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Abstract This paper proposes a novel unsupervised feature selection method by joint-
ing self-representation and subspace learning. In this method, we adopt the idea of
self-representation and use all the features to represent each feature. A Frobenius norm reg-
ularization is used for feature selection since it can overcome the over-fitting problem. The
Locality Preserving Projection (LPP) is used as a regularization term as it can maintain the
local adjacent relations between data when performing feature space transformation. Fur-
ther, a low-rank constraint is also introduced to find the effective low-dimensional structures
of the data, which can reduce the redundancy. Experimental results on real-world datasets
verify that the proposed method can select the most discriminative features and outper-
form the state-of-the-art unsupervised feature selection methods in terms of classification
accuracy, standard deviation, and coefficient of variation.

Keywords Unsupervised feature selection - Self-representation - Subspace learning

1 Introduction

Feature selection is a research hotspot in the fields of pattern analysis, machine learning, and
data mining. The earliest feature selection studies mainly focused on statistical and signal
processing problems. Since large-scale machine learning emerged in 1990s, existing feature
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selection algorithms had diffract to meet the challenge [26]. When the number of features
reaches a certain size, the accuracy of a classifier is declining, which is called the curse
of dimensionality [1, 19, 36]. Therefore, there is an urgent need to develop better feature
selection algorithms to increase the accuracy and efficiency for the large-scale data.

Feature selection is a method of selecting some of features that have more discriminative
ability from a set of features to reduce the dimension of a feature space. It is an important
component of a classification system [21, 27]. For a classification system, a good learning
sample is the key in training a classifier. The quality of the data, for example, whether the
sample contains irrelevant or redundant features can directly affect the performance of the
classifier [29, 30]. Therefore, it is important to develop an effective feature selection method.

In general, based on the combination of subset evaluation criteria in feature selection
and follow-up learning algorithms, the feature selection approaches can be categorized into
three groups: the filter approach, wrapper approach and embedded approach. The filter
approach [10] is independent of the follow-up learning algorithm and it uses the statisti-
cal performance of all training samples to evaluate the features [17]. The time cost of the
filter approach is low, but the evaluation may have a deviation with the follow-up learn-
ing algorithm. While the wrapper approach [10, 18] uses the follow-up learning algorithm
to evaluate the accuracy of the training features, the deviation is thus small, but the com-
putation cost is large and thus not suitable for a large-scale data set [31]. In the embedded
feature selection approach [7], a feature selection method itself is embedded as a compo-
nent into a learning algorithm. The most typical embedded method is a decision tree [30].
However, the key of feature selection methods depend on the efficient selection of a useful
subset of features. The features in this selected feature subset are kept while remaining fea-
tures are abandoned. However, the abandoned features may also be related to other features,
while the abandonment may lose some useful relevant information. Further, it is helpful for
feature selection to effectively utilize the relation between data.

In order to utilize the relation between data, firstly, self-representation has been widely
used for feature selection [33], according to self-similarity, i.e., a feature can be repre-
sented by all other features. Then, subspace learning is also introduced for keeping the
relevance between data [9, 12, 35]. Subspace learning is designed to maintain specific sta-
tistical properties such as Principal Component Analysis (PCA) [37], Linear Discriminant
Analysis (LDA) and so on when performing feature space transformation. These subspace
learning methods can effectively mitigate the so-called curse of dimensionality and preserve
the inherent relevance of the data. Thus, the above two points motivate this paper to con-
sider taking advantages of the merits of both self-representation and subspace learning as a
whole.

Therefore, this paper proposed a new Unsupervised Feature selection method by jointing
Self-representation and Subspace learning, which is called UFSS for short. Firstly, because
of the correlation between features, we consider using all features to represent each fea-
ture, that is, each feature is reconstructed by all features. Correspondingly, we use the least
squares method as a loss function to evaluate the reconstruction error. Then, in order to
overcome the over-fitting problem and select the most discriminative features, we use the
Frobenius norm to constrain the reconstruction coefficient matrix to overcome the over-
fitting problem and select the most discriminative features. On the other hand, we introduce
Locality Preserving Projection (LPP) as a regularization term to maintain the local adjacent
relation of the data when performing feature space transformation during the reconstruction
process [11]. At the same time, we consider further applying a low-rank constraint to find
the effective low-dimensional structures of the data, which can reduce the redundancy [34].
Finally, we proposed an effective optimization method to solve the objective function fast.
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In summarization, the core of feature selection methods is to select the most effective
features from the original features to reduce the feature dimension, which is a key data
preprocessing step in pattern recognition. Based on the selected optimal feature subset, we
use a classic classifier, i.e., Support Vector Machine (SVM), to classify the test samples.

