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Abstract Users are rarely familiar with the content of a data source they are querying, and
therefore cannot avoid using keywords that do not exist in the data source. Traditional sys-
tems may respond with an empty result, causing dissatisfaction, while the data source in
effect holds semantically related content. In this paper we study this no-but-semantic-match
problem on XML keyword search and propose a solution which enables us to present the
top-k semantically related results to the user. Our solution involves two steps: (a) extracting
semantically related candidate queries from the original query and (b) processing candidate
queries and retrieving the top-k semantically related results. Candidate queries are gen-
erated by replacement of non-mapped keywords with candidate keywords obtained from
an ontological knowledge base. Candidate results are scored using their cohesiveness and
their similarity to the original query. Since the number of queries to process can be large,
with each result having to be analyzed, we propose pruning techniques to retrieve the top-k
results efficiently. We develop two query processing algorithms based on our pruning tech-
niques. Further, we exploit a property of the candidate queries to propose a technique for
processing multiple queries in batch, which improves the performance substantially. Exten-
sive experiments on two real datasets verify the effectiveness and efficiency of the proposed
approaches.

� Mehdi Naseriparsa
mnaseriparsa@swin.edu.au

Md. Saiful Islam
saiful.islam@griffith.edu.au

Chengfei Liu
cliu@swin.edu.au

Irene Moser
imoser@swin.edu.au

1 Swinburne University of Technology, Melbourne, Australia

2 Griffith University, Gold Coast, Australia

(2018) 21:1223–1257

/
Published online: 13 October 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-017-0503-8&domain=pdf
mailto:mnaseriparsa@swin.edu.au
mailto:saiful.islam@griffith.edu.au
mailto:cliu@swin.edu.au
mailto:imoser@swin.edu.au


Keywords XML keyword query · No-match · Semantics · Ontology

1 Introduction

Users who query data sources using keyword searches often are not familiar with the data
source schema or the appropriate query language. For the query to succeed, the keywords
have to have matches in the data source. Failing this, an empty result is returned even
when semantically related content exists. When keywords have indirect mappings in a data
source that cannot be found by traditional systems, the user faces the no-but-semantic-match
problem.

Example 1 Consider a user submitted a keyword query q0 = {Jack, lecturer , class} on
XML database given in Figure 1 and would like to find information about the professor
Jack. Using conjunctive keyword search, traditional systems will show an empty result
because there is no occurrence for the keywords lecturer and class in the data source. How-
ever, the keyword lecturer has a semantic connection to academic and f ull prof essor

while the keyword class is semantically related to course, grade and event which exist in
the data source and could generate results that might interest the user.

The XML keyword search has been addressed by researchers before. The concept of
Lowest Common Ancestor (LCA) was first proposed by Guo et al. [16] to extract XML
nodes which contain all query keywords within the same subtree. Xu and Papakonstantinou
[40] introduced the concept of Smallest Lowest Common Ancestor (SLCA) to reduce the
query result to the smallest tree that contains all keywords. Sun, Chan and Goenka [35]
extended this work by applying the SLCA principle to logical OR searches. Hristidis et
al. [18] explored the trees below LCA to provide information about the proximity of the
keywords in the document. Zhou et al. [43] proposed a novel form of inverted list, namely
IDList and set intersection problem for processing XML keyword queries efficiently. None
of the existing studies use the SLCA semantics to provide a solution when one or more
keywords do not exist in the database. In this paper, we adapt the widely-accepted SLCA
semantics and algorithms to retrieve meaningful results when some non-mapped keywords
are submitted to the system.

When a query encounters the no-but-semantic-match problem, we need to find candidate
keywords for the non-mapped keywords to produce non-empty results. Even though the
non-mapped keywords may be semantically close to some items in data source, traditional
systems do not attempt to discover them. To produce an answer to the user’s initial query, the
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Figure 1 A part of XML data
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candidate keywords must be semantically close to the non-mapped keywords. One way of
fulfilling this requirement is to find substitutes for non-mapped keywords in an ontological
knowledge base. Clearly, only candidate keywords that have a mapping in the data source
can be selected as substitutes for a new query. Replacing each of the non-mapped keywords
with one or more semantically related words that are known to exist in the database leads to
a list of candidate queries. Depending on the number of available keywords, the number of
potential queries and results can be impractically large. Hence the degree of semantic sim-
ilarity with the original query is calculated for each candidate query before it is executed.
Before the results can be presented to the user, results of poor quality in terms of cohesive-
ness must be eliminated to ensure all results are meaningful answers to the original query.
Thus, to solve the no-but-semantic-match problem, two aspects are considered: (a) query
similarity; and (b) result cohesiveness.

Example 2 Consider the keyword query q0 = {Jack, lecturer , class} presented in Example
1 on the database shown in Figure 1. Keywords lecturer and class do not have a mapping
in the data source and the traditional system generates an empty result for it. The ontolog-
ical knowledge base [29] has 44 semantic counterparts for lecturer and 39 for class. All
possible substitutions and their combinations are considered. In the extreme case when all
candidate keywords are available in the data source, 44 × 39 = 1716 queries are generated
and each query may have several answers that have to be considered. When a high num-
ber of keywords have to be replaced and these keywords have many semantic counterparts,
we may face an unmanageably large number of combinations that have to be analyzed for
semantic similarity with the original query. Hence, there is a need to identify and remove
less promising candidate queries early.

In this paper, we present a novel two-step solution to the no-but-semantic-match prob-
lem in XML keyword search. In the first step, semantically related candidate queries are
created by replacing non-mapped keywords in the original queries with semantic counter-
parts and in the second step, the queries are processed and the top-k semantically related
results retrieved. In order to present the top-k results to the user for evaluation, each result
retrieved from the queries is separately analyzed in terms of its similarity to the original
query and its cohesiveness in data source. Since there may be a large number of semanti-
cally related results, retrieving the top-k results is potentially costly. Therefore, we propose
two pruning techniques, inter-query and intra-query pruning. Since the candidate queries
are generated by replacing non-mapped keywords, some keywords are shared between the
candidate queries. We exploit this property to propose a more efficient batch query process-
ing technique to improve the performance substantially. The issue of finding semantically
related results for queries with no-but-semantic-match problem has not been addressed in
the context of semi-structured data before. Our contributions are as follows:

1. We are the first to formulate the no-but-semantic-match problem in XML keyword search.
2. We propose two pruning methods and an efficient approach of processing the no-but-

semantic-match query.
3. Based on keywords the candidate queries have in common, we also propose a method

to process multiple queries in a batch which improves the performance substantially.
4. We conduct extensive experiments which verify the effectiveness and efficiency of our

solutions on two real datasets.

The rest of the paper is organized as follows: Section 2 discusses XML keyword search
and presents the no-but-semantic-match problem. Section 3 presents the details of our
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pruning ideas and the efficient processing of the no-but-semantic-match query. Section 4
presents the batch query processing scheme to further improve the performance. The exper-
iments are presented in Section 5. Section 6 reviews the related work. Finally, Section 7
concludes our paper.

2 Background

2.1 Preliminaries

An XML document is an ordered tree T with labeled nodes and a designated root. All
XML elements are treated as nodes containing information in T . There are parent-child
and sibling relationships between the nodes. The depth of the tree is denoted as d, and the
root node has a depth of 1. Each node v in the tree T is marked with a unique identifier in
Dewey code, which describes the path from the root to the node v as a sequence of numbers
separated by a dot (“.”). Sibling nodes have Dewey codes of equal length with a unique last
number.

Example 3 Figure 1 shows an XML tree which contains information about staff and students
of a university. The root node’s Dewey code is 0. Dewey code 0.0.1 refers to a node containing
information about a member of the university and the code prefix 0.0 refers to its parent node.

Keyword match node A node m in the tree T is a match node for keyword ki if it contains
ki . e.g., the match nodes for keyword k1 = database presented in Figure 1 are: m1

1 =
[0.0.2.0.0], m2

1 = [0.1.2.0.0], m3
1 = [0.2.3.0.0], and m4

1 = [0.2.4.0.1.0].

Keyword inverted list Each keyword ki corresponds to a list Si of entries and each entry
corresponds to a node m which contains ki in the tree T . e.g., the keyword inverted list for
keyword k1 = database is S1 = {[0.0.2.0.0], [0.1.2.0.0], [0.2.3. 0.0], [0.2.4.0.1.0]}.

Smallest Lowest Common Ancestor (SLCA) Let lca(m1, ..., mn) returns the lowest
common ancestor (LCA) of match nodes m1, ..., mn. Then LCAs of query q on T are
defined as LCA(q) = {v|v = lca(m1, ..., mn), mi ∈ Si(1 ≤ i ≤ n)}. SLCAs are a subset
of LCAs which do not have other LCAs as descendant nodes and defined as SLCA(q).

Example 4 In Figure 2, for a keyword query q={Jack, database}, there are 4 LCA
nodes which are computed as: LCA(q) = {lca([0.0.3.0], [0.0.2.0.0]), lca([0.0.3.0], [0.1
.2.0.0]), lca([0.1.1.0.0], [0.1.2.0.0]), lca([0.2.1.0.0], [0.2.3.0.0])}={[0], [0.0], [0.1]
, [0.2]}. Since the LCA node [0] is the ancestor node of [0.0], [0.1] and [0.2], it is not an
SLCA and should be removed. Therefore, SLCA(q) = {[0.0], [0.1], [0.2]}.

