
World Wide Web (2018) 21:939–959

Team formation with influence maximization
for influential event organization on social networks

Cheng-Te Li1 ·Mei-Yuan Huang2 ·Rui Yan3

Received: 12 September 2016 / Revised: 14 August 2017 / Accepted: 17 August 2017 /
Published online: 30 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Online event-based social services allow users to organize social events by speci-
fying the themes, and invite friends to participate social events. While the event information
can be spread over the social network, it is expected that by certain communication between
event hosts, users interested in the event themes can be as more as possible. In this paper, by
combining the ideas of team formation and influence maximization, we formulate a novel
research problem, Influential Team Formation (ITF), to facilitate the organization of social
events. Given a set L of required labels to describe the event topics, a social network, and
the size k of the host team, ITF is to find a k-node set S that satisfying L and maximizing
the Influence-Cost Ratio (i.e., the influence spread per communication cost between team
members). Since ITF is proved to be NP-hard, we develop two greedy algorithms and one
heuristic method to solve it. Extensive experiments conducted on Facebook and Google+
datasets exhibit the effectiveness and efficiency of the proposed methods. In addition, by
employing the real event participation data in Meetup, we show that ITF with the proposed
solutions is able to predict organizers of influential events.
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1 Introduction

Team formation [9] in a social network is to find a set of experts such that not only
a set of required labels is covered but also team members have lower communication
cost with one another (i.e., well-connected in the underlying network). It is apparent that
team formation can be applied to many real applications, such as searching for a group
of employers to execute a project in a company, and composing an activity group for
a cocktail party with particular themes. However, team formation techniques [1, 7, 12]
are not applicable for organizing Influential Events in event-based social services (e.g.
Meetup,1 Plancast,2 and Facebook Events). Here we consider influential event organi-
zation is to find a set of persons who are interested in the themes of an event, have
better social interactions (i.e., lower communication cost), and can attract a large num-
ber of people to participate in the event. It is common and realistic to organize influential
events. The real-world scenarios on the demand of influential events may include organiz-
ing technical conferences, fund raising for earthquake victims, and initiating anti-nuclear
campaign. In such scenarios, people attempt to maximize the number of participants since
more participants mean a success of the events. One may think Social Influence Max-
imization [8], which aims at finding a set of seeding users such that the number of
influenced users can be maximized, seems to be a solution. However, influence maximiza-
tion techniques [3, 4, 19] are not applicable for influential event organization because they
consider neither the set of required labels, nor the communication between the selected
seed nodes.

This paper proposes a novel problem, Influential Team Formation (ITF), in a social net-
work. Given a set of required labels and the size k of the team, the ITF problem is to find
a set S of nodes such that (a) the query label set is covered by the discovered k-node set S,
and (b) the influence-cost ratio of nodes in S is maximized. We propose the Influence-Cost
Ratio (ICR) to quantify the influence spread of the selected k nodes per communication
cost. ICR of a node set S is defined as ICR(S) = σ(S)

c(S)
, where influence spread σ(S) is

the expected number of nodes activated by S while the communication cost c(S) is the sum
of all-pair shortest path lengths between nodes in S. A team can derive a higher ICR if the
teammembers can lead to higher influence spread and are well-connected. The ITF problem
is challenging since maximizing influence spread contradicts minimizing communication
cost. Influence maximization tends to select well-separated nodes because their activated
nodes can have less overlapping. But team formation prefers well-connected nodes since
they can produce lower communication cost.

It is worthwhile to note that a team is a task-oriented group whose team members not
only possess some skill labels to deal with the task, but also well collaborate with each
other. Therefore, the team formation problem asks for a set of required skill labels as the

1www.meetup.com
2www.plancast.com

www.meetup.com
www.plancast.com
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input, and expects that the discovered teammembers are equipped with some of the required
skill labels and have good communication among them. Since we aim at forming influential
“teams”, the selected team members (i.e., seeds) need to rely on a required set of skill labels
and be well-connected to have good communication. In addition, “influential” teams also
require the team members to be influential, i.e., team members should lead to higher influ-
ence spread in the social network. Consequently, the proposed ITF problem is a combination
of team formation and influence maximization.

We create an example, as shown in Figure 1, to exhibit the differences among team for-
mation (TF), influence maximization (IM), and the proposed ITF. This example assumes the
set of required labels is {a, b, c, d, e} and k = 3. TF may select the set ST F = {v1, v2, v3}
since they cover more required labels and are well-connected. ICRT F = 7

3 . IM will select
the set SIM = {v1, v4, v6} because they can lead to highest influence spread. ICRIM = 11

5 .
ITF will find the set SIT F = {v1, v5, v6} that leads to the highest ICRIT F = 10

3 . It is
because not only the union of the activated sets of v1, v5, and v6 leads to the largest activated
set (i.e., {v1, v2, v3, v4, v5, v6, v7, v9, v14, v15}), but also v1, v5, and v6 are inter-connected
with a triangle structure in the network.

