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Abstract Due to the advantages of pay-on-demand, expand-on-demand and high availabil-
ity, cloud databases (CloudDB) have been widely used in information systems. However,
since a CloudDB is distributed on an untrusted cloud side, it is an important problem how to
effectively protect massive private information in the CloudDB. Although traditional secu-
rity strategies (such as identity authentication and access control) can prevent illegal users
from accessing unauthorized data, they cannot prevent internal users at the cloud side from
accessing and exposing personal privacy information. In this paper, we propose a client-
based approach to protect personal privacy in a CloudDB. In the approach, privacy data
before being stored into the cloud side, would be encrypted using a traditional encryption
algorithm, so as to ensure the security of privacy data. To execute various kinds of query
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operations over the encrypted data efficiently, the encrypted data would be also augmented
with additional feature index, so that as much of each query operation as possible can be
processed on the cloud side without the need to decrypt the data. To this end, we explore
how the feature index of privacy data is constructed, and how a query operation over pri-
vacy data is transformed into a new query operation over the index data so that it can be
executed on the cloud side correctly. The effectiveness of the approach is demonstrated by
theoretical analysis and experimental evaluation. The results show that the approach has
good performance in terms of security, usability and efficiency, thus effective to protect
personal privacy in the CloudDB.

Keywords CloudDB · Information system · Privacy protection · Feature index

1 Introduction

A cloud database (CloudDB) refers to a database deployed on an Internet-based virtual
computing environment, which allows users to store, modify and retrieve data anywhere
in the world, as long as they have access to the Internet [20]. Due to the advantages of
pay-on-demand, expand-on-demand and high availability, CloudDB has been widely used
in information systems [10]. However, since a CloudDB is distributed on the cloud side
instead of a local server, it is important how to effectively protect massive information about
personal privacy (such as phone number and personal name) stored in the CloudDB [11].
To ensure the security of personal privacy information, many strategies have been used in
information systems, such as identity authentication, and authorization and access control
[3, 30, 32]. These strategies can prevent illegal users from accessing unauthorized data, con-
sequently, ensuring the security of personal information to a large extent. However, almost
all the strategies are targeted only for external illegal users of an information system, and
they cannot prevent internal users (such as administrators) at the cloud side from accessing
personal information stored in the CloudDB.

A general framework of a CloudDB information system is shown in Figure 1, where (1)
external users, who generally work at client sides, store their data into the CloudDB and
use data services supplied by the CloudDB; and (2) internal users, who work at the cloud
side, manage the CloudDB and a large amount of external users’ personal data stored in
the CloudDB. In a CloudDB, the client sides are considered to be trusted because existing
security strategies used by database systems can prevent users from accessing unauthorized
data. However, the cloud side is considered to be untrusted [31]. For example, an adminis-
trator or a attacker who has broken into the cloud side can access private data stored in the
CloudDB easily. In other words, it is possible for internal users at the cloud side to access

Figure 1 A general framework of a CloudDB information system
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and expose the personal data in the CloudDB, driven by economic interests, thereby leading
to the disclosure of personal information.

1.1 Motivation

It has been reported by iResearch1 that the frequent occurrence of disclosure of personal
privacy is making people become “transparent”, and more than half of the disclosure events
are caused by the internal users of a network system. Therefore, it is very important to sup-
ply an effective approach to ensure the security of personal privacy in a CloudDB, which
should be able to prevent the disclosure of personal information caused by internal users at
the cloud side, not just by external users at the client sides. To protect personal privacy in
a CloudDB, a straightforward way is to encrypt personal data, so that even if the encrypted
data are exposed, they are difficult to be decrypted [22]. However, in an information sys-
tem, generally, there are a large number of database query operations, which are relevant to
personal data (i.e., defined over personal data). Once the private data are encrypted using a
traditional encryption algorithm (e.g., those in [2, 17]), most of the database query opera-
tions (such as text similarity queries) will no longer be able to be executed correctly over
the encrypted data in the CloudDB.