Keyword query and subtree result In XML data, a keyword query q consists of a set
of keywords {k1, k2, ..., kn}. A result r = (vslca, {m1,m2, ..., mn}) for q is a subtree in T

which contains all keywords ki ∈ q. Here, we consider vslca , the root of the subtree, an
SLCA node, i.e. vslca ∈ SLCA(q).

Tightest SLCA subtree result For an SLCA node, there may exist several subtree results.
This is because that under an SLCA node vslca , we may find several match nodes {mj

i } for
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Figure 2 SLCA subtree results for query q = {Jack, database} executed on data given in Figure 1

the keyword ki, (1 ≤ i ≤ n, 1 ≤ j ≤ ni), where ni is the number of match nodes for ki

under vslca . Let m
li
i be the closest match node from {mj

i } to vslca for ki(1 ≤ i ≤ n), then

we get the the tightest subtree result r = (vslca, {ml1
1 , ..., m

li
i , ..., m

ln
n }).

For example, for SLCA(q) = [0.2] in Figure 2, there are two subtree results, (c) and (d).
The tightest subtree result is (c) r = ([0.2], {[0.2.1.0.0], [0.2.3.0.0]}).

We argue to return only the tightest SLCA subtree results to the user as these results
match the user’s search intention better than the results containing the sparsely distributed
keyword match nodes under vslca . That is, a result is more likely to be meaningful when the
result subtree is more tight and cohesive (for survey [15, 18]).

2.2 Problem statement

Definition 1 (No-Match Problem) Given a keyword query q0 = {k1, k2, ... ,kn} on T , if ∃
ki ∈ q0 such that Si = ∅, we say that query q0 has a no-match problem over ki .

If a user submits a keyword query q0 that has a no-match problem, traditional systems
return an empty result set. However, the missing keyword ki that causes the no-match prob-
lem may have semantic counterparts in the data source T which may produce results the
user might be interested in, if the candidate keywords are sufficiently similar to ki ∈ q0. We
use Ki to denote the list of candidate keywords that can be used to replace ki ∈ q0.

Example 5 Consider the keyword query q0 = {Jack, lecturer , class} presented in Example
1. It is easy to verify that the keywords k2 = lecturer and k3 = class cause a no-match
problem for q0. Candidate keywords that can be used instead of k2 and k3 for q0 are: K2 =
{academic, f ull prof essor} and K3 = {course, grade, event}.

Definition 2 (No-But-Semantic-Match Problem) Given a keyword query q0 = {k1, k2, ...
,kn} with a no-match problem on T , i.e., ∃ki ∈ q0 such that Si = ∅, but Ki �= ∅, then we
say that q0 has a no-but-semantic-match problem over ki .

The no-but-semantic-match problem is a special case of the no-match problem. The prob-
lem can be addressed in the following way: (a) find a candidate keyword list Ki that can
be used to replace ki ∈ q0; (b) generate candidate queries q ′ for q0 by replacing ki with
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Table 1 The list of symbols

Symbol Meaning

λ(q0, q
′) Similarity score of q0 to q ′

α Tuning parameter

σmin Threshold score

σ(r, q ′, T ) Total score of a result

q0 User original query

q ′ A candidate query

Q A set of candidate queries

S A set of Keyword Inverted lists

B Candidate query batch

R A set of results

R∗ A set of top-k results

�(r1, r2) The score difference between r1 and r2

r A result

vslca A subtree result root

m A match node

n Number of keywords in a query

ml Tightest match node

P An execution plan

c(B) Cost of an execution plan

T XML data

d(r, T ) Number of edges in a result r

θ(r, T ) Cohesiveness score of a result r

K A set of candidate keywords

k A query keyword

k′
i ∈ Ki ; (c) execute q ′ in the data source T to produce the semantically related results R

for q0; (d) score and rank the results r ∈ R to return only the top quality results to the user
for evaluation. The list of the symbols is presented in Table 1.

Example 6 Consider the keyword query presented in Example 1. The query q0 has no-but-
semantic-match problem over k2 = lecturer and k3 = class. The semantic counterparts
for k2 and k3 are: K2 = {academic, f ull prof essor} and K3 = {course, grade, event}.
These candidate keywords are combined with the rest of the keywords to generate seman-
tically related candidate queries for q0. The generated candidate queries are: q1 = {Jack,
academic, course}, q2 = {Jack, academic, grade}, q3 = {Jack, f ull prof essor ,
course}, q4 = {Jack, f ull prof essor , grade}, q5 = {Jack, academic, event}, and q6 =
{Jack, f ull prof essor , event}.

We use Q to denote the list of candidate queries. As mentioned before, the candidate
queries q ′ ∈ Q need to be executed against T to produce the semantically related result
set R for q0. We know that these candidate queries q ′ are generated by replacing ki with
k′
i ∈ Ki . However, not all candidate keywords k′

i ∈ Ki are semantically similar to the user
given keyword ki ∈ q0 and also, not all semantically related results r ∈ R are meaningful
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to the same degree. Therefore, we need to score the produced results r ∈ R, denoted by
σ(r, q ′, T ), as given as follows:

σ(r, q ′, T ) = sim(q0, q
′) × coh(r, T ) (1)

where, r is a result for the candidate query q ′, the sim(q0, q
′) measures the similarity of q ′

with q0 (based on (6)) and coh(r, T ) measures the cohesiveness of r in T (based on (8)).
The rank of a result r ∈ R is calculated as follows:

rank(r, T ) = |{r ′|σ(r ′, q ′′, T ) > σ(r, q ′, T )}| + 1 (2)

Definition 3 Top-k Semantically Related Results Given a keyword query q0 =
{k1, k2, ..., kn} on T , having the no-but-semantic-match problem, we want to discover k

results from R that maximize the scoring function given in (1) or in terms of ranking the
results {r|rank(r, T ) ≤ k}.

3 Our approach

We propose a two phase approach to solve the no-but-semantic-match problem in XML data
T . The schematic diagram of our approach is illustrated in Figure 3. In the first phase, the
semantic counterparts for the non-mapped keywords of the user query are extracted from
the ontological knowledge base. Next, the candidate queries are generated by replacing the
non-mapped keywords with their semantic counterparts and the similarities between the
candidate queries and the original query are computed. In the second phase, the candidate
queries are executed against the data source T . The results are scored based on (1) and
finally, only the top-k results are presented to the user for evaluation. The results are scored
based on the followings: (a) similarity of the candidate queries to the user given query; and
(b) the cohesiveness of the results.

As the candidate queries are generated using the ontological knowledge base, we use
the ontological similarity of the candidate query to the user given query as the measure
of similarity for the first parameter. The details for computing this similarity is presented
in Section 3.1. The details for computing the cohesiveness of the results is presented in
Section 3.2. Since there are a number of candidate queries that should be executed against
the data source T and each candidate query may have several results that needs to be scored,
we propose efficient pruning techniques to avoid unnecessary computations and terminate
early. The pruning ideas and the details of our candidate query processing technique are
presented in Section 3.4. We also propose a batch query processing technique to speed up

Database

Ontology

k1 k2 k3 k11 k21 k31

k12 k22 k32

k13 k23 k33 

Top-k semantically 

related results 
Queries ontological 

similarity calculation

Data coherency 

calculation combined by 

queries similarity

Figure 3 Schematic diagram of our approach for solving no-but-semantic-match problem in XML data
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the computations further by sharing the computations among the candidate queries, which
is described in Section 4.

3.1 Candidate queries

This section describes how to generate the candidate queries Q for the user query q0 and
compute their similarity to q0.

3.1.1 Generating candidate queries

To adhere closely to the user’s intentions, the candidate keywords k′
i ∈ Ki must be as

close as possible to the non-mapped keywords ki ∈ q0. In this study we use WordNet,
which is widely used in the literature [6] for finding semantic counterparts for ki ∈ q0. We
categorize our semantic candidate keywords derived from WordNet into four groups [29]:
(a) synonyms denoted as Syn(ki), (b) coordinate terms denoted as Cot(ki), (c) hyponyms
denoted as Hpo(ki), and (d) hypernyms denoted as Hpe(ki). The candidate keyword list
Ki for a keyword ki ∈ q0 contains all types of ontological counterparts as shown in (3).

Ki = Syn(ki) ∪ Cot(ki) ∪ Hpo(ki) ∪ Hpe(ki) (3)

However, not all candidate keywords extracted from the ontological knowledge base
are available in T . To avoid generating non-related queries from the non-existing candi-
date keywords that may produce non-sense results, the keyword list has to be reduced to
the candidates which have direct mapping in the data source. To do this, an inverted key-
word list using hash indices can be queried in O(1) time. Finally, the candidate queries Q
are generated by replacing the non-mapped keywords ki ∈ q0 with each of their semantic
counterparts k′

i ∈ Ki in turn.

