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Abstract Graph Pattern Matching (GPM) plays a significant role in many real applications,
where many applications often need to find Top-K matches of a specific node, (named as
the designated node vd ) based on a pattern graph, rather than the entire set of matching.
However, the existing GPM methods for matching the designated node vd in social graphs
do not consider the social contexts like the social relationships, the social trust and the
social positions which commonly exist in real applications, like the experts recommendation
in social graphs, leading to deliver low quality designated nodes. In this paper, we first
propose the conText-Aware Graph pattern based Top-K designed nodes finding problem
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(TAG-K), which involves the NP-Complete Multiple Constrained GPM problem, and thus it
is NP-Complete. To address the efficiency and effectiveness issues of TAG-K in large-scale
social graphs, we propose two indices, MA-Tree and SSC-Index, which can help efficiently
find the Top-K matching. Furthermore, we propose an approximation algorithm, A-TAG-
K. Using real social network datasets, we experimentally verify that A-TAG-K outperforms
the existing methods in both efficiency and effectiveness for solving the TAG-K problem.

Keywords Graph pattern matching · Social graph

1 Introduction

1.1 Background

Graph pattern matching (GPM) identifies matching subgraphs M(GP ,GD) in a data graph
GD for a given pattern graph GP . It has become increasingly used in computer vision [4],
chemical structure [23] and social networks [20]. GPM is typically defined in terms of
subgraph isomorphism [30]. That is, a graph GD is a match of GP such that there exists a
bijective function f from the nodes of GP to the nodes of GD , (a) for each node v in GP ,
v and f (v) have the same label, and (b) there exists an edge from v to v′ in GP if and only
if (f (v), f (v′)) is an edge in GD . This makes graph pattern matching NP-complete [15],
which is often too restrictive to actual applications. Therefore, Graph Simulation [22] has
been proposed with fewer restrictions. A data graph GD is a match of GP such that there
exists a binary relation R ⊆ Vq × V , (1) for each (u, v) ∈ R, u and v have the same label;
and (2) for each edge (u, u′) in GP , there exists an edge (v, v′) in GD such that (u′, v′) ∈ R.
In contrast to subgraph isomorphism, graph Simulation [22] has less restrictions but more
capacity to extract more useful subgraphs with better efficiency.

Example 1 Consider GD and GP in Figure 1, where each node denotes a person, e.g.,
project manager (PM), database developer (DB) and programmer (PRG). Moreover,
each edge indicates a supervision relationship, e.g., edge (PM1, PRG1) indicates that
PM1 supervises PRG1. When graph pattern matching is defined in terms of subgraph
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Figure 1 Data graph GD and Pattern graph GP
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isomorphism, GD1 is a matching of GP . However, when graph pattern matching is defined
in terms of graph simulation, GD1, GD2 and GD3 are the matchings of GP .

Graph simulation aims to extract all matching subgraphs M(GP ,GD) from GD . How-
ever, many applications often need to find Top-K matches of a designated vd in terms of a
given GP , rather than the entire set matching. Such as expert recommendation [21, 24] and
egocentric search [5].

Example 2 Recall GD and GP in Figure 1. Suppose a company issues a graph search query
to find the matches of PM in GD based on the pattern GP , where PM needs to supervise
both a DB and a PRG, and moreover, the DB needs to work under the supervision of a
PRG. The requirement for the matches of PM is expressed as a graph pattern GP . When
a graph pattern matching is defined in terms of graph simulation in GD , the corresponding
designated node can be identified, like PM1, PM2, and PM3 in GD1, GD2 and GD3.

In such a query introduced in the above example, It is unnecessary and too costly to com-
pute the entire matching set M(GP ,GD). Thus Top-K GPM based on the graph simulation
(TopKP) is proposed [10], where given a pattern graphGP , a data GraphGD and a designed
node vd in GP , it is to find Top-K matching nodes of vd ranked by a quality function in GD .

1.2 Problem and challenges

As shown in [17], many applications, for example, crowd-sourcing travel [19] and social
network based e-commerce [15], people are willing to incorporate social contexts like the
social relationships, the social trust and the social positions in vd finding, which have sig-
nificant influence on people’s collaborations and decision making [14]. For example, the
experts recommendation in social graphs, people prefer to find an expert who has intimate
relationships with members of the team led by the expert.

However, the existing Top-K designated nodes finding method, like TopKP [10] only
takes the number of nodes included in a matching into consideration, where the more the
nodes in a matching, the better the quality of vd . This strategy in designated nodes finding
neglects the influence of social contexts, and thus can hardly find the high quality vd in
social graphs.