To solve the above problem on querying encrypted data, we can transmit the encrypted
data (which may be a whole table) from the cloud side, decrypt the encrypted data and then
execute the query operations over the decrypted data. However, as the cost of transmitting
and decrypting an encrypted table is expensive, such a way (i.e., decrypting before query-
ing) will greatly reduce the execution efficiency of database query operations, resulting in
its inapplicability to a CloudDB. Although the homomorphic encryption techniques [17]
can maintain the original order and comparability of the encrypted data so that a number of
database query operations can be executed correctly over the encrypted data, they are gener-
ally of weak security, e.g., the encrypted data are easy to be decrypted by statistical attack,
as pointed out in [13, 33]. Although there are a number of studies on data encryption [16],
most of them require to first decrypt the encrypted data and then execute queries over the
decrypted data, consequently, making them difficult to satisfy the efficiency requirement
of a CloudDB. Although there are a small number of data encryption algorithms (see the
related work section for detail) that allow users to query encrypted data directly without the
need to decrypt data, they generally have the disadvantages of weak security or inability
to fully support query operations, thereby, making them difficult to solve the problem on
querying encrypted personal data in a CloudDB.

1.2 Contribution

In this paper, we propose a client-based approach to protect personal privacy in a CloudDB.
In the approach, before being submitted to the cloud side, personal data have to be encrypted
on a trusted client side using a traditional encryption algorithm, so as to ensure the security
of personal data on the untrusted cloud side. Meanwhile, to execute various kinds of query
operations over the encrypted data efficiently, the approach generates additional feature
information (called feature index) for the encrypted data, which allows a certain amount of
query processing to occur on the cloud side without the need to decrypt the data. Thus, the
approach mainly explores how the feature index of personal data is constructed, and how

1iResearch, a well-known consulting company in China - http://report.iresearch.cn/.

http://report.iresearch.cn/
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each query operation over personal data is transformed into a new query operation over
the feature index so that it can be executed correctly on the cloud side. Specifically, the
contributions of this paper are threefold.

(1) We present a scheme to generate the feature index for personal data, which has not
only good security (i.e., it is difficult to infer the original personal data from the feature
index), but also good usability (i.e., it can support various kinds of database query
operations).

(2) We present a scheme to transform each user query relevant to personal data into a
cloud-side query relevant to the feature index, so that the new query can be executed on
the cloud side correctly, consequently, improving the execution efficiency of database
query operations.

(3) We demonstrate the effectiveness of our approach by theoretical analysis and experi-
mental evaluation. The results show that the approach has good performance in terms
of security, usability and efficiency, thus it is applicable to effectively protect personal
privacy in a CloudDB.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3
presents the system model and the problem studied in this paper, i.e., formally describ-
ing what requirements should be satisfied so as to protect personal privacy effectively in a
CloudDB. Section 4 presents a scheme to generate the feature index for personal data, and
analyzes the security of the scheme. Section 5 presents a scheme to map each query over
personal data into a cloud side query over the feature index, and analyzes the usability of
the scheme. Section 6 presents the experimental evaluation to demonstrate the efficiency of
our approach. Finally, we conclude this paper in Section 7.

2 Related work

In this section, we briefly describe some research related to querying encrypted data in out-
sourced databases. In [13], Hacigumus et al. first proposed the bucket partitioning idea for
querying encrypted data in the database-as-service model. The basic idea is to divide the
attribute domains into multiple buckets and then map bucket identifiers to random numbers,
thereby, protecting the security of sensitive data. Moreover, this makes that much of a query
operation over encrypted data can be processed at the database service provider, thereby,
improving query performance. Later, in [14], the authors proposed to use the homomor-
phism encryption techniques to enhance their approach, so as to support aggregation queries
over encrypted data, and in [15], the authors further discussed an optimization technique
for their approach, i.e., how to use multiple communications between the server and the
client to decrease the workload of the client. In order to better support range queries over
encrypted data, Hore et al. [7] explored an optimal approach to partitioning data domain,
thereby, improving the precision of range queries. The work presented by Hacigumus et al.
is significant, which presented a basic framework to ensure data security in the database-as-
service model. However, the work did not analyze the security formally for the approach.
Besides, the work is valid only for numerical data without considering text data. Since per-
sonal privacy data in an information system are generally of text type, it is not suitable to
apply the above approach to protect personal privacy in a CloudDB.

