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Abstract Hashing based ANN search has drawn lots of attention due to its low storage and
time cost. Supervised hashing methods can leverage label information to generate compact
and accurate hash codes and have achieved promising results. However, when dealing with
the learning problem, most of existing supervised hashing methods are time-consuming and
unscalable. To overcome these limitations, we propose a novel supervised hashing method
named Class Consistent Hashing (CCH). In particular, CCH avoids using instance pairwise
semantic similarity matrix which is widely used in existing methods. Instead, it uses class-
pairwise semantic similarity whose size is far less than the former one, and generates hash
codes for every class by optimizing the least-squares style objective function. Then, instances
in the same class share the same class hash codes. Finally, we adopt a two-step hashing
design strategy to learn the hash functions for out-of-sample instances. Experimental results
on several widely used datasets illustrate that CCH can outperform several state-of-the-art
shallow methods with the fastest training speed among supervised hashing methods.
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1 Introduction

Last decade has witnessed the tremendous explosion of data in different fields on the Inter-
net [6, 25, 29, 46, 52, 53]. The ever increasing demand of efficiently searching such large-
scale Web data is noticeable. Recently, lots of promising hashing based approximate nearest
neighbor (ANN) methods have been proposed for fast search [2, 20, 23, 24, 44]. Gener-
ally, hashing methods first transform data into binary codes, making the Hamming distances
on similar examples minimized and simultaneously maximized on dissimilar examples;
then, pairwise comparisons can be carried out extremely efficiently in the Hamming space,
using XOR operations. Moreover, by using binary hash codes to represent original data,
the storage cost can be dramatically reduced. Due to such advantages, hashing methods
have become more and more popular for ANN search, especially for large-scale data search
[19,27, 28, 42, 43].

Generally, there are two kinds of hashing methods: data-independent hashing meth-
ods and data-dependent ones. Data-independent hashing methods generate hash functions
by random projections. Among them, Locality-Sensitive Hashing (LSH) [3] is one of the
most well-known data-independent hashing methods, and it has been generalized to accom-
modate other distance and similarity measures such as p-norm distance [1], Mahalanobis
metric [15], and kernel similarity [14, 32]. Learning-based data-dependent hashing meth-
ods have recently drawn lots of attention because they take data into consideration and
learn compact binary codes which can effectively and highly efficiently index and organize
large-scale data.

Data-dependent hashing methods can be further divided into two categories: unsuper-
vised ones [5, 26, 36, 37, 47] and supervised ones [38, 39, 50]. Unsupervised hashing
methods focus on exploiting the relations of training data to learn hash codes without usage
of label/semantic information. Spectral Hashing (SH) [48], Self-Taught Hashing (STH)
[54], Iterative Quantization (ITQ) [4], Isotropic Hashing (IsoHash) [12], Inductive Hash-
ing on Manifolds (IMH) [34], and Scalable Graph Hashing (SGH) [9] are some of the
representative unsupervised hashing methods. When label/semantic information is avail-
able, supervised hashing methods can leverage them for hash function and hash code
learning. Some representative supervised hashing methods include Minimal Loss Hashing
(MLH) [30], Supervised Hashing with Kernels (KSH) [21], Two-Step Hashing (TSH) [17],
Supervised Hashing with Latent Factor (LFH) [56], Fast Supervised Hashing (FastH) [18],
Supervised Discrete Hashing (SDH) [35], and Column Sampling Based Discrete Supervised
Hashing (COSDISH) [11]. More recently, some deep hashing models have been proposed,
such as Deep Self-Taught Hashing (DSTH) [57], Binary Generative Adversarial Networks
(BGAN) [41] and Deep Cross-Modal Hashing (DCMH) [10]. Such deep hashing methods
have shown great improvement in performance since deep networks can learn much more
complex nonlinear functions and obtain better representations [7, 40].

By leveraging label/semantic information, supervised hashing has demonstrated better
accuracy than unsupervised hashing in many real applications. Therefore, supervised hash-
ing has attracted more and more attention in recent years. However, most of them have two
drawbacks: (1) they are typically time-consuming; (2) their space cost is unscalable. In the
training procedure, most existing supervised methods adopt an instance-pairwise similar-
ity matrix of labeled training data to guide the learning of hash codes. The space cost for
generating this matrix is quadratic to the size of the labeled training data, and is unscal-
able when data amount is very large. Therefore, sampling techniques are usually adopted
to avoid these two problems [11, 17, 21, 56]. However, sampling may lead to information
loss as some useful information may not be sampled, and then may result in unsatisfactory
performance in real applications.
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To address the problems mentioned above, in this paper, we propose a novel super-
vised hashing method, named Class Consistent Hashing (CCH), which can learn effective
hash codes in an extremely fast way. Particularly, CCH learns class consistent hash codes
which means that instances in one class have the same hash codes; and the learning of hash
codes is dependent on the number of classes instead of the number of training instances. To
summarize, the main contributions of this paper are as follows:

— The training of CCH only depends on the number of classes rather than that of
instances. Usually, the number of classes is far less than the number of instances. Thus,
CCH ensures a fast training speed even on large-scale data.