Example 3 Consider GD and GP in Figure 2, suppose PM3 is the father of DB1, and PM2
is the classmate ofDB1. TopKP [10] will regard PM2 as the best matching of the designated
node, PM , in GP , as the corresponding matching g2 has 4 nodes except PM2. However,
the relationship between PM3 and DB1 is more intimate than that between PM2 and DB1.
Thus, PM2 may not be the best one in designated node finding.

This example inspires a new type of conText-Aware Graph pattern based Top-K designed
nodes finding (TAG-K) problem, where we need to consider social contexts, i.e., social
trust, social relationships and the impact of social position. Based on the theories in Social
Science [1], these social contexts have significant influence on peoples decision making. In
real applications, people are willing to incorporate the requirements of these social contexts
in graph pattern matching, forming the Multi-Constrained Simulation (MCS) [17]. GPM in
terms of MCS is NP-Complete as it subsumes the classical NP-Complete multi-constrained
path selection problem [15]. Thus, TAG-K aims to find the Top-K designated nodes in terms
of MCS, which brings the challenges of the efficiency and effectiveness issues.
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Figure 2 Designated node finding in terms of graph simulation

In this paper, we propose a TAG-K problem, where given a pattern graph GP , which
has multiple constraints on social contexts, a data graph GD , which contains social con-
texts, and a designated node vd in GP , it is to find Top-K matches of vd included in the
graph pattern matching results, M(GP , GD) in terms of MCS. TAG-K covers the multi-
constrained GPM problem, which is NP-Complete [17]. So, the main challenge of our work
is to develop an efficient and effective approximation method to support the TAG-K query.
Our contributions are summarized as below.

– We first propose a TAG-K problem, where, in the graph pattern based designated node
finding, TAG-K considers the constraints of social contexts, like social trust, social
relationships and the impact of social position.

– We then propose aMulti-Attribute Tree (MA-Tree) index to record the labels, outdegree
and indegree of nodes in GD , which can get candidates of vd efficiently. Moreover,
we propose an SSC-Index, which records more details of the decedents of a node in
a Strong Social Component, where the nodes have strong social relation and highly
impact of social position, pruning unpromising nodes effectively.

– We develop an efficient and effective algorithm, called A-TAG-K, which incorporates
MA-Tree and SSC-Index. A-TAG-K can deliver a set containing Top-K designated
nodes with O(EP N2

D + EP ND) time complex, where ND is the number of nodes in
GD and EP is the number of edges in GP .

– We conduct experiments onto five real social network datasets, and the experimental
results demonstrate our A-TAG-K greatly outperforms the existing methods in both
efficiency and effectiveness.

The rest of this paper is structured as follows. In Section 2, we present related work about
Top-K GPM problem. Section 3 is the preliminary of our work. Section 4 presents two
indices, MA-Tree and SSC-Index. Section 5 presents the A-TAG-K algorithm. Experimental
results are described in Section 6. Finally, we conclude the paper in Section 7.

2 Related work

Top-K GPM problem has already been widely studied in the literature, which can be clas-
sified into (1) the isomorphism-based Top-K GPM. (2) the simulation-based Top-K GPM.
Below we analyze them in detail.
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Isomorphism-based Top-K GPM This type of Top-K GPM is based on the subgraph
isomorphism [30]. Tian et al. [29] propose the concept of approximate subgraph matching,
which allows node mismatches and node/edge insertions and deletions. For coping with
approximate subgraph matching problem, an index-based method is presented in [29], called
TALE. In addition, Ding et al. [7] define the matching similarity between a data graph and
a query graph to order results. Built on NH-index in [29], Ding et al. [7] employ the index
to prune unpromising candidate nodes for each query node. Furthermore, Zhu et al. [35]
consider the entire structure matching rather than substructure matching, and propose an
algorithm to respond to the Top-K graph similarity query using two distance lower bounds
with different computational costs. By using some typical hashing methods [25, 27, 31, 34],
we can improve the efficiency of GPM. But sometimes it suffers the low effectiveness due
to missing some important features of original data graphs.

Simulation-based Top-K GPM Existing isomorphism-based Top-K GPM methods still
too strict to be used in some applications, e.g., finding social experts [11] and project orga-
nization [10]. Based on graph simulation [22], Fan et al. [10] propose a novel Top-K graph
pattern matching method supporting a designated pattern node vd , which can find the Top-
K matches of vd without computing the entire graph matching results. In addition, Chang
et al. [3] study the problem of Top-K tree pattern matching, where the edges in the tree
are mapped to the shortest paths in G connecting the corresponding nodes. A novel and
optimal enumeration paradigm [3] has been presented, which is based on the principle of
Lawler’s procedure. Furthermore, Gao et. al. [26] propose a graph learning method based
on the graph simulations, where multiple features of a graph are considered.

The existing Top-K GPM methods do not consider the social contexts in GPM in social
graphs. As indicated in [17], such queries are common in social network based applications,
like crowd-sourcing travel [19] and social network based e-commerce [15], whichmotives us
to develop a new type of context-aware graph pattern based designated nodes findingmethod.