To this end, we formulate the ITF problem under the Independent Cascade (IC) model,
and prove its NP-hardness. We propose a greedy algorithm with quality guarantee. While
the greedy solution is effective but very inefficient, we further develop two greedy methods:
ICR Greedy (ICR-Greedy) andMixed Influence-Cost Greedy (M-Greedy), and one heuristic
method: Similar Influence Search (SimIS). ICR-Greedy iteratively selects nodes with high-
est marginal gain of ICR scores. M-Greedy combines the NewGreedy IM method [3] with
the original TF algorithm [9] in an interweaving manner. SimIS integrates Group-PageRank
[15] with a best-first search in the social network. To validate the proposed methods,
we have simulation-based and prediction-based experiments. The simulation-based exper-
iments conducted on two real social network datasets, Facebook and Google+, and the
results show both M-Greedy and SimIS can generate the highest ICR scores with satisfying
time efficiency. The prediction-based experiments are conducted using the real event partic-
ipation data of the event-based social service Meetup. The goal is to validate whether ITF

Figure 1 A toy example of a social network (left), and a table (right) that describes the set of required labels
possessed by each node and the set of nodes activated by each node. Note that a subset of nodes is shown in
the table. Nodes except for v1 to v6 do not contain any required label
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with the proposed solution can truly identify the organizers of influential events based on
the required labels of the given event and the social network. The results exhibit satisfying
accuracy.

The contributions of this work consist of four parts, as described in the following.

– We formulate the novel Influence Team Formation (ITF) problem to find a set of users
as team organizers for initiating influential events on social network. By integrating
Team Formation with Influence Maximization, we devise the Influence-Cost Ratio
(ICR) to estimate the influence spread per communication cost among team members,
and aim at maximizing ICR while covering the required labels in the ITF problem.

– We analyze the hardness of the ITF problem. And we develop three algorithms, ICR-
Greedy, M-Greedy, and SimIS, to solve the ITF problem in either the greedy or heuristic
manner.

– We conduct a comprehensive evaluation on our proposals with some baselines using
real Google and Facebook datasets. Experimental results validates our idea and exhibit
the promising effectiveness (in terms of ICR scores) and time efficiency of the proposed
methods, especially for SimIS.

– In addition to the simulation-based evaluation, we further use real event participation
data in Meetup to validate whether the proposed methods can accurately predict the
organizers of influential events based on the required labels. Experimental results show
satisfying accuracy, especially for SimIS.

2 Related work

The relevant studies consists of three parts: team formation, influence maximization, and
social event organization. Team formation is first proposed to find a set of experts such that
not only a set of required skills are covered, but also the communication cost among team
members is minimized [9]. There are a series of follow-up extensions considering various
real scenarios: jointly finding a team leaders and forming the team [7], simultaneously tack-
ling multiple sets of required skills [1], specifying the number of experts for each skill [12],
allowing geographical and team-size constraints [20], imposing swarm-based optimization
[2], and recommending other individuals to replace some of existing team members [14].
Community Search [22] alternatively finds a densely-connected subgraph based on a set of
given nodes, instead of required skills.

The Influence maximization problem is to find a set of seed nodes that can maximize
the influence spread (i.e., the expected number of activated nodes) in a social network
under either Independent Cascade or Linear Threshold model [8]. There are two main-
stream solutions that attempt to strike a balance between efficiency and effectiveness. The
first is to develop seed-selection heuristics, such as Degree Discount [3], Maximum Influ-
ence Arborescence [4], Group-PageRank [15], and IM-Rank [6]. The second is to speed
up Monte-Carlo simulation-based greedy algorithm [8], such as Cost-Effect Lazy-Forward
[10], NewGreedy [3], StaticGreedy [5], Pruned Monte-Carlo [19], and supervised Monte
Carlo estimation [16]. In contrast to influence maximization, Zhang et al. [27] alternatively
aims at finding a critical block of nodes to control the misinformation diffusion in a social
network.
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Social event organization aims at composing a group of persons that satisfying various
kinds of event requirements. Socio-spatial Group Query [25] is to find a group of persons
who are not only geographically close to each other but also acquainted with each other,
and their extended work [21] maximizes the likelihood of friend making among group
members. A follow-up work [11] recommends a group of users satisfying required labels
and being acquainted with each other for an event host. SEO [13] further composes multi-
ple event groups simultaneously. Marketing effect maximization [26] aims to find a set of
nodes that are geographically close to the event location and attract more those users sat-
isfying event themes. The bottleneck-aware social event arrangement (BSEA) [23] further
considers social influence to recommend events for users.