The rest of this paper is organized as follows: We briefly review the previous feature
selection methods and subspace learning methods in Section 2. After that, in Section 3, we
give the details of the proposed new unsupervised feature selection method UFSS. Then, we
present the experimental results in Section 4. Finally, we summarize our work and future
work in Section 5.

2 Related work

In this section, we briefly review three important items: unsupervised feature selection,
subspace learning and self-representation, because our proposed algorithm is based on them
and they play different roles during the reconstruction.

2.1 Unsupervised feature selection

Supervised feature selection methods use the class labels as a guide to achieve feature
selection. However, a lot of data may be unlabeled in a practical application. Therefore,
unsupervised feature selection methods are useful and more difficult because they do not
have class labels to use. Tabakhi et al. [19] proposed an ant colony algorithm, which can pro-
vide a well approximate solution based on previous iterations and the time cost is acceptable.
Liu et al. [13] drew lessons from the Laplacian Score method. They considered replacing the
k-means clustering method with a distance-based entropy measure in the Laplacian Score
(LS) for automatically selecting the optimal subset of features. Qian and Zhai [16] took
advantages of local learning and nonnegative matrix factorization. The proposed method
can select the most discriminative subset of features by combining robust clustering and
robust feature selection at the same time. Based on manifold learning and sparse learning
model, Cai et al. [3] proposed Multi-Cluster Feature Selection (MCFS)). They considered
using spectral analysis methods based on the preserved multi-cluster structure of the data to
measure the relevance between different features.

2.2 Subspace learning

Subspace learning has been applied in different kinds of models for reducing dimension.
Zou et al. [39] proposed a new improved principal component analysis based on sparse
coding, which is called sparse principal component analysis (SPCA). It uses Lasso penalty
to produce sparse principal component. Yan et al. [24] considered using graph embedding
technology to represent the geometric structure or properties of the sample space. Based on
it, they applied it to characterize intraclass compactness and interclass separability simulta-
neously and can better solve the problem that the number of available projection directions
is low in LDA. Recently, Nikitidis et al. [15] proposed a method called maximum mar-
gin projection pursuit. It can take advantage of maximum margin to discriminate samples
when performing feature space transformation. Cai et al. [2] proposed to use both graph
embedding and regression for sparse projections learning, it can solve different graph-based
subspace learning methods by the proposed unified framework.
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2.3 Self-representation

Self-representation stems from the natural self-similarity phenomenon [33], which means
that a part of an object is similar to other parts of the object, such as coastlines, stock market
movements and so on. Just like sparsity results in sparse representation, self-similarity leads
to self-representation. Of course, self-representation has been widely used for high dimen-
sional data. Zhu et al. [33] proposed to use self-representation and £ j-norm to constrain
the coefficient matrix for removing outliers and can select the most representative features
to reconstruct other features. Zhang et al. [28] proposed a new improved kNN method based
self-representation, which also uses training samples to reconstruct themselves and imposes
£1-norm to make representation coefficient matrix to produce sparsity.

3 Approach

In this section, firstly, we give some notations used in this paper in Section 3.1 and give some
basic knowledge as preliminary in Section 3.2. The details of the proposed UFSS method
is described in Section 3.3. We presented an optimization method to solve the objective
function in Section 3.4. Finally, we analyze the convergence of the objective function in
Section 3.5.

3.1 Notations

In this paper, we denote scalars as normal italic letters, vectors as bold lowercase letters
and matrices as bold uppercase letters, respectively [29, 30]. Given a matrix X = [x;;], we
denote the ith row of X by x’, and the jth column of X by x;. The Frobenius norm and

£1-norm of X are defined as || X||F = \/Zl ||xi||§ = \/Zj ||xj||% (matrix norms here are

entry-wise norm), || X[|; = ,/>"; Zj lxij| and || X]21 = ) ; Zj xlzj The trace operator,

the transpose operator and the inverse of X is denoted as #r(X), X7 and X!, respectively.

