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Abstract With the advent and popularity of social network, more and more people like
to share their experience in social network. However, network information is growing
exponentially which leads to information overload. Recommender system is an effec-
tive way to solve this problem. The current research on recommender systems is mainly
focused on research models and algorithms in social networks, and the social networks
structure of recommender systems has not been analyzed thoroughly and the so-called
cold start problem has not been resolved effectively. We in this paper propose a novel
hybrid recommender system called Hybrid Matrix Factorization(HMF) model which uses
hypergraph topology to describe and analyze the interior relation of social network in the
system. More factors including contextual information, user feature, item feature and sim-
ilarity of users ratings are all taken into account based on matrix factorization method.
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Extensive experimental evaluation on publicly available datasets demonstrate that the pro-
posed hybrid recommender system outperforms the existing recommender systems in
tackling cold start problem and dealing with sparse rating datasets. Our system also enjoys
improved recommendation accuracy compared with several major existing recommendation
approaches.

Keywords Recommender system · Hypergraph · Hybrid approaches · Cold start problem

1 Introduction

With the exponential growth of network information, improving the utilization efficiency of
information and alleviating the problem of information overload become a pressing research
issue. Recommender systems provide a promising solution to the above problems [2], and
plays an important role in e-commerce, information retrieval, e-tourism, online advertising,
mobile applications and so on [3, 19, 24]. For example, according to a survey from Ven-
tureBeat, 35% sales of the online retail giant Amazon are materialized by its recommender
system, and the researchers of the online DVD rental company Netflix pointed out in their
2011 report that 60% users are able to find their interested movies and videos from the
company’s recommender system.

With the development of online social network, people are accustomed to commenting
items such as commodities that they have purchased or movies that they have seen before in
online social network, and shared their experiences with friends. Through these comments,
other people can assess the quality of items and choose suitable or interested items according
to their own preference. From the perspective of sociology and psychology, the choice of
item selection is affected by many factors. For example, before choosing a movie to watch,
one may be affected by a variety of factors such as his own previous experience, movie
trailers, his favorite types of movie or friends’ recommendations, and even his own feelings
and environment at that time. All these factors exert an influence to different degree on their
final choice. In order to improve the accuracy of recommender systems, the recommended
model used should take into account as many important factors as possible [8, 12, 25, 35],
leading to a model with comprehensive information to improve the accuracy of the model.

Generally speaking, two types of recommender systems have been investigated in
literature: the content-based systems and the collaborative filtering-based systems. The
content-based recommendations originated from the area of information retrieval [51].
Content-based recommender systems use content information of items to find the match
between items and users. In [52], the keywords of purchased books of a user are used to
find other books that contain the same or similar keywords for recommendation. Content-
based recommendations typically require external information that might not be available or
easy to collect, which leads to a major disadvantage of the content-based systems that they
may not have a satisfactory accuracy. Yet, the traditional content-based approaches have
advantages in some aspects, such as data sparsity and new item problem [3].

Unlike the content-based recommendation methods, the collaborative recommender sys-
tems try to predict the utility of items for a particular user based on the items previously rated
by other users. When users have supplied sufficient ratings, the collaborative recommender
systems are generally more accurate than the content-based techniques, as evidenced by
[23, 27, 29, 50, 51]. Several collaborative filtering-based systems have recently been pro-
posed to improve recommendation accuracy by using social trust [12, 16, 17, 30, 48, 51, 52].
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Yang et al. proposed to use the concept of inferred trust circle based on social network to
recommend user favorite items [48]. In [17], M. Jamali et al. incorporated the mechanism of
trust propagation into the recommendation model. In [12], a user model with trust and dis-
trust networks was proposed to identify trustworthy users. Due to the preference similarity,
user latent features should be similar to his/her friends based on the probabilistic matrix fac-
torization model [33, 47, 49, 54]. In [47], Qian et al. proposed a personalized recommender
model (PRM) combining user interpersonal interest similarity, interpersonal influence and
personal interest factor. The main contribution of this paper is the proposal of a new method
to make use of the category information of products, and user personal interest. In [49],
Hu et al. proposed a factor model treating the data as an indication of positive and negative
preference associated with vastly varying confidence levels. Zhao et al. proposed a user-
service rating prediction approach by exploring social users rating behaviors [54]. In their
work, four factors including user personal interest, interpersonal interest similarity, inter-
personal rating behavior similarity and interpersonal rating behavior diffusion were fused
into the matrix factorization model. Many recent studies have begun to mine text reviews
to improve prediction accuracy for collaborative filtering recommender system. McAuley
et al. proposed a HFT model which combines latent rating dimensions with latent review
topics [31]. Lei and Qian et al. proposed a sentiment-based rating prediction method (RPS)
to improve prediction accuracy in recommender systems which use LDA to mine the topic
of reviews [25]. Jiang et al. proposed an author topic model-based collaborative filtering
(ATCF) method to facilitate comprehensive points of interest (POIs) recommendations for
social users [20]. Additionally, contextual information is exploited to reduce the prediction
error in collaborative filtering-based system. In [26], Liu et al. handled contextual informa-
tion by applying random decision trees to partition the original user-item rating matrix such
that the ratings with similar contexts are grouped based on matrix factorization method.
A. Akther et al. designed a new architecture for user personalization which combines both
social network data and context data [4]. Zhao et al. proposed a LBRP model which make a
full use of mobile users location sensitive characteristics to carry out rating prediction [53].
Their work demonstrates that human’s rating behaviors are significantly affected by the
contextual information of their geographical locations. A major appeal of the collaborative
filtering-based systems is that they can deal with any kinds of content and recommend any
items [1, 14, 32, 42], and they can address data aspects that are often elusive and difficult to
profile when using the content-based systems. However, there are two critical issues in the
collaborative recommender systems regarding new users and new items, which are termed
the cold start problem. Because newly added users have few or no ratings in online social
networks, it’s difficult for recommender systems to quantify users’ preferences.

In order to overcome the shortcomings of the content-based and collaborative filtering-
based systems, several recommender systems use hybrid approaches by combining content-
based and collaborative filtering-based mechanisms [7, 22, 26]. In [50], K. Yoshii et al.
proposed an efficient hybrid music recommender system, andWei et al. developed a market-
based recommender system that allows multiple agents to compete with each other to
present their best recommendations to users [35]. In [10], Cao et al. presented another novel
idea and proposed a hybrid collaborative filtering algorithm for bidirectional Web service
recommendation which confirms that the collaborative recommendation is more efficient
once again. In [9], Braunhofer proposed a context-aware recommender system using vari-
ous hybridization techniques to improve the prediction accuracy. In the area of e-commerce,
Chen considered both the overall ratings and feature-level opinion values to identify review-
ers preference homogeneity [11]. In [12, 14, 17, 23, 47], the cold start problem is solved
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to different degree, but is still far from sufficient, because the existing methods only use
social relations such as social trust,neighbor relations, etc, to help the recommender system
to alleviate the cold start problem, without taking into account the useful content-based
information about the features of users and items involved.