—  CCH avoids using sampling strategy which means that it can take advantages of full class
label information. The full use of label information can better guide the learning proce-
dure, and lead to more accurate hash codes which well preserve the semantic similarity.

—  Extensive experiments are conducted on datasets. The results demonstrate that CCH can
outperform the state-of-the-art hashing methods for retrieval task, e.g., image retrieval.
Especially, the results on large-scale dataset further illustrate that CCH can be easily
applied to large-scale data search.

The rest of this paper is organized as follows. The related work is discussed in Section 2.
Section 3 introduces the proposed CCH model including the framework, optimization algo-
rithm and its extensions to out-of-sample data. Section 4 presents the experimental results
and some analysis on several benchmark datasets. Finally, Section 5 concludes this paper.

2 Related work
2.1 Two-step hashing

There is one kind of hashing methods which is called two-step hashing methods [11, 17,
18, 21]. Generally, a two-step hashing method has two steps: learning binary hash codes
in the first step, and learning hash functions which transform original features into binary
hash codes in the second step. And these two steps are usually called hash code learning
step and hash function learning step, respectively. Actually, as [17] revealed, for any bit of
the hash code, learning the corresponding hash function to project features into it can be
modeled as a binary classification problem. Thus, the learning of hash functions is open for
any effective predictive model, like linear regression, SVM, and boosted decision trees, etc.
Our proposed CCH is also a two-step hashing method.

2.2 Class-wise supervised hashing

Most supervised hashing methods use a similarity matrix which is instance-pairwise to
supervise the learning procedure. Class-wise Supervised Hashing (CSH) [8] is a newly pro-
posed supervised hashing method. Instead of using the instance-pairwise matrix, it uses
a class-pairwise similarity matrix, whose size is much smaller than the instance-pairwise
one in many applications. This is similar with our CCH, as CCH also uses class-pairwise
similarity matrix.

However, there is a lot of differences between CSH and our CCH. CSH learns a code-
prototype for each class, whose length is the same as the number of hash functions to be
learned. Strictly speaking, the code-prototype is not a hash code, as it has three possible
values (—1, 0 and 1, where 0 means this bit is useless for the code-prototype); but, one hash
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code only has two possible values. Furthermore, CSH uses the code-prototype to supervise
the learning of hash codes for all instances, and there is a great possibility that instances
from one class have different hash codes. Our CCH directly learns hash codes for every
class, and instances from one class have the same hash code. Another main difference is
that CSH simultaneously learns hash codes and hash functions, while our CCH is a two-step
hashing method.

3 Our method
3.1 Notations

Assume we are given n labeled instances, i.e., {(x1, 1), (X2, ), -+, (X4, 1)}, where x; €
R4 is the feature vector of the i-th instance and I, e {1,2, -, c}isits corresponding class
label. Without loss of generality, we assume the input instances to be zero centered, i.e.,
' x; = 0. A hashing method aims to learn a set of hash functions which map one input
instance to a r-bit binary hash code b;:

b = [h1(x;), ha(X;), -+, by ()] = sgn(W'x;), (1

where each hash function h;(x) is associated with a vector w; € R, and W =
[Wi, W2, -, W,] € R¥* is the projection matrix. The sgn(-) function is an element-wise
sign function. b; € {—1, 1}" is the r-bit hash code of instance x;, and B € {—1, 1}**" is the
binary hash code matrix for all instances with each row B;, = b;.

Kernelization is widely used in supervised hashing methods [21, 22, 35, 51], which
can better capture the nonlinear structure underlying the original features. To use it, in
this paper, we randomly sampled m (m < n) anchor points, i.e., 01,02, -+ , 05, from
training data. Then, with the RBF kernel, kernel features can be represented as ¢ (x) =

2 2 T
. —lIx—0 I3 . . .
exp|—5z—=). . exp| —57 = , where o is the kernel width. In this paper, we
calculate it with o = -1 3™ 5™ | || x; — o, [|l, m = 500. Then hash functions can be
represented as:

bi = [h1(p(xi)), ha(d (X)), -+, b (p(xi)]" = sgn(Wgo(xi)), @)

where Wg € R™*" is the projection matrix.
3.2 Motivation

In general, supervised hashing methods aim to enforce the binary codes to be similar (or
different) if the corresponding instances belong to the same class (or different classes).
Ideally, the best situation is that the hash codes of similar instances, which are in one class,
are exactly the same while dissimilar instances have different hash codes.