3 Problem formulation

We first describe some preliminary notations. First, a social network is represented by a
graph G = (V ,E), where V is the node set and E is the edge set. Each node u is associated
with a set of labels Lu. Second, let L(S) be the set of required labels covered by a node
set S, i.e., L(S) = L ∩ (∪u∈SLu), where L is the set of required labels. We define the
label coverage π of a node set S, given by π(S) = |L(S)|

|L| . Third, we adopt the Independent
Cascade model to propagate influence. In IC model, in time step t each active node u has a
single chance to activate each of its inactive neighbors v with a pre-determined probability
pu,v . If u succeeds, v will become active in step t +1. Otherwise, u will not activate v again.
The process ends when no more nodes can be activated. In this paper, pu,v is uniformly
selected from the set {0.1, 0.2, ..., 0.9} based on the TRIVALENCY model [4]. Fourth, the
influence spread of a node set S, denoted by σ(S), is the expected number of activated nodes
given S. Fifth, we define the communication cost of a node set S, denoted by c(S), as the
sum of all-pair shortest path lengths [7], i.e., c(S) = ∑

u,v∈S len(u, v), where len(u, v) is
the length of the shortest path between u and v. To this end, we can define the influence-cost
ratio of a node set S as ICR(S) = σ(S)

c(S)
.

Influential team formation (ITF) Given a set of required labels L, a social network
G = (V ,E), and the size k of the desired team, the ITF problem is to find a k-node set
S ⊆ V such that not only the label coverage π(S) = 1 but also the influence-cost ratio
ICR(S) is maximized.

Theorem 1 For the IC influence propagation model, the influential team formation problem
is NP-hard.

Proof Sketch The ITF problem can be divided into two parts: team formation (TF) and
influence maximization (IM). The TF part aims at finding a k-node set S that covers L

and minimizes the communication cost c(S). This part had been proved to be NP-hard
[7] by a reduction from 3-Satisfaction (3-SAT). The IM part is to find a k-node set that
maximizes the influence spread σ(S) under IC model, which had also been proved to be an
NP-hard problem [8] by a reduction from Set Cover problem. Since maximizing ICR(S)

is composed by maximizing σ(S) and minimizing c(S) simultaneously, it is natural that the
ITF problem is also NP-hard.
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4 Proposed methods

In this section, we propose three algorithms to solve the ITF problem. First, we describe a
ICR-Greedy algorithm, which extends the “Lazy-Forward” influence maximization greedy
method to deal with the set of required labels and ICR. Second, we develop a Mixed
Influence-Cost Greedy algorithm, which integrates the team formation procedure with max-
imizing influence spread. Third, we present a heuristic method, Similar Influence Search,
whose idea is that influential near-by nodes have similar distributions of influence spread
over all the nodes in the network, and find team members by selecting nodes with similar
influence distributions.

4.1 Lazy-forward ICR-greedy method

Since the monotonicity of both σ(·) and c(·) is straightforward and σ(∅) = 0, let c(∅) = 1,
we can have ICR(∅) = 0. Based on the set function theory [17], a simple greedy can
generate an approximated result with 1 − 1/e (≈ 63%) to the optimal solution. Since the
ITF problem is NP-hard, we can estimate the ICR(·) by run Monte-Carlo simulation up
to sufficient times R (e.g. R = 20, 000), which was originally adopted by influence max-
imization [8]. However, such Monte-Carlo greedy method has time complexity O(knRm),
where n = |V | and m = |E|. Therefore, we resort to the Lazy-Forward strategy [10], which
exploits the submodularity to speed up the computation by reducing the times of estimating
σ(·). The detailed algorithm, Lazy-Forward ICR-Greedy, is provided in Algorithm 1. V L is
used to retrieve the set of nodes possessing at least one required label (line 2). We use δv to
record the marginal ICR (line 11), and implement δv using Priority Queue to efficiently find
the node with the highest marginal ICR. Note that the proposed methods, i.e., ICR-Greedy,
M-Greedy, and SimIS, does not directly ensure the label coverage π(S) = 1. Nevertheless,
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we assume that the number of required labels is usually not large (e.g. 5). Therefore, with a
proper team size k, it is easy to make π(S) = 1.

4.2 Mixed influence-cost greedy method

While the previous ICG-Greedy directly maximizes ICR(·), we devise another greedy
algorithm that aims at separately maximizing σ(·) and minimizing c(·) in an interweaving
manner. The rationale is that directly maximizing ICR(·) may destroy the connectivity of
the team members. That said, the shortest paths between nodes in S could pass through
irrelevant nodes that contains no required labels. Since the communication cost c(S) is the
denominator of ICR(S), including unconcerned nodes will increase c(S) and lead ICR(S)

to an unsatisfied local maximal. To alleviate such damage on ICR(·), we propose to bal-
ance the the trade-off between σ(·) and c(·) by mixing maximizing σ(·) and minimizing
c(·). The algorithm, Mixed Influence-Cost Greedy (M-Greedy), is shown in Algorithm 2.
We take advantage of the Lazy-Forward strategy on the marginal gain of σ(·) and c(·) to
minimize the cost function c(·). The first If-Statement (line 7), |S|%2 == 0, is created to
interweave maximizing σ(·) (line 8) with minimizing c(·) (line 10).