3 Preliminaries

In this section, we first introduce the Multi-Constrained Simulation (MCS) [15], and then
we define the TAG-K problem, and propose the ranking function in Top-K nodes finding.

3.1 Multi-constrained simulation (MCS)

Given a data graph GD , and a pattern graph GP , MCS [15] provides conditions, which
subgraph must satisfy, if subgraph matches the pattern graph.

Data graph A data graph is a Contextual Social Graph (CSG) [15], which is a labeled
directed graph G = (V ,E,LV, LE), where

– V is a set of vertices;
– E is a set of edges, and (ui, uj )∈E denotes a directed edge from vertex ui to vertex uj ;
– LV is a function defined on V such that for each vertex u in V , LV (u) is a set of labels

for v. Intuitively, the vertex labels may for example represent social roles in a specific
domain;

– LE is a function defined on E such that for each edge (ui, uj ) in E, LE(ui, uj ) is a
set of labels for (ui, uj ), like social relationships and social trust in a specific domain.
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Figure 3 Data graph GD and pattern graph GP

Example 4 As shown in the data graph in Figure 3b, where each vertex is associated with
a role impact factor, denoted as ρ ∈ [0, 1], to illustrate the impact of a participant in a
specific domain, which is determined by the expertise of the participant. ρ = 1 indicates
that the people is a domain expert while ρ = 0 indicates that the people has no knowledge
in that domain. Moreover, each edge is associated with social trust, denoted as T ∈ [0, 1],
and social intimacy degree, denoted as r ∈ [0, 1], to illustrate trust and intimacy social
relationships between participants. T , r and ρ are called social impact factors, whose values
can be extracted by using the data mining techniques [13, 15, 16, 18, 33]. For example, in
academic social networks formed by large databases of Computer Science literature (e.g.,
DBLP1 or ACM Digital Library2), the social relationships between two scholars (e.g., co-
authors, a supervisor and his/her students) and the role of scholars (e.g., a professor in
the field of data mining) can be mined from publications or their homepages. The social
intimacy degree and role impact factor values can be calculated as an example by applying
the PageRank model [28].

Based on theories in Social Psychology [1], we adopt the multiplication method to aggre-
gate T and r values of a path, and adopt the average method to aggregate the ρ values of the
vertices in a path. The details of the aggregation method have been discussed in [15]. The
aggregated values of a path p is denoted as AS(p) =< AT (p), Ar(p), Aρ(p) >. If each of
the aggregated social impact factor value of p is greater than the corresponding one of path
p′, then p dominates p′, which is denoted as p ∝ p′.

Pattern graph A pattern graph is defined as GP = (Vp , Ep , fv , fe, se). (1) Vp and Ep are
the set of vertices and the set of directed edges, respectively; fv(v) is the node label of v; (2)
fe(vi, vj ) is the bounded length of (vi, vj ), represented by L; (3) se(vi, vj ) is the multiple
constraints of the aggregated social impact factor values of (vi, vj ) represented by λT , λr

and λρ , which are in the scope of [0, 1];

1http://www.informatik.uni-trier.de/ley/db/
2http://portal.acm.org/
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Example 5 As showed in the pattern graph in Figure 3a, where the multiple constraints,
i.e., λT , λr , λρ and L are given to edge (PM, PRG) which must be satisfied in the graph
pattern matching.

GPM based on multi-constrained simulation (MCS) GD matches GP via MCS, if
there exists a binary relation S ∈ Vq × V such that (1) for all v ∈ Vq , there exists a node
v ∈ V such that (v, u) ∈ S; (2) for each edge (v, v′) in Eq , there exist nonempty paths from
u to u′ in G, and length(u, u′) ≤ L, if fe(v, v′) = L; (2) T (u, u′) > λT , r(u, u′) > λr and
ρ(u, u′) > λρ , if se(v, v′) = {λT , λr , λρ}.

If GD matches GP , then there exists a unique maximum relation M(GP ,GD). If GD

does not match GP , M(GP , GD) is the empty set. This maximum relation M(GP ,GD) is
referred to as the set of matches of GP in GD . The relation M(GP , GD) can be depicted as
the set of matches of GP in GD .

Example 6 Figure 4 displays two matching subgraphs in terms of MCS based on GP and
GD in Figure 3, where the multiple constraints, i.e., λT , λr , λρ and L are satisfied in the
two graph pattern matchings.

3.2 The matches of the designated node vd

Given a pattern graph GP , a data graph GD , and a designated node vd , If the nodes in
GD can match the designated node vd , matching subgraphs in GD containing these nodes
must match GP based on MCS. We denote the matches of vd in GD based on GP as
Mu(vd,GP ,GD), and denote the matching of ui to vd as ui

∼= vd .