3.2 Preliminary

Let X € R"*¢ denotes a sample matrix, where n and d denote the numbers of samples
and features, respectively. We also use Xi, Xp,..., X, to denote the n samples where is a
column vector, thus X = [X]; X2; ...; X,;]. On the other hand, we use f}, f5, ..., f; to denote
the d features and fi, f», ..., f; are the corresponding feature vectors, where f; € R” and
X =1[f}, b, .., 1]

The key of unsupervised feature selection methods is to select an optimal feature subset
for all the samples. Drawn lessons from the regression problem [28, 33], we can regard the
feature selection problem as a regression problem [33]:

rr‘lglnl(XW—Y) + AR(W) D

where W denotes a coefficient matrix, which is used to measure the weight of a feature.
Y usually is a response matrix and /(XW — Y) denotes a loss function. R(W) usually is a
regularization imposed on W and A is a positive constant.
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3.3 UFSS method

Many developed feature selection methods are derived from the model in (1), although
considering correlation between features, it is still hard to select the proper response matrix
Y. Drawing lessons from the merits of both self-representation and subspace learning, in
this section, we proposed a new combined method for unsupervised feature selection. The
self-representation denotes that the proposed method uses the sample matrix X instead of
the response matrix Y, i.e., Y = X, which means each feature can be represented by all the
features. Therefore, we can represent each feature f; as follow:

d
fi:ijwji+ei 2
=1

Applied to all the features, then (2) can also be represented in a matrix form as follow:
X = XW +eb 3

where W = [w};] € R*4 ig the self-representation coefficients matrix, e € R"*! denotes a
column vector with all elements are 1 and b € R'*¢ is a bias term. Obviously, in order to use
XW to represent X sufficiently, we should make error term eb as small as possible. Frobe-
nius norm can be adopted to measure the residual, i.e., %T' |X — XW — eb||r. The matrix

s

W reflects the importance of different features. To avoid over-fitting and to select the most
discriminative features, absorbing the core idea from ridge regression [29, 30], a shrink reg-
ularization factor is introduced, i.e., ||W|| r. In addition, as the basic assumption of manifold
learning, a classic method of subspace learning, we know that real data may be presented in
a high-dimensional structure but actually it may exist in a very low-dimensional manifold,
i.e., the data can be represented by low-dimensional structure to some extent if we can map
it back into the low dimensional space and reveal its essence. Taking advantage of mani-
fold learning, locality preserving projection (LPP) as a regularization term is introduced to
maintain the local adjacent relations of the data after performing feature space transforma-
tion during the self-representation process [32, 38]. Then we can have the objective function
as follow:

min||X — XW — ebl| 7 + 21| WIlr + Jotr (WIXTLXW) 4)
where A1 and X, are control parameters. The penalty term ||W]|r is used for penalizing all
coefficients in W together; L = D—8 € R?*¢ is called graph Laplacian, where S € R?*? is
a similarity matrix and D € R?*? is a diagonal matrix. On the other hand, in order to further
remove the large amount of redundancy in the data, a low rank constraint is introduced to

find the effective low-dimensional structures of the data, which can guarantee to reduce the
redundancy. Thus, the low rank constraint can be applied to the rank of W, i.e.,

rank(W) =r, r <min(,d) 5)
Further, (5) can be re-expressed as product of two r — rank matrices as follow:

W = AB ()
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where A € RY*" and B € R"*9_ Therefore, the final objective function becomes:
min ||X — XAB — ebl |z + 11[|WI|F + rrr(BTATXTLXAB)
s.t., rank(AB) < min(n, d) 7

In brief, we uses the proposed UFSS method to select the optimal feature subset from
the original feature space, which is a key data preprocessing step for reducing dimension.
Further, based on the selected optimal feature subset, this paper conducts classification with
a classic classifier, i.e., Support Vector Machine (SVM). The pseudo of the UFSS algorithm
is described in Algorithm 1 as below.

Algorithm 1 The Pseudo of UFSS algorithm

Input: training samples X, test samples Y
Output: Class label

* Feature Selection Stage *
1.Solving (7) to obtain the optimal solution W;
2.According to W, the most efficient features are selected;

* Classification Stage *

1.According to the selected feature subset, using SVM to conduct classification;
2.0Output the predicted label;

3.4 Optimization

Since with respect to the three variables, i.e., A, B and b, the objective function (7) is not
jointly convex. We propose an iterative algorithm to optimize with A, B and b. Concretely,
we iteratively excute the following two steps until the pre-set conditions are met: (i) Update
b with the fixed A and B; (ii) Update A and B with the fixed b.

