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Abstract Nowadays many location service providers (LSPs) employ spatial databases out-
sourced from a third-party data owner (DO) to answer various users’ queries, e.g., group
nearest neighbor (GNN) queries that enable a group of users to find a meeting place
minimizing their aggregate travel distance. Along with the benefits from LSPs and DO, pro-
tection of location privacy and authentication of query results become two major concerns
for users while assessing GNN queries. This paper proposes a resource-aware approach that
supports effective location privacy preservation and efficient query result authentication
with a less storage, communication and computation overhead. Specifically, two centroid-
based techniques are investigated to generate a centroid point, which initiates GNN query on
behalf of the group members. Then, an authentication algorithm based on Voronoi diagram
is proposed for spatial queries. Finally, we demonstrate how our approach is resistant to var-
ious attacks, and evaluate its performance by comparing with three competitive approaches.
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The results show the proposed approach is better and more economical in terms of resource
overhead, while considering both privacy preservation and query authentication.

Keywords Group nearest neighbor queries · Location privacy · Query authentication

1 Introduction

The popularity of mobile positioning techniques enables users to obtain various types of
location-based services (LBSs) from location service providers (LSPs) for a more conve-
nient way of life. Just like similarity search in high-dimensional space with feature vectors
[28, 34], the most common forms of spatial queries are users querying their nearby neigh-
bors or points of interest (POIs) (i.e., k-nearest neighbors), or querying locations of all POIs
within a space area (i.e., range neighbors). Besides requests from a single user, a group of
users sometimes need to find a meeting place, with the minimum aggregate travel distance,
namely group nearest neighbor (GNN) [22]. The aggregate travel distance can be measured
in terms of minimizing the total or the maximum distance from all group members to the
meeting place. While LBSs have brought great convenience and commercial value, there
are serious issues that need to be addressed urgently.

As various LBSs have grown at an exceptional pace, the large amount and great com-
plexity of spatial information would demand more sophisticated data management systems.
However, this is beyond the abilities of many LSPs, which possess limited processing capa-
bilities or little technical expertise. Consequently, the idea of database outsourcing becomes
popular, in which a data owner (DO) has been introduced for addressing this problem [33]. It
is now common that DO and LSP are two different organizations. In this paradigm, the DO
is responsible for storage and management of spatial data, and the LSP could index the data
from the DO and then answer various user queries while only storing the most necessary
spatial information. Because there is no need to store all the complex spatial information in
the LSP side, the storage overhead would be greatly reduced, so we adopt the idea of DO in
this paper.

Moreover, while accessing these LBSs, users are supposed to expose their exact loca-
tions in order to obtain high-quality results. However, such exposure may lead untrusted
severs or malicious attackers derive sensitive and private information (such as health con-
ditions, economic incomes, living habits and religious beliefs) through analyzing the users’
locations or trajectories. Therefore, serious privacy breaches occur [5]. Generally, privacy
preservation in LBS is roughly divided into two models: client-server (CS) and peer-to-peer
(P2P). In the CS model, privacy preservation is achieved through effective algorithms such
as using imprecise location methods of k-anonymity [6, 29] and cloaking region [6, 30],
adding Gaussian noise with zero mean of differential privacy [1], exposing along with addi-
tional fake locations of dummy locations [19], using a centralized trusted third party such as
anonymizer [24], or using cryptograph methods of encryption protocol such as space trans-
formation [18] and private information retrieval techniques [8]. In the P2P model, users
seek query results with a cooperative computation based on the locations of neighboring
members, such as [7, 13]. Normally for the P2P model, the capabilities of user devices still
cannot deal with the huge amount of complex spatial data. Thus, we adopt the CS model in
this study.

In particular, processing GNN queries in a privacy preserving manner has not been fully
investigated so far. Our study focuses on GNN queries in the CSmodel with the participation
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of a DO. In this paradigm, users concern about not only whether their locations would be
known by untrusted parties, but also the quality of answers provided by the LSP, because
the LSP may collude with a third party for profit and provide low-quality answers. That
is to say, we should not only protect all group users’ locations of GNN queries, but also
guarantee the total distance from all group users to the obtained location of meeting palace
is smallest. Therefore, our work jointly considers privacy preservation of users’s locations
and result authentication of spatial queries.

As for location privacy, we aim to protect against potential attackers inside or outside
the group. Our approach adopts a centroid-based privacy preserving method. We generate
a centroid point as the group representative according to the group members’ locations.
Then, a coordinator, who is randomly selected within the group, uses the centroid point to
initiate the GNN query. Finally, the LSP returns the exact result to the coordinator through
indexing data from the DO. Two techniques are extended to generate the centroid point,
namely cloaked centroid based on geometrical cloaking region [3] and encrypted centroid
based on an anonymous veto network (AV-net) [9]. As the LSP just receives a query request
and then returns a strong result (i.e., the nearest POI of the centroid point), there is no need
to refine the answer set.

As for query authentication, we propose our authentication algorithm based on neighbor-
ing spatial information derived from the Voronoi diagram of the underlying spatial index.
The essence is that, the DO stores all POIs in the form of Voronoi diagram, and the infor-
mation of each POI includes its location, the distance from itself to the farthest Voronoi
neighbor (i.e., POI), the number of other POIs that have a smaller distance than the farthest
distance, and the signed digital signatures. Then, the DO shares all POI information with the
LSP. For the LSP, query processing is also based on the Voronoi diagram, and it returns the
query result (i.e., POI) and additional POIs for the authentication. Then, we verify the loca-
tion of the query result through four steps. The details of verification process will be given
later, and our algorithm incrementally retrieves the answered POI until the correct answer
is verified.