Example 7 As shown in Figure 4c, the two matching subgraphs can match GP in
Figure 3 in terms of MCS. Thus PM2 and PM3 are two matching nodes of PM . Namely,
MPM2(PM,GP ,GD) = {DB1, PRG2}, MPM3(PM,GP ,GD) = {PRG2, BA,DB3}
and PM2 ∼= PM and PM3 ∼= PM .

Figure 4 The matching
subgraphs of GP in terms of
MCS
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3.3 Ranking of matching

As the number of nodes included in the matching result, and the social impact factor values
have significant influence on the quality of the pattern matching [10, 15], in order to rank
the delivered pattern matching results to identify Top-K designed nodes, we propose the
below ranking functions.

The relevant set for each descendant v′ of vd in GP , the relevant set, R(u,vd ), includes all
matches u′ of v′, such that if vd reaches v′ via a path (vd, v1, ..., vn, v

′), then u reaches u′
via (u, u1, ..., un, u

′), where (ui, uj ) ∈ M(GP ,GD).
That is, R(u,vd ) includes all nodes of the matching in Mu(vd, GP , GD). The larger the

R(u,vd ), the better the matching [12] .

Example 8 Base on Figure 3, R(PM1,PM) = 3, R(PM2,PM) = R(PM3,PM) = 2.

Based on the utility function in (1) [15], we propose the new utility function as (2) that
considers the average impact of social contexts of each matching path from ui to uj in the
pattern matching, Mu(vd,GP ,GD).

Utility function

U(p) = wT ∗ AT (p) + wr ∗ Ar(p) + wρ ∗ Aρ(p) (1)

where wT , wr and wρ are the weights of Tp, rp and ρp respectively; 0 < wT , wr , wρ < 1
and wT +wr+wρ = 1.

The value of these weights can be specified by users to illustrate their different require-
ments in different applications. For example, in crowdsourcing travel, a user could give a
high value to ωt to illustrate the concern about the social relationship between two people,
while in employment, a user could give a high value to ωρ to illustrate the concern about
the social impact of a people.

δ(u, vd) =
∑

ui∈R(u,vd ),uj ∈R(u,vd )
U(p(ui, uj ))

N
(2)

where N is the number of matching path in Mu(vd, GP , GD).

Ranking function Based on the relevant set and the utility function, we propose the rank-
ing function RF(u, vd), on a match u of vd as a bi-criteria objective function in (3), to
capture the influences of both the number of matching nodes and the social contexts.

The range of value of relevance function is in the scope of [0, ND] (ND is the num-
ber of nodes in GD), the range of value of the utility function is in the scope of [0, 1].
Thus, we need to normalize RF(u, vd) to the scope of [0, 1]. In the literature, there are
some methods for normalization, such as the log function [6], the min-max normaliza-
tion [6] and arctan() function [6]. As the range of value of the revelent function is in
the scope of [0, ND], the log function [6] and the min-max normalization [6] cannot be
applied to the normalization. For x ∈ [0, ND], the value of arctan(x) is in the scope
of [0, π/2]. Thus, we use arctan() function to normalize RF(u, vd), into the scope of
[0, 1]. Here, α is used to adjust the weight between the relevance function and the utility
function.

RF(u, vd) = α ∗ arctan(R(u, vd) ∗ 2/π) + (1 − α) ∗ δ(u, vd) (3)

World Wide Web (2019) 22:751–770758



3.4 TAG-K problem

Based on the ranking function RF(u, vd), we propose the context-Aware Graph pattern
based Top-K designated nodes finding problem (TAG-K for short). Given a contextual social
graph as the data graph GD , a pattern graph GP , a designated node vd in GP , a positive
integer K , TAG-K is to identify Top-K matches MK

u (MK ⊆ Mu(vd,GP ,GD)), such that

argmax
MK

u ⊆Mu(vd ,GP ,GD)

∑

ui∈MK
u

RF(ui, vd) (4)

That is TAG-K is to identify a set of K matches of vd that maximizes the ranking function
RF(MK

u ). Namely, ∀M∗ ⊆ M(vd, GP , GD), if |M∗| = K , then RF(MK
u ) � RF(M∗).

Example 9 In Figure 3, suppose there is a requirement of finding the best match of the
designated node PM , and the revelent set and the utility function have the same weight
in the ranking function.Thus, based on the social impact factor values in GD and (3), we
can get RF(PM2, PM) = 0.69, RF(PM3, PM) = 0.57, RF(PM1, PM) = 0.55. Thus,
PM2 is the best matching of PM via GP in Figure 3.