(i) Fix A and B, then update b.
We set the derivative of the objective function (7) with respect to b equal to 0:

2e’eb + 2e" XAB — 2¢/ X =0 8)
We have this form by transformation:
b = (1/n)(e’ X — e’ XAB) 9)

(i) Fix b, then update A and B.
We substitute (9) into the objective function (7), then we have:

min ||X — XAB — e((1/n)(e" X — e" XAB))||F + 11 ||W|| ¢

+2tr(BTATXTLXAB) 10

Let H =1, — (1/n)ee’ € R™" where I, € R"™" is an identity matrix, (10) can be
rewritten as

min|[HX — HXABJ|r + 21 ||AB| - + rorr(BTATXTLXAB) (11

which is equivalent to

gném((HX — HXAB)' P(HX — HXAB)) + 1, (BT ATQAB)

+1rr(BTATXTLXAB) (12)
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where P € R”X’f and Q € Rixd respectively, are diagonal matrices with P;; =
31I(HX — HXAB) [|p, i = 1,...,n, and Q;; = 3|[(AB)/ ||, j = 1, ..., d.
By setting (12) w.r.t B to zero, we obtain:

B = (AT (X"TH"PHX + 11Q + 1,X"LX)A) 'ATX"H PHX (13)
Substituting (13) into (12), we have:
m:xtr(AT(XTHTPHX +21Q + mXTLX)A) ™!
ATXTHTPHXXTHTPTHXA (14)
Note that
St = X"H'PHX + 41Q + M X LX
Sy, = X'H'PHXX"H” PTHX (15)

where S¢ and Sy, denote the total-class scatter matrix and the between-class scatter matrix,
respectively. Then the solution of (14) can be represented as below:

A* = argmax tr[(ATS(A) TTATS,A] (16)
A

The global optimal solution of (16) is the top s eigenvectors of S;” !Sp. The above analysis
leads to Algorithm 2 below.

Algorithm 2 The Pseudo code of solving the objective function (7)

Input: X € R™4 Ay, s, p, T;

Output: A € R?™", B e R™*¢;

1.0btain L by constructing the kX — nn graph using 0-1 weights;

2.Initialize k = 0, P(0) and Q(0) as random diagonal matrix;

3.repeat:

4.Update A(k + 1) via (16);

5.Update B(k + 1) via (13);

6.Update b(k + 1) via (9);

7.Compute the diagonal matrix P(k + 1) as P;; = %H(HX — HXAB) ||p,i =1, ...n;
8.Compute the diagonal matrix Q(k + 1) as Q;; = %H(AB)jHF, J=1..d

9%k =k+1;

10.Until The difference between the two iterations of the objective function (7) is less than
1075,

3.5 Proving of the convergence

In each iteration, it can be proved that the objective function (7) is monotonically decreasing
[4]. Note that the objective function (11) and the objective function (12) are equivalent.
Thus, we have

= rr[(HX — HXACTDBUFH) PO (HX — HXAUTDBI D))
e (BUFDT ACHDT QO A(FD B+
_+_)L2tr(B(I+I)TA(I+I)TXTLXA(I+1)B(I+1))

< tr[(HX — HXAYB) PO (HX — HXAB®)
+atrBOTAOTQUAVBDY 4 arrBOT AV XTLXAVBD) (17
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Let Z = HX — HXAB, then we have [4]:

|12C+D) 2 4w @D |2 r
S T M Y S 2 A datr (WD XTLXWOHD)
= 201701 T 2w O]
Z0)2 wi®
% 1 % 4 atr (WO XTLXW®) (18)
= 201701 20w
For each i, we are able to gain as follows:
; |12/ ¢+ D13 ; 112113
127Dl = S < 1Ol = e (19)
2/|z" ]2 2[12' ]2
For each j, we are able to gain as follows:
. w2 . wi®]2
||wJ(t+1)|| _ u < J(t)||2 _ u (20)
2|[w/ D] 2w ®]
Then combine (19) and (20) together we have:
i(t+1) d J@a+1))2
i(t+1) llz ||2 Je+1) [[w 2
b4 + A w -
ZH 2= S 1];” I = S,
n
i ||Zl(t)||2 [lw/ (I)||2
< £ +A w!® 21
< ;H 2= 5, ZH 2= 5@ 1)

Then combine (18) and (21) we have:

n d
STUECDE 4 a3 1w T3 4 darr (WD XTLXWT)
i=1 j=1
n d
< S OB 4 Y 1w/ 13 + darr (WO XTLXWO) (22)
i=1 j=1

From the above analyzes, and then unite (9) and H=1, — (1/ n)eel € R™" we have:
X — XWOED — eb|[ 7 + 2 [[WOD || 4 Aprr (WD XTLXWOHD)
0 0 T xT ()
< [IX = XWY —eb||r + A |[|WV||F 4+ L2tr (WY X" LXWY) (23)

Obviously, the value of objective function (7) decreases in each iteration [14, 20, 23].
Further, the objective function (7) will converge globally because it is a convex function
[22].