Our main contributions are summarized are as follows:

– We study the privacy preserving issue of answering GNN queries in a database out-
sourcing scenario, with emphasis on resource saving. Apart from effectively protecting
user location privacy, it greatly reduces the communication overhead and computation
cost because of fewer queries, only a strong result and more reasonable query processing.

– We propose an efficient authentication algorithm based on Voronoi diagram for spatial
queries. It not only ensures the reliability and correctness of query results, but also
reduces the communication cost and storage load.

– We show how our algorithm can be resistant to various attacks including collusion
attack, knowledge attack and distorting attack, in terms of effectively preserving
location privacy.

– We conduct our experiment on a synthetic dataset and compare with the existing pro-
posals in terms of communication, computation and storage overhead. The results
demonstrate that our approach outperforms these competitive approaches.

The rest of the paper is organized as follows. In Section 2, we review related studies. We
provide some background knowledge and show the system architecture in Section 3. In Sec-
tion 4, we introduce the proposed approach. Section 5 presents our performance evaluation
and Section 6 concludes.
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2 Related work

We discuss related studies from two aspects: privacy preservation and answer authentication.

2.1 Privacy preservation for GNN queries

Compared with location privacy preservation for a single query user, privacy preservation
for GNN queries is more complex. Hashem et al. [10] propose a privacy preserving GNN
query processing technique (called “PGNN” in the experiment) based on two phases. In
the first phase, users provide their imprecise locations (cloaking regions) to the LSP. Then,
the LSP returns a set of candidate POIs. In the second phase, users need to filter out the
exact result mainly based on secure multi-party computations [25]. Although this method
could protect the location privacy of group members, it leads to excessive computation and
communication overhead.

Ashouri-Talouki et al. take a cryptographic approach for the privacy preserving GNN
queries with two solutions. In [2], each member publishes a masked location, and a spe-
cial member ua computes the encrypted centroid point. Afterwards, the LSP decrypts the
encrypted centroid and returns the nearest POI of that centroid as the query result. This
method leads to a low communication overhead and computation cost. Besides, there is no
need to refine the answer set because it only contains the exact result. Unfortunately, the
nearest POI of the centroid might not be the correct GNN result.

The follow-up work of [2] is reported in [3]. The proposed method (called “CCP” in the
experiment) submits a single GNN query along with the cloaking region of centroid point
to the LSP, and receives an answer set. Then, it privately determines the exact result. This
method is resource-aware in the sense that its processing cost is low, but the filtering process
is also needed. In addition, it cannot ensure the reliability and correctness of query result as
well.

There are some other studies on privacy preservation of GNN queries. Huang and Vish-
wanathan [16] explore the application of secure multi-party computation techniques based
on garbled circuits. Hashem et al. [11] focus on protecting user privacy that evaluates LBSs
with crowdsourced data and computation. In addition, [17] propose a naive method, which
does not require a user to provide location information, and thus is location oblivious.

2.2 Authentication for spatial queries

LSPs process GNN queries based on spatial information from a third-party DO. Due to the
nature of cloud computing, there are many security issues in the cloud service provided
by the third party [26, 27]. Many investigations have been made for authenticating query
results in outsourced databases [4, 12, 14, 15, 23, 32]. However, some of them do not take
a user’s location privacy into account [15, 23, 32], or focus on authenticating query results
and preserving privacy of the stored data in LSP’s database [4, 14].

Approaches based on digital signature [15, 31] are mathematical schemes on account
of asymmetric cryptography, mostly based on RSA algorithm. Given a message, the signer
uses its private key to produce a signature. For authentication, the receiver verifies the reli-
ability of the message by comparing the decoded value of signature and the hash value
produced by the known public key.

Approaches based on MR-tree [23, 32] compute hash digests of all entries in a tree node
firstly. Digests are computed in a bottom-up manner, and the single digest at the root is
issued and signed by the DO. Then a client can verify through comparing the reconstructed

World Wide Web (2019) 22:437–454440



root digest against the one that was signed by the DO. Although this method could effec-
tively verify the query result, if any updates for the DO occur, all digests on the path from
an affected leaf node to the root have to be recomputed. Other drawbacks are the high
communication and processing overhead due to more I/O accesses.

For approaches based on Voronoi diagram [15], the DO shares the signed POI informa-
tion with the LSP. When a user requests a query, the LSP processes the query based on an
R-tree and returns the actual answer and additional Voronoi neighbors. From the signature
and locations of the Voronoi neighbors, the user authenticates the reliability and correct-
ness of the query answer. This method causes high storage overhead, as it stores all Voronoi
neighbors for each POI. It also incurs a high communication overhead due to sending the
same data information multiple times for authenticating different POIs. In order to address
these limitations, a temporary buffer is introduced in [12]. Moreover, the DO only sends
the count of Voronoi neighbors to the LSP. Our work follows this design, but we adapt the
framework using R-tree proposed in [12] to GNN queries, and process spatial queries based
on Voronoi diagram to make it more simple and efficient.

