. [32] explored
the intrinsic manifold structures in different modalities and developed a so-called corre-
lation component manifold space learning method to capture the correlations residing in
the heterogeneous data. Wang et al. [35] proposed to explicitly learn two projections that
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map two modalities into a coupled common subspace and adopted l2,1 norm on the learned
projections to perform feature selection. Xu et al. [42, 43] further introduced dictionary
learning into the coupled feature mapping framework, forming a two step framework. In
particular, two dictionaries were learned jointly in a way similar to [49]; then the learned
sparse representations were then mapped into a common subspace.

Meanwhile, neural networks have also been applied to cross-modal retrieval. Srivastava et al.
[31] applied autoencoder and Restricted BoltzmanMachine (RBM) to multimodal data. They
followed similar pattern by adding a shared representation layer to correlate each modality.
Another autoencoder based model is Correspondence Autoencoder (Corr-AE) [5]. Instead
of reconstructing via shared representations, Corr-AE correlates representations learned by
each autoencoder through a predefined similarity measure. The model is trained to minimize
the reconstruction error for each modality and the pairwise discrepancy between the learned
representations. Wang et al. [37] further adopted stacked auto-encoders to form deeper non-
linear embeddings for different modalities, showing the capability of learning more effective
mapping functions and shared representations. Andrew et al. [1] proposed a direct extension
to CCA, namely DCCA. It uses two feedforward networks to transform features of each
modality and the networks are trained to maximize the correlation between the transformed
features over all the data. Yan et al. [44] further proposed an end-to-end learning framework
based on DCCA. Although these methods tried to maximally correlate different modalities
and to better choose features, none of them explicitly address the statistical aspect of the
representations learned from different modalities. The transformed features are not guaran-
teed to possess similar statistical properties, which can make them statistically separate. In
this paper, we explicitly address this issue through adversarial learning.

Moreover, several coupled metric learning algorithms have been proposed for cross-
modal matching such as Cross Modal Metric Learning (CMML) [17], Cross-Modal
Similarity Learning (CMSL) [12], Coupled Marginal Fisher Analysis (CMFA) [24] and
Online Asymmetric Similarity Learning (OASL) [39]. These methods only learn a pair
of linear transformations to map cross-modal samples into a new common feature space,
which is not effective enough to discover the nonlinear relationship of samples. Later, Liong
et al. [15] proposed Deep Coupled Metric Learning (DCML), a metric learning approach
that learns two sets of nonlinear transformations to map data samples into common space
considering the variation of different classes. Different from DCML, our proposed DAML
is based on adversarial learning, and utilizes category information adequately to preserve
inter-modal and intra-modal structure simultaneously, thus ensures that the learned subspace
feature representations to be both discriminative within modality and modality-invariant.

Lastly, it is worth mention that a bundle of hashing based approaches such as [27, 40,
41, 50] have been proposed for cross-modal retrieval problem. More related works can be
referred to the latest literature review in [33]. These cross-modal hashing methods find
linear projections to embed the heterogeneous data into a common Hamming space, where
the multi-modal features are represented by low dimensional binary codes. Different from
the hashing based methods, we focus on the traditional cross-modal retrieval task and aim
to learn compact real-valued subspace representations rather than binary codes.

2.2 Adversarial learning

Adversial learning was recently proposed by Goodfellow et al. [8] in GAN for image gen-
eration. The framework consists of two major components, namely the generator and the
discriminator. The two components have opposite training goals: the generator is trained
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to generate samples that cannot be distinguished from the source by the discriminator; the
discriminator is trained to correctly identify the samples that are produced by the generator.
Eventually, the generator learns to duplicate the source distribution. Despite its exten-
sive application in image generation [8, 20], researchers also uses it as a regularizer [6].
Makhzani et al. [16] introduced adversarial learning into autoencoder by regularizing the
intermediate representation of the autoencoder using a prior distribution through adversar-
ial loss. In particular, a classifier is introduced to identify if a sample is drawn directly from
the prior distribution. The encoder is trained to fool the classifier so the learned representa-
tions have a similar distribution as the prior. Larsen et al. [14] combined adversarial network
with Variational Autoencoder (VAE) [13]. From the perspective of VAE, the adversarial part
provides an additional adversarial loss to the VAE. This can be considered as a regularized
VAE. Larsen et al. [14] used an additional adversarial network to regularize an improved
version of Variational Autoencoder and proved its efficiency via image reconstruction and
manipulation. A closely related work is by Ganin et al. [6], where adversarial learning was
applied to domain adaptation to learn domain invariant features. Ganin et al. [6] regularized
feature extractor in domain adaptation with adversarial network to generate domain invari-
ant features and achieved exciting performance. Yet, no attempt has been made to apply
adversarial learning to cross-modal retrieval.