4.3 Similar influence search heuristic

Although the previous two greedy methods can be effective for finding the team S with
high ICR(S), they are quite inefficient for real-world practical usages. It is because of the
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computation of influence spread σ(·), even the Lazy-forward strategy is applied. Therefore,
we aim at developing an effective and efficient heuristic method, Similar Influence Search
(SimIS). The central idea of SimIS is two-fold. The first is exploiting the heuristic lin-
ear influence modeling [24] to efficiently estimate the influence spread: under Independent
Cascade model [8], the influence reaching a node v is a linear combination of the influence
from v’s neighbors. Such idea enables us to linearly compute the influence spread of an
arbitrary set of nodes in a closed form. The second is that a node set S with lower communi-
cation cost means its members tend to be close to each other in the social network, and thus
they are supposed to generate similar influence toward other nodes in V \S. If the formation
of team members starts from the most influential node, and iteratively selects the next team
member by finding the node that can generate the influence spread (to all of the remaining
nodes) as close as possible to the influence spread generated by the currently selected team
members, we might be able to approximately lower down the communication cost while
maintaining the influence spread. To implement such two ideas, we first elaborate the linear
influence modeling, then give the detailed algorithm of SimIS.

Based on the linear influence model [24], we can approximately have the seed set S’s
influence on a node v /∈ S, given by:

σ(S → v) = ρ
∑

u∈N(v)

pv,uσ (S → u), (1)

where N(v) is the set of neighbors of node v, and ρ ∈ (0, 1) is the damping factor of
influence propagation (note that for v /∈ S, σ(S → v) = 1). This representation reflects
that the influence from S to v is a linear combination of the influence from S to each of v’s
neighbors, and allows efficient linear computation of influence propagation in an iterative
manner. Equipped with σ(S → v), we can further derive the influence from S to a node set
T (S∩T = ∅, S ∈ V and T ∈ V ), denoted by σ(S → T ), by summing up the influence from
S to each node v ∈ T : σ(S → T ) = ∑

v∈T σ (S → v). Since the influence maximization
part of our ITF problem is targeting at all nodes in the network, here we use the entire node
set V in the network to be T . The influence spread of S, i.e., σ(S) = σ(S → V ), can be
derived with time complexity O(|E|) [24].
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Finding a k-node set that maximizes ICR(S) can be considered as maximizing σ(S) and
minimizing c(S) simultaneously when iteratively adding nodes to S. We propose a Similar
Influence Search (SimIS) heuristic to approximately fulfill such idea based on the linear
influence modeling σ(S → T ). SimIS begins with finding the first team member s(1) by
selecting the node with the highest influence spread, i.e., s(1) = argmaxv∈V σ(v → V ),
then adds s(1) into S. Here we use Group-PageRank [15] GPR(v → V ) to efficiently
estimate a node v’s influence spread σ(v → V ). GPR(v → V ) had been shown to be the
upper bound for σ(v → V ) [15]. To find each of the next k-1 nodes, i.e, s(i)(1 < i ≤ k),
we propose to select the node v ∈ V \ S whose influence on the entire node set V is as
similar as the influence of currently selected S on V . Specifically, let σ (S → V ) be the
vector that represents the influence of S on all nodes V in the network, i.e., σ (S → V ) =
[σ(S → v1), σ (S → v2), ..., σ (S → vn)]′, where n = |V |. We aim at finding the next team
member s(i)(1 < i ≤ k) by selecting the node v that can minimize the difference between
σ (S → V ) and σ ({v} → V ). The selection of next k-1 nodes can be expressed by:

s(i) = arg min
v∈V \S

‖σ ({v} → V ) − σ (S → V )‖2F , (2)

where i = 2, 3, ..., k, and ‖.‖2F denotes the Frobenius norm. Since nodes that are close to
one another in the network have higher potential to have similar vectors of influence on V ,
(2) can approximately find the team member with lower communication cost. In addition,
since the formation of the team starts from the node with highest influence spread, (2) can
approximately select the next nodes with least loss of influence spread, i.e., maintaining
the influence spread of S as high as possible. The detailed algorithm of SimIS is given
in Algorithm 3, along with Algorithm 4, ComputeInf luence(S): the computation of the
influence of a node set S on all nodes V in the network.

In short, the basic idea, nodes close to each other have similar influences, enables use to
devise the SimIS algorithm to maximize the influence spread and minimize the communi-
cation cost at the same time. The key is that the 1st selected node is to purely maximize the
influence spread. Then the 2nd node is selected based on its influence similarity with the
first one. If the influence of the 2nd node is similar to the 1st one, it tends to maximize the
influence by mimicking the influence of the 1st node. To mimic the 1st node’s influence,
the 2nd node should be as close as possible to the 1st in the network so that their influence
can be close. Such policy is applied to the next nodes to be selected.
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5 Experiments via simulation