3 Problem statement

3.1 Preliminaries

We first present the definition of GNN query, relevant knowledge of AV-net protocol and
Voronoi diagram.

GNN query Group nearest neighbor (GNN) query enables a group users to meet at a
suitable place, such as restaurant or coffee shop [10]. Given a group of users u1, u2, · · · , un

located at points l1, l2, · · · , ln, and p1, p2, · · · , pm are POIs of the static point dataset. The
formal definition is given below.

Definition 1 (GNN Query) Let U be a set of group users and P be a set of POIs located
in a 2-dimensional spatial space. A GNN query is that users jointly initiate a query to an
LSP, and seek a POI with a smallest aggregate distance to all group members. Let f be an
aggregate function, such that the answered POI, p, meets the condition: for any p′ ∈ P −p,
f (U, p) < f (U, p′).

In general, the aggregate function of GNN query f can be of different kinds. If it returns
the POI which minimizes the sum of distances to the users, we call it sum GNN query. Sim-
ilarly, it is a maximum GNN query when f returns the POI which minimizes the maximum
distance to the users. In this work, we mainly discuss the sum GNN query.

AV-net protocol In our approach, the idea of using encrypted centroid is based on an
anonymous veto network (AV-net). Here, we briefly introduce the AV-net protocol, and
more details can be found in [9].

Assume there are n participating users, and they all agree on this protocol. Each user ui

selects a random value as its secret: ai ∈R Zq . In general, the AV-net protocol consists of two
rounds. In the first round, each participating user ui publishes gai and a zero knowledge proof
for ai to other users. When this round finishes, each user ui computes a masked value as:

gbi =
∏i−1

j=1 gaj

∏n
j=i+1 gaj

, 1 < i < n. (1)
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If i = 1, we let the equation
∏i−1

j=1 gaj = 1, and the equation
∏n

j=i+1 gaj = 1 when
i = n, to make it meaningful.

In the second round, each user publishes a value gcibi or gaibi , depending on whether the
user ui vetoes or not. Moreover, ci is a random value satisfying ci ∈R Zq and a knowledge
proof would also be given for ci . Therefore, if no one votes, we have

∏
i gaibi = 1, because∑

i aibi = 0; if some users vote, we have
∏

i gcibi �= 1. There are some properties for this
protocol as shown bellow, which have been proved in [9].

– Soundness: For ai and bi defined in an AV-net, it holds that
∑

i aibi = 0.
– Privacy: In an AV-net, bi is a secret random value to attackers in partial collusion against

any other participating user.

Voronoi diagram Given a set of spatial data objects P = {p1, p2, · · · , pm} in a space
area, the Voronoi diagram of P partitions the space area into m disjoint regions. The most
important property of Voronoi diagram is that each data object pi belongs to only one region
and the principle of division is that all points in the region are closer to the corresponding pi

than to any other point. Thus, each data object pi generates a region called the Voronoi cell,
denoted as V C(pi). Therefore, the Voronoi diagram of P is the union of all Voronoi cells.
In addition, if two Voronoi cells have a common edge, the two data objects are regarded as
Voronoi neighbors.

Here are some notable properties about Voronoi diagram [15, 20].

– Property 1: For a set of distinct objects P = {p1, p2, · · · , pm}, the Voronoi diagram of
P is unique.

– Property 2: The average number of Voronoi edges per Voronoi cell does not exceed six
(i.e., the average number of Voronoi neighbors per object does not exceed six).

3.2 Assumptions and problem definition

We assume a 2-dimensional spatial database and Euclidean distance is used. Users’ posi-
tioning devices can establish secure connection channels to LSP, so channel monitor attacks
are not considered. The problem addressed in this paper can be described as: given a GNN
query, we should find a correct and authenticated POI with a minimum aggregate distance
of all group members, without exposing the exact locations of users to potential attackers.
Besides, the locations of centroid point and meeting place are only visible to the GNN query
participants.

3.3 System architecture

Figure 1 shows our system architecture. The system is composed of three parts: mobile
users, LSP side and data owner.

First, we randomly select a coordinator inside the query group, who only knows the
users’ identities, the masked locations or cloaking regions, and the requested query type.
Users cooperatively generate a centroid point, denoted as q, to represent all group members.
Then, the coordinator sends the requested query type and the centroid point to the LSP, then
receives and broadcasts the query result to group users.

On the other hand, a DO stores POIs in the form of Voronoi diagram, and signs a digital
signature for each POI. Then, the DO shares these POIs to the LSP. After receiving a GNN
query, the LSP processes the GNN query based on Voronoi diagram. After indexing the
nearest POI of the centroid point, the LSP returns the answered POI, denoted as p, along
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Figure 1 System architecture: location privacy preservation & query result authentication

with additional POIs for authentication. Meanwhile, the LSP also stores such information
in a temporary buffer, to avoid retrieving a same POI multiple times from the POI database.

Final step is authentication. Firstly, users would compute an authenticated known region,
denoted as AKR. The authentication processing is divided into four parts: verifying digital
signatures of POIs to ensure the reliability; verifying the count property of p to ensure the
completeness; ensuring p is the correct answer with respect to the centroid point; demon-
strating the answered POI p is the correct answer to all group members. Otherwise, users
need to put forward the query request to the LSP again, until returning a correct query result
satisfying all authentication conditions.