Thus, we design our hashing method following the idea that instances from the same
class have the same hash codes while the hash codes of different classes should be different.
As described above, the proposed method tries to make instances from the same class have
consistent hash codes; we thus name it as Class Consistent Hashing (CCH). Following this
design strategy, CCH has the following remarkable advantages:

— It can be extremely fast in the hash code learning procedure. The learning procedure
has no relation to the size of data set, but only to the number of different classes. This
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property can dramatically reduce the time cost and make it possible that our hashing
method can do fast training on large-scale data.

—  Full label information can be leveraged. Some supervised hashing methods suffer
from high time complexity problem and cannot afford to learn hash codes using all
data samples. They thus adopt some sampling strategies in learning procedure without
leveraging all training data, which may lead to the loss of some useful label information.

— CCH is more scalable than most supervised hashing methods. Most existing supervised
methods adopt an instance-pairwise similarity matrix of labeled training data whose
size is n x n (n is the number of training samples). This kind of similarity matrix is
unscalable when 7 is very large. But CCH only needs to generate a ¢ x ¢ class-pairwise
similarity matrix. Usually, ¢ is much smaller than n.

—  The storage cost can also be reduced. Most of existing hashing methods need to store
a matrix B whose size is n x r; while CCH only needs to store Y € {—1, 1}*” and
label vector L whose size is n x 1, where Y is the matrix containing the hash codes of ¢
different classes. When n is large, the storage cost of exiting methods is r times larger
than that of CCH.

3.3 Objective function

As supervised hashing methods aim to force the learned hash codes to preserve the similarity
of label information, i.e, the semantic similarity, we first define the class-wise similarity

S. Here, S € {—1, 1}°*¢ is the class pairwise semantic similarity matrix, where S;; = —1
means that class i and class j are semantically dissimilar, S;; = 1 means class i and class j
are semantically similar. In fact, it is clear that S;; = 1, wherei =1,2,--- ,candS;; = —1,

where i # j. Besides, as there are c¢ classes, there are only ¢ different kinds of 1; for all
training instances; thus, if we can design an appropriate hashing scheme which can well
preserve the similarity matrix S, then, all label information can be well leveraged without
missing useful one.

We use y; € {—1, 1} to denote the hash code for the i-th class and Y € {—1, 1}°*" to
represent the hash code matrix for c classes. From [21], the correlation between the hash
code inner product and the Hamming distance is as follows:

yioyj =r—2Du(yi.y;), )

where the operation o is the inner product; Dy (y;, y;) is the Hamming distance between
yi and y;. Moreover, if y; and y; are more similar, y; o y; will be closer to r; and if y;
and y; are totally different, y; o y; will be —r. Thus, we can construct a relation between
the similarity matrix S and the inner product of hash codes by multiplying S with the code
length r, ie., | ¥rS — Y'Y |. Therefore, | S — Y'Y || also measures the relationship
between the hamming distance Dy, (y;, y;) and semantic similarity between class i and class
Jj- This scheme is consistent with the definition of supervised hashing which maps similar
(dissimilar) instances into hash codes with small (large) hamming distances.
In addition, we adopt the least-squares style, and give the objective function:

min || -8~ YYT [},

4
s.t. Y e{—1,1})",

where || - || represents the Frobenius norm. As S € {—1,1}*°, Y € {—1, 1}*", and
¢ < n, r is usually range from 8 to 96 in supervised hashing literature, the time cost for
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solving (4) is extremely low which will lead to a very fast learning procedure. And as (4)
does not depend on the training data size n, CCH can be naturally, easily and efficiently
used to deal with large-scale data.

By solving (4), we can learn the hash codes for all ¢ classes. Then, the hash codes for
every instance can be easily assigned according to its label information 1;:

b;=y;, L= )

Hence, when we store the binary codes for all n instances, there is no need to store the
large matrix B. We can instead store class hash codes matrix Y and label vector L. As
analyzed above, the storage cost can be reduced almost r times in CCH compared with other
existing methods.