In this paper, we incorporate some important content-based characteristics into a collab-
orative approach based on matrix factorization method. We proposed a novel social network
hybrid recommender system based on hypergraph topologic structure. For simplicity of pre-
sentation, we call it the HMF model (stands for Hybrid Matrix Factorization model). The
technical contributions of this paper are summarized as follows:

1. We propose a novel HMF model which fuses important contextual information, includ-
ing users ratings, item feature, user feature, into the matrix factorization approach;

2. We build a hypergraph topologic structure to represent the social network and theoreti-
cally analyze the basic concepts of the HMF model;

3. We use the k-Modes algorithm to cluster user-item datasets based on the contextual
information which can effectively enhance the data correlation of sub-datasets and
improve the recommendation accuracy;

4. Extensive experimental evaluation on publicly available datasets demonstrates that our
proposed hybrid recommender system outperforms the existing recommender systems
in tackling cold start problem and dealing with sparse rating datasets. Our system
also enjoys improved recommendation accuracy compared with several major existing
recommendation approaches.

The rest of the paper is organized as follows. We describe the related work and several
typical recommender models in Section 2. In Section 3, we present a hypergraph struc-
ture in social networks and describe the relations through mathematical definitions. On the
basis of the hypergraph structure introduced in Section 3, we build a comprehensive recom-
mender model and a corresponding training method in Section 4. We present experimental
evaluation results of our recommender system which involves a performance comparison
with several major existing recommender models in Section 5. The paper is concluded with
a summary and a discussion on future research directions in the final section.

2 Related work and preliminaries

In this section, we first present a survey on the recent related work . Then, several major
recommendation approaches in the domain are introduced which are mostly relevant to our
work and are all based on the technique of matrix factorization.

2.1 Related work

Recommender systems are generally classified into three categories: content-based systems,
collaborative filtering-based systems, and hybrid systems [2]. Content-based recommender
systems mainly select highly similar items with respect to user preference [14, 36, 40]. Col-
laborative filtering-based technology is a more efficient approach for recommender systems
[1, 7, 34, 39, 47, 51]. Based on the rating profiles of the target user, collaborative filtering-
based recommender systems calculate profile similarity between the target user and the
existing users, and recommend the items of the interest of the similar existing users to the
target user. The hybrid recommender systems are designed to overcome the limitations of
single recommendation technology [5, 9, 50]. Such hybrid systems typically combine a
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collaborative filtering-based approach with a content-based approach in order to produce
more accurate recommendation.

In recent years, matrix factorization method is applied to collaborative filtering recom-
mendation, which effectively improves the accuracy of the recommender systems. In [28],
Lu et al. demonstrated that mine structural information of the original data can improve effi-
ciency and lessen the interference of noise to some extent based on matrix factorization. So,
matrix factorization techniques is employed by collaborative recommender systems, and
these methods have become popular in recent years featuring good scalability [13, 17, 24,
29, 39, 42, 43]. In [33], Mnih et al. first presented a probabilistic matrix factorization model
without taking into account any social factors. Subsequently, many researchers incorporate
social factors such as social trust, interpersonal influence, geographical location, user senti-
ment and so on into matrix factorization model [6, 25, 30, 31, 47, 48, 53, 54]. These studies
show that social factors can improve the accuracy of recommendations. Besides the afore-
mentioned models, there are a body of variant models based on matrix factorization method.
A distributed recommendation algorithm was proposed in [46]. This algorithm enjoys a bet-
ter performance in terms of time and when dealing with the cold start problem. In addition,
Liu et al. presented a recommender system which employed the matrix factorization tech-
niques and aided context-aware information [26]. In [48], Yang et al. proposed circle-based
recommendation models which is a novel idea based on matrix factorization method. The
accuracy of the models mentioned above is impressive when an abundance of rating infor-
mation is available. But when the users only have few ratings, which is the case for most
real-world sparse datasets [21, 37, 44], the performance of these models becomes unsatis-
factory. However, these methods metioned above need enough ratings data or text reviews
to get the explicit or implicit social information. So they still trapped in the cold start to
some extent.

2.2 Compared algorithms

In this section, we will review several typical recommendation techniques based on matrix
factorization method.

2.2.1 BaseMF model

To start with, we briefly review the basic low-rank matrix factorization (BaseMF) approach
[33], which does not take any social factors into consideration. This method can efficiently
handle large datasets. In comparison with the traditional collaborative filtering methods,
BaseMF features a better performance. In details, BaseMF model is trained on the observed
rating data by minimizing the following objective function:

� (R,P,Q) = 1

2

∑

(ui ,sj )∈T

(
Rij − R̂ij

)2 + λ

2

(
‖P ‖2F + ‖Q‖2F

)
(1)

R̂ = r + PQT (2)

Where T denotes the training dataset, Rij is the real rating values for item sj from user ui

in T , P and Q are the user and item latent feature matrices, λ is the regularization constant.
‖P ‖F and ‖Q‖F are the Frobenius norm of matrices P and Q, respectively, and r denotes
the mean rating value of T . This objective function can be minimized efficiently using
gradient descent method. Once the low-rank matrices P and Q have been obtained, rating
values can be predicted according to (2) for any user-item pair (ui, sj ).
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2.2.2 STE model

The STE Model [30] is a linear combination of BaseMF and a social network based
approach which taken the social trust into account. The objective function of STE Model is
defined as follows.

� (R,P, Q, S) = 1

2

∑

(ui ,sj )∈T

⎛

⎝Rij − g(αPiQ
T
j R̂ij + (1 − α)

∑

v∈Ni

SivPiQ
T
j )

⎞

⎠
2

+λ

2

(
‖P ‖2F + ‖Q‖2F

)
(3)

Where Siv denotes the trust degree of ui from his friends uv and parameter α controls
the effects of neighbors on predicted rating. g(x) is the logistic function g(x) = 1/(1 +
exp(−x)), which makes it possible to bound the range of PiQ

T
j within the range of [0,1].

Experiments show that STE model outperforms the BaseMF model in terms of accuracy.