Recently, many studies on the data security in cloud databases have been presented.
Li et al. [19] discussed the problem about privacy preserving range query processing on
clouds, and presented a fast range query processing scheme by organizing indexing elements
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in a complete binary tree. Wai et al. [28] addressed security issues in a cloud database
system, and proposed a secure query processing scheme on relational tables and a set of
elementary operators on encrypted data, which allows a wide range of database queries to
be processed by the server on encrypted data. Chen et al. [9] proposed an efficient privacy
and integrity preserving scheme for multi-dimensional range queries over cloud computing.
Luca et al. [23] proposed an architecture that integrates cloud database services with data
confidentiality and the possibility of executing concurrent operations on encrypted data.
This is the first solution supporting geographically distributed clients to connect directly to
an encrypted cloud database, and to execute concurrent and independent operations. Recent
work [6] proposed a general framework for boolean queries of disjunctive normal form
queries on encrypted data. Although all the approaches are proposed for cloud databases,
most of them are targeted for building a secure cloud database. As mentioned above, they are
not proposed for a CloudDB, so based on them, we cannot build an effective CloudDB that
can support a variety of database query operations over privacy data (such as text similarity
queries and range queries).

Some researchers also proposed to split sensitive data among multiple servers to ensure
data security. In [12], a scheme for vertical partitioning of relations among multiple
untrusted servers was employed, whose privacy goal is to prevent access of a subset of
attributes by any single server. Aggarwal et al. [1] also used a similar vertical partitioning
scheme which has the same privacy goal but different partitioning and optimization algo-
rithms. Wang et al. [24] used a salted version of IDA scheme to split encrypted tuple data
among multiple servers. In [26], a novel l-diversity privacy model was proposed for pri-
vacy preservation in the release of data for mining purposes. Recently, some researchers
also proposed to use a hardware approach to ensure data security, such as TrustedDB [25],
MONOMI [27] and Cipherbase [4]. The advantages of the hardware approach are that it
can provide strong security protection, and it does not limit query expressiveness. However,
the hardware approach needs to reconstruct the system structure of a CloudDB. In addition,
there are also other related encryption techniques for spatial data [8, 21, 34].

From the above, we see that most of existing approaches to data security protection
in outsourced databases focus on constructing a secure framework, without fully taking
into consideration the structure and type of sensitive data. As a result, if we apply these
approaches immediately into a CloudDB, it is difficult to support a variety of similarity
queries and range queries over encrypted privacy data. Actually, aiming at the problem of
querying encrypted textual data in a database, there are some related studies. Wang et al.
[29] proposed to turn a character string into characteristic values, so as to support similar-
ity queries. This approach can reduce the scope of data decryption, and thus improve query
performance. However, the approach cannot well solve the similarity queries in the form
of “LIKE ‘%s’” and “LIKE ‘s%’”, and cannot support range queries. Besides, owing to
using only one characteristic function, the approach is difficult to withstand statistics attack
or inference attack. By analyzing the traditional order-preserving encryption approach to
numerical data, a fuzzy matching encryption approach aiming at character strings was pro-
posed in [18]. In this approach, a character string is first transformed to numerical values,
and an order-preserving encryption technique in [14] for numerical data, is then used to
encrypt the transformed numerical values. To solve the problem of not supporting range
queries for the approach in [29], Wu et al. [33] defined a structure called n-phase reachability
matrix for a character string and used it as the characteristic index values, and then presented
split a database query into its server-side representation and client-side representation for
partitioning the computation of a query across the client and the server and thus improving
query performance. However, it is space-consuming to store a complete reachability matrix.
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3 Problem statement

3.1 System model

The system model used by our approach is presented in Figure 2. As shown in Figure 2, the
system model consists of an index generator, a query translator and a query executor, whose
processing flows can be briefly described as follows.