4 Our approach

As can be seen in the system architecture, processing privacy preserving GNN queries can
be divided into three major steps: (i) sending centroid-based query; (ii) processing query
and returning answer along with additional POIs; and (iii) authenticating query result. In
this section, we discuss them in details.

4.1 Sending centroid-based query

In the first step, we examine two different methods of centroid point generation.

Cloaked centroid In this method, each user cloaks location meeting pre-defined privacy
requirements. As Figure 2 shows, a user ui will define a minimum cloaking region Ri,min
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Figure 2 Cloaking region meeting user requirements

first, represented by the gray rectangle in the figure, along with two fixed line segments
(widthi parallel to X-axis and lengthi parallel to Y-axis). Each user blurs actual location
l(ui) = (xi, yi) into a cloaking rectangle CRi generated by the two line segments, where
ui passes the two lines at any arbitrary point, and thus all points within CRi can be equally
regarded as the user’s location. Note thatCRi should satisfy thatRi,min ≤ widthi ×lengthi

(i.e, the area of CRi should not be smaller than that of Ri,min). In addition, each CRi

is represented by the coordinates of the up left and the bottom right points, denoted as
CRi = {(xi,u, yi,u), (xi,b, yi,b)}, so as the geometric center of CRi is denoted by ui

′, which
can be calculated by l(ui

′) =
(

(xi,u+xi,b)

2 ,
(yi,u+yi,b)

2

)
.

Then, each user sends CRi to the bulletin board through the secure connection channel,
and users cooperatively generate a minimum region MR, which is determined by all users’s
cloaking regions, so that the centroid (rather than geometrical center) of MR is regarded as
the location of centroid, denoted by q. The representation ofMR is also given by the coordi-
nates of the up left and the bottom right points, denoted as MR = {(xc,u, yc,u), (xc,b, yc,b)},
computed as follows:

xc,u =
∑n

i=1xi,u

n
, xc,b =

∑n
i=1xi,b

n
. (2)

Similar computation can be made for yc,u and yc,b. Therefore, the centroid location of q is

calculated by l(q) =
(

(xc,u+xc,b)

2 ,
(yc,u+yc,b)

2

)
.

Encrypted centroid This method also consists of two phases. In the first phase, each
user masks exact location through utilizing the AV-net protocol, and gains a corresponding
masked location. In the second phase, group users collaboratively compute the encrypted
summations of all members’ coordinates based on these masked locations through Paillier
encryption [21].

According to previous definition of AV-net protocol, we compute mask value gaibi for
a user’s location l(ui) = (xi, yi), and publish its masked location denoted as l(ui

′) =
(g

xi
s gaibi , g

yi
s gaibi ).

Then, each user sends masked location l(ui
′) to the bulletin board, and users check the

soundness of all AV-net masks in order to ensure the masked values have not been tampered.

World Wide Web (2019) 22:437–454444



If
∑

i aibi �= 0, we restart the encrypted centroid protocol in order to against active
adversaries. After completing this simple validation, group users cooperatively generate
the centroid point through multiplying all masked values, and use the Paillier encryption
to encrypt the summations of the X and Y coordinates. The summations of all members’
coordinates can be computed as follows:

∏

all xi

gxi
s gaibi = g

∑
xi

s modN2,
∏

all yi

gxi
s gaibi = g

∑
yi

s modN2. (3)

Then, the coordinator sends a single query containing the encrypted summation coordinates
and the number of group members n to the LBS. Upon receiving the query, the LSP decrypts
it using the private key as follows:

Dec(w) = ρ = L(wλmodN2)

L(gsmodN2)
modN, (4)

where w is the cipher text and ρ is the corresponding plain text. Then, the LBS divides the
result by n to get the coordinates of centroid q, and processes the requested GNN query
based on it.

4.2 Processing query and returning answer

In the second step, we describe how LSPs process GNN queries and which query results
would be returned to users.

Generating digital signatures Consider a DO has collected a large number of POIs for
a certain space area. Each pi is in the form of pi = pi.location, pi .side, pi .count, pi .d)

where the location property is a geographical coordinate represented by latitude and lon-
gitude, and the side property represents its descriptive information (e.g., name or type).
Moreover, the DO computes the Voronoi neighbors of each pi with the count of Voronoi
neighbors as another property pi.count . In addition, the DO computes the distance between
pi and the farthest Voronoi neighbor from itself, denoted as pi.d . The value of d measures
the distance between the considered POI and its farthest Voronoi neighbor.

Then, the DO signs the digital signature of pi . It uses its private key along
with the information of pi to generate a digital signature, computed as κ =
sign(private key, h(pi .location, pi .side, pi .count, pi .d)), where h is a one-way,
collision-resistance hash function and sign is a function to generate the digital signature κ .
pi has a form of pi = (pi .location, pi .side, pi .count, pi .d, pi .κ).

Processing GNN query In our work, GNN query processing is conducted based on
Voronoi diagram. To efficiently retrieve the nearest POI of centroid point q, a Voronoi dia-
gram divides the space area into disjoint polygons, called Voronoi cells (VCs). Each V Ci

includes the nearest POI pi for any points inside. We can easily find the Voronoi cell con-
taining q, and thus the generator of V Ci is the nearest POI to q, denoted as p. p is regarded
as the returned query result for the GNN query. In addition, we use an R-tree to manage the
Voronoi diagram on LSP side to improve retrieval efficiency.