2.2.3 SocialMF model

The SocialMF [17] incorporates the mechanism of trust propagation into the model based
on the matrix factorization technique. This model outperforms BaseMF and STE [30] in
terms of Root Square Mean Error (RSME) and the efficacy in dealing with the cold start
problem. The objective function of SocialMF Model is defined as follows.

� (R,P,Q, T ) = 1

2

∑

(ui ,sj )∈T

(
Rij − R̂ij

)2 + λ

2

(
‖P ‖2F + ‖Q‖2F

)

+α

2

∑

T

⎛

⎜⎝

⎛

⎝Pi −
∑

uv∈Nui

TivPv

⎞

⎠

⎛

⎜⎝Pi −
∑

uv∈N
ui

TivPv

⎞

⎟⎠

T ⎞

⎟⎠ (4)

Where Tiv denotes the degree of trust of user ui on user ui , Tiv is a positive value Tiv ∈
[0, 1], and each row of the trust matrix T is normalized to 1. Compared with (1), the factor
of trust propagation is enforced by the last term in (4), which means the user latent feature
Pi should be similar to his/her friends latent feature Pv . The trade-off between the ratings
and the trust propagation is determined by a weight α ≥ 0. If α = 0, the influence of trust
propagation is ignored and this model will degenerate back to BaseMF model as a result.

Equation (4) can be optimized by gradient descent approach as well. Once the model is
trained, the latent feature matrix P is constrained by the last term in (4) and the degree of
trust Tiv enhances the latent feature similarity between user ui and uv . The rating value for
any user concerning any item can be predicted according to (2).

2.2.4 CircleCon model

The CircleCon model [48] uses inferred circle which is a trust sub-network derived from
the trust relationship in social network, and the model applies each such circle to a single
category of items. Therefore, the objective function of the CircleCon model is similar to
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that of SocialMF, but differs in that the Circlecon model being trained in each category
separately. The objective function of the CircleCon model is defined as follows.

�c
(
Rc, P c,Qc, T c∗) = 1

2

∑

(ui ,sj )∈T

(
Rc

ij − R̂c
ij

)2 + λ

2

(∥∥P c
∥∥2

F
+ ∥∥Qc

∥∥2
F

)

+α

2

∑

T

⎛

⎜⎝

⎛

⎝P c
i −

∑

uv∈Nui

T c∗
iv P c

v

⎞

⎠

⎛

⎝P c
i −

∑

uv∈Nui

T c∗
iv P c

v

⎞

⎠
T
⎞

⎟⎠ (5)

Where c is the category of items related to a inferred circle and T c∗
iv denotes the normalized

interpersonal trust of uv to ui in category c. The CircleCon model enjoys a higher prediction
accuracy compared with the SocialMF model.

2.2.5 ContextMF model

The ContextMF model is proposed in [18], which fused the social context including individ-
ual preference and interpersonal influence into the probabilistic matrix factorization method
used. Individual preference represents the quantitative value for how strong a user likes dif-
ferent items, and interpersonal influence denotes degree of relationships between the user
and the item senders. In the ContextMF model, the individual preference similarity is rep-
resented by matrix W and interpersonal influence is denoted by matrix S. The objective
function of this model is defined as follows.

�
(
R,P,Q, S∗,W ∗) = 1

2

∑

(ui ,sj )∈T

(
Rij − R̂ij

)2 + λ

2

(
‖P ‖2F + ‖Q‖2F

)

+α

2

∑

T

⎛

⎜⎝

⎛
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ivPv

⎞

⎠

⎛
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∑

uv∈Nui

S∗
ivPv

⎞

⎠
T
⎞

⎟⎠

+β

2

∑

T

(
W ∗

iv − PiP
T
v

)2
(6)

Where S∗
iv denotes the normalized interpersonal influence of uv to ui and W ∗

iv denotes the
normalized individual preference similarity between ui and uv . α and β are the tradeoff
parameters which represent the strength of factors of individual preference and interpersonal
influence.

2.2.6 PRM model

PRM model [47] takes more comprehensive factors into account. More specifically, it
combines the advantages of different models including BaseMF model, CircleCon model
[48] and ContextMF model [18]. Additionally, three social factors, i.e., personal interest,
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interpersonal interest similarity and interpersonal influence, are incorporated into the PRM
model which is shown in (7).

�c
(
Rc,Uc, P c, Sc∗,Wc∗, Qc∗) = 1
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u,i
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⎞

⎠
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2

∑

u

⎛

⎝
(

Uc
u −

∑

v

Wc∗
u,vU

c
v

) (
Uc

u −
∑

v

Wc∗
u,vU

c
v

)T
⎞

⎠

+η

2

∑

u,i

∣∣Hc∗
u

∣∣ (Qc∗
u,i − Uc

uP cT
i )

2
(7)

In PRMmodel, items are first classified into several categories according to tree structure of
items. Then, it uses the interpersonal trust and similarity of interest circle which both have
effect on user latent feature matrix. Finally, it takes into account the influence of user per-
sonal interest for item latent feature. By doing above, a more sophisticated recommendation
can be produced.

2.2.7 Our Hybrid matrix factorization(HMF) model

Our HMF model absorbs the advantage of hybrid recommendation and takes more social
factors into consideration. It builds on the structure of hypergraph and consider not only the
relation between user but also the relation between items, users preference for items and the
contextual information when users are selecting items.

3 Basic concepts and definitions on hypergraph

The key tasks of recommender systems are to establish binary relationship between users
and items, and employ user ratings or similarity of users interest to identify potential inter-
esting items for users so as to achieve personalized recommendation. In this paper, we use
hypergraph to represent the binary relation between users and items [15]. In the following,
we present some basic definitions based on hypergraph topological structure.

Definition 1 Item Centered Hypergraph. Suppose that a social network has m items and
n users, the binary relationship between item and user can be expressed as H = (S,ES),
where S = {s1, s2, · · · , sm} denotes the set of items and ES = {es1, es2, · · · , esm} denotes

Table 1 Ratings for item from
users u1 u2 u3 u4 u5 u6 u7 u8

s1 3

s2 4 5 4 5 5

s3 4 3 4 5

s4 5 5 2
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Figure 1 Item Centered
Hypergraph

hyperedge set and satisfies the condition
m⋃

i=1
esi = U , where U = {u1, u2, · · · , un} denotes

the set of users. We call this graph as item centered hypergraph. According to the data in
Table 1, we have H = ({s1, s2, s3, s4}, {{u1}, {u1, u2, u3, u4, u5}, {u4, u5, u6, u7}, {u6, u7,
u8}}). The item centered hypergraph is shown in Figure 1.