The evaluation consists of two parts, simulation-based and prediction-based, which are pre-
sented in this and next section respectively. In the simulation-based evaluation, we aim to
answer the following questions. First, what is the effectiveness (in terms of ICR) of the
proposed methods for solving the ITF problem, compared with team formation and influ-
ence maximization techniques as baselines? Second, to allow organizing influential teams
for real-world usages, any solution is supposed to be able to instantly report the team mem-
bers. How about the run time of the proposed methods? Third, an effective team requires
the members to communicate with each other in an efficient and direct manner, instead of
requiring the involvement of other inter-mediator persons. For example, in Figure 1, node
v5 is the inter-mediator in the team SIM = {v1, v4, v6} since v5 does not cover any label but
is passed by the shortest paths between team members. Can the proposed methods lead to
less involvement of inter-mediators for the communication between team members? Note
that in this simulation-based experiment, since the goal is to demonstrate the performance in
terms of ICR and time efficiency, no real event participants are involved. In the next section,
we will present the prediction-based experiment using real event participation data.

5.1 Data and evaluation settings

We collect two sub-networks from Facebook and Google Plus friendship respectively for
the experiments. The data statistics, including numbers of nodes and edges in separate social
networks and the total numbers of labels, is shown in Table 1. We consider the attribute val-
ues as so-called “labels.” For example, we have labels male and female from Sex attribute,
UIUC and CMU from Education attribute, and 1983 and 2000 from Birth Year attribute. Any
accessible attribute values from users’ profiles are treated as the labels. Figure 2a and b
exhibit the numbers of users who own a certain label. We can find few labels are very pop-
ular while most of labels are unpopular (i.e., less than 10 users possess such labels) for both
datasets. Figure 2c and d show the cumulative distributions that the number of labels pos-
sessed by a user. It can be observed that most users have less than 20 labels while only less
than 10% users have label numbers higher than 20%. Such distributions may result from the
fact that most users in online social services do not want to provide complete information
in their profiles.

We compare the proposed three methods, ICR-Greedy, M-Greedy, and Similar Influence
Search (SimIS) Heuristic, with two baselines. The first is the Enhanced Team Formation
(ETF) algorithm [9] while the second is the modified Linear Influence Maximization (LIM)
algorithm [15]. ETF is the state-of-the-art method that finds team members by selecting
k nodes that cover the required labels and possess high communication cost toward each
other. But ETF cannot consider the influence spread of the team. LIM is the state-of-the-art
method that selects a set of seed nodes maximizing influence spread and maintaining time
efficiency. We modify LIM by imposing a requirement: only those the k influential nodes
that collectively cover the required labels can be selected. Note that under such modification,

Table 1 Statistics of the used
datasets #nodes #edges #labels

Facebook 1,045 53,498 576

Google+ 3,478 435,569 2,627
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Figure 2 Data distributions. a and b are the distributions of user numbers for labels. c and d are the
cumulative distributions of the number of labels for a user

those nodes with largest marginal gain of influence spread could not be always selected
since some of them could not cover any required labels. Nevertheless, LIM cannot minimize
the communication cost between the selected seeds.

In the experiments, we mainly show how ICR scores and time efficiency (in second)
change when varying the team size k. We randomly generate 20 sets of required labels
for each dataset, in which each set contains 5 labels. Note that the size of required labels
has also be changed and the results demonstrate similar trends. We use the IC model to
estimate the influence spread, n which edge probabilities are uniformly selected from the set
{0.1, 0.2, ..., 0.9} based on the TRIVALENCY model [4]. To further looking into the effect
of different methods, we also show the results of influence spread and communication cost.
In addition, since a good team does not need too much involvement of other inter-mediator
users who help facilitate the communication between team members, we also report the
cardinality of a team, which is defined as the number of nodes that are traversed via the
shortest paths between team members. The cardinality of a good team is expected to be as
close as to the team size. The final values, i.e., ICR, run time, cardinality, influence spread,
and communication cost, are computed by averaging the results of 20 labels sets.

5.2 Experimental results

The main results of ICR and run time are shown in Figures 3 and 4 respectively. M-Greedy
and SimIS are obviously able to generate higher ICR scores with satisfying time efficiency,
comparing to baselines LIM and ETF. Though ICR-Greedy is close toM-Greedy and SimIS,
it is very inefficient. In more details, M-Greedy has higher ICR scores for smaller teams
while SimIS can be slightly better than M-Greedy for larger teams. Due to such results,
we can suggest SimIS can be used for organizing larger events that may need more team



950 World Wide Web (2018) 21:939–959

Figure 3 The performance of ICR by varying team sizes

members. The result that M-Greedy outperforms ICR-Greedy shows that maximizing ICR
directly and greedily can lead to unsatisfying results while dealing with maximizing σ and
minimizing c separately and greedily can strike a better balance between effectiveness and
efficiency.