Inspired by these works, we introduce adversarial learning as regularization into cross-
modal retrieval for image and text. Similar to the neural networks based methods, we use
neural networks for feature transforms. However, we not only maximize the correlation
between the transformed features, we also regularize their distributions through the intro-
duction of modality classifier, which predicts the source modality of a transformed feature
and thus brings adversary.

3 Proposed method

3.1 Problem formulation

Let D = {I1, ..., In} be a collection of n instances with each instance Ii = (vi , ti ) consist-
ing of dV dimensional visual feature vi and dT dimensional text feature ti . We also define
feature matrices of two modalities as V = {v1, ..., vn} and T = {t1, ..., tn}. In practice, the
visual features and the text features are represented in different high dimensional spaces
with diverse statistical properties; therefore they cannot be directly compared against each
other. Suppose we have two mappings fV (v; θV ) = fV (vi; θV ) and fT (t; θT ) = fT (ti; θT )

that respectively transform the visual and text features into d dimensional vectors sV and sT
with same dimension.

Although the transformed features have the same dimensionality, they are not guaran-
teed to be directly comparable since the statistical properties of the transformed features
are still unknown. These transformed features can still follow unknown yet complex distri-
butions, which prohibits effective cross-modal retrieval. Yet, existing methods, either based
on subspace learning or deep neural networks, focus on maximizing the correlation in the
transformed space or choosing better features. No explicit requirements are imposed on the
statistical aspect.

To make the features directly comparable, we have the following two objectives: 1)
it is desirable to exploit more discriminative information from training samples; 2) it is
expected to reduce the modality gap of the pairwise data from different modalities. We use
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feed-forward networks to train nonlinear transformation for each modality using the adver-
sarial learning framework. This allows us to put an additional restriction on the statistical
properties on the transformed features.

3.2 Deep adversarial metric learning

As shown in Figure 1, our proposed DAML first conducts image and text feature pro-
jection to obtain the transformed representations sV and sT , meanwhile the constraints
of the intra-modal and inter-modal similarity metric and modality classifier restrain the
learned subspace representations to be discriminative and modality-invariant. In the sec-
ond stage, we construct a multi-task learning architecture to learning discriminative and
modality-invariant subspace representations jointly. Specifically, in the following subsec-
tions, we decompose the subspace learning procedure into three loss terms: 1) adversarial
loss was utilized to minimize the “modality gap” between two unknown distributions of
representations from different modalities to promote modality-invariant; 2) feature discrimi-
nation loss, which models the intra-modality similarity by category information and ensures
learned representations to be discriminative; 3) feature correlation loss, which minimize
the distances among intra-class cross-modality samples and maximizes the distances among
inter-class cross-modality samples.

3.2.1 Adversarial loss

To enforce the statistical requirement and close the “heterogeneity gap” demonstrated
above, a modality classifier D with parameters θD was introduced, which acts as the “dis-
criminator” in GAN. Mapped features from image modality are assigned with label 01,
while mapped features from text modality are assigned with label 10. For the modality clas-
sifier, the goal is to differentiate the source modality as precise as possible given an unknown
mapped feature. For the classifier implementation, we used a 3-layer feed-forward neural
network with parameters θD (see Section 3.3 for implementation details). The adversarial
loss Ladv can now formally be defined as:

Ladv(θV , θT , θA) = −1

n

n∑

i=1

(mi · (logD(vi; θA) + log(1 − D(ti; θA))). (1)

Essentially, Ladv denotes the cross-entropy loss of modality classification all instances
oi, i = 1, ..., n used per iteration for training. Furthermore,mi is the ground-truth modality
label of each instance, expressed as one-hot vector, whileD(.; θD) is the generated modality
probability per item (image or text) of the instance oi .