4 Indexing structure

To improve the efficiency of TAG-K finding, we propose two index structures, i.e., Multi-
Attributes Tree index, (MA-Tree), and Strong Social Component index, (SSC-Index), to
record the labels, indegree, outdegree, the shortest path and the aggregated social impact
factor values, which can help efficiently find the candidates of vd in GD .

4.1 MA-Tree

4.1.1 The purpose of the index

Based on the GPM in term of the MCS, if u ∼= vd , (1) the label of u must be the same as vd ,
(2) the outdegree/indegree of u must be greater than 0, if the outdegree and/or the indegree
of vd is/are greater than 0. Thus, in order to investigate the potential candidates of vd in
GD , based on B+ tree, we propose a Multi-Attributes Tree (MA-Tree) index to record the
multiple attributes, including label, indegree and outdegree of each node in GD .

4.1.2 Structure

In MA-Tree, (1) each leaf node contains a pointer, which points to an array that saves the
nodes with the same label, indegree and outdegree, and (2) for each non-leaf node, MA-Tree
records a tuple, including (category number, indegree, outdegree), where each category is
coded by using a digit as the category number, and the tree structure is established based
the values of the category number, the indegree and the outdegree of each node respectively.
Similar to B+ tree, MA-Tree index can effectively reduce the search space when finding the
candidate of vd , and thus can improve the efficiency of TAG-K designated node finding.

Example 10 Figure 5 is a MA-Tree of GD in Figure 3, where the digits, 0, 1, 2, 3 and 4
are given to represent the five categories, PM , DB, PRG, BA and ST , respectively. As
the indegree of PM1 is 0, and the outdegree of PM1 is 2. Then, the tuple (0,0,2) is inserted

World Wide Web (2019) 22:751–770 759
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Figure 5 The MA-Tree of GD in Figure 3

into MA-Tree. Based on the comparison of the category numbers, indegree and outdegree,
we can establish the corresponding MA-Tree of GD shown in Figure 5.

4.1.3 The searching process

Based on MA-Tree structure, we can fast investigate if a node is a candidate of vd by search-
ing MA-Tree from root nodes to leaf nodes. The time complexity of searching MA-Tree is
the same as B+ tree, i.e., O(logbND), where ND is the number of of nodes in Gd and b is
the number of children nodes at each level in MA-Tree.

4.2 Strong social component index (SSC-Index)

In addition to the information indexed by MA-Tree, we need to investigate if the decedents
of the candidate can be a match of GP . Thus, we first propose a concept of the strong social
component where the nodes and edges have large social impact factor values, and thus have
high probability to satisfy the social context constraints in GP , then we build up the SSC-
Index to record the labels, the shortest path length, and the aggregated social impact factor val-
ues of thedecedents of eachnode in anSSC,which canbeutilized topruneunpromisingnodes.

In graph theory [2], a graphG is said to be strongly connected if every vertex is reachable
from every other vertex, and a strongly connected component of a directed graph G is a
subgraph that is strongly connected. Based on the definition of the strong connection, we
give the definition of a Strong Social Component as follows.

Definition 2 Strong Social Component Given a CSG < V,E,LV, LE >, and two
parameters λV and λE with 0 � λv � 1 and 0 � λE � 1, the subgraph induced by a
subset of node set V ′ ∈ V and edge set E′ ∈ E is an SSC if, and only if the following two
conditions hold:

– ∀v ∈ V ′, LV (v) � λV

– ∀e ∈ E′, LE(e) � λE

where E′ = E
⋂

(V ′ × V ′).
In a CSG, a subgraph is said to be socially strongly connected if each vertex associated

with a high role impact factor value in a specific domain is connected with the edges associ-
ated with intimate social relationships and strong social trust relationships. A Strong Social
Component (SSC) is a subgraph that is socially strongly connected.
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Based on the theories in Social Psychology [1], in an SSC, the social structure and the
social contexts, including the social trust and social relationships on edges, and the social
roles associated with vertices usually stay stable in a very long period of time. This prop-
erty makes it realistic to index and compress the graph in an SSC with a low update cost.
Identifying all the SSC in a specific domain subsumes the classical NP-Complete maximum
clique problem [2], which is very time consuming. Alternatively, we can identify up to K

SSCs by randomly selecting K vertices that are associated with high role impact factor val-
ues as the seeds. Then from each of the seeds, our algorithm adopts Breadth-First Search
(BFS) method to find the vertices associated with high role impact factor values connected
by the edges associated with high social intimacy degrees and social trust values. In the
worst case, our method needs to visit all the vertices and edges in a data graph. The time
complexity of the SSC identification is O(NDED), where ND and ED are the number of
nodes and edges in GD .

4.2.1 The purpose of the index

Based on MCS, if u ∼= vd , (1) For each descendant of v′ of vd , u has a descendant, u′, which
has the same label as v′. (2) For each edge, (vd, v′), there exists a path p(u, u′), satisfying
the constraints of social contexts associated with (vd, v′). Thus, we build up the SSC-Index
to record the labels, the shortest path length, and the aggregated social impact factor values
of the decedents of each node in an SSC.