3.1.2 Measuring candidate query similarity

In order to measure the similarity between a candidate query q ′ ∈ Q and the user’s original
query q0, firstly we measure the individual similarity between the candidate keyword k′

i ∈ q ′
and the corresponding non-mapped keyword ki ∈ q0 using Wu and Palmer’s metric [38].
This metric establishes the depths of both keywords and their least common subsumer (LCS)
according to the WordNet structure and produces the degree of similarity between these two
keywords, SimWP(ki, k

′
i ), as shown in (4).

SimWP
(
ki, k

′
i

) = 2 × dep(LCS)

dep(ki) + dep
(
k′
i

) (4)

where dep(ki) returns the depth of the keyword ki in the WordNet structure. This metric
is symmetric, i.e., SimWP

(
ki, k

′
i

) = SimWP
(
k′
i , ki

)
. However, WordNet has a hierar-

chical structure. That is, the candidate keyword k′
i ∈ q ′ could be a more special type (e.g.,

hyponyms) or a more general type (e.g., hypernyms) for the non-mapped keyword ki ∈ q0
in WordNet. Therefore, we incorporate the specialization/generalization aspect of ki ∈ q0
into the Wu and Palmer similarity metric as given as follows:

DSim
(
ki, k

′
i

) = dep
(
k′
i

)

max
(
dep(ki), dep

(
k′
i

)) × SimWP
(
ki, k

′
i

)
(5)

where DSim(ki, k
′
i ) is the directional similarity of keyword ki ∈ q0 to keyword k′

i ∈ q ′.
The directional similarity DSim

(
ki, k

′
i

)
penalizes the more general keyword types of ki ∈
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q0 by weighting SimWP
(
ki, k

′
i

)
with

dep(k′
i )

max(dep(ki ),dep(k′
i ))

. Finally, the similarity of q ′ to

the original query q0 is computed by considering all the replacements in q ′ as follows:

λ(q0, q
′) =

n∏

i=1

DSim
(
ki ∈ q0, k

′
i ∈ q ′) (6)

where n is the number of keywords in q0 that have been replaced to generate q ′ (1 ≤ n ≤ |q|).

Example 7 Consider the keyword query q0 = {Jack, lecturer , class} presented in Exam-
ple 1. Here, the second and the third keywords cause the no-match problem for q0. The
candidate keyword list for these two non-mapped keywords are: K2 = {academic : 0.91,
f ull prof essor : 0.84} and K3 = {course : 1, grade : 1, event : 0.35}, where each candi-
date keyword is labeled with their corresponding DSim scores. Now, the candidate queries
are generated by replacing the non-mapped keywords in q0 with their candidate keywords
and scored as follows:
q1 = {Jack, academic, course}, λ(q0, q1)=0.91 × 1 = 0.91,
q2 = {Jack, academic, grade}, λ(q0, q2)=0.91 × 1 = 0.91,
q3 = {Jack, f ullprof, course}, λ(q0, q3)=0.84 × 1 = 0.84,
q4 = {Jack, f ullprof, grade}, λ(q0, q4)=0.84 × 1 = 0.84,
q5 = {Jack, academic, event}, λ(q0, q5)=0.91 × 0.35 = 0.31 ,and
q6 = {Jack, f ullprof, event}, λ(q0, q6)=0.84 × 0.35 = 0.29.

From the above, it is easy to verify that q1 and q2 are the most similar candidate queries
to the original query.

3.2 Cohesiveness of results

There can be potentially many candidate queries with a large number of results and not all
results r ∈ R are meaningful to the same degree. In XML, if the match nodes in the result r

are near to each other, the result is considered to be more cohesive. Intuitively, when a result
subtree is more cohesive, it is more likely to be relevant and meaningful (for survey [15,
18]). To measure the cohesiveness of a result r , we firstly compute the distance between
each match node m and the root vslca of the result subtree r . Then, we compute the overall
distance of a result r w.r.t. the data source T as given as follows [15]:

d(r, T ) =
∑

(lm − lvslca
) (7)

where r is the result subtree, vslca denotes the root of the result r , m is the match node, lm
is the level of m, and lvslca

is the level of the root in r . Equation (7) counts the number of
edges from each tightest match node to the root in the subtree result independently. This
equation may sometimes count the sharing edges more than one time but can also improve
the performance due to its light computations. Moreover, the side effect of sharing path
computations independently is minimized since we only consider the tightest match nodes
in the subtree result. Furthermore, our solutions are independent of this equation and any
kind of equation could be used instead. Clearly, the larger this distance is, the lower the
cohesiveness score for the result r should be. Therefore, we compute the cohesiveness of a
result subtree r w.r.t. the data source T as given as follows [15]:

θ(r, T ) = 1

logα(d(r, T ) + 1) + 1
(8)
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Figure 4 Subtree results forcandidatequeriesQ inExample 7 after executing them against data given in Figure 1

where α is the tuning parameter by which the user can trade off between the similarity of
the candidate queries and the cohesiveness of the results. If we set α to a larger value, the
sensitivity to the cohesiveness of the results gets smaller. That is, the total score σ of a result
r is more dependent on the similarity of the query λ(q0, q

′) than its cohesiveness.

Example 8 Consider the candidate keyword queries Q in Example 7. The result subtrees of
these queries are illustrated in Figure 4. Using α = 4, we compute the cohesiveness of the
results as follows:
d(r1, T ) = 7, θ(r1, T ) = 1

2.5 = 0.4,
d(r2, T ) = 10, θ(r2, T ) = 1

2.72 = 0.36,
d(r3, T ) = 8, θ(r3, T ) = 1

2.58 = 0.38,
and d(r4, T ) = 11, θ(r4, T ) = 1

2.79 = 0.35.

3.3 Effect of tuning parameter

Now, we provide two fine-grained case studies as follows: (1) the influence of the tun-
ing parameter α on the ranking of the retrieved results and (2) trading off between query
similarity and result cohesiveness in the final top-k results based on α.

Case Study-1 This case study demonstrates that our approach is tolerant to the settings of
α if one result beats another one in terms of both query similarity and result cohesiveness.
This is also expected as the user might explore the top cohesive results with better similarity
first. Consider the queries given in Example 7. Here, we extract r1 from q1 and r4 from q4
as shown in Figure 4. From Table 2, we see that r1 will always be ranked better than r4 as
r1 has the higher overall score σ than r4 for all settings of α.

Case Study-2 This case study demonstrates how the user can trade off between query
similarity and the result cohesiveness based on α. Assume a user would like to explore the
results with better cohesiveness first than those with higher similarity. Consider a candidate

Table 2 Ranking of r1 is tolerant to α as it is better than r4 in terms of both query similarity and result
cohesiveness

α d(r1, T ) σ (r1, q1, T ) d(r4, T ) σ (r4, q4, T ) �(r1, r4)

2 7 0.2291 8 0.2029 0.0262

3 7 0.3168 8 0.282 0.0348

4 7 0.3666 8 0.3273 0.0393

8 7 0.4583 8 0.4114 0.0469

16 7 0.5238 8 0.472 0.0518
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Table 3 Trading off query similarity and result cohesiveness in r2 and r7

α d(r2, T ) σ (r2, q2, T ) d(r7, T ) σ (r7, q7, T ) �(r2, r7)

2 11 0.1845 7 0.1887 −0.0042

3 11 0.2593 7 0.2608 −0.0015

4 11 0.303 7 0.3019 0.0011

8 11 0.3854 7 0.3774 0.008

16 11 0.4462 7 0.4313 0.0149

query q7 = {Jack, academic, position} with λ(q0, q7) = 0.7549 and a result r7 from
q7 with d(r7, T ) = 7. Now, we compare it with r2 with d(r2, T ) = 11 from q2 with
λ(q0, q2) = 0.8462 as given in Example 7. From Table 3, we observe that r7 outranks r2
for α = [2, 3]. Now, a user needs to set α > 3 to explore r2 before r7 in the result list by
putting more emphasis on query similarity than result cohesiveness.

3.4 Processing of candidate queries

A naı̈ve approach to processing the no-but-semantic-match query q0 first generates the can-
didate queries Q and then computes all semantically related results r ∈ R by executing the
queries q ′ ∈ Q against the data source T . Then it applies (6) to the results R to establish the
similarity of the corresponding candidate query q ′ to the original query q0 and determines
the cohesiveness in the data source T according to (8). The results are then sorted based on
their total score σ (1) to obtain the top-k ranked (2) semantically related results.

Assume that the initial query q0 = {k1, ..., kn} has the no-but-semantic-match problem
for all ki ∈ q0, |Q| is the maximal number of candidate queries produced for q0, d is
the depth of the tree T , |S| and |S1| are the maximal and minimal sizes of the inverted
keyword lists for the semantic counterparts k′

i , respectively and |R| is the maximal number
of semantically related results for the candidate queries in Q, then the complexity of the
naive approach becomes |Q|×nd|S1| log |S|+|R| log |R|. However, both |Q| and |R| could
be potentially large, which makes the naı̈ve approach impractical. We propose two efficient
pruning techniques, called the inter-query pruning and intra-query pruning to significantly
reduce the sizes of Q and R, respectively.

3.4.1 Inter-query pruning

The main mechanism to stop processing unnecessary queries is our inter-query pruning
technique. In fact, the inter-query pruning decides whether a query results can beat the
results in the current top-k list. If not, the processing of the candidate queries stops and top-
k list returns. Thus, the inter-query pruning technique guarantees to return the exact result.
Assume the candidate queries Q = {q1, q2, ..., ql, ql+1, ... q|Q|} are sorted based on their
similarities λ(q0, qi) to the original query q0. We obtain the following lemma.