3.2.2 Feature discrimination loss

In order to ensure that the intra-modal discrimination in data is preserved after feature pro-
jection, a classifier is deployed to predict the semantic labels of the items projected in
the common subspace. For this purpose, a feed-forward network activated by softmax was
added on top of each subspace embedding neural network. This classifier takes the pro-
jected features of the instances oi of coupled images and texts as training data and generates
as output a probability distribution of semantic categories per item.
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Suppose li to be groundtruth label of each representation, which is expressed as one-hot
vector. And the predicted probability distribution from outputs of label classifier is described
as p̂i . Then the intra-modality objective function can be written as follows, regardless of
which modality the transformed feature representations come from.

Ldis(θV , θT , θD) = − 1

N

N∑

n=1

(li · (log p̂i (fV (vi )) + log p̂i (fT (ti )))). (2)

3.2.3 Feature correlation loss

For inter-modal structure, we utilized correlation loss motivated by the coupled metric
learning. The loss aims to minimize the intra-class variation and maximize the inter-class
variation for feature representation of different modalities. Specifically, for each pair of
training samples vi and tj from two different modalities, we compute their square distance
as d(vi, tj ) = ‖fV (vi) − fT (ti)‖22. We expect d(vi, tj ) to be as small as possible if vi and
tj are of the same class and as large as possible otherwise. This can be formulated as the
following constraints:

d(vi, tj ) ≤ ξ1, if lvi ,tj = 1, (3)

d(vi, tj ) ≥ ξ2, if lvi ,tj = −1, (4)

where lvi ,tj = 1 indicates that vi and tj belong to the same class, and lvi ,tj = −1 otherwise,
ξ1 and ξ2 are the small and large thresholds, respectively. We follows [15] to integrate the
large margin optimization objective:

Lcor (θV , θT , θC) =
∑

i,j

s(1 − lvi ,ti (θ − d(vi, ti ))) +
∑

i

‖fV (vi ) − fT (ti )‖2 , (5)

where s(·) is a generalized logistic loss function, ξ1 = ξ − 1 and ξ2 = ξ + 1. In (5), the
second term is similar as the correlation loss term in [11] that minimizes the difference
between each pair of data of the same class captured from different modalities.

3.3 Optimization

As demonstrated above, we can incorporate three loss terms in (2), (5) and (1) altogether,
which can be optimized through SGD and the optimization goals of these two objective
functions are opposite, which can be formally described as a min-max game just as shown
in [8]:

(θ̂V , θ̂T , θ̂D, θ̂C) = argmin
θV ,θT ,θC,θD

αLdis(θV , θT , θC, θD) (6)

+ βLcor (θV , θT , θC, θD) − σ · Ladv(θ̂A),

θ̂A = argmax
θA

(αLdis(θ̂V , θ̂T , θ̂C, θ̂D) + βLcor (θ̂V , θ̂T , θ̂C, θ̂D) − σ · Ladv(θA)). (7)

Here the feature discrimination loss term Ldis is a classifier that predicts the semantic labels
of the items projected in the common subspace, thus incorporating the discriminations of
labels into the common subspace; the feature correlation loss term Lcor aims to minimize
the intra-class variation and maximize the inter-class variation for feature representation of
different modalities; and the adversarial loss term Ladv is a cross-entropy loss term used
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in the modality classifier, which differentiates the source modality of image or text. Param-
eters α and β are the weight coefficients for the feature discrimination loss term Ldis and
feature correlation loss term Lcor respectively, σ is the ratio between these two loss terms
and the adversarial loss Ladv , which controls the balance between the two branches of
the feature projection and the adversary. One way to train such an architecture has been
proposed in [6], which add adversarial loss Ladv to embedding loss Lemb and utilizing
Gradient Reversal Layer (GRL) (as shown in Figure 1) to incorporate min-max optimiza-
tion. If a Gradient Reversal layer is added before the first layer of modality classifier, the
min-max optimization can be performed simultaneously, which can be summarized as the
Algorithm 1.

4 Experiments

4.1 Experimental setup

4.1.1 Datasets and features

We conduct experiments on three widely-used cross-modal datasets: Wikipedia [4], NUS-
WIDE-10k [3] and Pascal Sentence [21]. For these datasets, each image-text pair is linked
by a single class label and the text modality consists of discrete tags. Here we briefly
introduce the three datasets adopted in the experiment.