3.4 Optimization

We can solve the optimization problem of (4) in an incremental mode. First, we rewrite it as:

C
min || r-S — NS
vin | ;m)y(k)nF ©

s.it. Ye{=1,1)x",

where yx) € {—1, 1}¢ contains the binary codes of the k-th bit. Considering that block
coordinate decent (BCD) is a technique that iteratively optimizes a subset of variables at
a time, we can solve y«) sequentially. At a time, we only solve y() provided with the
previously solved vector y;‘l), e ,yz‘,ﬁ 1 Let us define a residue matrix Ry_; = rS —

Zf;ll y?t) (yfl))T. Then, we have the problem of solving y):

min || Re—1 — Yo ¥ I
Yo l Y )Y(k)”p

(M
S.t. Yk € {—1, l}c’
Further, we rewrite (7):
I Rt = Yo ¥ (o I = trRF_) — 20y (o Re—1¥ ) + (YY) (®)

where (y&)y(k))2 =¢?, and tr(Ri_l) = const. By discarding the constant term, we obtain
the equivalent form of (7) as follows.

: T
min -y, Ri_i ,
o Y () Rk—1Y (k)

st yw € {—1, 1}

(€))

Then, the optimization is equivalently reformulated as a binary quadratic problem (BQP)
in (9). However, minimizing (9) is not easy because it is neither convex nor smooth. Moti-
vated by previous works [17, 21, 48], we relax the binary constraint. Here, we adopt spectral
relaxation. Then, we rewrite (9) as follows.

T
maxy ;. Re-1¥ (),
v Yw Yo (10)

s.t. Yo € [—1, 1],

@ Springer



World Wide Web (2019) 22:477-497 483

So far, we can find that (10) is a standard generalized eigenvalue problem which can be
efficiently solved.

3.5 Out-of-sample extension

As stated above, CCH is a two-step method: learning hash codes in the first step, and then
training r hash functions based on the feature matrix X and the learned code matrix B in
the second step. As discussed in Section 2.1, if the hash codes have already been obtained,
the learning problem of hash functions can be viewed as a binary classification problem for
any bit of the code. Thus, an arbitrary classifier, such as Support Vector Machines (SVM),
boosting, and neural networks, may be adopted to train the hash functions. For example, [11,
45, 55] use linear classifiers; some other methods use more powerful nonlinear classifiers,
such as SVM with RBF kernel [17], deep convolutional network [49] and boosted decision
trees [11, 18] and so on. Generally, the more powerful classifiers we use as hash functions,
the better accuracy we can achieve and also the more training time will be consumed.

Usually, by using linear regression, we can quickly learn the hash functions and the
performance is also good enough. Thus, considering the tradeoff between the time cost and
performance, we finally choose linear regression to train hash functions Wx for CCH, which
is also adopted by [11, 56]. Consequently, the squared loss with regularization term is:

I B—¢X)Wk% + e | WklF, (11)

And we can get the optimal W as:

W= (pX) ¢pX) + 2D '¢pX)B. (12)

Note that CCH can also use other kinds of classifiers. To show this, we give the results
of CCH with SVM and boosted decision trees as classifiers in Section 4.8.

3.6 Analysis

Compared with conventional two-step supervised hashing methods, the memory space cost
of CCH in the first step is less than that of others. For example, the size of the similarity
matrix used in CCH is ¢ x ¢, where c is the number of classes. The size of the similarity
matrix used in Two-Step Hashing (TSH) [17] is n x n where n is the number of training
instances. For Supervised Hashing with Latent Factor (LFH) [56] and Column Sampling
Based Discrete Supervised Hashing (COSDISH) [11], they use sampling strategy to ran-
domly select a subset from the large similarity matrix and the size of such subsetis n x r,
where r is the hash code length. Obviously, since n is always much lager than c, the space
cost of CCH in the first step is much smaller than that of TSH, LFH and COSDISH. There-
fore, CCH can learn the binary codes more efficiently than other two-step methods. In the
second step of two-step hashing methods, the only difference is the choice of classifiers.
Thus, the space cost of CCH and other two-step methods, e.g., TSH, LFH and COSDISH, is
the same.

Compared with other conventional supervised hashing methods, the space cost of CCH
is also less than that of them. For example, Supervised Hashing with Kernels (KSH) [21]
uses an n x n similarity matrix and an n x d feature matrix. Supervised Discrete Hashing
(SDH) [35] needs to load an n x ¢ semantic label matrix and an n x d feature matrix into the
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memory in the learning stage. It is worth noting that Class-wise Supervised Hashing (CSH)
[8] also uses class-pairwise similarity matrix in the training stage. However, CSH learns not
only the hash codes of all instances, but also the code-prototype for all classes. Therefore,
other conventional supervised hashing methods also need more memory space than CCH.