4.2.2 Index structure

Reachability index This index records a list of vertices that one can research another
in a graph, where the index of each vertex contains the ancestors and predecessors of the
vertex. As the size of SSC is usually much less than the whole data graph [1], building the
reachability index is not computationally expensive [32].

Example 11 Figure 6 is an example of our index for the SSC of the graph depicted in
Figure 6. From the figure, we can see the indices of each vertex include three parts: they are
the reachability index, graph pattern index and social context index. We take vertex E as an
example, as it has both ancestors and descendants. The reachability index of E records its
ancestor C (i.e., Anc.: C), and its descendant H (i.e., Des.: H ). Similarly, we construct the
reachability index for each of the other vertices of the graph.

Given a reachability query in GP , if the candidate nodes are included in the SSC, we can
investigate the reachability immediately, greatly saving query processing time.

Graph pattern index After indexing the reachability information, we further index the
graph pattern information to improve the efficiency of graph pattern matching in designated
node finding. This index records the shortest path length between any two nodes in the
graph of an SSC.

Example 12 Consider the graph pattern index shown in Figure 6. For vertex E, in addi-
tion to indexing the reachability information, the graph pattern index records the shortest
path length from its ancestor C to E (i.e., Slen = 1), and from E to its descendant H

(i.e., Slen = 1). Similarly, we construct the graph pattern index for each of the other
nodes.
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Figure 6 The index of an SSC

Given a query of the graph pattern matching with the bounded length, based on the graph
pattern index, we can investigate if the indexed path length is greater than the bounded
length, and thus can efficiently find a pattern matching result.

Social context index In order to improve the efficiency of TAG-K finding, we construct
the social context index to record the maximal aggregated social impact factor values of the
mapped paths in a data graph. Below are the details of the index.

– If p ∝ p′, we index that path length and the corresponding aggregated social impact
factor values of p instead of p′.

– Otherwise, we index up to three paths that have the maximal aggregated T , r and ρ

values respectively.

Example 13 Consider the social context index shown in Figure 6. Here we take the vertex C

as an example, where there are two paths from C to its descendant H , e.g., path p1(C,E,H)

and p2(C,F,H). As p1 ∝ p2, we index AS(p1(C,E,H)) = {0.96, 0.88, 0.91} and its path
length P len(p1(C,E,H)) = 2 at C. Similarly, we construct the social context index for each
of the other vertices. Given a graph pattern query with multiple constraints, based on the
social context index, we can quickly investigate if there exists a pattern match in the data
graph, and thus saving query processing time.

4.3 Summary

In TAG-K designated node finding, if the two nodes with a connection inGP can be mapped
into a path in SSCs, this indexed information can be used to quickly investigate if there is an
edge pattern match, and thus greatly saving graph pattern matching time. In addition, in the
worst case, we need to perform the Dijkstra’s algorithm four times, and thus the time com-
plexity of the index construction isO(NDlogND+ED), whereND andED are the nodes and
edges in GD . Furthermore, as mentioned in Section 4.2, the structure and the social contexts
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of the graph in anSSCusually stay stable in a very longperiodof time [1]. Therefore, usually it
is not necessary to update the indices frequently,which reduces the cost of indexmaintenance.
When there are some changes of the social contexts and/or graph structure in an SSC, we
can adopt the existing method [9] to first establish the matrices of the shortest path length,
the ancestors and descendants, and the aggregated social impact factor values between ver-
tices, and then iteratively investigate the updated SSC graph, finding the affected vertices
and edges to update the corresponding matrices. The index maintenance in dynamic graphs
is another challenging research topic and thus it is not discussed in this paper.

5 A-TAG-K: an approximation algorithm for TAG-K

In order to solve the NP-Complete TAG-K designated node finding problem, we propose an
approximation algorithm, A-TAG-K, by adopting the Top-K shortest path algorithm [8] to
investigate if there is a path in GD can match an edge in GP . Our A-TAG-K can deliver a
set, Ms

u(vd, GP , GD), where MK
u (vd,GP ,GD) ⊆ Ms

u(vd,GP ,GD) without accessing all
the nodes in GD .

5.1 Algorithm overview

A-TAG-K first computes the upper bound a ranking function of a matching based on all
the candidate nodes in the matching, and then A-TAG-K adopts the Top-K shortest path
algorithm [8] to investigate the path matching between these candidate nodes, and update the
lower bound of the ranking function based on the investigation. When finding K elements
where the minimal lower bound is larger than the maximal upper bound of other matching
in GD , we deliver the K elements as the TAG-K designated node finding results.