– Wikipedia1 is the most widely-used dataset for cross-modal retrieval task. This dataset
consists of 2,866 image/text pairs of 10 categories, and is randomly divided as follows:
2,173 pairs for training, 231 pairs for validation and 462 pairs for testing.

– Pascal Sentence2 is generated from 2008 PASCAL development kit. This dataset con-
tains 1,000 images which are evenly categorized into 20 categories, and each image
has 5 corresponding sentences which makes up one document. For each category, 40

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 1 General statistics of the four datasets used in our experiments, where “*/*” in columns of “Instance”
stands for the number of training/test image-text pairs

Dataset Instances Labels Image feature Text feature

Wikipedia 1,300/1,566 10 128d SIFT 4,096d VGG 10d LDA 3,000d BoW

Pascal Sentence 800/200 20 4,096d VGG 1,000d BoW

NUS-WIDE-10K 8,000/1,000 350 4,096d VGG 1,000d BoW

documents are selected for training, 5 documents for testing and 5 documents for
validation.

– NUS-WIDE-10K3 is generated from NUS- WIDE dataset. NUS-WIDE dataset con-
sists of about 270,000 images with their tags categorized into 81 categories. While
NUS-WIDE-10k dataset has totally 10,000 image/text pairs selected evenly from the 10
largest categories of NUS-WIDE dataset, which are animal, cloud, flower, food, grass,
person, sky, toy, water and window. The dataset is split into three subsets: Training set
with 8,000 pairs, testing set with 1,000 pairs and validation set with 1,000 pairs.

For fair and objective comparison, we exactly follow the dataset partition and feature extrac-
tion strategies of [19, 36] in the experiments. The general statistics of the four datasets are
summarized in Table 1.

It is worth mention that for all datasets, we mainly use image feature extracted from deep
Convolutional Neural Network (CNN) to represent an image, as the deep visual feature
has shown strong ability and been widely used for image representation. Specifically, the
adopted deep feature is 4,096d vector extracted by the fc7 layer of VGGNet [25] for all
compared methods on all datasets. Regarding the text feature, we use the traditional bag of
words (BoW) vector with TF-IDF weighting scheme to represent each text instance, and
the dimension of the BoW vector in each dataset is also illustrated in Table 1. In addition,
to make fair comparison with several earlier cross-modal retrieval approaches on Wikipedia
dataset, we also adopt the publicly available 128d SIFT feature for image and 10d LDA
feature for text representations41, respectively.

4.1.2 Implementation details

On all the dataset, we set the dimension of the transformed features to 200 and train our
DAML model using three fully connected layers for both image and text modalities. We use
a three layer network 4096 → 2048 → 1024 → 200 for image feature transform and a
single layer network 300 → 200 for text feature transform. For the modality classifier, we
use a three layer network 200 → 100 → 50 → 2. We use binomial cross-entropy for loss
functions LD . While training our model we notice that a strong modality classifier on the
contrary can worsen the performance. To alleviate this, we update the modality classifiers
less often then the feature transforms.

During the training procedure, the batch size is set to 64 for our DAML on all datasets.
We tune the model parameters α, β, σ using grid search (for each parameter in range of
[0.001, 100] with 10 times per step). In our experiment, the three parameters are empiri-
cally set to be 0.01, 0.1 and 1.0, respectively, which show stable performance on different
datasets. In addition, to make fair evaluation with the state-of-the-art methods, we not only

3http://vision.cs.uiuc.edu/pascal-sentences/
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refer to the published results in the corresponding papers but also re-evaluate some of those
methods implementations provided by respective authors to obtain objective assessment.

4.1.3 Evaluation metric

We apply the proposed DAML to two cross-modal retrieval tasks, i.e. image retrieval by
text (Img2Txt) and text retrieval by image (Txt2Img). To evaluate the performance, we use
the standard measure of mean average precision (mAP) and precision-scope curve that have
been widely adopted in literatures [1, 5, 22, 35]. To calculate mAP, we first evaluate the
average precision (AP) of the retrieval result for each query then average the AP values over
the query set. We implement the proposed model using Tensorflow and run the experiments
on a desktop machine with 4-core CPU at 4 GHz, 32 GB memory and Geforece Titan X
GPU.