4 Experimental results

We conduct extensive experiments on several widely adopted datasets, i.e., MNIST [16],
CIFAR-10 [13] and CIFAR-100 [13] to evaluate the effectiveness of CCH. In order to
show the effectiveness on large-scale data, we also conduct experiments on the training set
of ILSVRC2010 [33]. In addition, we compare CCH with several state-of-the-art hashing
methods for retrieval task.

4.1 Datasets

Following the literature of hashing, we adopt four datasets, i.e., MNIST, CIFAR-10, CIFAR-100
and the training set of ILSVRC2010 which are widely used in former works [8, 11, 35, 54].
The MNIST dataset consists of 70,000 images of handwritten digits from ‘0’ to ‘9’, and
it thus has 10 classes corresponding to numbers ranging from ‘0’ to ‘9. It is a subset of
a larger set available from NIST. The digits have been size-normalized and centered in a
fixed-size image. And each image in this dataset is represented by 784-dimension feature
vectors. If two samples have the same class label, they are considered to be semantically
similar; otherwise, they are considered as semantically dissimilar. For MNIST, we randomly
sample 1,000 images as query set leaving the remaining 69,000 images as training set.

The CIFAR-10 has a number of 60,000 images which are manually labeled. This dataset
has 10 classes with 6000 images for each class. Each image is represented by a 512-
dimension GIST [31] feature vector extracted from the original color image of size 32 x 32.
If two images have the same class label, they are considered to be semantically similar; oth-
erwise, they are considered as semantically dissimilar. For CIFAR-10, the whole dataset is
split into a query set with 1,000 images and a training set with all remaining images.

CIFAR-100 contains 60,000 images in total with each image belonging to one class.
There are 100 classes and each class consists of 600 color images of size 32 x 32. Each
image is represented by a 512-dimensional GIST feature vector. For CIFAR-100, following
the settings in [8], 58,000 images are randomly selected from the whole set to comprise a
training set while the remained 2000 images are used as queries.

For easy notation, we will call the training set of ILSVRC2010 as ILSVRC2010 in our
paper. This dataset is the subset of ImageNet and contains 1.2 million images. These images
belong to 1000 categories, with each category having at least 600 samples. If two images
belong to the same category, they are viewed to be semantically similar. We use the released
1,000-dimension BoW features' which are computed from SIFT features of original images.
And we construct a query set by randomly sampling 5% images, and leave the other ones
as training set (1,198,336 images).

Uhttp://image-net.org/download- features

@ Springer


http://image-net.org/download-features

World Wide Web (2019) 22:477-497 485

4.2 Baseline methods

We compare CCH with eight recently proposed state-of-the-art hashing algorithms, includ-
ing both unsupervised and supervised ones. The unsupervised ones include Locality-
Sensitive Hashing (LSH) [3], and Iterative Quantization (ITQ) [4]. The supervised ones are
Supervised Hashing with Kernels (KSH) [21], Two-Step Hashing (TSH) [17], Supervised
Hashing with Latent Factor (LFH) [56], Supervised Discrete Hashing (SDH) [35], Column
Sampling Based Discrete Supervised Hashing (COSDISH) [11], and Class-wise Supervised
Hashing (CSH) [8]. LSH is the most popular data-independent hashing and its performance
is guaranteed by probability theory. ITQ is an unsupervised data-dependent hashing method
which is widely adopted as one baseline method in hashing literature. TSH, LFH and COS-
DISH are two-step hashing methods, which have promising performance, thus are chosen
as comparison methods. SDH is a recently published supervised hashing which is often in
the list of baseline methods in supervised hashing papers. CSH trains a model based on a
class-pairwise similarity matrix, whose supervision information is similar to ours; thus we
choose it as one baseline method as well. In this paper, we do not include deep hashing
baselines because our CCH is a shallow method.

For most baselines we use the code kindly provided by the respective authors and we
carefully tune their parameters according to the scheme suggested by the authors. As the
CSH’s codes are not publicly available, we conduct comparison experiments exactly follow-
ing the settings of CSH on CIFAR-100; and we compare against the results of CSH reported
by the authors in their paper.

It is notable that the baselines KSH and TSH have high time complexity, which require
much computational time to learn hash functions on large datasets. Following [11, 17, 21],
we randomly sample 2000 images as training set for them.