Returning answer Besides returning p to users, the LSP also needs to return some addi-
tional POIs for authentication. Firstly, the LSP computes a maximum search region, denoted
as MSR. As Figure 3 shows, the centroid point q sends a GNN query to the LSP, and
p is the answered POI with smallest distance from q. Let f be the distance between q
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Figure 3 An example of computing the maximum search region

and p, and d is an attribute of p, which represents the distance between p and its farthest
Voronoi neighbor. Thus, the required maximum research region MSR is a circle centered
at q, along with the radius equals to the maximum search distance |f + d|. Finally, the LSP
returns all other retrieved POIs located in MSR and the entire information of p, including
location, side, count, d, signature.

From Figure 3, it can be observed that some redundant POIs that are neither the answered
POI nor the POIs for authentication could also been returned to users, such as p5, as this
retrieval is an incremental processing of GNN query until the correct answer is returned, and
the LSP would store all returned information. Thus, if these redundant POIs are required for
answering query or authenticating results later, there is no need to send these POIs again.
Moreover, in order to ensure a single traversal that avoids retrieving the same POI multi-
ple times from the database, the LSP always stores the retrieved information of POIs in a
temporary buffer and keep tracks of |f + d| as covered search distance. For example, if the
answered POI p has not passed one of the authentication conditions, we should retrieve the
second nearest POI, which is p4 in Figure 3. Although p4 has already been sent to users,
the additional POIs for authenticating p4 may not have been sent. Thus, the LSP computes
the required maximum research distance of p4, denoted as |f′ +d′| based on the information
of p4, and computes a maximum search region of p4, denoted as MSR′. Then, we check
whether it is greater than the covered search distance of p. If yes, we should retrieve the
information of POIs which are located out of MSR but in MSR′, store them in the tem-
porary buffer while also sending them to users, and finally update the values of covered
search distance and maximum search region. Otherwise, there is no need to access the DO
for retrieving more POIs. It is obviously that we can greatly reduce the communication and
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storage costs from the LSP side through the temporary buffer mechanism, and the termina-
tion condition of retrieval process is satisfied when the answered POI p has passed all the
validation steps.

4.3 Authenticating query result

In the third step, the authentication process is divided into four parts as follows.

Authenticating reliability There are two phases needed to ensure the reliability of p.
On the one hand, group users decode the digital signature p.κ , and obtain the value of
h(p.location, p.side, p.count, p.d). On the other hand, users use the public key from
the DO to compute the hash value of the information of POIs received from the LSP. It
means to check whether it equals to the decoded value. If yes, the information of p has not
been tampered by adversaries. Conversely, we should drop p, and continue the incremental
processing with the LSP.

Authenticating completeness The group users count the Voronoi neighbors of p based
on the returned additional POIs, and compare it with the count property of p. This opera-
tion ensures the LSP has returned all Voronoi neighbors of p, and we call it completeness of
the result. Similarly, if the value computed by users equals to p.count , we continue authen-
tication process. Otherwise, we should retrieve all Voronoi neighbors of p from the POI
database.

Authenticating correctness through centroid point First of all, the group users com-
pute the distances for all the returned POIs from q, and then check whether p is the nearest
POI from q. This operation ensures p is the correct answer based on the centroid point.

Authenticating correctness through users’ locations The last but most important part
is to check whether p is the correct answer based on the group members’ locations. Firstly,
group users would compute an authenticated known region, denoted as AKR, which is a
circle centered at the location of q, with radius equal to the distance between q and the
farthest authenticated POI from it, denoted as pa . In addition, there might be more than
one POI returned to users as the answered POI due to the incremental query request to the
LSP, if the returned POI does not meet the authentication requirements. Therefore, a heap
H is maintained to store the incrementally authenticated POIs. The group users compute
the sum of distances between their centroid points of CRi (for cloaked centroid) or masked
locations (for encrypted centroid), namely l(ui

′), and any POI pi of all returned POIs, and
then determine the POI with smallest distance sum, denoted as p0. p0 is the best meeting
location in theory, although it is calculated on centroid points of CRi or masked locations,
the relative distances are guaranteed, and p0 must make the distance sum smallest. The
circle, which centers at q with the radius equals the maximum distance from p0 to the group
members, is theoretically the smallest area that needs authentication. We regard it as the
necessary query region, denoted as NQR. If the authenticated known region AKR contains
NQR, it means AKR formed by the returned p has passed the authentication. That is to
say, the answered POI p is the correct answer to all group members. Otherwise, users push
it to the heap H , and send the incremental query request to the LSP until the augmented
authenticated known region AKR contains NQR.

Algorithm 1 shows the authentication process in detail. The algorithm firstly constructs
the authenticated known region AKR from the GNN result, as lines 5-8 show. Then, users
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authenticate the answered POI p in a sequential manner along with the additional POIs from
the LSP. Lines 11–16 authenticate the reliability, lines 17–21 authenticate the completeness
while lines 22–36 check whether p is the nearest neighbor based on the centroid point q,
and demonstrate whether p is the correct answer based on all group users respectively. If p

has passed all the conditions, it is the authenticated correct answer.