(1) Before being submitted to the cloud side, privacy data u has to be handled by the index
generator, so as to generate the ciphertext E (u) and the feature index X (u), where
E and X denote an encryption function and an index function, respectively.

(2) Each query operation qu relevant to privacy data, before being submitted to the cloud
side, has to be transformed into a new cloud-side query operation qx , which is defined
over the feature index so can be executed by the encrypted CloudDB correctly. This
process is completed by the query translator.

(3) The query executor decrypts the temporal result R (qx) returned from the cloud side,
which is obtained by executing the cloud-side query operation qx over the CloudDB;
and then executes the user query operation qu over the decrypted data D (R (qx))

(where D denotes a decryption function), thereby, obtaining the accurate result R (qu)

of qu.
(4) Meanwhile, each client side of a CloudDB also maintains an internal metadata

structure that is used to store all kinds of parameter information for the above components.

It can be seen that the system model is located on a client side (i.e., it is client-based),
but it is transparent to the client side, i.e., it requires no change to existing softwares on
the client side. In the system model, a cloud side is deemed untrusted, i.e., the adversary is
located on the cloud side, who has full access to not only the entire CloudDB, but also all
the database query operations from client sides. Thus, the adversary is deemed powerful,
who can master a large quantity of plaintext, ciphertext and feature index information.

3.2 Problem analysis

In the system model, the encryption function E is developed based on an existing data
encryption algorithm (e.g., AES [5]), so it is almost impossible for the adversary to infer
the plaintext u from the encrypted data E (u), i.e., the security of encrypted data can be
well protected in the untrusted cloud side. Thus, this paper non longer pays attention to the
security of the encrypted data. From Figure 2, we know that the feature index is the key
to protecting personal privacy effectively. In general, a good feature index scheme should
satisfy the following requirements.

Figure 2 The system model used in our approach, where the arrows denote data processing flows
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(1) Good security. On the cloud side, the indexes are visible to the adversary, thus the
feature indexes should ensure their own security, i.e., it should be difficult for the
adversary to infer the plaintext u from the index X (u).

(2) Good usability. Based on the feature index, each familiar user query qu over privacy
data should be able to be transformed into a cloud-side query qx that can be executed
over the encrypted CloudDB. It is required that the result returned by qx should be a
superset of the accurate result of qu, i.e., R (qu) ⊆ D (R (qx)).

(3) Good efficiency. On the cloud side, the query qx should be able to filter as many of
the non-target tuples (i.e., which do not satisfy qu) as possible, making the temporal
result R (qx) as close to the accurate result R (qu) as possible, so as to lighten the
computation on a client side, and thus improve the execution efficiency of qu.

However, it is difficult to meet the above requirements simultaneously. On the one hand,
good security generally requires the feature index to describe as little feature information
on privacy data as possible, so as to make it difficult for the adversary to obtain the original
plaintext based on the index. On the other hand, good usability and efficiency require that
as much feature information as possible on privacy data can be reflected by the index. Thus,
good feature index should be a reasonable compromise among security, usability and efficiency.

3.3 Problem definition

To simplify the presentation, below we use a symbol � to represent a privacy protection
approach that runs on the system model in Section 3.1, and use X� to represent an index
function used by the approach �. Based on the analysis given in Section 3.2, we formulate
the requirements that the approach � has to satisfy so as to effectively protect personal privacy.