5.2 The bound of TAG-K matching

In order to improve the efficiency of A-TAG-K, we first fast to compute an estimated
approximate values of RF(u, vd) as the lower bound and the upper bound of RF(u, vd)

respectively, denoted as RFL(u, vd) and RFU(u, vd), where RFL(u, vd) � RF(u, vd) �
RFU(u, vd). If RFL(ui, vd) > RFU(uj , vd), we can know RF(ui, vd) > RF(uj , vd).
Namely ui is a better designated node matching than uj . Thus, after efficiently comparing
the lower bound and upper bound of each candidate in GD , A-TAG-K can stop as soon as
the Top-K matches are identified, without computing the entire M(GP , GD). Below is the
details of the computation of RFL(u, vd) and RFU(u, vd).

Upper bound Given a candidate u of vd , we use D(u, vd) to denote the set of all descen-
dants of u, where each of the descendant can match the corresponding label of the node v′
in GP . In D(u, vd), we compute RF(D(u, vd), vd) as RFU(u, vd). As some of the paths
between nodes in D(u, vd) may not be a match of (v, v′) in GP . Namely, the aggregated
social impact factor values of these paths cannot satisfy the corresponding constraints in
GP Thus, RF(u, vd) � RFU(u, vd).

Lower bound Initially, set RFL(u, vd) = 0, A-TAG-K investigates each pair of the
descendants in D(u, vd) to find the Top-K shortest path between the nodes based on
the algorithm in [8] to compute the utility of the path by (2). After each investigation,
RFL(u, vd) increases when investigated the path between two nodes is a matching. During
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the iterations of investigation, RFL(u, vd) < RF(u, vd), and after all the iterations, we can
get RFL(u, vd) = RF(u, vd). Based on the lower bound and upper bound, we have the
below Lemma 1.

Lemma 1 A K-element set MK
u (vd, GP ,GD) ⊆ D(u, vd) is a set of Top-K matches

of vd if (1) each ui in MK
u (vd, GP , GD) is a match of vd , and (2) RFL

min(ui, vd) �
RFU

max(uj , vd), uj ∈ D(u, vd).
Based on the above Lemma 1, we can perform the early termination after finding the

K elements meeting the corresponding requirements, without computing the entire Mu(vd,

GP ,GD), greatly saving the processing time of TAG-K finding.

5.2.1 Search procedure

The algorithm A-TAG-K mainly has two stages. The first stage is to compute the upper
bound of each candidate node, and the second stage is to compute the lower bound of each
candidate node. Below are the details of A-TAG-K.

(1) UpperBound (Algorithm 1)A-TAG-K selects a node u from Vcandidate to updates the
RFU(u, vd). During this process, u firstly is put into Vtemp . Then, for each adjacent
edge (vd, v′) of the corresponding vd of u, A-TAG-K finds the matching via the BFS
method to find the set V ′ of all descendants of u that have the same labels as the chil-
dren of vd . For each node in V ′, based on the Top-K shortest path selection algorithm
[8], A-TAG-K computes RFU(u, vd), and updates the upper bound All descendants
in V ′ will be put into Vtemp, and RFU(u, vd) takes a node u′ from Vtemp, and updates
the corresponding upper bound. If Vtemp is empty, based on (3), the upper bound of u

can be delivered.
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(2) LowerBound (Algorithm 2) A-TAG-K selects a node u′ from Vleaf node to check if
its parent node u can be a matching, and updates the lower bound of u. After updating
the lower bound of u, A-TAG-K will detect the early termination, and A-TAG-K will
stop if the early termination can be satisfied. Because u′ is a leaf node, we can update
the corresponding ranking function. Then, if u is the candidate of vd , A-TAG-K will
calculate the lower bound of u.

Summary Our proposed A-TAG-K algorithm is an efficient and effective method for the
TAG-K problem in large-scale contextual social graphs. Our method achieves O(EP N2

D +
EP ND) computation cost, where ND is the number of nodes in GD , and EP is the number
of edges in GP .

6 Experiments

We conduct experiments on five large-scale real-world social graphs to evaluate (1) the
effectiveness our algorithm in finding TAG-K designated nodes; and (2) the efficiency of
our A-TAG-K algorithm.

6.1 Experiment setting

Datasets We use five real social graphs available at snap. stanford.edu, which have been
widely used in the literature for graph pattern matching and social network analysis. The
details of these datasets are shown in Table 1.

World Wide Web (2019) 22:751–770 765



Table 1 The Social Datasets
Name Nodes Edges Description

citHepTh 27,769 352,808 citation network

Slashdot 77,361 905469 social network

DBLP 317,081 1,049,868 collaboration network

Twitter 741,165 2,400,000 social network

YouTube 1,728,561 3,843,883 social network

Pattern graph and parameter setting

– We use a popular social network generation tool, SocNetV (socnetv.org, with version
2.2) to generate five query graphs, and the details of these graphs are shown in Table 2,
where we random select a node from each of the pattern graph as the designated node vd .