5 Performance evaluation

In this section, we investigate security performance of two centroid-based preserving tech-
niques mentioned above. We also compare the resource overhead of our approach with three
competitive proposals.
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5.1 Privacy analysis

We first investigate two different centroid point generation methods methods’ behaviors
under collusion attack and knowledge attack. In addition, the method of encrypted centroid
allows distorting attack from active adversaries. In a collusion attack, some active adver-
saries may collude to discover the location(s) of some honest user(s) inside the group. A
knowledge attack may take place when an adversary applies prior knowledge to infer users’
true locations. A distorting attack means to broadcast fake values instead the AV-net masks
in the method of encrypted centroid.

Privacy analysis for cloked centroid In this method, all points in the cloaking region of
each user are equally likely to be the user’s exact location, so an attacker cannot accurately
infer the user’s location. As static parameters, such as widthi , lengthi and Ri,min, are given
by users themselves, a user is allowed to change settings in order to meet user-defined
privacy protection requirements.

Assuming attackers have some prior knowledge about users’ identities and users’ approx-
imate location areas, denoted as ALR. Although the attackers might get a user’s cloaking
region CRi , if the area of CRi is smaller than prior knowledge ALRi , it means they can get
more information about the location of ui , but not its exact geographical location. More-
over, if CRi is larger, the attackers gain no useful information. Thus, our cloaked centroid
method can perform an effective resistance to knowledge attack.

Considering collusion attack, when the attackers collude with some query participants,
since all broadcast information are users’ cloaked rectangles, they get no advantage as well.
However, if the number of group members is very small, it is easy for an attacker to speculate
on the specific locations of the users, especially when all participants collude against only
one user. To some extent, this is the limitation of geometrical cloaking.

Privacy analysis for encrypted centroid In this method, each user utilizes the AV-net
protocol to gain a masked location and the summation of all members’ coordinates is com-
puted by the Paillier encryption. Then, the LSP decrypts the summation and divides the
result by n to get the coordinates of centroid q, so the location of q does not reveal any
useful information. Due to the cryptography of the summation and the randomness of the
AV-net masks, users’ location privacy from the knowledge attack can be totally preserved,
which has been proved in [2].

On the other hand, assuming the attackers are trying to reveal the exact location, they
need to remove the AV-net masked value gaibi of ui firstly. However, ai is random and
only generated and visible to ui herself, so as bi which is computed by the all group users.
Even if an attacker and other group members are in collusion, the value of ai and bi cannot
be obtained. Thus, the location privacy of group users is guaranteed against the collusion
attack.

As mentioned above, the distorting attack means to broadcast fake values for the AV-net
masks in our encrypted centroid method. However, due to the soundness property of AV-net
protocol, the values of ai and bi need to meet the requirement

∑
i aibi = 0. If attackers

broadcast a fake value or try to modify the AV-net masks, this equation will not be estab-
lished. Therefore, the malicious attacker would be detected before computing the encrypted
centroid point, and the encrypted centroid protocol restarts. Therefore, the distorting attack
is also resisted successfully.
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Table 1 POI’s information
storage cost of Hu et al. [15] POI property Bytes

Location 16

Tail 32

Neighbors 6*16

Signature 128

Overhead per POI 272

5.2 Storage comparison

To demonstrate how our approach reduces the resource overhead, we compare our approach
with [15] while measuring the storage in bytes. Since each POI is stored as p =
(p.location, p.side, p.count, p.d, p.κ), it takes 182 bytes to store a single POI. Specifi-
cally, the p.location attribute costs 16 bytes. For p.d and p.count , it takes 4 and 2 bytes,
respectively. For the signature attribute p.κ , it costs 128 bytes. Meanwhile, we propose to
use 32 bytes to store the information of p.side. Therefore, the excepted overhead per POI
is 16 + 32 + 4 + 2 + 128 = 182 bytes (one 2-byte short integer, one 4-byte long inte-
ger, 16 bytes/point location, 32 bytes/side information, and 128 bytes/signature), which is
a small storage overhead compared with the storage of POI information in [15] where each
POI should be stored along with its Voronoi neighbors (at most six Voronoi neighbors per
object), and thus the DO needs addition 6 ∗ 16 bytes to store Voronoi neighbors per POI
object. More details are shown in Tables 1 and 2. The approach of [15] takes 49% more
storage than our approach for storing each indivisual POI.

5.3 Experimental validation

To study how our approach reduces the answer set size, communication cost and com-
putation overhead, the methods of cloaked centroid and encrypted centroid are both
implemented, and we simulate our experiment on a system with Intel Xeon E5-2620 pro-
cessor and 16GB of memory and compare their performances with two most related works:
PGNN [10] and CCP [3]. We use Sequoia dataset1 which contains 62,556 points of interest
in California, and test the group size as 128, 265, 512 and 1024 with randomly generated
users’ locations. The detailed experimental results are shown as follows.

Study on answer set size In our method, the LSP processes a single query and returns a
strong result (only the answered POI p and some addition POIs for authentication). Since
MSR usually is not very large due to the Voronoi diagram, the number of additional POIs
returned is also small. As Figure 4 shows, the answer set sizes of our cloked-centroid and
encrypted-centroid methods can be consider as O(1) (i.e., do not change with group size).
This is similar with the CCP method, because CCP processes query only in a small region,
so the size of answer set is small. However, the PGNN method has to deal with all users’
cloaking regions, so the size of answer set would be much larger, which shows a poor
performance in terms of this aspect.