Lemma 1 Assume R∗ is the k results of Q′ = {q1, q2, ... , ql} and σmin is the min-score
of the results R∗. Then, we can stop processing the rest of the candidate queries Q′′ =
{ql+1, ...q|Q|} if λ(q0, ql+1) < σmin.

Proof Assume that r is a min-scored result in R∗ for q ′ ∈ Q′, i.e., σmin = σ(r, q ′, T ) and
r ′ is a result of the candidate query ql+1 whose similarity score is higher than any result
of the queries Q′′ = {ql + 1, ..., q|Q|}. Now, assume that σ(r ′, ql+1, T ) > σ(r, q ′, T ).
We prove that this can not happen if λ(q0, ql+1) < σmin. To be scored higher than r , r ′
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must satisfy the following: λ(q0, ql+1) > σmin

θ(r ′,T )
. However, the highest possible value of θ

for any result in T is 1. By putting this into the above, we get λ(q0, ql+1) > σmin, which
contradicts the assumption. Therefore, R∗ consists of the top-k semantically related results
according to Definition 3 whose ranks are ≤ k.

Example 9 Consider the candidate queries Q given in Example 7. If we want to present
the top-1 result to the user, and after processing the candidate queries up to q4 we get
σmin = 0.91 × 0.4 = 0.36, then we do not need to process q5 as λ(q0, q5) = 0.31 < σmin.
Thus, from q5 to the end of the list ofQ, no queries can score higher than σmin and therefore,
we can stop processing them.

3.4.2 Intra-query pruning

Although the inter-query pruning technique does not execute all of the candidate queries
q ′ ∈ Q against T , it employs the pruning technique only in the first phase of the framework.
That is, once we start processing a candidate query q ′, we compute all of its results. Consider
the candidate queries Q of q0 given in Example 7 and assume that the user requests only the
top-1 result for q0. Also, assume that the candidate queries in Q are sorted based on their
similarities with q0 and we have already processed the candidate queries from q1 to q5. The
current top-1 result is r1 (see in Figure 4) and σmin is 0.36. Now, while processing the can-
didate query q3, we can discard the result r3 of q3 (as shown in Figure 4) while generating
it. That is, while reading through the keyword inverted lists SJack , Sf ullprof essor and Scourse

for q3, we can partially compute r3 consisting of the keywords {Jack, f ull prof essor} for
q3 only (as highlighted in Figure 4), denoted by r

p

3 , and compare the score 0.34 of r
p

3 with
the current σmin, we can decide that the complete r3 consisting of keywords {Jack, f ull

prof essor, course}, denoted by rc
3 , can never outrank r1 as θ(rc

3 , T ) ≤ θ(r
p

3 , T ). The same
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occurs while computing r4 of q4 and we can discard r4 before generating the ultimate result.
We call the above query pruning technique as the intra-query pruning.

3.4.3 The framework

Algorithm 1 presents the framework for processing the no-but-semantic-match query q0
submitted by the user. First, it generates the candidate queries Q for q0 as explained in
Section 3.1.1, shown on line 1. The lines 2-4 compute the similarity between the can-
didate queries Q and the user query q0 as explained in Section 3.1.2 and sort them.
Then, a min-heap is initialized with R∗ to null and the min-score σmin to MAXV AL

in lines 5-6. In lines 8-9, we stop processing the candidate queries in Q as soon as we
find a query q ′ ∈ Q if |R∗| = k and q ′.sim < σmin. Otherwise, if |R∗| = k, we
update σmin by reading the root entry of the heap R∗ and adding its score root.score

to σmin in lines 10-11. Then, for each keyword ki ∈ q ′ we retrieve their corresponding
inverted lists and pass it to the processQuery method (which is explained in detail in
the following section) in line 16 to retrieve the results of q ′ and insert the eligible results
into R∗.

3.4.4 The processQuery method

In order to process the no-but-semantic-match query q0, we need to execute each candi-
date keyword query q ′ ∈ Q against the data source T in the processQuery method.
There are two benchmark algorithms in the literature to compute the keyword query results
on XML data T as given as follows: (a) scan eager [40] and (b) anchor based [35] algo-
rithms. However, these two benchmark algorithms are not readily available to implement
our processQuery method. These algorithms only find the root of the subtree results
in T , but ignore the distribution of the keyword match nodes in the subtree. To imple-
ment our processQuery method with these benchmark algorithms, we need to address the
following issues which are specific to our problem: (a) finding the tightest nodes under
the confirmed SLCA root vslca and (b) scoring the result partially based on its candidate
query similarity and cohesiveness to apply intra-query pruning. We propose two tech-
niques to implement the processQuery method based on the benchmark algorithms as
follows:

1. Scan Eager based Query Processing (SE-QP) and
2. ANchor based Query Processing (AN-QP).

SE-QP algorithm Like scan-eager algorithm [40], SE-QP firstly sorts the inverted lists
of the keywords in q ′. Then, it picks a match node m1 from the shortest inverted list S1
and then, finds the closest match nodes to m1 from other lists to compute the result root
vslca . However, the tightest subtree result computation and result scoring is delayed until
we can confirm that this vslca can be an actual SLCA node. Therefore, the cursor of each
of the inverted list is retained until we decide that this vslca cannot be an ancestor of any
other result roots. Once we confirm that this vslca is an actual SLCA node, we compute
the tightest subtree result for it and score the result. While scoring the result, we also apply
intra-query pruning here. Then, we advance the cursors of all of the lists and continue the
above steps until we access all nodes in the list S1.
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The SE-QP query processing technique is pseudocoded in Algorithm 2. In line 1, we sort
the inverted list of all keywords in q ′ and do the initialization. In lines 2-3, it finds the
match node m1 from the shortest list S1 and the match nodes mi from other lists. In line 4,
we find the potential root result vu

slca which then should be confirmed as an actual SLCA
node. In line 5, we check vu

slca with the previous result root vslca . If vslca is not an ancestor
for vu

slca , denoted as vslca �≺a vu
slca , vslca is confirmed as the SLCA result root. Then, the

corresponding tightest subtree result for vslca is retrieved. To do so, we scan each list Si by
moving its cursor r.cursori backward and forward to find the closest match nodes under
vslca , which is implemented in function getT ight of line 7. For each closest match node
mli

i , the distance of mli
i with vslca is computed by getDist function in line 8 and the score

of the result r.score is computed partially in lines 8-9. We stop scanning other lists if the
partial score cannot beat σmin (intra-query pruning) and jump to line 14, which is given in
lines 10-11. Otherwise, we keep scanning all lists to compute the tightest subtree result and
the ultimate score of r for the vslca . We update the min heap R∗ by this result r in line 13.
Now, we update vslca with the current result root vu

slca if vu
slca �≺a vslca in lines 15-16. In

lines 17-19, if the last result root node is an actual SLCA, the similar steps are conducted to
score its tightest subtree result and if promising, is used to update R∗.

AN-QP algorithm Like scan-eager algorithm [40], SE-QP performs worse when the
inverted lists have similar sizes (e.g., match node distribution). Also, it incurs many redun-
dant computations when the data distribution is skewed in T . For example, if the match
nodes are mostly distributed in one part of the XML tree in an inverted list, SE-QP reads all
the nodes in S1 and computes their LCAs to finalize the corresponding SLCAs. However,
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lots of these nodes can be skipped because they are far from the nodes in other inverted lists
and cannot create SLCA nodes.

In order to skip the non-promising match nodes, like [35], AN-QP considers only the
anchor match nodes for computing SLCA nodes. A set of match nodes M = {m1, ...mn}
for q ′ is said to be anchored by a match node ma ∈ M if for each mi ∈ M \ {ma},
mi = closest (ma, Si), where closest (ma, Si) returns the match nodes in the list Si which
is closest to the node ma[35]. Unlike SE-QP, the anchor match node ma is picked from
among inverted lists (not necessarily from the shortest one) so that it can maximize the skip-
ping of redundant computations. Similar to SE-QP, AN-QP first extracts the SLCA result
root vslca and thereafter, finds the tightest subtree result under vslca and partially score the
result to apply intra-query pruning.

The AN-QP technique is pseudocoded in Algorithm 3. Line 2 finds the anchor node
ma from the the inverted lists {S1, ..., Sn}, which is implemented in function getAnchor .
The potential result root vu

slca is computed after finding the closest nodes mi ∈ Si to ma ,
∀i ∈ [1, n] and i �= a in lines 4-5. Here, if vslca �≺a vu

slca , vslca is confirmed as the SLCA
result root as given in line 6. Therefore, we retrieve the closest match nodes mli

i ,∀i ∈ [1, n]
under vslca . Similar to SE-QP, the function getT ight of line 8, scans each list Si by moving
its cursor r.cursori backward and forward to compute the tightest subtree result for vslca .
Then, we find the distance of each mli

i with vslca by the function getDist and add it to the
total distance of r in line 9. Then, we compute the score of the result r.score partially in
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line 10. Here, we apply intra-query pruning if the partial score cannot beat σmin and jump
to line 15, which is given in lines 11-12. Otherwise, we compute the ultimate score of the
result by scanning all lists to retrieve the tightest subtree result under vslca and update r

with its corresponding data in line 13. In line 14, the promising result r is inserted into R∗.
The current result root vu

slca is saved into vslca , if vu
slca �≺a vslca in lines 16-17. We update

the anchor node ma in line 18 for the next iteration. We check the last result root node and
retrieve its tightest subtree result if it is an actual SLCA node in lines 19-20. Finally, we
score it and update R∗ with it if r · score > σmin in line 21.