4 Experiment
In this section, we introduce experimental setting in Section 4.1 firstly and we provide a
brief introduction of the methods that will be compared with our method in Section 4.2.

Then we summarize and analysis the experimental results by comparing our proposed
method with other comparative methods in Section 4.3.
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Table 1 Datasets summarization

Datasets Instance Feature Class
SPECTF_Heart 267 44 2
LungCancer 32 56 2
Sonar 208 60 2
Movements 360 90 15
USPS 9298 256 10
Arrhythmia 452 279 13
Yeast 1484 1470 10
FERET 1400 6400 200

4.1 Experimental setting

The experimental environment is a Window XP system, and Matlab 7.11.0 is used to imple-
ment all the algorithms. In our experiments, we conduct the 10-fold cross-validation method
for all methods. The final result was computed by averaging the results from all experiments.
We apply the proposed UFSS method and the comparison methods to the classification
task and evaluate them on eight datasets in terms of three different evaluations, i.e., classi-
fication accuracy, STandard Deviation (STD) and coefficient of variation. Specifically, we
compare our methods with other methods in dimension reduction for feature selection, and
then we use Support Vector Machine (SVM) [25] to conduct classification via the LIB-
SVM toolbox.! These datasets contain binary datasets and multi-class datasets, including
SPECTF_Heart, LungCancer, Sonar, Movements, Arrhythmia and Yeast. They are all down-
loaded from UCI Machine Learning Repository,” the USPS dataset is downloaded from the
website of Feature Selection Data sets,> while the FERET dataset is downloaded from the
website of CSDN.* We summarized datasets in Table 1.

Three kinds of evaluation metrics as the evaluations for the classification task, i.e., clas-
sification accuracy, STandard Deviation (STD for short) and Coefficient of Variation (CV
for short), respectively. The higher accuracy the algorithm is, the better classification per-
formance it is. The smaller STD and CV the algorithm is, the more stable and robust
itis.

4.2 Comparison methods

The comparison methods are introduced as follows:

— PCA: The method is a common dimensionality reduction method, which is used for
extracting the important feature components from data [8].

— TRACK: The method mainly takes advantages of trace ratio formulation and K-means
clustering to select the most discriminative features [33].

— RSR: The method joints sparse regularization and semi-supervised learning to select
the most informative features, which can make the classifier robust for outliers [6].

Thitp://www.csie.nu.edu.tw/cjlin/libsvm/

2UCI Repository of Machine Learning Datasets, http://archive.ics.uci.edu
3http://featureselection.asu.edu/datasets.php
“http://download.csdn.net/download/zh920307/6844115
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Table 2 The results of Classification Accuracy (mean£+STD)

Datasets PCA TRACK RSR FSR_ALM UFSS

SPECTF_Heart  0.7737 £091 0.7982 £ 0.85 0.7940 £0.03  0.8005 + 1.55  0.8242 + 0.04

LungCancer 0.7350 £3.14  0.7733 £291  0.7358 £5.20 0.7183£0.73  0.7967 £ 2.27
Sonar 0.7654 = 1.74  0.7617 £ 133  0.7444 =142  0.7825+£0.85  0.8506 £ 0.92
Movements 0.8009 +1.17  0.7947+1.29 0.8042+0.95 0.7781 £1.76  0.8286 £ 0.87
USPS 0.94824+0.05 09323 +0.28 0.9614 £0.06 0.9613 £0.07  0.9663 + 0.07
Arrhythmia 0.6334+1.22  0.6695+0.88 0.6727 £1.36 0.6747 £0.96  0.6839 £ 0.07
Yeast 0.3547 £0.61  0.3645+£2.17 04196 £0.57 04232 +£0.28  0.4404 + 1.24
FERET 0.5949 £0.57  0.6009 +0.28  0.5980+0.63  0.6015+0.85  0.6286 + 0.59

The bold emphasis are the results from our methods

— FSR_ALM: The method directly uses £3o-norm constraint to exact Top-k Feature
Selection and augmented Lagrangian method is used to tackle the constrained optimiza-
tion problem [5].