Definition 2 User Centered Hypergraph. Suppose that an item centered hypergraph is H =
(S,ES), and its dual graph denoted by H ∗ = (U,EU), where EU = {eu1, eu2, · · · , eun}
denotes hyperedge set and meets the condition

n⋃
i=1

eui = S. We call this graph as user

centered hypergraph. Again, according to the data in Table 1, we have

H ∗ = ({u1, u2, u3, u4, u5, u6, u7, u8}, {{s1, s2}, {s2}, {s2}, {s2, s3}, {s2, s3}, {s3, s4}, {s3, s4}, {s4}})

The user centered hypergraph is shown in Figure 2.

Definition 3 Item Feature Space. It is described by a vector
−→
f s = (f s1, f s2, · · · , f sls ),

where ls denotes the dimensionality of
−→
f s. The value of f si(i ≤ ls) uses quantita-

tive value according to [24]. The item feature space of item sj can be expressed as−→
f sj = (f sj1, f sj2, · · · , f sjls ). For example, the Item Feature Space of the movie Avatar

can be something like
−→
f s(Avatar) = (science fiction movie, America, 2009, James

Cameron, Twentieth Century Fox Film Corporation, SamWorthington, Zoe Saldana, Oscar)
which represents the item feature elements of film types, production area, publication year,
production company, leading actor, leading actress and the award received, respectively.

Definition 4 User Feature Space. It is described by a vector
−→
f u = (f u1, f u2, · · · , f ulu),

where lu denotes the dimensionality of
−→
f u. The value of f ui(i ≤ lu) uses quanti-

tative value according to [24]. The user feature space of user ui can be expressed as−→
f ui = (f ui1, f ui2, · · · , f uilu ). For example, user u1 can expressed as

−→
f u(u1) =

Figure 2 User Centered
Hypergraph
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(male, 31, China, Engineer, Married) which represents the user feature elements of
gender, age, nationality, job and marital status, respectively.

Definition 5 Rating Function. Assume that user ui provides rating on item sj , which is
denoted by rij = Rank

(
ui, sj

)
, whererij ∈ R, and R is the rating value set, denoted by

R = {1, 2, · · · , NUM}. Without losing generality, we set NUM = 5. Figure 3 shows a
rating-weighted hypergraph, both of which are based on the data in Table 1.

Definition 6 User Neighbor. If user ui and user uv have rated some identical items, that is
eui ∩ euv 	= ∅ in H ∗ = (U, EU) with eui ∈ EU and euv ∈ EU , then ui and uv is a user
neighbor of each other. The neighbor of user ui is denoted by Nui

. For example, u1 is a user
neighbor of u2 in Table 1 and vice versa.

Definition 7 Adjacent Item. Assume that the users who have rated item sj are denoted by
Usj . Then all the items which have been rated by the users in Usj is referred to as adjacent
items of item sj , which is denoted by Msj . For Instance, the adjacent items of s3 in Table 1
is {s2, s4}.

Definition 8 Rating Contextual Information. It represents those related aspects of informa-

tion when user ui chooses item sj , which is denoted by a vector
−→
C = (c1, c2, · · · , clc )

with each vector component ct (t = 1, 2, · · · , lc) representing one aspect of contextual
information, such as temperature, time, location and so on.

Definition 9 Rating Contribution. The function of rating contribution for item sj from user

ui is defined as dij = Contribution
(
ui, sj

) = Rank(ui ,sj )√
n∑

i=1
(Rank(ui ,sj ))

2
. We can employ rat-

ing contribution to build a rating contribution weighted hypergraph that is demonstrated in
Figure 4 based on the data in Table 1.

Definition 10 User Rating Similarity. Assume that the item set Ic = {s1, s2, · · · , sn} which
has both been rated by user ui and user uj . Then the user rating similarity between ui and uj

is defined as Sim C
(
ui, uj

) =
n∑

k=1
(dik−di )(djk−dj )

√
n∑

k=1

(
dik−di

)2 n∑
k=1

(
djk−dj

)2
, where di = (1/ |Ic|) ∑

sj ∈Ic
dij

Figure 3 Rating-weighted hypergraph
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Figure 4 Rating Contribution Weighted Hypergraph

and the item set which has been rated by user ui is denoted by Ic. If Ic = ∅, we will assign
the value of di as 0. In this paper, we use SCij to represent Sim C

(
ui, uj

)
.

Definition 11 Item Feature Similarity. The function of item feature similarity between item
si and item sj defined as the following equation using cosine measure:Sim S

(
si , sj

) =

cos
(−→
f si,

−→
f sj

)
=

ls∑
k=1

f sikf sjk

√
ls∑

k=1
f s2ik

√
ls∑

k=1
f s2jk

. In this paper, we use SSij to represent Sim S
(
si , sj

)
.

Definition 12 User Feature Similarity. The user feature similarity between user ui and

user uj is defined as follows using cosine measure: Sim U
(
ui, uj

) = cos
(−→
f ui,

−−→
f uj

)
=

lu∑
k=1

f uikf ujk

√
lu∑

k=1
f u2ik

√
lu∑

k=1
f u2jk

. In this paper, we use SUij to represent Sim U
(
ui, uj

)
.

4 Our recommendation model

In our proposed model HMF, we employ matrix factorization method to obtain the opti-
mal latent features for users and items using the stochastic gradient decent approach. The
objective function used in BaseMF model, as in (1), only involves the item and user latent
features, and it does not take into account other factors which are contextual information,
relation between users and items, relation between items and relation between users. In this
paper, we will combine various related factors, which are about three object entities and
four relations shown in Figure 5, to produce hybrid recommendations based on BaseMF to
achieve a better performance.

4.1 Fusing factors into HMF model

The proposed HMF model fuses four factors: contextual information, user rating similar-
ity, item feature and user feature. Firstly, we introduce the approach by adding contextual
information. Then we infer the objective function of the proposed HMF model by adding
other three factors. In this way, we will represent our sophisticated model step by step in an
incremental manner.
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Figure 5 Three entities in recommender system, including contextual information, user feature and item
feature. Four types relation between the entities which are user-item relation, item-item relation, user-user
relation and contextual information-user relation

4.1.1 Stage 1: Adding contextual information

Contextual information has been proven to be valuable information for building accu-
rate recommender system [26]. We handle contextual information by applying clustering
algorithm to partition the original user item-rating matrix such that the ratings with similar
contextual information are grouped. The contextual information is typically associated with
the process when users are selecting items. The contextual information space in this paper is
represented by vector C = (c1, c2, · · · , clc ), where each vector component ct is binary tak-
ing the value of 0 or 1. For instance, c1 may denote Weekend, c2 may denote Daylight, and
c3 may denote Alone. In this way, the contextual information that Bob went to see the movie
Avatar with his friends at 9:00 PM on Saturday can be expressed as (1,0,0). In this way, we
can express contextual information in a unified form. We can then cluster the contextual
information so that the contextual information which has high correlation can be grouped
together in one cluster. In this paper, the k-Modes algorithm which has a good performance
for discrete data is applied to cluster contextual information.