To understand why M-Greedy and SimIS lead to higher ICR scores but LIM and ETF
perform worse, we show the influence spread σ and communication cost c in Figures 5 and
6 respectively. SimIS can generate higher σ than LIM on both datasets. We think the reason
is that LIM is modified to cover required labels, so its σ is lowered down to some extent.
Nevertheless, LIM’s σ is quite close toM-Greedy and SimIS. On the other hand, we can also
find Sim-IS’s σ is higher than M-Greedy. It may results from half of M-Greedy algorithm
is for minimizing c, so M-Greedy leads to lower c in Figure 6. Nevertheless, SimIS can also
have lower c which is close to M-Greedy. It is natural to see ETF generates results with
lowest c. In short, ETF and LIM lead to a trade-off between σ and c while M-Greedy and
SimIS can strike a satisfying balance, and ICR-Greedy is an intuitive solution but generates
worse results.

The last results for cardinality are shown in Figure 7. Both M-Greedy and SimIS need
only few inter-mediator users to facilitate communication, i.e., requiring only additional

Figure 4 Run time of different algorithms
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Figure 5 The influence spread σ for different methods

6 users for Facebook data and additional 12 users for Google+ on average. Such results
are reasonable considering some efforts are created to reach near-by (but not directly-
connected) influential users. Sometimes the cardinality values of LIM and ETF are low
as well since they directly maximizing σ and minimizing c respectively. ICR-Greedy that
leads to the worst cardinality exhibits that directly maximizing ICR will include too many
inter-mediators.

Note that since our goal is to select a set of nodes that can maximize ICR, the ICR-Greedy
is natural to be developed since it iteratively chooses the next node that can maximize the
margin gain of ICR in a greedy manner. This ICR-Greedy is based on the idea of the greedy
algorithm in solving the Influence Maximization problem. However, directly maximizing
ICR will destroy the connectivity of the team members in the social network. That says, the
communication of team members need irrelevant nodes as the intermediators. Since ICR
consists of maximizing the influence spread and minimizing the communication cost among
team members, an alternative greedy solution (i.e., M-Greedy) is to separately maximize the
influence and minimize communication cost in an interweaving manner. Nevertheless, the
experimental results show that the greedy algorithms are quite inefficient in running time,
especially for the ICR-Greedy, as shown in Figure 4. The ICR-Greedy also works worse
in ICR scores, as shown in Figure 3. Therefore, we further develop a heuristic algorithm,

Figure 6 The communication cost c for different methods
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Figure 7 The cardinality for different methods

SimIS, to obtain the team members that can simultaneously possess the highest ICR scores
and be derived with very high time efficiency. The results in Figures 3 and 4 truly validate
the effectiveness and the efficiency of SimIS.

6 Evaluation with real event participation data

We further use real-world event-participation data to evaluate the performance of the pro-
posed methods via prediction, in addition to examine the Influence-Cost Ratio in the
previous section. The main question we aim to answer is whether or not the proposed meth-
ods can accurately predict the event organizers and participants, especially for the influential
events. In other words, we expect those users who organize an event will be discovered
based on the tags/labels of the event. Moreover, we also investigate whether the event par-
ticipants can be identified by considering the members of the formed influential team to
spread the event invitations.

6.1 Meetup data

We use the real event participation data in the social service Meetup for the evaluation.
The Meetup data was collected during July 2013 to Oct 2013. Each user in Meetup can
belong to multiple “online social groups”. Users in Meetup is allowed to organize “offline
social events” by specifying a set of tags that describe the topic of an event, and the event’s
geographical location (with latitude and longitude). Then the event organizers can launch
events in online groups to invite and attract users in the same group or other groups to
participate. In addition, users can also participate offline social events via the RSVP function
(i.e., “yes”, “no”, or “maybe”).

Since the Meetup service does not allow users to specify their social connections, we
compile the social network based on online social groups that users join. Each user is con-
sidered as a node in the social network. We assume that two users have higher potential to
have the social connection if they co-join more online social groups and their joined groups
are smaller (since larger groups may lower down the possibility of acquaintance for two
users). Let u and v be two users in the social network, and grpi denote an online group with
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|grpi | members. We take a similar approach as in [18] to measure the connection strength
cs(u, v), as formulated in the following:

cs(u, v) =
∑

∀grpi ,u∈grpi∧v∈grpi

1

|grpi | . (3)

We use a threshold parameter ρ to filter out those edge pairs with lower connection
strength values. We consider ρ = 0.06 to construct the social network, and use such network
to produce the experimental results. Note that the experiments are conducted using different
ρ values, and the results exhibit similar trends. Here we report the result of ρ = 0.06.

We extract two data subsets in the Meetup data, which corresponds to two cities, Chicago
(CHI) and San Francisco (SF). By considering the largest connected components as the
final social networks and retrieving the corresponding offline events, the data statistics is
provided in Table 2. Note that since we are concentrating on influential events, we consider
only events whose number of participants is more than 100.

6.2 Evaluation settings

Our goal is to understand whether the proposed methods can truly find those users (i.e.,
event organizers) who host the influential events, and discover users who participates in the
event. Therefore, the evaluation is designed to consist of two parts. The first is Organizer
Finding, which aims at employing the proposed methods to find the influential team, and
treating the team members as the predicted organizers, which will be examined using the
ground-truth event organizers. The second is Participant Forecasting using the predicted
event organizers to spread the event invitations, and investigating how many ground-truth
event participants can be reported among the set of activated users. However, the Meetup
data provides only which users are the participants of an event, and does not have the orga-
nizers of an event. To have the ground truth, therefore, we treat the earliest 10% participants
of an event as the ground-truth organizers. Other 90% participants of an event are considered
as ground-truth participants.