Study on communication cost Suppose there are n group users, in our cloked-centroid
method, users send n messages to the bulletin board in total, and thus the communication

1http://chorochronos.datastories.org/?q=node/58
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Table 2 POI’s information
storage cost of our approach POI property Bytes

Location 16

Neighbors 32

d 4

Count 2

Signature 128

Overhead per POI 182

overhead is O(n). Besides, in our encrypted-centroid method, there are 2n messages to be
sent in both two rounds, so the communication overhead is also O(n). After generating
the centroid point q (or qe), the coordinator sends the requested query type and centroid
point to the LSP, so the sending process’s communication only costs O(1). This is the
same as returning the answer result and even the additional POIs for authentication. More-
over, this communication cost is very small that can be ignored. As Figure 5 shows, both
two methods are similar to the CCP method. CCP generates a cloaking region to send the
query rather than a centroid point. However, the PGNN method tries to blur each user’s
location to a cloaking region, and all users send cloaking regions to the LSP, so the commu-
nication overhead of sending queries requires O(n). Besides, users send all their cloaking
regions instead of simple geographical coordinates, whose communication overhead cannot
be ignored. Moreover, for PGNN returned answer results are a set of POIs, so its communi-
cation cost is much larger. With the group size increasing, the communication cost of PGNN
also increases more than ours and CCP.

Study on computation overhead As signing digital signatures is query independent and
can be processed offline, we assume this computation cost could be ignored. Suppose there
are n users in the group. As for the cloaked centroid method, each user ui generates its
cloaking region CRi firstly, so it takes 2n + 2 addition operations and 4 division operations
to get the centroid location of q according to the computational process mentioned above.
Obviously, this is a very small computation cost. As for the complicated encrypted cen-
troid method, we measure its computation cost in exponentiation operations. In the phase
of masking users’ locations, it takes only one exponentiation to compute l(ui

′) while ignor-
ing the multiplication operations; in the second phase of generating the masked centroid
point qe, it also requires one exponentiation operation. In general, our approach takes two

Figure 4 Comparison of answer
set size
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Figure 5 Comparison of
communication cost
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exponentiation operations per user. On the LSP side, for the masked centroid point qe, it is
necessary to decode it first, as (4) shows. The computation cost requires two exponentiation
operations. In the GNN query processing, finding nearest POI based on the centroid point
is facilitated by a form of R-tree from the data owner, and its computation cost is repre-
sented asO(logN). Moreover, there is no need to filter out the correct answer, and the cost
of authentication is small. As Figure 6 shows, the computation cost of CCP is also similar,
due to the similar privacy preserving process. However, the PGNN method sends all users’
cloaking regions to assess GNN queries, so the query processing of LSP could cause a huge
burden due to a set of group regions. Moreover, the returned results are a set of candidate
POIs, rather than only a strong result. Thus, the computation cost of PGNN is large. There
is also a need to filter the answer set, which would lead to a further increase of computation
cost.

Effect of query authentication In our approach, not only the answered POI p but also
η additional POIs are returned for authentication. In terms of the reliability, it takes two
exponentiation operations for the decryption of p.signature generated by RSA algorithm
and the complexity of O(1) to check whether the information is reliable. For the second
step, the number of Voronoi neighbors of p does not exceeds six, so the cost of counting
process can be ignored. Besides, it also takes one operation to check. For the third step, it
takes O(η) to check whether p is closest to q. For the last step, it takes the complexity of
O(nη) to compute the sum distance to all users’ masked locations for all returned POIs, in
order to check the correctness through users’ locations. Therefore, our approach guarantees

Figure 6 Comparison of query
response time

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

Q
u

ar
y

 R
es

p
o

n
se

 T
im

e 
(S

ec
)

Group Size

encrypted centroid
cloaked centroid

PPGNN
CCP

World Wide Web (2019) 22:437–454452



the correctness of the results, and the verification cost is small. It is worth noting that both
PGNN and CCP do not consider the authentication of query results at all.

6 Conclusion

In this paper, we propose an effective system for processing GNN queries, which consid-
ers both location privacy preservation and query result authentication. Two centroid-based
techniques are used to generate a centroid point to initiate GNN query, and an authentication
algorithm based on Voronoi diagram is introduced. The analysis of security demonstrates
how our approach is resistant to various attacks, and comparison of efficiency demonstrates
our approach is better and more economical in terms of resource overhead.
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3. Ashouri-Talouki, M., Baraani-Dastjerdi, A., Selçuk, A.A.: The cloaked-centroid protocol: location pri-
vacy protection for a group of users of location-based services. Knowl. Inf. Syst. 45(3), 589–615
(2015)

4. Chen, Q., Hu, H., Xu, J.: Authenticating top-k queries in location-based services with confidentiality.
PVLDB 7(1), 49–60 (2013)

5. Fu, Z., Shu, J., Wang, J., Liu, Y., Lee, S.: Privacy-preserving smart similarity search based on simhash
over encrypted data in cloud computing. J. Internet Technol. 16(3), 453–460 (2015)

6. Gedik, B., Liu, L.: Location privacy in mobile systems: a personalized anonymization model. In: ICDCS,
pp. 620–629 (2005)

7. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Mobihide: a mobilea peer-to-peer system for anonymous
location-based queries. In: SSTD, pp. 221–238 (2007)

8. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.: Private queries in location based services:
anonymizers are not necessary. In: SIGMOD, pp. 121–132 (2008)

9. Hao, F., Zielinski, P.: The power of anonymous veto in public discussion. Trans. Computational Science
4, 41–52 (2009)

10. Hashem, T., Kulik, L., Zhang, R.: Privacy Preserving Group Nearest Neighbor Queries. In: EDBT,
pp. 489–500 (2010)

11. Hashem, T., Ali, M.E., Kulik, L., Tanin, E., Quattrone, A.: Protecting privacy for group nearest neighbor
queries with crowdsourced data and computing. In: Ubicomp, pp. 559–562 (2013)

12. Hashem, T., Datta, S., Islam, T.U., Ali, M.E., Kulik, L., Tanin, E.: A unified framework for authenticating
privacy preserving location based services. In: Georich@SIGMOD 2015, pp. 13–18 (2015)

13. Hu, H., Xu, J.: Non-exposure location anonymity. In: ICDE, pp. 1120–1131 (2009)
14. Hu, H., Xu, J., Chen, Q., Yang, Z.: Authenticating location-based services without compromising

location privacy. In: SIGMOD, pp. 301–312 (2012)
15. Hu, L., Ku, W., Bakiras, S., Shahabi, C.: Spatial query integrity with voronoi neighbors. IEEE Trans.

Knowl. Data Eng. 25(4), 863–876 (2013)
16. Huang, Y., Vishwanathan, R.: Privacy preserving group nearest neighbour queries in location-based

services using cryptographic techniques. In: GLOBECOM, pp. 1–5 (2010)
17. Khan, A.K.M.M.R., Hashem, T., Tanin, E., Kulik, L.: Location Oblivious Privacy Protection for Group

Nearest Neighbor Queries. In: GIScience, pp. 301–317 (2014)
18. Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neighbor queries using space transformation

to preserve location privacy. In: SSTD, pp. 239–257 (2007)

World Wide Web (2019) 22:437–454 453



19. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for
location-based services. In: ICPS, pp. 88–97 (2005)

20. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams:
concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 22(9), 965–994 (2008)

21. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure against active adver-
saries. In: ASIACRYPT, pp. 165–179 (1999)

22. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312
(2004)

23. Papadopoulos, S., Yang, Y., Bakiras, S., Papadias, D.: Continuous spatial authentication. In: SSTD, pp.
62–79 (2009)

24. Sadeghi, A., Visconti, I., Wachsmann, C.: Anonymizer-enabled security and privacy for RFID. In:
CANS, pp. 134–153 (2009)

25. Sheikh, R., Mishra, D.K., Kumar, B.: Secure multiparty computation: from millionaires problem to
anonymizer. Information Security Journal: A Global Perspective 20(1), 25–33 (2011)

26. Shen, J., Liu, D., Shen, J., Liu, Q., Sun, X.: A secure cloud-assisted urban data sharing framework for
ubiquitous-cities. Pervasive Mob. Comput. (2017). https://doi.org/10.1016/j.pmcj.2017.03.013

27. Shen, J., Shen, J., Chen, X., Huang, X., Susilo, W.: An efficient public auditing protocol with novel
dynamic structure for cloud data. IEEE Trans. Inf. Forensics Secur. 12(10), 2402–2415 (2017)

28. Song, J., Shen, H.T., Wang, J., Huang, Z., Sebe, N., Wang, J.: A distance-computation-free search scheme
for binary code databases. IEEE Trans Multimedia 18(3), 484–495 (2016)

29. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowledge
Based Syst. 10(5), 557–570 (2002)

30. Um, J., Kim, Y., Lee, H., Jang, M., Chang, J.: k-nearest neighbor query processing algorithm for cloaking
regions towards user privacy protection in location-based services. Journal of Systems Architecture -
Embedded Systems Design 58(9), 354–371 (2012)

31. Xu, S., Yang, W., Lau, F.C.M.: A visualization based approach for digital signature authentication.
Comput. Graph. Forum 28(3), 935–942 (2009)

32. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Authenticated indexing for outsourced spatial
databases. VLDB J. 18(3), 631–648 (2009)

33. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Enabling search services on outsourced private spatial
data. VLDB J. 19(3), 363–384 (2010)

34. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing.
IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

World Wide Web (2019) 22:437–454454

https://doi.org/10.1016/j.pmcj.2017.03.013

	A resource-aware approach for authenticating privacy preserving GNN queries
	Abstract
	Introduction
	Related work
	Privacy preservation for GNN queries
	Authentication for spatial queries

	Problem statement
	Preliminaries
	GNN query
	AV-net protocol
	Voronoi diagram


	Assumptions and problem definition
	System architecture

	Our approach
	Sending centroid-based query
	Cloaked centroid
	Encrypted centroid


	Processing query and returning answer
	Generating digital signatures
	Processing GNN query
	Returning answer


	Authenticating query result
	Authenticating reliability
	Authenticating completeness
	Authenticating correctness through centroid point
	Authenticating correctness through users' locations



	Performance evaluation
	Privacy analysis
	Privacy analysis for cloked centroid
	Privacy analysis for encrypted centroid


	Storage comparison
	Experimental validation
	Study on answer set size
	Study on communication cost
	Study on computation overhead
	Effect of query authentication



	Conclusion
	Acknowledgements
	References