– A set of relative low constraints are specified as λT = 0.05, λr = 0.05 and λρ = 0.2, to
ensure the high possibility of returning TAG-K designated nodes in a data graph [17].
Otherwise, no or only few answers might be returned by all the algorithms, making it
difficult to investigate their performance.

– As we discussed in Section 3, the social context impact factor values (i.e., T , r and
ρ) can be mined from the existing social networks, which is another very challenging
problem, but out of the scope of this work. Moreover, in the real cases, the values of
these impact factors can vary from low to high without any fixed patterns. Without loss
of generality, we randomly set the values of these impact factors by using the function
rand() in SQL. In addition, in each of the datasets, the SSC number is set to 20, 40, 60,
80 and 100, respectively; α is set to 0.6, 0.7, 0.8, 0.9 and 1; K is set to 5, 10, 15, 20 and
25; and the maximal bounded path length of the pattern matching is set as 5, 10, 15, 20
and 25.

6.2 Implementation

We compare our method with the most promising algorithm in Top-K designated nodes
finding, TopKP [10]. All A-TAG-K and TopKP algorithms are implemented using Java
running on a PCwith Intel Core i5-3470 3.20GHz CPU, 16GBRAM,Windows 10 operating
system. All the experimental results are averaged based on five independent runs.

6.3 Experimental results and analysis

Exp-1: Effectiveness This experiment is to investigate the effectiveness of our A-TAG-K
by comparing the average ranking function values of the Top-K designated nodes based
on different setting of parameters.

Table 2 The pattern graphs
Name Nodes Edges

Q5 5 7

Q10 10 21

Q15 15 34

Q20 20 50

Q25 25 63
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Figure 7 The average ranking function value based on different α

Results Figures 7, 8, 9, and 10 depict the average ranking function values of the delivered
pattern matching with different setting of paramaters, by each of A-TAG-K and TopKP.
From these figures, we can see that the average ranking function values of the Top-K des-
ignated nodes returned by TopKP are always less than that of A-TAG-K. Statistically, on
average, A-TAG-K can return answers with the average ranking function value which is
72.54% less than that of TopKP.

Analysis The experimental results illustrate that (1) TopKP considers the number of nodes
only in designated node finding, but does not take the social contexts into consideration;
and (2) our A-TAG-K can deliver the Top-K pattern matching results with considering both
the number of nodes and the social contexts, which can effectively improve the quality of
the query results.

Exp-2: efficiency This experiment is to investigate the efficiency of our A-TAG-K by
comparing the average query processing time of A-TAG-K and TopKP based on different
setting of parameters.

Results Figures 11, 12, 13, and 14 depict the average query processing time of A-TAG-
K and TopKP in returning different numbers of designed nodes with different setting of
parameters. From these figures, we can see that A-TAG-K has better efficiency than TopKP
for the Top-K designated nodes finding in all the cases in the five datasets. Statistically, on
average, the query processing time of A-TAG-K is 44.25% less than that of TopKP.

Analysis The experimental results illustrate that A-TAG-K can efficiently find the can-
didate node of vd in terms of MA-Tree, and can efficiently find the pattern matching in
terms of the SSC-Index, which avoids to visit all the nodes and edges in a data graph. Thus,
A-TAG-K can greatly save the query processing time.

6.4 Summary

The above experimental results demonstrate that the proposed A-TAG-K algorithm pro-
vides an effective means to find context-aware graph based Top-K designated nodes. In
addition, with our proposed index structures, A-TAG-K can efficiently find the candidates,
which greatly saves query processing time. Therefore A-TAG-K significantly outperforms
the existing most promising algorithm for Top-K designated node finding, TopKP, in both

Figure 8 The average ranking function values based on different K
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Figure 9 The average ranking function value based on different L

Figure 10 The average ranking function value based on different ω

Figure 11 The query time based on different α

Figure 12 The query time based on different K

Figure 13 The query time based on different L

Figure 14 The query time based on different ω



effectiveness and efficiency. Therefore, A-TAG-K is a very competitive algorithm for the
new TAG-K designated node finding problem in social network based applications.

7 Conclusion

In this paper, we have proposed an approximate algorithm A-TAG-K to support a new type
context-aware graph pattern based Top-K designated node finding problem that is a corner
stone for many social network based applications. A-TAG-K achieves O(EP N2

D + EP ND)

in time cost, where ND is the number of nodes in GD , and EP is the number of edges
in GP , and the experiments conducted on five real-world large-scale social graphs have
demonstrated the superiority of our proposed approaches in terms of effectiveness and
efficiency.
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