There are two evaluation metrics correspondingly. For Organizer Finding, by varying the
team size k = 10, 20, ..., 50, we compute the Organizer Hit Rate (OHR) for the predicted
organizer set Sk of size k. Let S̄ be the set of ground-truth organizers of the corresponding
event, OHR is defined as:

OHR(Sk) = hit (Sk, S̄)

k
, (4)

where hit (Sk, S̄) = |Sk ∩ S̄|. OHR gets higher if more ground-truth organizers detected.
In addition to OHR, we also wonder the social closeness between the predicted organiz-
ers and the ground-truth organizers. If a method can predict organizers very close to the
ground truth, it can be considered as an effective method relatively. Therefore, we report
the closeness scores between the predicted organizers Sk and the ground-truth organizers
S̄. Specifically, for each predicted organizer s ∈ Sk , we define its Organizing Closeness

Table 2 Statistics of the
extracted dataset of Chicago
(CHI) and San Francisco (SF)

#nodes #edges #events #average tags

CHI 2,864 58,941 948 25.35

SF 3,302 96,552 955 23.29
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(OClose) toward the nearest ground-truth organizer in the compiled social network, given
by:

OClose(Sk) =
∑

s∈Sk
dist (s, S̄)

|Sk| , (5)

where dist (s, S̄) is the length of the shortest path between the predicted organizer s and the
set S̄ of ground-truth organizers in the social network, in which edge weights are the con-
nection strength values defined in (3). OClose gets lower if a method can predict organizers
that are socially close to the ground truth.

For Participant Forecasting, we first need to obtain the set of forecasted participants
based on a derived team Sk . We take advantage of the Independent Cascade (IC) model
[8] to determine which users are considered as the forecasted participants. Specifically, by
considering the predicted event organizers as the seeds, we run the IC model to simulate
the propagation of event invitations starting from the seeds in the social network. Users
successfully activated are regarded as those who accept the invitation to be the participants.
Given the set Sk of predicted organizers of an event, the IC model starting from Sk will be
performed up to 1,000 times, and nodes who are successfully actively up to 50 times will
be considered as the forecasted participants of the event, denoted by A(Sk). We measure the
performance by computing the Precision and Recall of the forecasted participants. Let Ā be
the set of ground-truth participants of the corresponding event, the measures of Prevision
and Recall are defined as:

Precision(Sk) = hit (A(Sk), Ā)

|A(Sk)| , (6)

Recall(Sk) = hit (A(Sk), Ā)

|Ā| , (7)

where hit (A(Sk), Ā) = |A(Sk) ∩ Ā|, |A(Sk)| is the number of activated users (i.e., fore-
casted participants), and |Ā| is the number of ground-truth participants. Note that in the
execution of the IC model, we normalize the connection strength values cs(u, v) between
nodes to be within [0, 1], and consider the normalized connection strength values as the
propagation probabilities on edges. Furthermore, while Precision is to estimate the accu-
racy of forecasted participants in an overall perspective, sometimes the event organizers
care more about who will participate in the events among their friends or follows. That says,
in reality, the event organizers tend to invite their friends or followers, who are the imme-
diate neighbors in the social network, to attend the events. Hence, to better facilitate event
organization, a method should be able to successfully predict the participants among the
immediate neighbors of the organizers. In order to obtain the accuracy of forecasted partic-
ipants among immediate neighbors, we slightly modify Precision to obtain the Neighboring
Precision (nbr − Precision):

nbr.P recision(Sk) = hit (A1(Sk), Ā)

|A1(Sk)| , (8)

where A1(Sk) ⊆ A(Sk) is the subset of forecasted participants who are the immediate
neighbors of organizers Sk in the social network. Higher nbr.P recision(Sk) indicates better
performance in forecasting immediate participants.

We aim to compare the performance of the methods SimIS, M-Greedy, ETF, and LIM,
which can be treated as unsupervised learning approaches to predict event organizers and
participants. The tags of the given event as the required labels to execute the methods. While
SimIS derives the most promising results in the previous experiment, we would like to know
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Figure 8 Organizer hit rate scores for organizer finding

whether it can also perform well on the evaluation using real event participation data. Note
that the ICR-Greedy is not used for comparison here. The reason is that the time efficiency
is very impractical, as indicated in Figure 4, to make the prediction.