Recall that in (1), the optimization of the objective function � is carried out based on
the entire training dataset. In order to improve the optimization performance of the object
function �, we first group the training dataset into k clusters using the k-Modes Algorithm.
Then, the object function � can be modified accordingly as follows:

�
(
RTx , P Tx , QTx

)
= 1

2

∑

(ui ,sj )∈Tx

(
RTx

ij
− R̂Tx

ij

)2 + λ

2

(∥∥∥P Tx

∥∥∥
2

F
+

∥∥∥QTx

∥∥∥
2

F

)
(8)

R̂Tx

ij
= rTx + P Tx

(
QTx

)T

(9)
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Where Tx denotes the xth cluster of training dataset. RTx
ij

and R̂Tx
ij

represent the actual and

predicted rating for item sj from user ui . rTx denotes the mean value of user rating in the
xth cluster of the training dataset.

After partitioning the training data into k clusters, we then use objective function in (8) to
get the optimal latent features for users and items iteratively. There are several salient advan-
tages for this approach. Firstly, the high density rating data is gathered into a sub-matrix,
whereby the irrelevant rating data or those with low degree of correlation are removed. This
can contribute to improving the accuracy of the recommender system. Secondly, through
data clustering, the training data is divided into k clusters which can effectively reduce the
complexity of matrix operations.

4.1.2 Stage 2: Adding user rating similarity

In real-life scenarios, many users choose to purchase an item or see a movie through friends’
recommendations. Therefore, using friends circle recommendation [41] can improve the
accuracy of recommender systems and resolve the limited content problem in content-based
recommendation models. The experiment results in [48] show that the circle-based recom-
mendation model outperforms the BaseMF model in terms of RMSE. The difference of
preference and interest between friends will affect the user latent feature. In this paper, we
extract the user rating similarity under different contextual scenarios to optimize the mode
in (8). Using inferred social circles of those friends exhibiting similar taste, we incorporated
the user rating similarity into our model.

According to [17], zero mean Gaussian priors are assumed for user and item latent feature
vectors: p(P |σ 2

P ) = ∏
ui

N(Pi |0, σ 2
P I), p(Q|σ 2

Q) = ∏
ui

N(Qj |0, σ 2
QI) By adding user rating

similarity to the user latent feature vectors, we can have the conditional distributions given
the user latent features of his neighbors:

p
(
P Tx |SCTx ,	Tx

)
=

∏

ui

N

⎛

⎜⎝P
Tx

i |
∑

uv∈NTx
ui

SC
Tx∗
iv P Tx

v ,	Tx

⎞

⎟⎠ (10)

Where 	Tx denotes the zero-mean spherical Gaussian priors in xth cluster, NTx
ui

denotes user

ui neighbors in the xth cluster and SC
Tx∗
iv is the normalization of SC

Tx

iv .
According to [17], through a Bayesian inference, the posterior probability of the latent

feature vectors can be obtained as follows:

p
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998 World Wide Web (2018) 21:985–1013

where I
Tx

ij is the indicator function that equals to 1 if user ui has rated item sj and equals to
0 otherwise. The training objective function according to (11) is improved as follows:
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T ⎞
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Where α is tradeoff parameter which controls the factor of user rating similarity by the last
term in (12).

4.1.3 Stage 3: adding user and item feature similarity

The survey of sociology shows that certain users have common interests [1]. For example,
housewives like watching Korean teleplay. Moreover, some kinds of items become more
popular at a certain time of the year. For example, people more likely to buy turkey on
Thanksgiving Day, and on June 1 the children’s day, childrens movies are popular. There-
fore, in the case of contextual information clustering, we supplement the restricting terms
for item and user feature similarity on the basis of (12) which can enhance our models
practicability.

Figure 6 Recommendation Schematic Drawings by adding user and item feature similarity. n denotes the
total number of users in xth cluster, m denotes the total number of items in xth cluster, |NTx

ui
| denotes the total

number of neighbors of user ui in xth cluster. |MTx
sj

| denotes the total number of adjacent items of sj
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Similar to (10), we have the conditional distributions given the user and item latent
features. Equations (13) and (14) in a graphical form are shown in Figure 6.

p
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Through a Bayesian inference, the posterior probability of the latent feature vectors P Tx

and QTx can be obtained as follows based on (11).
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The objective function which supplements restrict term of user feature similarity and item
feature similarity to the (12) is shown as follows:
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Where β and γ are tradeoff parameters which control the factor of user and item feature
similarity respectively.
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4.2 Model training

After the rating data is divided into k subsets based on the clustering result of k-Modes
algorithm on the contextual information, the model in (16) is used to train P Tx and QTx in
each cluster separately. P Tx andQTx are considered as variables and gradient decent method
can be used to obtain the optimal latent feature vectors. An improved variable step gradient
descent algorithm is proposed which is more efficient than PRM [47].
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Before running the optimization algorithm, we first set the values of P Tx and QTx as 0.
According to (17) and (18), the user and item latent feature vectors P Tx andQTx are updated
as follows as in (19) and (20) based on previous values to ensure the fastest improvement of
the objective function by each iteration:

P
Tx

i (t + 1) = P
Tx

i (t) − l
∂ψ

∂P
Tx

i

(t) (19)

Q
Tx

j (t + 1) = Q
Tx

j (t) − l
∂ψ

∂Q
Tx

j

(t) (20)

Where l is the learning rate. Our improved variable step gradient descent algorithm is pre-
sented in Algorithm 1. In the algorithm, we set a chaos variable μ which has micro different
value in each iteration, making it possible for the objective function to converge steadily.