Let U denote the domain of privacy data, and X� the domain of index data gen-
erated by the approach �. Then, we have X� = {x | u ∈ U ∧ x = X�(u)}. As we
mentioned above, the adversary can master a large quantity of plaintext and the corre-
sponding feature index. Thus, (1) the prior knowledge that the adversary has mastered
can be defined as a set of two-tuples from privacy data u (u ∈ U) to index data X�(u);
(2) the limit k∗

� of prior knowledge of the adversary can be represented as: k∗
� =

{(u, x) | u ∈ U ∧ x ∈ X� ∧ x = X�(u)}; and (3) the domain K� of prior knowledge can
be represented as: K� = 2 k∗

� , i.e., the prior knowledge that an adversary has mastered is
a subset of k∗

�. From experience, we know that, (1) given any index data x (x ∈ X�), the
probability that the adversary infers the plaintext from the index data x mainly depends
on the prior knowledge k� (k� ∈ K�) that an adversary has mastered, so we denote it as:
Pr(k�) (0 < Pr(k�) ≤ 1); and (2) Pr(k�) ∝ | k� |, i.e., the probability of inferring the
plaintext is proportional to the amount of the prior knowledge mastered by the adversary.
Now, the security of the approach � can be defined as follows.

Definition 1 Given a threshold λ (0 < λ ≤ 1), an approach � meets λ-security, if and
only if the probability that an adversary infers the plaintext from any index data established
by � is always less than λ, regardless of the prior knowledge mastered by the adversary.
Formally, an approach � meets λ-security, if and only if ∀k� (k� ∈ K� → Pr(k�) ≤ λ),
i.e., Pr(k∗

�) ≤ λ (since Pr(k�) ∝ | k� |).

Let Qu denote the domain of user query operations relevant to privacy data. As
mentioned in Section 3.2, good usability requires that each query qu (qu ∈ Qu) can be
transformed into a cloud-side query qx , so that R (qu) ⊆ D (R (qx)). However, it can be
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seen that Qu is an infinite set. Thus, we first define a core set of user query operations, and
then define the usability of the approach �.

Definition 2 Q∗
u is a core set of user queries relevant to privacy data if it meets: (1) Q∗

u ⊆
Qu; (2) ∀q1∃q2(q1 ∈ Qu ∧ q2 ∈ Q∗

u → R(q1) = R(q2)); and (3) ∀q1∀q2(q1 ∈ Q∗
u ∧ q2 ∈

Q∗
u ∧ q1 �= q2 → R(q1) �= R(q2)).

Definition 3 An approach � meets usability, if and only if any user query operation
qu (qu ∈ Q∗

u) can be transformed into a cloud-side query operation qx , which is defined
over the feature index X�, and the actual result R (qu) of qu is contained in the temporal
result R (qx) returned by qx , i.e., R (qu) ⊆ D (R (qx)).

Let T (qu) denote all the tuples in the table related to a query operation qu (qu ∈ Qu)

(i.e., the table presented in the FROM clause of qu). Then, | T (qu) − R(qu) | denotes the
number of non-target tuples of qu; and | T (qu)−D(R(qx)) | (where qx is a cloud-side query
transformed from qu by the approach �) denotes the number of non-target tuples filtered
out on the cloud side by qx . As mentioned above, good efficiency requires that as many of
non-target tuples as possible can be filtered out by qx , i.e., | T (qu) − D(R(qx)) | is as close
as possible to | T (qu) − R(qu) |. Below, we first define filtering rate, and then define the
efficiency of the approach �.

Definition 4 For any user query operation qu (qu ∈ Q∗
u), we use qx to denote its cloud-side

query operation generated by the approach �. Then, the filtering rate Fr� (qu) of � to
non-target tuples of qu is defined as: Fr� (qu) = | T (qu)−D(R(qx)) |

| T (qu)−R(qu) | .

Definition 5 Given a threshold μ (0 ≤ μ ≤ 1), an approach � meets μ-efficiency
if and only if the mathematical expectation

∑
qu∈Q∗

u
P r (qu) · Fr� (qu) ≥ μ, wherein,

Pr (qu) denotes the probability of a query qu (qu ∈ Q∗
u) issued by external users, and∑

qu∈Q∗
u
P r (qu) = 1.

Now, based on Definitions 1, 3 and 5, we define the requirements that the approach �

has to satisfy so as to protect personal privacy effectively.