4.3 Evaluation metrics

To fully evaluate the proposed method and all of the baselines, we adopt three widely used

performance measures for hashing, i.e., mean average precision (MAP), top-N precision and

precision-recall curves. For all metrics, a larger value indicates better retrieval performance.
Given a query, the average precision (AP) is defined as:

] n
AP = z Z Precision(r)é(r) (13)
r=1

where R is the number of ground-truth neighbors of the query in database (training set), n
is the number of entities in the database, Precision(r) denotes the precision of the top r
retrieved entities, and §(r) = 1 if the r-th retrieved entity is a ground-truth neighbor and
3(r) = 0 otherwise. Ground-truth neighbors are defined as those instances sharing at least
one semantic label. Given a query set of size O, the MAP is defined as the mean of the
average precision scores for all the queries in the query set:

0
1
MAP = 2 > Arp, (14)
i=1

Top-N precision reflects the change of precision with respect to the number of top-ranked
N instances presented to the users, which is expressive for data retrieval.
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Precision-recall curves can be obtained by varying the Hamming radius of the retrieved
points and evaluating the precision, recall and the number of retrieved points.

4.4 Results on MNIST

The MAP results on MNIST with code length varying from 8 to 96 are shown in Figure 1.
From this figure, we have the following observations:

—  Supervised hashing methods can always perform better than unsupervised ones, which
proves that label information has an important role in hash codes learning.

—  Most of these methods can achieve good performance on MNIST, which is also reported
in [17]. The main reason is that MNIST is an ‘easy’ dataset which is not as challenging
as others.

—  CCH achieves the highest search accuracy in all situations, which proves the effective-
ness of CCH. This confirms that CCH can obtain better hash codes by making full use
of all label information.

The curves of top-N retrieved samples and precision-recall curves are plotted in Figures 2
and 3, respectively. From these figures, we can also find that CCH obtains the best results in
most cases. The only exception is the top-N precision with code length 16, i.e., Figure 2b.
However, CCH performs better than TSH at the beginning, i.e., N is small. This means that
CCH returns highly related samples when N is small, which is very important in retrieval
task.

The training time of CCH and all baseline methods is listed in Table 1. From this table,
we have the following observations:

—  Unsupervised hashing methods are faster than supervised ones, which is at the price of
accuracy as unsupervised methods cannot get satisfactory results.

MNIST
1 T T T T T T
A A A A A A
0.8 b
o L |
< 0.6
= —+—LSH
ITQ
KSH
0.41 TSH b
—6— LFH
—k— SDH
—— COSDISH
0.2 —&— CCH N
8 16 24 3 48 64 96

Code length

Figure 1 MAP results on MNIST with code length varying from 8 to 96
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Figure 2 Top-N precision curves of all methods on MNIST with code length varying from 8 to 64

Both KSH and TSH sample a subset of 2000 images from the overall training set to train

their models. Although they only use a small set of images, their time cost is still large.

the pairwise similarity in one iteration. They thus have small time cost.

LFH and COSDISH are all sampling based methods, which sample several columns of
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Figure 3 Precision-Recall curves of all methods on MNIST with code length varying from 8 to 64

CCH is the fastest supervised hashing method. This is because the hash codes learning

procedure of CCH is dependent on the amount of classes; and on MNIST, the amount
of classes is 10, which is far less than the training data size, i.e., 69,000. Thus, CCH is
much faster than other state-of-the-art supervised hashing methods.
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Table 1 Training time (in second) of all methods on MNIST with code length varying from 8 to 96

Method 8 bits 16 bits 24 bits 32 bits 48 bits 64 bits 96 bits Size of
training set

LSH 0.03 0.04 0.05 0.05 0.06 0.08 0.12 69000

ITQ 0.81 1.14 1.45 2.16 3.02 4.09 5.87 69000
KSH 28.77 54.32 77.51 104.99 170.70 239.27 317.44 2000

TSH 29.05 53.35 82.10 106.88 200.34 277.51 327.85 2000

LFH 3.39 3.80 4.62 5.27 7.86 10.56 15.98 69000
SDH 11.84 13.16 15.90 17.11 26.59 48.71 116.18 69000
COSDISH 3.60 6.52 9.00 17.36 48.68 82.36 190.21 69000
CCH 1.61 1.68 1.72 1.77 1.78 1.87 1.99 69000

From the results on MNIST, we can conclude that CCH is extraordinarily efficient and
effective.