The main computational overhead of the gradient methods lies in the evaluation of the
objective function � and its gradients against variables. Because of the sparsity of matrices
RTx , SCTx , SUTx and SSTx , the computational complexity of evaluating the object function
� isO(lnωRTx +lnωSCTx +lnωSUTx +lnωSSTx ), whereωRTx ,ωSCTx ,ωSUTx andωSSTx are the
numbers of nonzero entries in matrices RTx , SCTx , SUTx and SSTx , respectively, and ln is the
number of latent factors. The computational complexity for gradients ∂ψ

∂P
Tx
i

, ∂ψ

∂Q
Tx
i

in (17),

(18) are O(lnωRTx + lnωSCTx + lnωSUTx ), O(lnωRTx + lnωSSTx ), respectively. Thus, for each
iteration, the total computational complexity is O(lnωRTx + lnωSCTx + lnωSUTx + lnωSSTx ),
which indicates that the computational time of our method is linear with respect to the
number of observations in the four sparse matrices. In addition, we divide the training data
into groups by clustering, which further helps improve the efficiency of our method. This
complexity analysis shows that our proposed approach is very efficient and can well scale
to very large datasets.

5 Experimental evaluation

In this section, we will report the extensive experiments that we have conducted to evaluate
the performance of our proposed recommender system. We will start with a discussion on
the experimental setup of our evaluation, which will cover the information about datasets,
performance measurements, the recommendation algorithms to be used for comparative
study and the parameter setting. The detailed experimental results will be reported in the
second half of this section.

5.1 Experimental setup

5.1.1 Datasets

Three commonly used real-life datasets are used to validate our model and perform com-
parative study with existing models in our work. These datasets are MovieLens,1 Epinions2

and Douban3 which are chosen due to the use of item feature, user feature and contextual

1http://www.grouplens.org/node/12
2http://www.epinions.com
3http://www.douban.com

http://www.grouplens.org/node/12
http://www.epinions.com
http://www.douban.com


1002 World Wide Web (2018) 21:985–1013

Table 2 MovieLens dataset
Category User count Item count Rating count Sparsity r

Movies 6040 3900 1000209 4.25E-2 3.571

information in our model. The Moivelens dataset includes 3,900 moives, 6,040 users and
1,000,209 ratings. Epinions is a consumer opinion website where users can review items
and also assign them numeric ratings in the range of 1 to 5. We use the version of the Epin-
ions dataset published by the authors of [55]. This dataset is made up of ratings from 75,888
users who rated a total of 149,943 different items. The total number of ratings is 598,329,
it includes 25 categories and 240 subcategories. In our work, we selected 5 representative
categories in the Epinions dataset and experimented based on them. Douban is one of the
most popular social networks in China. It includes several parts: reading, movie, music, city
circle and so on. In Douban, users can rate the book which they have read and share the
reviews to their friends. We crawled nearly 30,000 users and 400,000 items from July 2012
to January 2014. The details of these three datasets are shown in Tables 2, 3 and 4.

5.1.2 Performance Measures

In our work, we use 70% of the data as the training dataset and the remaining 30% as the
test dataset in the above three datasets respectively. The performance measures we use in
our experiments are Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
which are the most popular accuracy measures. RMSE and MAE are defined as follows
respectively.

RMSE =

√√√√√√

∑

(ui ,sj )∈Ttest

(
Rij − R̂ij

)2

|Ttest | (21)

MAE =

∑

(ui ,sj )∈Ttest

∣∣∣Rij − R̂ij

∣∣∣

|Ttest | (22)

Where Ttest is the training dataset, Rij is the real rating of item from user, and R̂ij is the
corresponding predicted rating.

5.1.3 Competitive algorithms for comparison

The following recommendation models are involved in our experimental evaluation for
performance comparative study.

Table 3 Epinions dataset
Category User count Item count Rating count Sparsity r

Books 14176 226022 40231 1.256E-5 4.27

Music 10895 15313 45356 2.719E-4 4.28

Toys 6203 3547 27119 1.233E-3 4.13

Software 8196 1434 18989 1.612E-3 4.01

Cars 11202 3011 18808 5.576E-4 4.15
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Table 4 Douban dataset
Category User count Item count Rating count Sparsity r

Books 7204 189923 631724 4.62E-4 4.25

Music 19782 150436 173269 5.82E-5 4.23

Movies 4780 47906 1595667 6.97E-3 3.766

(1) BaseMF. This model uses basic matrix factorization techniques without considering
any social factors.

(2) SocialMF. This mode improves the recommenda-tion accuracy compared with the
BaseMF as it makes a use of the factor of social trust as the social links in the dataset.

(3) PRM. This model integrates the user interest, interpersonal interest similarity and
interpersonal influence into the model. According to the properties of items, the dataset
was divided into subcategories to improve the recommendation accuracy of the model.

(4) HMF. Our model considers four types relation which are user-item relation, item-item
relation, user-user relation and contextual information-user relation based on the topo-
logical structure of hypergraph. The model classifies the training dataset into several
groups based on the contextual information which helps enhance the intrinsic link
among features in the latent space, and three important factors (user feature, item
feature and users ratings) are incorporated into the model.

5.1.4 Parameter settings

Table 5 presents the details about the parameters used in all methods including their
meanings and the default values.

5.2 Experiments results

5.2.1 Recommendation accuracy

In this section, we first evaluate the recommendation accuracy of different models in terms
of both RMSE andMAE. Then we compare their classification accuracy based on precision,

Table 5 Description and default value of parameters

Symbol Description Default value

ln The dimension of latent feature space ln = 10

lu The dimension of user feature space lu = 5

ls The dimension of item feature space ls = 10

lc The dimension of contextual information space lc = 5

k The number of clusters which were divided by k-Modes algorithm k = 8

λ The regularization constant λ = 0.1

α The tradeoff parameters play the role of adjusting the strengths of
user rating similarity in object function (16)

α = 1

β The tradeoff parameters play the role of adjusting the strengths of
user feature similarity in object function (16)

β = 1

γ The tradeoff parameters play the role of adjusting the strengths of
item feature similarity in object function (16)

γ = 1
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Table 6 Performance comparison on the movielens dataset

Dataset BaseMF SocialMF PRM HMF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Movies 1.437 1.120 1.158 0.953 1.125 0.944 1.089 0.932

22.8% 16.8% 6.0% 7.1% 3.2% 1.3%

recall and F-measure. We conduct a series of experiments on MovieLens, Epininons and
Douban under the default experimental settings set forth in Table 6. The results of exper-
iments are shown in Tables 6, 7 and 8. The percentage numbers in each cell of the tables
are the relative improvements of the HMF model over the other comparative models. We
can see from the results that the accuracy of our model is better than PRM and outperforms
BaseMF and SocialMF by a larger margin. More specifically, as shown in Table 6, our model
increases recommendation accuracy by 17.2%, 6.0% and 3.2% in terms of RMSE, and by
16.8%, 7.1% and 1.3% in terms of MAE over BaseMF, SocialMF and PRM, respectively.
Our model achieves an even better accuracy performance when dealing with Epinions and
Douban datasets , as shown in Tables 7 and 8. This is because that the contextual informa-
tion was taken into account in our model and the training dataset was divided into 8 groups
using k-Modes clustering algorithm. The MovieLens dataset doesn’t have the contextual
information, so the k-Modes clustering algorithm is not applicable on this dataset.