6.3 Results and discussion

The performance for organizer finding is shown in Figures 8 and 9.We can find that the most
effective methods are SimIS and M-Greedy, whose scores of Organizer Hit Rate are very
close and significantly outperform those of ETF and LIM, and their OClose values are much
lower than ETF and LIM. Such results lead to four implications. First, due to the satisfying
hit rate scores (i.e., when team size k ≤ 30, OHR is at least 0.7 for San Francisco and at
least 0.8 for Chicago), the proposed Influential Team Formation is validated to be effective
to capture the real-world event organization based on a set of specified labels that describe
the topics of the event. Second, the proposed methods SimIS and M-Greedy are proven
to possess sufficient predictability of real event organizers. Hence, the teams formed by
SimIS and M-Greedy can be responsible for organizing influential team in practice. Third,
owing to the worse performance of ETF and LIM, the discovered groups of users using

Figure 9 Organizing closeness scores for organizer finding
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Figure 10 Precision scores for participant forecasting

either Influence Maximization [15] or Team Formation [9] fail to be considered as teams of
organizers for influential events. Fourth, for those organizers cannot be found by these four
methods, based on Figure 9, SimS tends to find users who are very close to the ground-truth
organizers in the social network. This result indicates that even if the real organizers cannot
be found (e.g. around 30% cannot be found according to Figure 8), organizers recommended
by SimS can be also good-quality ones since they have strong relationships with the real
organizers, and thus the messages of event invitation have higher potential to be spread
through the real organizers.

We present the results for participant forecasting in Figures 10, 11, and 12, which cor-
respond to Precision, nbr.Precision, and Recall respectively. It can be observed that SimIS
generally outperforms the other three methods. Such results reflect that SimIS is able to not
only effectively find influential event organizers, but also possess relatively high effective-
ness on forecasting the event participants according to the found organizers. Nevertheless,

Figure 11 Neighboring (nbr) precision scores for participant forecasting



World Wide Web (2018) 21:939–959 957

Figure 12 Recall scores for participant forecasting

it is apparent that both Precision and Recall scores are quite low, i.e., below 0.1 for Preci-
sion and below 0.05 for Recall. In fact, the low scores make the comparison insignificant
and indicate very unsatisfying predictability. We think that such worse performance may
result from the mechanism of spreading the influence/invitations starting from the event
organizers. Recall that while developing an precise simulation model for the propagation
of invitations is not the goal of this paper, we utilize the Independent Cascade model. Low
precision and recall scores imply the IC model is unsuitable for the spreading of event invi-
tations. Therefore, we can only conclude that the proposed SimIS is relatively useful under
the IC model. We leave the development of an effective invitation propagation model and its
evaluation for participant forecasting using SimIS in the future work. Nevertheless, we can
also find that the immediate participants can be relatively better forecasted (i.e., the scores
are higher than 0.12), as reported by nbr.Precision in Figure 11. Such results make sense
because organizers usually invite their friends or followers to attend events, and people tend
to accept the invitation of events hosted by their friends. Thus the proposed SimIS would
be more applicable for predicting which friends or followers will participate in the events
hosted by found organizers.

7 Conclusion and discussion

This paper proposes a novel Influential Team Formation (ITF) problem for organizing influ-
ential events on social networks. The objective of ITF is to find a team of users satisfying
required labels and maximizing the influence spread per communication cost among team
members. Two methods, M-Greedy and SimIS Heuristic, are developed and validated to be
promising for solving the ITF problem in terms of effectiveness and efficiency. M-Greedy
is suitable for organizing smaller events while SimIS is good for larger events. In addition,
by considering SimIS and M-Greedy as two unsupervised learning approaches, we find they
can lead to promising predictability on finding organizers for influential events using real
event participation data in Meetup. Extensive analysis demonstrate the unsatisfying per-
formance on forecasting participants, which encourages us to come up with an effective
invitation propagation mechanism based on SimIS in the future.
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Although the proposed techniques can effectively find the team members in both
simulation-based and data-based experiments, there are still some limitations in our work.
First, the influential team formation problem assumes that the label set of each individual
is known in prior (e.g. being obtained from the user profiles). However, users in online
social media tend to provide incomplete information, which might destroy the quality of
the discovered team members. Second, the influence probabilities associated on edges of
the social network is pre-determined. Unreal determination of influence probabilities could
affect the real performance of the formed teams. How to automatically learn the influence
probabilities from the action logs of information diffusion (e.g. retweets and replies) is a
demanded issue. Third, we suppose the set of identified team members will perfectly join
the event organization. But it is not the real case; that says, many of them may be unwilling
or unavailable. A practical team formation should model the willingness of each individuals
into the process of event organization. This can be a promising future direction.

By formulating and solving the proposed ITF problem with the effective algorithm
SimIS, three potential extensions can be built. First, SimIS is able to not only find the team
members, but also report the scores of both influence-cost ratio and influence spread. Hence,
one can estimate the success of the formed team by the expected number of event partici-
pants, or make a control on the event scale. Second, SimIS algorithm is easy to be extended
based on the user-input team size. Therefore, we are allowed to find the alternative if any
individual is not available or unwilling to join the team. Third, given that the real-world
campaigns are opinion-aware and competitive, our ongoing work is to form the influential
teams with the consideration of multi-party competitors, in which each party supports for a
particular opinion.
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