4.5 Results on CIFAR-10

The MAP results on CIFAR-10 with code length varying from 8 to 96 are shown in Figure 4.
From this figure, we can observe that:

Similar to the results on MNIST, supervised hashing methods can always perform better
than unsupervised ones.
Compared with the results on MNIST, some methods cannot obtain satisfying perfor-
mance on it due to the fact that CIFAR-10 is a challenging dataset as.
CCH significantly outperforms all baseline methods in all situations, which further
proves its effectiveness.
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Figure 4 MAP results of all methods on CIFAR-10 with code length varying from 8 to 96
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The Top-N precision curves are plotted in Figure 5. From (a)—(f) in Figure 5, we can find
CCH can always obtain the highest precision. Moreover, there are large performance gains
provided by CCH over the best baseline in all cases.
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Figure 5 Top-N precision curves of the compared methods on CIFAR-10 with code length from 8 to 64
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Figure 6 demonstrates the precision-recall curves on CIFAR-10 with code length varying
from 8 to 64. It is obvious that CCH performs much better than these compared methods in

all cases.
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Table 2 Training time (in second) of all methods on CIFAR-10 with code length varying from 8 to 96

Method 8 bits 16 bits 24 bits 32 bits 48 bits 64 bits 96 bits Size of

training set

LSH 0.03 0.04 0.04 0.04 0.06 0.07 0.08 59000
ITQ 0.68 0.91 1.10 1.46 2.00 2.66 3.73 59000
KSH 32.85 64.75 103.25 128.01 193.72 256.10 410.80 2000

TSH 34.90 65.14 96.98 124.99 199.72 249.16 379.81 2000

LFH 2.09 2.77 3.47 4.41 6.44 9.03 13.82 59000
SDH 10.00 11.18 14.52 17.13 23.15 36.76 102.55 59000
COSDISH 2.04 4.96 9.63 19.13 49.86 90.22 183.31 59000
CCH 1.48 1.49 1.52 1.53 1.56 1.67 1.83 59000

Table 2 lists training time of CCH and all compared baseline methods on CIFAR-10.
From this table, we have the following observations, which are very similar to those on
MNIST:

—  As the code length becomes longer, all methods need more time to train the models.

—  Unsupervised hashing methods are faster than supervised ones on this dataset.

— KSH and TSH still need much time to train their models even with only 2,000 samples.

— CCH is the fastest supervised hashing method, which again proves that CCH is more
scalable than other state-of-the-art supervised hashing methods.

From all of the results on CIFAR-10, we can conclude that: (1) CCH outperforms all
state-of-the-art hashing methods on this dataset. (2) The time cost of CCH is very low.

4.6 Results on CIFAR-100

The MAP results on CIFAR-100 are summarized in Table 3. The symbol ‘-’ means that we
cannot obtain the results from the original paper directly; in addition, we do not have the

Table 3 MAP results of all methods on CIFAR-100 with code length varying from 8 to 96. The best MAPs
for each category are shown in boldface

Method 8 bits 16 bits 24 bits 32 bits 48 bits 64 bits 96 bits
LSH 0.0114 0.0133 0.0132 0.0135 0.0150 0.0148 0.0162
ITQ 0.0126 0.0155 0.0157 0.0163 0.0180 0.0192 0.0200
KSH 0.0119 0.0121 0.0124 0.0125 0.0137 0.0144 0.0152
TSH 0.0116 0.0130 0.0143 0.0185 0.0200 0.0202 0.0256
LFH 0.0233 0.0239 0.0321 0.0366 0.0363 0.0437 0.0413
SDH 0.0270 0.0439 0.0528 0.0614 0.0743 0.0745 0.0530
COSDISH 0.0162 0.0231 0.0283 0.0310 0.0431 0.0453 0.0451
CSH - 0.0980 - 0.0847 - 0.0800 0.0820
CCH 0.0427 0.0891 0.1069 0.1269 0.1546 0.1843 0.2123
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Table 4 MAP results of all

methods on ILSVRC2010 with Method 16 bits 32 bits 64 bits 96 bits

code length varying from 16 to

96. The best MAPs for each LSH 0.0015 0.0018 0.0021 0.0023

category are shown in boldface ITQ 0.0027 0.0028 0.0031 0.0032
KSH 0.0022 0.0023 0.0023 0.0024
TSH 0.0012 0.0013 0.0014 0.0016
LFH 0.0038 0.0040 0.0045 0.0049
SDH 0.0026 0.0038 0.0051 0.0059
COSDISH 0.0041 0.0141 0.0212 0.0319
CCH 0.0136 0.0204 0.0329 0.0396

codes of CSH. And the MAP results of CSH with code length 16, 32, 64 and 96 bits are all
obtained from [8], where the experimental setting and the evaluation metric are exactly the
same with ours on CIFAR-100.

From this table, we can observe that:

—  As CIFAR-100 has 100 different classes in all, it is more challenging than both MNIST
and CIFAR-10. Therefore, most baselines cannot get good MAP results on CIFAR-100.
— CSH and CCH get much better accuracy than others, which can be easily explained.
Both of them use class-pairwise similarity matrix to supervise the hash codes learning.
More specifically, CSH and CCH do not use the sampling method; thus they can embed
all useful label information into the learned binary codes. However, other methods may
omit some useful information in sampling.
— In most situations, CCH can get the best results. Note that, in the case of 16 bits, CSH
performs better than CCH. However, in this case, CCH can get better results than all
other baselines.