In order to further test the overall performance of the HMF model, we utilize three addi-
tional measures including precision, recall, and their harmonic mean F1 for experimental
evaluation. For the conduct of this experiment, we must transform the item ratings into a
binary scale (i.e., relevant and non-relevant) by converting each rating of four or five to rel-
evant and all ratings from one to three to not-relevant. Thus, the precision is the ratio of
recommended items (i.e., the items whose predicted ratings are larger than three) that are
relevant. The recall is the fraction of relevant items that are recommended. Finally, the F1
score is the harmonic mean of the precision and recall. We use MovieLens dataset and set
numbers of recommendation range from 2 to 30. From Figure 7a and b, we can see that our
model is superior to other models in terms of precision, recall and F1.

Table 7 Performance comparison on the epinions dataset

Dataset BaseMF SocialMF PRM HMF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Books 1.437
23.7%

1.162
18.8%

1.203
8.9%

1.040
9.3%

1.136
3.5%

0.962
2.0%

1.096 0.943

Music 1.392
21.6%

1.145
19.2%

1.185
7.9%

0.997
7.2%

1.114
2.1%

0.941
1.7%

1.091 0.925

Toys 1.377
26.9%

1.133
21.4%

1.175
14.3%

1.009
11.7%

1.088
7.4%

0.950
6.2%

1.007 0.891

Software 1.421
27.4%

1.190
25.5%

1.193
13.5%

1.064
16.7%

1.125
8.3%

0.980
9.6%

1.032 0.886

Cars 1.479
26.4%

1.267
22.7%

1.212
10.1%

1.112
12.0%

1.134
4.0%

1.007
2.8%

1.089 0.979
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Table 8 Performance comparison on the douban dataset

Dataset BaseMF SocialMF PRM HMF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Books 1.494
27.7%

1.204
23.3%

1.192
9.4%

1.083
14.7%

1.134
4.8%

0.977
5.4%

1.080 0.924

Music 1.452
28.7%

1.193
23.0%

1.191
13.1%

1.015
9.5%

1.170
11.5%

1.005
8.6%

1.035 0.919

Movies 1.470
26.1%

1.213
25.4%

1.186
8.3%

1.019
11.2%

1.116
2.6%

0.933
3.0%

1.087 0.905

5.2.2 Performance on sparse datasets

In order to analyze the performance of various models when dealing with sparse datasets,
we take out some rating data from the datasets randomly to generate new datasets with
desired sparsity for the experiments, and evaluate the recommendation accuracy of each
model against RMSE and MAE in different scenarios. To ensure the fairness of the exper-
iment, we only conduct this experiment using MovieLens with default parameter settings
for different models. Figure 8a and b present the experiment results of different models in
terms of MAE and RMSE under 7 different cases of data sparsity, which are 1E-2, 5E-3, 1E-
3, 5E-4, 1E-4, 5E-5, 1E-5. For instance, 1E-2 denotes 1 × 10−2. X coordinates represents
sparsity which is defined as: Sparsity = Nr/(Nu × Ns), where Nr denotes the number of
ratings, Nu and Ns denote the number of users and items, respectively. We can see that our
model is superior to other models compared from 1E-2 to 1E-5 in terms of both MAE and
RMSE. Because HMF model uses both user and item feature whilst the competitive models
do not use, it demonstrates the user feature and item feature are effectively integrated into
our model.

5.2.3 Sensitivity study

In this subsection, we conducted experiments to test the sensitivity of our model with
regard to various parameters to understand the effect posed by them on the recommendation
accuracy of our model.

(a) The effect of the number of iterations

Figure 7 Results on dataset (MovieLens) in terms of precision/recall and F1
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Figure 8 Results on sparse dataset (MovieLens) in terms of MAE and RMSE

In our recommendation model, we use the improved variable step gradient descent
algorithm (IVGDA) to do experiment to get the optimal user and item latent feature
vectors. Because PRM use the MovieLens dataset, in order to compare with the other
algorithm fairly, in this experiment, the MovieLens is used and we setm = 2,μ = 0.5
and ε = 0.001 in Algorithm 1. We compare the performance of IVGDA with the
gradient descend algorithm (GDA) used by PRM Model [47]. From Figure 9a and
b, we can observe that both MAE and RMSE decrease steadily when the number of
iterations increases for the two algorithms, but IVGDA features a noticeably better
convergence than GDA.

(b) The effect of cluster number (k)
In order to evaluate the effect of number of clusters on recommendation accuracy,

we conduct experiments on Epinions and Douban datasets, because these two datasets
have the contextual information, but MovieLens does not. We set the value of k from
1 to 32, and set other parameters as their respective default value. As shown in Figure 10a
and b for Epinions dataset, we see that subcategories such as software and toys have
a lower predicted error when k is set to relatively small values, and the value of MAE
and RMSE grow quickly when k is bigger than 8. In Figure 11a and b for Douban
dataset, we can see that the predicted error reaches the minimum when the value of
k gets closer to 16. In fact, the rating count in Douban is 10 times larger than that in
Epinions, so we can conclude that k should be generally set to a larger value when the
rating count in the dataset is higher. However, the prediction accuracy will decrease

Figure 9 The effect of the number of iterations (MovieLens)
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Figure 10 The number of clusters experiments with MAE and RMSE on Epinions

when k is greater than a threshold. Experimentally, when k value is 8 or 16, the HMF
has a better recommendation accuracy in our experimental datasets.

(c) Effect of weight coefficients in our model
In this section, we conducted a series experiments on Douban dataset to test the

impact of different weight coefficients used in our model on its prediction error.
Specifically, we evaluate the effect of parameters λ, α, β and γ . Parameters α, β, γ

control the influence of user rating similarity, user feature similarity and item feature
similarity on the prediction error respectively, and λ, being the regularization con-
stant, plays a role in adjusting the strengths of different terms in the objective function
(16). Larger values of the weight coefficients in the objective function in (16) indicate
a stronger impact of the respective factor on the user and item latent feature. In order
to analyze each parameter individually, we every time only change the value of the
target parameter while keeping the values of others fixed.