4 Batch processing

This section investigates a more efficient method for processing the candidate queries Q
obtained from the initial query q0 with the no-but-semantic-match problem. As the candi-
date queries in Q are generated by replacing the keywords of the initial query, they usually
share a subset of keywords. It is possible to compute the results of these shared subsets of
keywords among the queries in Q and then merge the results of the shared part with the
exclusive part of each query q ′ ∈ Q [42]. However, two challenges arise here: (a) find-
ing the groups of queries, called batches, which share a subset of keywords among them
and can be executed efficiently; and (b) finding the tightest SLCA results for the shared
part which can be ultimately merged with the exclusive part of each candidate query in a
batch.

4.1 Constructing the candidate query batch

Given two candidate queries q1, q2 ∈ Q, assume thatKs(q1, q2) denotes the set of keywords
shared by them, i.e., Ks(q1, q2) ⊆ q1, q2. We can achieve the best performance by putting
q1 and q2 in a batch if they share the maximal set of keywords, i.e., |Ks(q1, q2)| = |q1|−1 =
|q2| − 1 [42]. A candidate query batch is defined as given below:

Definition 4 A candidate query batch, denoted by B, is a subset of Q such that the follow-
ing conditions hold: (a) ∀q1, q2 ∈ B, |Ks(q1, q2)| = |q1|−1 = |q2|−1; (b) ∀q1, q2, q3 ∈ B,
Ks(q1, q2) = Ks(q2, q3) = Ks(q1, q3); and (c) 1 ≤ |B| ≤ |Q|.

To execute the candidate queries in Q, we have to construct the set of batches that can
cover all queries in Q. We call the set of candidate query batches that cover the queries in
Q an execution plan, which is defined below:

Definition 5 An execution plan, denoted by P , is a set of candidate query batches such
that: (a) Q = ⋃|P|

i=1 Bi ∈ P and (b) ∀B1,B2 ∈ P , B1 ∩ B2 = ∅.

An execution plan P has its evaluation cost which is the summation of the execution
costs of its constituent batches. The execution cost of a batch B directly depends on the
inverted keyword lists which have to be accessed. Assume that Ku is the set of keywords of
all candidate queries in a batch B that has not been covered by Ks , i.e.,

⋃
∀q1∈B q1 \Ks . We

estimate the cost of executing B, denoted by c(B) as:

c(B) =
∑

k1∈Ks

|Sk1 | +
∑

k2∈Ku

(|min(SKs )| + |Sk2 |) (9)
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Figure 5 A part of the possible execution plans for processing the candidate queries in Q

where min(SKs ) returns the shortest inverted keyword list size among the keywords in
Ks . However, there exist many plans for Q as shown in Figure 5. The optimal plan has the
least cost. Discovering this optimal plan is a combinatorial optimization problem as there
are many ways of constructing the candidate query batches from Q. Here, we propose a
greedy approach for discovering a sub-optimal plan which consists of the following steps:
(a) retrieve the topmost similar query q1 ∈ Q to q0; (b) construct all plausible batches for
q1 as follows: (i) remove a keyword k1 ∈ q1 and construct Ks as q1 \ k1; (ii) retrieve all
q2 ∈ Q such that Ks ⊂ q2; (iii) insert q1 and all q2 into a plausible batch B1; (c) make the
batch B1 as the actual batch that has the least unit cost c(B1)|B1| ; (d) remove all queries B1 from
Q; and (e) repeat the above steps until Q is empty.

Example 10 Consider the candidate queries Q presented in Example 7 and the sizes of the
inverted lists as follows: |SJack| = 3, |Sacademic| = 1, |Sf ullprof essor | = 1, |Scourse| = 6,
|Sgrade| = 2, |Sevent | = 2.
We start with the topmost query q1 ∈ Q and remove one keyword at a time from q1 to create
the plausible candidate query batches as follows:
B1.1 (Ks = {Jack, academic}, Ku={course, grade, event})
B1.2 (Ks = {Jack, course},Ku={academic, f ullprof essor})
B1.3 (Ks = {academic, course}, Ku = {Jack})
We estimate the costs of the candidate query batches as follows: c(B1.1)|B1.1| = 5.6,

c(B1.2)|B1.2| =
8.5,

c(B1.3)|B1.3| = 11
Therefore, B1.1 is the initial candidate query batch. After excluding the queries in B1.1 from
Q, the next topmost similar candidate query q3 is considered and the following plausible
batches are constructed:
B2.1 (Ks = {Jack, f ullprof essor},Ku={course, grade, event})
B2.2(Ks = {Jack, course},Ku = {f ullprof essor})
B2.3(Ks = {f ullprof essor, course},Ku = {Jack})
The costs of the above plausible batches are as follows:
c(B2.1)|B2.1| = 5.6,

c(B2.2)|B2.2| = 13,
c(B2.3)|B2.3| = 11

Hence, B2.1 is the next candidate query batch. Now, if we exclude all queries in B2.1 from
Q, Q becomes empty and the process stops. Finally, plan P3 is our execution plan as shown
in Figure 5c, which is sub-optimal.

4.2 Processing the candidate query batch

To process a candidate query batch B, we need to compute the results of the shared part Ks

first. Then, we need to merge these shared part results with the non-shared keywords Ku for
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Figure 6 Shared part processing for query batch B1 of P3

q ′′ ∈ B. However, computing the shared part results that can be merged with the unshared
part is a non-trivial problem. This is because, the SLCA result roots of the shared part Ks

do not guarantee to be the SLCA result roots for q ′′ ∈ B. The result roots of q ′′ may ascend
to higher levels in the tree T when the shared part results are merged with the unshared part
q ′′ \ Ks .

Consider the potential shared part results of {Jack, academic} for the batch B1 of plan
P3 as presented in Figure 6. Now, when we merge these results with the keyword course

for q1 ∈ B1, rs
1 contributes to the final SLCA result root, which is v

r1
slca = [0.2] (see in

Figure 4). However, when we merge these potential shared part results with the keyword
grade for q2 ∈ B1, rs

3 contributes to the final SLCA result and the result root ascends
to v

r3
slca = [0] (see in Figure 4). This indicates that we need to retain rs

1 as well as rs
3

as the actual shared part results, though the root of rs
3 is not the SLCA result root of the

shared part {Jack, academic}, but the root of rs
1 is. Here, we do not need to retain rs

2 as
d(rs

2, T ) = 7 > d(rs
3, T ) = 6 and both rs

2 and rs
3 share the same root.

Lemma 2 Assume q ′′ ∈ B and vs
slca is the SLCA result root of the shared part of B. Then,

the tightest match nodes of the final result of q ′′ are under vs
slca or under one of the ancestors

of vs
slca .

Therefore, to process a candidate query batch shared part Ks , we find the closest match
nodes under the shared part result root vs

slca as well as under all of its ancestors.

4.2.1 Inter and intra-batch pruning

Assume the candidate queries in a batch Bi are sorted based on their similarities to q0
as follows: {q1, q2, ..., ql−1 , ql, ..., q|Bi |}. Also, Rs

Bi
is the set of shared part results for

Bi . Then, the lower bound of the overall distances of the results RBi
of Bi , denoted by

d(RBi
, T ), is min{d(rs ∈ Rs

Bi
, T )}. Now, the upper bound of the cohesiveness of RBi

,

denoted by θ(RBi
, T ) is computed using d(RBi

, T ) in Eq. 8. The upper bound of the σ of
a result rl of query ql ∈ Bi is:

σ(rl, ql, T ) = λ(q0, ql) × θ(RBi
, T ) (10)

Assume B′
i = {q1, q2, ..., ql−1} and R∗ is the k results of Q′ = {B1, ...,Bi−1,B′

i}.
Also, σmin is the min-score for R∗. Then, we can stop processing the candidate queries
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{ql, ..., q|Bi |} ∈ Bi if σ(rl, ql, T ) < σmin. We call the above pruning technique as intra-
batch pruning if l > 1, otherwise, we call it inter-batch pruning (prune the entire batch).

4.2.2 The framework

Algorithm 4 presents the framework for batch query processing technique (BA-QP) of the
no-but-semantic-match problem. Similar to first 6 lines of Algorithm 1, it generates the
candidate queries, measures their similarity, sorts them and does the initializations in line
1 to apply inter-query pruning first. That is, at each step of iteration, we take the topmost
similar query q ′ ∈ Q in line 2 and stop processing the candidate queries in Q as soon as we
find a query q ′ ∈ Q such that |R∗| = k and q ′.sim < σmin as given in lines 3-4.