4.2 Comparison with existing methods

We first compare our DAML approach with 10 state-of-the-art methods on Wikipedia
dataset, which has been widely adopted as a benchmark dataset in the literature. The com-
pared methods are: 1) CCA [10], CCA-3V [7], LCFS [35], JRL [47] and JFSSL [34], which
are traditional cross-modal retrieval methods; and 2) Multimodal-DBN [30], Bimodal-AE
[18], Corr-AE [5], and CMDN [19], which are DNN based.

Table 2 shows the mAP of our DAML and the compared methods on the Wikipedia
dataset using shallow and deep features, respectively. From Table 2, we can draw the fol-
low observations: 1) Our DAML significantly outperforms both the traditional and the
DNN based cross-modal retrieval methods. Especially, comparing to CMDN which gets
the best retrieval accuracy in all the compared methods, our DAML further gains improve-
ment by 4.66% and 5.05% in average using shallow and deep features, respectively. It is
worth mention that CMDN also model inter-modal invariance and intra-modal discrimina-
tion jointly in multi-task learning framework, while the adversarial learning facilitates our
DAML well balance inter-modal invariance and intra-modal discrimination to obtain more

Table 2 Cross-modal retrieval comparison on Wikipedia dataset. Here “–” denotes that no experimental
results with same settings are available

Methods Shallow feature Deep feature

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [22] 0.255 0.185 0.220 0.267 0.222 0.245

Multimodal DBN [30] 0.149 0.150 0.150 0.204 0.183 0.194

Bimodal-AE [18] 0.236 0.208 0.222 0.314 0.290 0.302

CCA-3V [7] 0.275 0.224 0.249 0.437 0.383 0.410

LCFS [35] 0.279 0.214 0.246 0.455 0.398 0.427

Corr-AE [5] 0.280 0.242 0.261 0.402 0.395 0.398

JRL [47] 0.344 0.277 0.311 0.453 0.400 0.426

JFSSL [34] 0.306 0.228 0.267 0.428 0.396 0.412

CMDN [19] – – – 0.488 0.427 0.458

DCML [15] 0.352 0.261 0.307 0.526 0.463 0.495

DAML (Proposed) 0.356 0.267 0.322 0.559 0.481 0.520
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effective cross-modal representation. 2) Our DAML is superior to CCA, Bimodal-AE, Corr-
AE, CMDL and CMDN that use the correlation loss based on coupled samples to model the
inter-modal similarity. The reason is that the proposed double triplet constraints are effec-
tive to leverage the cues of both similar and dissimilar pairs relying on their discriminant
labels, which benefits DAML to effectively model the inter-modal similarity. It consistently
indicates that our DAML is more effective to explore to inter-modal similarity than DCML.
3) Our DAML is also outperforms LCFS, CDLFM, LGCFL, JRL, JFSSL that also leverage
class label information to model the intra-modal discrimination. Different from these meth-
ods, our DAML formulates the feature discrimination and correlation loss that model the
inter-modal invariance and intra-modal discrimination, which jointly obtain better category
separation across different modalities.

Figure 2 shows three examples of text queries and the top five images retrieved by
the proposed DAML for the Text2Img task on Wiki dataset. It can be observed that our
method finds the closet matches of the image modality at the semantic level for both text
queries. And the retrieved images are all belonging to the same label of the text queries, i.e.,
“warfare” and “literature” respectively.

Moreover, the retrieval results on Pascal Sentence dataset and NUS-WIDE-10k dataset
are shown in Table 3. We can see that the our DAML consistently achieves the best
performance compared to its counterparts. Specifically, our DAML outperforms the best
counterpart CMDN in terms of mAP score by 0.001 and 0.017 on average.

4.3 Further analysis on DAML

4.3.1 Visualization of learned adversarial representation

We further investigate the effectiveness of the cross-modal representations learned by our
DAML. In particular, for each of the image and text modality we randomly choose 1000
transformed features in the test set to form a total of 2000 features. The chosen features do
not necessarily form image text pairs. We then use t-SNE to visualize the distribution of
these features.

Text Query Top-5 retrieved images

Label: Literature

Poetry: Rhyme, allitera�on, 
assonance and consonance are ways 

of crea�ng repe��ve pa�erns of 
sound. They may be used as an 

independent structural element in a 
poem, to reinforce rhythmic pa�erns, 

or as an ornamental element.