In Figure 12, we set λ from 0.01 to 20, and other parameters were set as default. As
shown in Figure 12a and b, our model achieves its better performance on Douban when λ

ranges from 0.05 to 1, and the prediction error will increase when λ is set to a too small or
too large value.

As shown in Figure 13a–f, the accuracy of our model reaches its highest level on Douban
when α = 5, β ranges from 0.5 to 2 and γ falls in the range of (1,5), which provides a good
guidance to set their values in practice.

To ensure the fairness of our experiments, we set λ = 0.1, the same configuration as in
the competitive model. α, β and γ are set to 1 as an empirical value according to previous

Figure 11 The number of clusters experiments with MAE and RMSE on Douban
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Figure 12 The value of λ influence on prediction error which based on Douban dataset

Figure 13 The value of tradeoff parameters influence on prediction error which based on Douban dataset
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Table 9 Parameters combination performance on Douban dataset

Parameters combination RMSE MAE Parameters combination RMSE MAE

λ = 0.05, α = 1, β = 1, γ = 1 1.091 0.906 λ = 0.5, α = 1, β = 1, γ = 1 1.097 0.921

λ = 0.05, α = 3, β = 1, γ = 2 1.085 0.901 λ = 0.5, α = 3, β = 1, γ = 2 1.092 0.910

λ = 0.05, α = 5, β = 2, γ = 2 1.081 0.899 λ = 0.5, α = 5, β = 2, γ = 2 1.085 0.903

λ = 0.05, α = 5, β = 2, γ = 5 1.084 0.901 λ = 0.5, α = 5, β = 2, γ = 5 1.091 0.911

λ = 0.1, α = 1, β = 1, γ = 1 1.087 0.905 λ = 1, α = 1, β = 1, γ = 1 1.108 0.932

λ = 0.1, α = 3, β = 1, γ = 2 1.078 0.895 λ = 1, α = 3, β = 1, γ = 2 1.107 0.931

λ = 0.1, α = 5, β = 2, γ = 2 1.062 0.893 λ = 1, α = 5, β = 2, γ = 2 1.101 0.925

λ = 0.1, α = 5, β = 2, γ = 5 1.077 0.894 λ = 1, α = 5, β = 2, γ = 5 1.110 0.933

works. In order to obtain a more optimized combination of parameters, we choose the appro-
priate value for parameters combining from a single parameter optimal interval. Then, the
experimental results of 16 representative combinations are presented in Table 9.

Besides evaluating the effect of each weight coefficient individually on our recommen-
dation model, we also explore different binary combinations of them to see how different
combinations of factors (user rating similarity, user feature similarity and item feature sim-
ilarity) affect the performance of our model. As shown in Figure 14, NULL denotes the
model where α, β and γ values are zero (i.e., the model itself is reduced to BaseMF). UF
denotes the model using only the user feature similarity (α = 0, β = 1, γ = 0), If denotes

Figure 14 Different combinations of tradeoff parameters influence on MAE and RMSE which test on
Douban Movies Dataset. a and b are done under normal circumstance, c and d are done under cold start
circumstances
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Table 10 Cold start performance comparison on Douban dataset

Dataset BaseMF SocialMF PRM HMF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Books 2.015
34.1%

1.67
33.9%

1.521
12.7%

1.206
8.5%

1.413
6.0%

1.131
2.4%

1.328 1.104

Music 2.128
38.1%

1.730
36.4%

1.505
12.5%

1.214
9.4%

1.412
6.7%

1.155
4.8%

1.317 1.100

Movies 1.924
32.3%

1.652
33.5%

1.498
13.0%

1.197
8.3%

1.398
6.8%

1.150
4.5%

1.303 1.098

the model using only the item feature similarity (α = 0, β = 0, γ = 1) and UI denotes the
model using only the user rating similarity (α = 1, β = 0, γ = 0). UF+If, UF+UI, If+UI
correspond to the cases of using the combination of two appropriate factors, and finally ALL is
a case where all the three factors are considered. Furthermore, two experiments were con-
ducted under the normal and cold star circumstances. The results are shown in Figure 14.
The settings under the cold start scenario are the same as those in Section 5.2.4 where the
number of target user’s ratings is no more than 5. When each factor is used in the model indi-
vidually, the symbol UI shows the highest prediction accuracy. The results suggest that the
similarity of user ratings is the most important factor compared to others. From those exper-
iments, we also obtained an interesting finding that the gap in the prediction accuracy using
various factors become larger when dataset becomes increasingly sparse. Figure 14 clearly
demonstrates the benefits of using the three different factors as a combination, which can
apparently help improve the recommendation accuracy of our model in the two scenarios.

5.2.4 Performance on cold start problem

Some users in social network provide a lot of ratings, but most users only provide very
limited number of ratings [24, 38]. In this paper, we define the users who have provided
no more than 5 ratings as cold start users [16]. We conduct an experiment on the cold start
users by using Douban dataset, and the comparative results for different models are shown
in Table 10. Our model, by considering both user feature and item feature, is able to decrease
the recommendation error by more than 30%, 10%, 6% on RMSE and by more than 30%,
8%, 2% on MAE against BaseMF, SocialMF and PRM.

6 Conclusion and future work

With the advent of online social networks, exploiting the information hidden in the social
networks to predict the behavior of users has become very valuable. Recommender systems
have become very useful tools to mine the knowledge from the social networks to improve
recommendation accuracy. In this paper, we presented a hybrid recommender system based
on hypergraph topologic structure in social networks, and four types of relations, which
are user-item relation, item-item relation, user-user relation and contextual information-
user relation, have been taken into account in our recommendation model to improve its
accuracy. We also conducted extensive experiments on three larger real-life datasets, and
the experimental results show that our model enjoys higher recommendation accuracy over
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the existing major recommendation models. Although it has some advantages in its recom-
mendation effectiveness, our model still has some limitations and there is room for further
improvement in some aspects. Firstly, our HMF model requires access to more information
in social networks such as user feature, item feature and contextual information. Secondly,
our HMF model faces an increased computational complexity when user feature and item
similarity are calculated.

There will be several interesting directions to explore for our future work. We want to
extend the model to handle recommendation across multiple social networks as it is not
uncommon that many users register in several different social networks. Just as presented
in [45], shilling attack is one of great threat to recommender system, attack detection is also
an important direction for our next work. Furthermore, since the information of user feature
and context will be used and exploited, the issues of privacy preservation and protection in
recommendation should be considered and further investigated.
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