Otherwise, we construct the sub-optimal candidate query batch B∗ for q ′ as given in
lines 5-10. In line 12, the shared part Ks of the candidate query batch B∗ is processed and
its results are stored in Rs . Then, for each query q ′′ ∈ B∗, the upper bound of its actual
results’ score r.score is computed in line 14. In lines 15-16, we apply inter and intra-
batch pruning where we stop processing the candidate query batch B∗ if |R∗| = k and
r.score < σmin. Otherwise, if |R∗| = k, we update σmin by reading the root entry of the
heap R∗ in lines 17-18. In lines 19-20, the unshared keyword part ku of the batch query q ′′
and the corresponding inverted list S1 are retrieved. The procedure mergeResults in line
21 generates the final results for q ′′ by merging shared part results Rs with the unshared
part ku and inserts the promising results into R∗. Finally, the queries q ′′ ∈ B∗ are excluded
from the Q as pseudocoded in line 22. The above steps continue until Q becomes empty.
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The details of the sharedPartComputation method in line 12 of Algorithm 4 is pre-
sented in Algorithm 5. In lines 2-5, we compute the result root vslca . Then, we compute all
the ancestors of vslca which is implemented in the function getAncestors and put them in
the potential result roots A in line 6. For each potential result root vs

slca ∈ A, we check
if it is already processed and is in memory Rs in line 8. If vs

slca �∈ Rs , this result has
not been processed and thus, we compute the closest nodes under vs

slca in the inverted lists
Si,∀i ∈ [1, n − 1], their distance to vslca , and their score (lines 9-12). In lines 13-14, we
check if the score can beat σmin (intra-query pruning). In lines 15-16, r is updated and
inserted into Rs because it is promising. In line 17, we update the anchor match node ma

for the next iteration.
The details of the mergeResults method in line 21 of Algorithm 4 is presented in Algo-

rithm 6. In lines 2-5, we compute the potential result root vu
slca which is yet to be confirmed.

If the previous result root vslca is not an ancestor of vu
slca , then vslca is confirmed as the

SLCA result root in line 6. Thus, from Rs , we retrieve the precomputed closest match nodes
mli

i , ∀i ∈ [1, n − 1] of the shared part which is implemented in function retrieveNode in
line 8 and the distance of the shared part which is implemented in the function retrieveDist

in line 9. Then, in lines 10-11 we compute the closest match node mln
n for the unshared part

and its distance to vslca and finally, add this distance to the total distance of r . In lines 13-15,
we compute r.score and if r.score > σmin, the result is added to R∗. We update vslca with
the current result root vu

slca if vu
slca �≺a vslca in lines 16-17. Then, the anchor match node

ma is updated in line 18. In lines 19-21, if the last result root is SLCA and is not considered,
similar steps are taken and the corresponding result is inserted into R∗ if it is promising.
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5 Experiments

This section evaluates the effectiveness and the efficiency of our approach for solving no-
but-semantic-match problem in XML keyword search. To compare our results, we adapt
and implement the closely related existing XOntoRank method [14] which uses ontology
to enhance the XML keyword search on medical datasets. The adaptation is achieved as
follows. We create a hash map for the ontologically relevant keywords to the original key-
words by using ontological knowledge base. Then for each keyword ki ∈ q0 we look up
the hash map and find the candidates and put them in the set of candidate keywords K.
Then we create Onto-DIL for each keyword ki ∈ q0 and all of its associated candidates in
K. Afterward, we compute the node score for each entry based on the relevance degree of
the original keyword ki to the candidate keywords in K. Finally, the inverted list is added
to Onto-DIL Sonto. After creating Sonto, we compute LCAs by using Onto-DIL index and
for each result r , the score is computed using the node score of its matched nodes. If the
result score r.score is better than the threshold σmin, the result is added to top-k list R∗.
The above is pseudocoded in Algorithm 7. We term this method as XO-QP in this paper.
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5.1 Settings

Datasets and queries We evaluate our algorithms on two real datasets: (a) IMDB 170MB,
that includes around 150,000 recent movies and TV series. (b) DBLP 650MB, which con-
tains publications in major journals and proceedings. We use a wide range of queries to test
the efficiency of our proposed methods for each dataset. For each test query, we choose
keywords which satisfy the followings: (a) a keyword should be used often by the users
and (b) a non-existing keyword should have some semantic counterparts, which have direct
mapping in the data source. The test queries have no-but-semantic-match problem. Table 4
presents a part of the test queries called sample queries for detailed analysis of efficiency
and effectiveness of our methods.

Environment All algorithms are implemented in C# and the experiments are conducted
on a PC with 3.2 GHz CPU, 8 GB memory running 64-bit windows 7.

5.2 Effectiveness

This section evaluates the effectiveness of our approach from different perspectives.

5.2.1 Our approach versus intuitive solution

When a user issues a query and faces an empty result, she might try to change the initial
query to obtain some results. However, being unfamiliar with the data source, the user is
likely to think of a few synonyms of the keywords of the initial query. Assume the user is a
kind of expert and succeeds in constructing the 10 topmost similar queries when changing
the initial query. These queries may not produce good results but we consider this intuitive
solution as a benchmark to gauge the effectiveness of the technique we propose. Here, we
compare the top-10 results retrieved by our approach which processes all possible candidate
queries with the intuitive solution which processes only the 10 topmost similar queries for

World Wide Web (2018) 21:1223–12571244



Table 4 A Sample of test queries for IMDB and DBLP datasets

Dataset # Query |Q|

IMDB q0.1 ghost, badgering, movie 12

IMDB q0.2 battler, spanish, drama 272

IMDB q0.3 slump, federal, reserve, harshness, documentary 285

IMDB q0.4 reproach, trespasser, fight, drama 357

IMDB q0.5 treasonist, zombie, shiver 1295

IMDB q0.6 research, outlander, universe 3528

IMDB q0.7 mass murder, horror, perfidy 11900

IMDB q0.8 victory, exaltation, drama 851

IMDB q0.9 partiality, perfidy, fear, english 442

IMDB q0.10 criminal, overcharge, loneliness 12240

IMDB q0.11 criminal, fear, spanish 1152

IMDB q0.12 victory, exuberance, drama, fight 437

DBLP q0.1 exigency, analysis, system 252

DBLP q0.2 academic, fraudulence, threat 4500

DBLP q0.3 information, ordination, track 360

DBLP q0.4 involvement, neuroscience, indicant, information 350

DBLP q0.5 mutter, alarm, analysis 2079

DBLP q0.6 deceit, type, analysis 8190

DBLP q0.7 online, trust, selling 276

DBLP q0.8 aftermath, type, analysis, system 225

DBLP q0.9 psychopathy, symptom, visualization, science 3276

DBLP q0.10 interloper, search , analysis, system 352

DBLP q0.11 trace, audit , system 238

DBLP q0.12 trace, type, analysis 255

all test queries given in Table 4. In Figures 7a and 8a, the average candidate query similarity
of the top-10 results for the two approaches are presented for each dataset. Clearly for all
the test queries, the average similarity of the results retrieved by our approach is very close
to the average candidate query similarity of the results of the intuitive solution. Figures 7b
and 8b show, on average, smaller number of edges (indicate better cohesiveness) for the top-
10 results retrieved from our approach compared to the intuitive solution. This shows that
an ad-hoc approach, even if it is suggested by an expert, is unlikely to find results that are
superior to those provided by the systematic method suggested in this study. In comparison
with the intuitive solution, our approach also does not retrieve results from the candidate
queries that are far from the user given initial query in terms of candidate query similarity. In
addition of it, our approach provides the flexibility of trading of the above two aspects, e.g.,
sometimes users may prioritize cohesive results over similarity to the original query. The
tuning parameter α in our approach can be used to balance the weight of these two aspects.
Figures 7c and 8c, show that as α becomes smaller, the similarity of the results decreases
because more priority is given to result cohesiveness and therefore, the cohesiveness score
of the results improves. That is, by setting α to smaller value, our approach effectively
retrieves more cohesive results while the similarities of their contributing candidate queries
are not very far from the initial query.
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Figure 7 a Average similarity of the candidate queries and b average distance of top-10 results for our
approach and intuitive solution on IMDB; c Average query similarity versus average result distance with
varying α

5.2.2 Evaluation of quality

In this section, we evaluate the quality of our approach and compare it with XO-QP. Here,
we select some sample queries with no-but-semantic-match problem for both datasets to
conduct a comprehensive user study and thereafter, evaluate the overall quality of our
approach. In order to carry out a fair user study, we select the users among both experts who
have worked in XML keyword search areas and naive users who are graduate computer sci-
ence students. To do the study, we present to the users with the original queries and their
top-10 candidate queries/results retrieved from the top result list R∗. After that, we ask the
users to assess the quality of each candidate query with regards to their semantic similarity
to the original query by scoring the candidate queries/results using Cumulated Gain met-
ric [22]. They score each candidate query/result from 0 to 5 points (5 means the best and 0
means the worst).