To summarize, from the results on CIFAR-100, we can conclude that CCH can out-
perform or is comparable to these state-of-the-art hashing methods used for comparison.

Table 5 Training time (in second) of all methods on ILSVRC2010 with code length varying from 16 to 96

Method 16 bits 32 bits 64 bits 96 bits Size of training set
LSH 0.46 0.51 0.81 1.17 1198336

ITQ 20.53 33.81 57.32 86.37 1198336

KSH 56.68 116.89 236.64 379.25 2000

TSH 365.65 920.55 1574.47 2001.50 2000

LFH 58.80 61.02 65.06 71.42 1198336

SDH 570.46 826.73 2116.91 3702.92 1198336
COSDISH 105.52 316.37 1197.52 2575.17 1198336

CCH 28.58 29.57 36.48 40.45 1198336
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Table 6 MAP results of different hash functions on MNIST with code length from 8 to 96. The best MAPs
for each category are shown in boldface

Method 8 bits 16 bits 24 bits 32 bits 48 bits 64 bits 96 bits
CCH 0.9320 0.9450 0.9398 0.9488 0.9456 0.9509 0.9487
CCH_SVM 0.9572 0.9653 0.9673 0.9657 0.9732 0.9675 0.9707
CCH.BT 0.9584 0.9708 0.9748 0.9713 0.9784 0.9765 0.9790

4.7 Results on ILSVRC2010

To further evaluate the scalability of CCH and all baselines, we conduct experiments on
ILSVRC2010. It is a large-scale dataset with as many as 1000 classes and 1.2 million
images.

The MAP results on ILSVRC2010 are shown in Table 4. From this table, we can find
that CCH obtains the best results in all cases. With up to 1000 classes, other baselines fail to
maintain good retrieval performance. As CCH utilizes the class-pairwise similarity matrix,
it can thus not only handle well with datasets which consist of a small number of classes,
e.g., MNIST and CIFAR-10, but also deal well with datasets whose amount of classes is
large, e.g., CIFAR-100 and ILSVRC2010.

The efficiency of handling large-scale data is one of the core problems, we also give
the training time of all methods on ILSVRC2010, which is listed in Table 5. Among all
supervised hashing methods, CCH is the most efficient one.

From both MAP results and training time, we can conclude that CCH can be easily
applied for large-scale data search.

4.8 CCH with different hash functions

To demonstrate that CCH can also leverage other classifiers, we further give the results of
CCH with SVM and boosted decision trees as hash functions. In order to evaluate their per-
formance, we conduct experiments on both CIFAR-10 and MNIST with code length from
8 to 96. And the MAP results are listed in Tables 6 and 7, respectively. In both tables, CCH
means that our method uses linear regression as hash functions; CCH_.SVM and CCH_BT
means that CCH uses SVM and boosted decision trees as hash functions, respectively.

From these tables, we can find that CCH_.SVM and CCH_BT outperform CCH in all
situations, and this phenomenon is consist with the previous two-step hashing [11, 17, 56].
Generally, the more powerful classifiers we use as hash functions, the better accuracy we
can achieve.

Table 7 MAP results of different hash functions on CIFAR-10 with code length varying from 8 to 96. The
best MAPs for each category are shown in boldface

Method 8 bits 16 bits 24 bits 32 bits 48 bits 64 bits 96 bits
CCH 0.6207 0.6563 0.6646 0.6716 0.6742 0.6766 0.6816
CCH_SVM 0.6413 0.6724 0.6866 0.6966 0.6972 0.6936 0.6930
CCH_BT 0.6217 0.6721 0.6724 0.6758 0.6758 0.6838 0.6882
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5 Conclusion and future work

In this paper, a novel two-step supervised hashing method for data retrieval is presented,
named Class Consistent Hashing (CCH). By leveraging class pairwise similarity in hash
codes learning step, CCH can use all useful semantic information and avoid large space
cost. The design strategy of CCH is that instances belonging to the same class have the same
hash codes. By doing this, the storage cost can be further reduced. In the second step, CCH
adopts linear regression to fast train hash functions. The results on four datasets demonstrate
that CCH outperforms several state-of-the-art shallow hashing methods with low time cost.

It is worth noting that, in this work, we present CCH as a shallow model because we
want to concentrate on the criterion of hash codes, i.e., design of loss functions. However,
we believe that our approach can easily accommodate deep networks and we leave this for
future pursuit.
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