War of the Fi�h Coali�on: Davout 
an�cipated the problems and 

withdrew his corps from Regensburg, 
leaving a garrison of only 2,000 for 
defense.The Austrian a�acks were 

slow, uncoordinated, and easily 
repulsed by the experienced French III 

Corps.

Label: Warfare

Figure 2 Typical examples of the Text2Img task obtained by our proposed DAML onWiki dataset with CNN
features. In each example, the text query and the top five images retrieved are listed in the following columns
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Table 3 Cross-modal retrieval comparison in terms of mAP on Pascal Sentences and NUSWIDE-10k
dataset. Here “–” denotes that no experimental results with same settings are available

Methods Pascal Sentences NUSWIDE-10k

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

CCA [22] 0.363 0.219 0.291 0.189 0.188 0.189

Multimodal DBN [30] 0.477 0.424 0.451 0.201 0.259 0.230

Bimodal-AE [18] 0.456 0.470 0.458 0.327 0.369 0.348

LCFS [35] 0.442 0.357 0.400 0.383 0.346 0.365

Corr-AE [5] 0.489 0.444 0.467 0.366 0.417 0.392

JRL [47] 0.504 0.489 0.496 0.426 0.376 0.401

CMDN [19] 0.534 0.534 0.534 0.492 0.515 0.504

DCML [15] – – – 0.514 0.468 0.491

DAML (Proposed) 0.531 0.539 0.535 0.512 0.534 0.523

Figure 3 shows the t-SNE embedding for the data distribution of Wiki dataset. Figure 3a
shows the features with adversarial loss and Figure 3b shows the same without adversarial
loss. We can see that without adversarial loss, the transformed features in Figure 3a are still
scattered and the adversarial loss indeed effectively closes the gap between different modal-
ities. In Figure 3b, the transformed features are likely to form a single cluster. This indicates
that adversarial learning as a regularization works as expected to close the statistical gaps
between modalities and that it is an effective tool for processing multimodal data.

4.3.2 Balance of label predicting and structure preserving

Furthermore, the adversarial learning in our DAML is also beneficial to balance the
processes of feature discrimination and feature correlation, which model intra-modal dis-
crimination and inter-modal invariance, respectively. To investigate the contributions of
these two processes, we develop two variations of DAML: DAML with feature discrim-
ination loss Ldis only, and DAML with feature correlation Lcor only. The optimization

Figure 3 t-SNE visualization for the chosen data in Wiki. Red represents visual features and blue represents
text features
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Table 4 Performance of cross-modal retrieval with full DAML method, DAML method with Ldis only, and
DAML method with Lcor only

Methods Wikipedia Pascal sentences

Img2Txt Txt2Img Avg. Img2Txt Txt2Img Avg.

DAML (with Ldis only) 0.326 0.415 0.371 0.281 0.265 0.273

DAML (with Lcor only) 0.411 0.402 0.407 0.525 0.447 0.486

Full DAML 0.493 0.419 0.456 0.529 0.463 0.496

procedure is similar to DAML. Table 4 shows the performance of DAML and its two vari-
ations on Wikipedia dataset and Pascal Sentence dataset. We see that both the intra-modal
discrimination and inter-modal invariance terms contribute to the final retrieval rate, indi-
cating that optimizing the Ldis term and the Lcor simultaneously performs better than
optimizing only one of them. We also see that the intra-modal discrimination term con-
tributes more to the overall performance than the inter-modal invariance term, since in
practice the consistent relation across different modalities is difficult to explore.

5 Conclusion

In this paper, we proposed a novel approach Deep Adversarial Metric Learning (DAML)
for cross-modal retrieval, which aims to learn discriminative (intra-modality) and invariant
(inter-modality) representations in common subspace. We decompose the whole problem
into three loss terms: 1) adversarial loss was utilized to minimize the “modality gap”
between two unknown distributions of representations from different modalities to pro-
mote modality-invariant; 2) for feature discrimination loss, intra-modality similarity was
modelled by category information, which ensures learned representations to be discrimina-
tive; 3) regarding inter-modality similarity, we utilized feature correlation loss to minimize
the distances among intra-class cross-modality samples and maximize the distances among
inter-class cross-modality samples. The experimental results on three widely used mul-
timodal datasets show the proposed DAML outperforms several state-of-art methods on
cross-modal retrieval tasks.
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