Ranking scheme comparison The average quality scores of the top-5 and top-10 queries
/results for our approach and the existing counterpart XO-QP are presented in Figures 9
and 10 respectively. From Figure 9, we observe that our proposed method suggests reason-
able results for the no-match query for both top-5 and top-10 results. Also, we see that the
average quality of top-5 results are always better than the average quality of top-10 results
which indicates that our ranking function successfully ranks more similar and meaningful
results higher than the rest of the results. However, we observe that in many cases for the
existing method XO-QP, the average quality of results for top-10 is higher than top-5 results
(for instance for q0.2, q0.4, q0.11 in IMDB and for q0.3, q0.7, q0.10 in DBLP) as shown in
Figure 10. This indicates that XO-QP sometimes ranks some less similar and meaningful
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Figure 8 a Average similarity of the candidate queries and b average distance of top-10 results for our
approach and intuitive solution on DBLP; c Average query similarity versus average result distance with
varying α
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Figure 9 Average quality of results in our approach: top-5 vs. top-10

results higher. This is probably because of adapting XRank scheme into XO-QP. We conclude that
our approach addresses the no-but-semantic-match problem better than the existing XO-QP
method.

Precision In this section, we compare the precision of our proposed method with the XO-
QP method. In order to make a comparison, we count the number of meaningful results in
top-10 results. A result is regarded as meaningful if the average quality score of the assessors
is not less than 3. We see that the precision of our approach and XO-QP is presented on
both IMDB and DBLP as shown in Figure 11. In IMDB, we see that the precision of our
proposed method is better than XO-QP. This is because we use both semantic similarity
and cohesiveness scores to rank the results and retrieve the tightest SLCA results with the
maximum similarity to the original query keywords. Also in DBLP, we observe that the
precision of our method is better than XO-QP in many cases specially in q0.1, q0.3 and q0.8.
That’s because our method can effectively retrieve the most similar results that are cohesive
and make a meaningful combination in terms of data cohesiveness. However, in some cases
like q0.11 and q0.12, we see that the precision of our method is smaller than XO-QP because
it uses less similar keywords in the candidate query to retrieve more cohesive results. But
the precision is not largely deteriorated as we see in XO-QP in many cases.

5.3 Efficiency

To demonstrate the efficiency of our approach, we use a baseline method which applies inter
query pruning only, and uses scan eager for query processing. We call this baseline query
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Figure 10 Average quality of results in XO-QP: top-5 vs. top-10
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Figure 11 Precision comparison for computing top-10 results

processing as BL-QP. The purpose of this baseline is to demonstrate the efficiency of the
intra-query pruning scheme in our proposed methods. Overall, we compare the performance
of the following methods: (a)BL-QP, (b) SE-QP, (c) AN-QP, and (d) BA-QP, and (e) XO-QP.

5.3.1 Processing time

Figure 12 shows the response time of computing the top-10 semantically related results
for the sample queries (presented in Table 4) on the IMDB and DBLP datasets. According
to the results, BA-QP achieves the best performance. The reason behind this is that we
apply inter and intra batch prunings in BA-QP in addition of inter and intra-query prunings.
Also, we share the partial results of the shared keywords among the candidate queries in a
batch. On average, BA-QP consumed 30 percent time of the time needed by the SE-QP and
AN-QP methods. The difference, however, depends on the number of candidate queries. In
Figure 12a, the response time for processing the test query q0.1 in BA-QP is very close to
those of SE-QP and AN-QP due to the small number of candidate queries for q0.1 which is
12 and insufficient number of batches (in this case we have only one batch) to apply inter-
batch pruning. Moreover, if the cost of merging the shared part Ks with the unshared part
Ku is relatively high in most of the batches, BA-QP may not outperform the other methods
as we see in q0.5 on DBLP. In IMDB q0.5, however, AN-QP outperforms SE-QP by a large
margin because the data distributions in most of the inverted lists are skewed. In such case,
many nodes are skipped in AN-QP, which improves the performance. Clearly, BL-QP has
the worst performance on most cases because it does not apply the intra query pruning,
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World Wide Web (2018) 21:1223–12571248



Figure 13 Average processing
time on all test queries

BL-QP

SE-QP
AN-QP

BA-QP XO-QP0

5

10

15

20

Ti
m

e(
s)

Methods

IMDB DBLP

therefore, incurs unnecessary computations. The XO-QP, however, is comparable to BA-
QP in many cases because we set the node score threshold to 0.9 which means that only
the relevant nodes to the keywords with the similarity degree bigger than 0.9 are selected.
If we set this value to a smaller number, XO-QP performance deteriorates and gets closer
to AN-QP and SE-QP. Moreover, XO-QP builds a special inverted list called XOnto-DIL
for the keywords which takes additional time and space for its creation while our proposed
methods do not use such indexing and use the normal DIL for query processing.

In Figure 13, the average processing time of different methods for all test queries are
presented. Clearly the baseline method which does not use intra query pruning spends the
maximum time for processing on both datasets. The SE-QP and AN-QP spend less time
comparing to BL-QP because we apply inter and intra query pruning and therefore, the
processing terminates early when we reach to the global σmin. Moreover, there is a narrow
improvement in the AN-QP over SE-QP due to using the anchor node processing which
skips many redundant computations and expedites the efficiency. The BA-QP processing
improves sharply on both datasets because in BA-QP, we execute queries in batch and share
the computations among the queries in the batch and thereafter, we reach to the global
σmin before SE-QP and AN-QP can do. Also, we can apply inter and intra-batch pruning
which expedite its efficiency. In XO-QP, however, the performance is close to BA-QP on
both datasets because we build the XOnto-DIL on the nodes with the relevance degree no
less than 0.9. In such condition, only the highly relevant nodes are selected to replace the
keywords, therefore, the processing time does not grow considerably due to small number of
candidate keywords. In contrast, by setting the threshold to lower numbers, the processing
time will grow exponentially and gets closer to SE-QP. Furthermore, our methods do not
need to build special indexing, therefore, avoid using additional space and offline processing
time for building such indexing.

5.3.2 Effect of query length

In this experiment, we choose test queries that have at least 100 candidate queries. At each
step, we set their length to a number of settings ({3, 4, 5, 6}) and compute the average
response time of all queries when processing 100 candidate queries while setting k to 10.
In each step, for the test queries that have smaller number of keywords, we add additional
keywords to increase their length. We also use the same queries to conduct experiments and
compare the results with XO-QP method. In Figure 14 the effect of growing the length of
queries on the response time is analyzed. The response time of BA-QP is almost fixed com-
pared to XO-QP, BL-QP, SE-QP, and AN-QP on IMDB. Similarly in DBLP, BA-QP has
the slowest growth in response time when the number of keywords increases while BL-QP,
SE-QP and AN-QP show a big jump in processing times. Also, XO-QP shows a jump in the
processing time when the query length increases. Thus, the performance of XO-QP is sen-
sitive to the query length parameter. The sharpest increase in the processing time is related
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Figure 14 Average processing time of the test queries with varying query length (i.e., number of keywords)

to BL-QP because it does not apply intra-query pruning, therefore, all the inverted lists are
accessed during the processing and this incurs many useless computations specifically when
the query length increases.

In summary, we can conclude that BA-QP method is not sensitive to the number of
keywords due to sharing the computations while the performance of SE-QP and AN-QP is
highly sensitive to the query length.

5.3.3 Effect of top-k list size k

In this experiment, we vary the top-k size k and compute the average processing time. In
Figure 15, we observe the effect of top-k size k on the average processing time for different
methods. Clearly, the BA-QP and XO-QP methods are not that sensitive to the value of k.
By increasing the value of k, processing times of BA-QP and XO-QP show only a small
increase or almost fixed. On the other hand, for SE-QP and AN-QP methods, any increase
on k, leads to a considerable jump on the average processing time. However, this increase
is not big when we change k from 10 to 20. When k is selected as a bigger number, σmin

will be smaller and this causes the inter query pruning in SE-QP and AN-QP to be less
effective. That is, the application of inter-query pruning is delayed in SE-QP and AN-QP for
big k. However in BA-QP, we execute a candidate query batch by sharing the computations
among the queries in it and thereafter, we reach to the global σmin before SE-QP and AN-
QP can do. Also, we can apply inter and intra-batch pruning with this early found global
σmin which helps BA-QP to expedite its efficiency.
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5.3.4 Effect of tuning parameter α

In this experiment, we vary α between a number of settings ({2, 4, 8, 16}) and compute the
average processing time of the test queries when k = 10. Figure 16 presents the effect of
choosing different values for α. Larger values of α reduce the sensitivity to data cohesive-
ness. This usually leads to a more effective intra-query pruning and decreases the processing
time. On the contrary, as α decreases, the possibility for the partial results scores to be
smaller than the σmin also decreases. In this case, the intra-query pruning becomes less
effective and therefore, the processing time increases, specifically, in SE-QP and AN-QP. In
BL-QP, however, there is no significant difference in the processing time when α changes
to smaller number. This is because BL-QP does not apply intra query pruning and therefore,
the processing time is not affected that much by α.

5.3.5 Effect of candidate queries number |Q|
For this experiment, we choose test queries which have at least 200 candidate queries. At
each step we process a certain number ({40, 80, 120, 160, 200}) of their candidate queries
and compute the average processing time when k = 10. In Figure 17, the effect of growing
the number of candidate queries |Q| on the response time is analyzed. The response time
of BA-QP method grows slowly compared to BL-QP, SE-QP, and AN-QP which show a
sharp rise in each step. In BL-QP, the growth in the query processing time is the maximum
among the methods because it does not apply intra query pruning, therefore, it incurs many
unnecessary computations during execution of the candidate queries. We can conclude that
BA-QP is not that sensitive to |Q|. This is because BA-QP not only shares the computations
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Figure 18 Inter and Intra Query Pruning Improvement on Sample Queries

among the candidate query batch but also applies inter and intra batch pruning with the
early-found global σmin to expedite its performance.