4.3 Experimental results

We presented the mean of classification accuracy and the corresponding STandard Devia-
tion(STD), of all algorithms on the eight datasets in Table 2. Table 3 shows the Coefficient
of Variation (CV) of all algorithms on eight datasets. We listed classification accuracy
(the mean of classification accuracy in ten iterations) of all algorithms on eight datasets in
Figure 1 where the horizontal axis denotes the iterations and the vertical axis denotes the
classification accuracy.

In regard to classification accuracy accuracy and STandard Deviation (STD) in Table 2
and Figure 1, we have the following observations:

— the proposed method UFSS improves the classification accuracies on average over
eight datasets about by 4.2% (vs. PCA), 3.3% (vs. TRACK), 2.9% (vs. RSR), 2.8%
(vs. FSR-ALM). In addition, according to Figure 1, we can also easily find that the
proposed method UFSS almost has higher accuracy than four comparison algorithms
in each of iteration. The reason is that, all the four comparison algorithms, i.e., PCA,
TRACK, RSR and FSR-ALM, are subspace learning methods and they mainly only
consider one kind of correlation inherent in data, while the proposed UFSS considers
jointing self-representation and subspace learning for unsupervised feature selection to

Table 3 The result of

Coefficient of Variation (mean) Datasets PCA TRACK RSR FSR_ALM  UFSS
SPECTF_Heart  1.18 1.06 0.04 1.94 0.05
LungCancer 4.27 3.76 7.07 1.02 2.85
Sonar 2.27 1.73 1.91 1.09 1.08
Movements 1.46 1.62 1.18 2.26 1.05
USPS 0.05 0.30 0.06 0.07 0.07
Arrhythmia 1.93 1.31 2.02 1.42 0.89
Yeast 1.72 5.95 1.36 0.66 2.82

The bold emphasis are the results  FERET 0.96 0.47 1.05 141 0.94

from our methods
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Figure 1 Classification accuracy on eight datasets in ten iterations. Note that a SPECTF_Heart; b
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obtain two kinds of correlation inherent in data. At the same time, the proposed UFSS
introduces a low-rank constraint to find the effective low-dimensional structures of the
data, which can guarantee to reduce the redundancy. Therefore, the UFSS can get better
performances than other comparison algorithms.

— The proposed method UFSS outperforms PCA, TRACK, RSR and FSR-ALM much
better on LungCancer dataset, they are about 8.5%, 8.9%, 10.6% and 6.8%, respec-
tively. The UFSS method absorbs the merits of both self-representation and LPP and
integrates them into a unified framework. Thus it can select the most discriminative
features and achieve the best classification accuracy.

—  The proposed method UFSS has the least values of STandard Deviation (STD) com-
pared with the comparison methods, it is less than others on average over eight datasets
about by 0.28 (vs. PCA), 0.34 (vs. TRACK), 0.36 (vs. RSR), 0.05 (vs. FSR-ALM). It
shows that our proposed method is more stable than other comparison methods.

In regard to Coefficient of Variation (CV) in Table 3, we can observe that: the UFSS method
cannot always get the best performance on all datasets. For example, SPECTF_Heart and
FERET UPSS is not the least one. But in general, the proposed method UFSS achieved the
least coefficient of variation, i.e., 0.97, while other comparison methods are 1.39, 1.62, 1.47
and 0.99 corresponding to PCA, TRACK,RSR and FSR-ALM, respectively. This shows
that the proposed algorithm UFSS is more robust than other comparison algorithms on the
whole.

5 Conclusion

In this paper, we have proposed an unsupervised feature selection method based on self-
representation and subspace learning. We use all features to represent each feature. In other
words, each feature is reconstructed by all the features. A Frobenius norm regularizer term
to constrain the reconstruction coefficient matrix is used to overcome the over-fitting prob-
lem and to select the most discriminative features. Also, we introduce Locality Preserving
Projection (LPP) as a regularization term to maintain the local adjacent relation of the data
constant when performing feature space transformation. Further, we consider applying a
low-rank constraint to find the effective low-dimensional structures of the data. Experiments
on real datasets have been conducted to compare the performances of the proposed method
and the other state-of-the-art methods. The experimental results showed that the proposed
method UFSS outperformed other methods in terms of classification accuracy, standard
deviation and coefficient of variation.
In future, we consider improving the UFSS method for supervised feature selection.
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