5.3.6 Pruning improvement

In this section, we show the pruning effect on the processing time. From Figure 18, the
sample queries processing time are shown for 3 scenarios: (a) when there is no pruning for
processing the queries, (b) when only the inter query pruning is implemented, and (c) when
both inter and intra pruning methods are implemented. The processing time are measured
using SE-QP method. Clearly, the inter query pruning shows the most effective method to
cut the processing time on most of the sample queries. If the number of candidate queries
is large and the breaking point occurs when most of the queries are not executed, then inter
query has the best performance. e.g., in the sample queries q0.9 and q0.10 on IMDB, the
number of executed queries are 225

442 and 4918
12240 respectively and in the sample queries q0.6

and q0.9 on DBLP, the number of executed queries are 912
8190 and 1287

3276 respectively. Therefore
in these cases, most of the queries are not executed by using inter query pruning and the
processing time reduced sharply. The intra query pruning is more effective when the number
of query keywords is bigger or the inverted list that is not accessed due to pruning is big
sized. In such condition, some inverted lists are not accessed when the result is not able to
beat the σmin and this expedites the processing time. For example, in the sample queries q0.8
and q0.9 on IMDB and q0.4 and q0.9 on DBLP, the query keywords are from 4 to 5 keywords
and include some big sized inverted lists that are not accessed, therefore the processing time
reduced considerably.

Figure 19 presents the average processing time for the set of test queries for 3 scenar-
ios: (a) no pruning is implemented, (b) only inter query pruning is implemented, and (c)
both pruning techniques are implemented. Clearly, the processing time for the case with no

Figure 19 Average pruning
improvement
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pruning is maximum on both datasets. This shows that inter query pruning has the most tan-
gible effect on the processing time by avoiding to execute the queries that cannot contribute
to the R∗. The efficiency improvement on IMDB and DBLP is 2 and 3 times respectively.
After that, intra query pruning expedites the efficiency by avoiding to access all inverted
lists when the result cannot beat σmin.

Figure 20 presents the sample queries processing time for BA-QP in 2 scenarios: (a)
when no batch pruning is implemented, (b) when batch pruning is implemented. In most
cases, the processing time for the method which uses pruning has decreased. The batch
pruning becomes more effective when the query length increases as shown in q0.3 and
q0.12 on IMDB or in q0.4 and q0.8 on DBLP. Moreover, when the candidate queries contain
some big inverted lists and we reach to the global σmin early, the improvement is more
considerable as in q0.1 and q0.2 on IMDB and in q0.1 and q0.7 on DBLP.

Figure 21 shows the average processing time of the test queries for BA-QP on 2 cases: (a)
when no batch pruning is implemented, (b) when batch pruning is implemented. We observe
from the picture that the batch pruning improved the processing time on both datasets,
however, the improvement on DBLP is more considerable. The improvement is achieved
because we reach to the global σmin earlier by applying batch pruning, therefore it expedites
the performance.

6 Related work

Failed queries When a user queries a data source, the result may be empty or other-
wise below expectation. This problem known as failed queries has inspired a broad range
of research in the database community (e.g. [10, 19–21, 44]). In the context of relational
databases, the problem has been studied by Nambiar and Kambhampati [32], Muslea [30] as

Figure 21 Average Batch
Pruning Improvement

0 2 4 6 8 10

IMDB

DBLP

Time(s)

No Batch Pruning Batch Pruning

World Wide Web (2018) 21:1223–1257 1253



well as Muslea and Lee [31]. Nambiar and Kambhampati [32] presented approximate func-
tional dependencies to relax the user original query and find tuples similar to the user query.
Muslea [30], as well as Muslea and Lee [31] used machine learning techniques to infer rules
for generating replacement queries. Amer-Yahia, Cho and Srivastava [3], Brodianskiy and
Cohen [7] as well as Cohen and Brodianskiy [11] studied query relaxation for XML data.
The studies proposed to discover the constraints in the queries that prevent results from
being generated and remove them so that a result can be produced. All these investigations
focus on the modification of the user original query constraints on the content level rather
than the semantic analysis of the original query constraints. Bao et al. [4] studied the search
intention and relevance ranking problems in the XML keyword search. They proposed to
exploit the statistics of underlying XML data to effectively rank the results of all possible
search intentions. Truong et al. [36] studied the XML keyword search for irregular docu-
ments. They proposed a novel algorithm called MESSIAH to address the missing element
problem by improving SLCA semantics to support queries involving missing elements. Hill
et al. [17], used the ontology information to relax structured XML queries. Farfan et al. [14],
proposed XOntoRank system to address the ontology-aware XML keyword search of elec-
tronic medical records. Unlike their work which uses SNOMED ontology for enhancing the
search on medical records, we address the general no-match problem on XML data and use
a general ontological knowledge base like a thesaurus or dictionary to solve the problem for
general documents.

Query expansion Query expansion has widely studied in many works such as [23, 24, 34,
39]. Schenkel, Theobald, and Weikum [34] proposed XXL which combines the keyword
search with structural conditions and semantic similarity to increase the quality of results.
Kim and Kong [23] suggested a query expansion technique that uses an ontology algo-
rithm to map a target DTD to ontology. This scheme is successful for expanding the queries
minimally. Kim, Kong, and Jeon [24] developed a web XML document search engine that
applies ontology-DTD match algorithm for remote documents. However, in all of the above
works, the focus is on structured queries. In our work, we find some semantic counterparts
for specific non-mapped keywords for replacement, therefore, query expansion is not useful
in our case.

Recommendation systems Users are often interested in items similar to those they have
visited before or to content that has been looked up by similar users. These items are pre-
sented by the recommendation systems. Akbarnejad et al. [1] and Chatzopoulou, Eirinaki
and [9] proposed query recommendation based on a prediction of the items that user is inter-
ested in. Yao et al. [41] proposed to exploit structural semantics for query reformulation.
Meng, Cao and Shao [28] used the semantic relationships between keywords and keyword
queries to suggest a set of keyword queries from the query log. However, the semantic rela-
tionship is interpreted as the co-occurrence of the keywords and no ontological analysis is
carried out. Moreover, the work focuses on extracting similar queries from the query log
using data mining techniques without processing the results. Drosou and Pitoura [13] pre-
sented a database exploration framework which recommends additional items called “You
May Also Like” results. However, the recommended results are compiled based on the
results of the original query and there is no focus on semantic connection between the
original query and recommended results.

Mismatch problem Sometimes the system shows erroneous mismatch results for a user
query which is called mismatch problem. Bao et al. [5] proposed a framework to detect the
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keyword queries that lead to a list of irrelevant results on XML data. They detect a mismatch
problem by analyzing the results of a user query and inferring the user’s intended node type
result based on data structure. Based on this, they are able to suggest queries with relevant
results to the user. Unlike the current study, Bao et al. investigate ways of producing relevant
results instead of finding results for no-match queries.

Query cleaning Sometimes the empty result is caused by typographical errors. Pu and
Yu [33] and Lu et al. [26] investigated a way of suggesting queries that have been cleaned
of typing errors. Unlike our study, these authors do not tackle the problem of non-mapped
keywords.

Ontology-based querying Many studies have used ontology information for searching
the semantic web [12, 25, 27]. Studies by Aleman-Meza [2], Cakmak and Özsoyoglu [8]
as well as Wu, Yang and Yan [37] used ontology information to find frequent patterns in
graphs. Wu, Yang and Yan [37] proposed an improved subgraph querying technique by
ontology information. They revised subgraph isomorphism by mapping a query to seman-
tically related subgraphs in terms of a given ontology graph. Our work generates substitute
queries for the user given keyword query by extracting the semantically related keywords
from the ontological knowledge base and thereafter, produce semantically related results to
the user query instead of returning an empty result set to the user.

7 Conclusion and future work

This paper investigates ways of efficiently building substitute queries against XML data
sources when the user given keyword query fails to produce any result as one or more
of its keywords do not exist in the data source. Our approach depends on an ontological
knowledge base for a discovery of semantically related keywords to generate the substi-
tute queries, which can be executed against the data source to produce the semantically
related results for the user’s original query. As the number of substitute queries can be
potentially large and also, not all semantically related results are meaningful to the same
degree, we propose efficient pruning techniques to reduce the number of substitute queries
and return only the top-k semantically related results. We develop two query processing
algorithms to evaluate the substitute queries against the data source based on our pruning
techniques. We also develop a batch processing technique that exploits the shared keywords
among the substitute queries to expedite the performance further. The extensive experi-
ments with two real datasets validate the effectiveness and efficiency of our approach. There
are some directions to continue this research in the future. One such direction is to solve
the no-but-semantic-match problem using other popular XML keyword search semantics
such as ELCA. Another interesting direction is to consider special data environment and
to use Hadoop to improve the processing time in addition to the batch query processing
technique.
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