Definition 6 Given two thresholds λ (0 < λ ≤ 1) and μ (0 ≤ μ < 1), if an approach �

meets λ-security, usability and μ-efficiency, then � is effective to protect personal privacy
in a CloudDB.

4 Privacy protection scheme

In this section, before introducing the approach of encrypting and indexing privacy data, we
first show how the encrypted data and their feature indexes are stored into the CloudDB.
Note that in a CloudDB, privacy data such as identification number, phone number, personal
name and bank account are generally stored as a text field (i.e., whose field type is CHAR or
VARCHAR), so in our work privacy data of any type are treated as text uniformly (i.e., we
take no account of the privacy data of numeric type, which is out of the scope of this paper).
We suppose that there exists one relational table R (A1, A2, ..., Ar , ...) in the CloudDB,
where Ar is a field used to store privacy data thus needs to be encrypted (Ar is called a
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private field. To simplify presentation, we assume that there is only one private field Ar in
the table R. Then, in the encrypted CloudDB, we will store an encrypted relational table
RE

(
AE, A1, A2, ..., AX

r , ...
)

instead of R, wherein,

(1) The field AE (called an encrypted field) stores an encrypted binary string (i.e., cipher-
text) that corresponds to a tuple in the table R (we will explain how the encrypted field
AE is constructed in Section 4.2).

(2) The field AX
r (called an index field) corresponds to the feature index for the private

field Ar , and the type of AX
r is identical to that of Ar , i.e., whose type is also CHAR

or VARCHAR.
(3) The remaining fields in the encrypted table RE are all consistent with those in the

original table R.

Below, we study a privacy protection scheme used in our approach, i.e., study how pri-
vacy data are encrypted and indexed so as to ensure the security of privacy data in the
untrusted cloud side. Specifically, we first show how to construct a feature index function X

for privacy data. Second, we show how privacy data are encrypted and indexed, and then stored
into the encrypted CloudDB. Finally, we analyze the security of the privacy protection scheme.

4.1 Feature index function

For any value u in the domain of the private field Ar of R, this subsection explains how
it is mapped to the feature index value X(u), so that it can be stored into the index field
AX

r of RE , i.e., how the feature index function X is constructed. For the private field Ar

of R, suppose that each value in its domain contains no more than n (n ∈ N) characters.
Then, the private field Ar consists of n character units. Below, we use Pi (i = 1, 2, ..., n)

to denote each character unit of Ar , and dom(Pi) to denote the domain of values of Pi . In
order to construct a feature index function over the private field Ar , we need the following
three steps: (1) automatically assigning a number num(Pi) for each character unit Pi ; (2)
automatically dividing the domain dom(Pi) into num(Pi) partitions; and (3) automatically
assigning a character identification for each partition of Pi . Below, we detail the steps and
their implementations.

Step 1 Automatically assign a number num(Pi) (called a partition number) for each
character unit Pi (i = 1, 2, ..., n) of the private field Ar , which has to meet the following
requirements:
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(1) The partition number num(Pi) has to be a positive integer and less than the size of the
domain dom(Pi), i.e., num(Pi) ∈ N ∧ num(Pi) ≤ |dom(Pi)|.

(2) All the partition numbers from the private field Ar have to meet ρ
∏n

i=1 num(Pi) ≤∏n
i=1 |dom(Pi)|, where ρ is a given factor.

In Step 1, ρ is called a security factor and ρ ∈ N ∧ ρ ≤ ∏n
i=1 |dom(Pi)|, which

is preset for the private field Ar , and used to control the security of the generated feature
index function. In general, the greater the value of ρ, the safer the generated feature index
function X. The detailed analysis of ρ on how to impact the security of X will be presented
in Section 4.3. It can be found that generally there are a large number of solutions that satisfy
the requirements mentioned in Step 1. In our approach, we use Algorithm 1 to perform Step
1, so as to automatically assign a group of partition numbers for all the character units of
the private field Ar . From Algorithm 1, we can see that the time complexity of Lines 4
and 5 is O (n) and the loop will terminate after log ρ operations, so the time complexity of
Algorithm 1 is O (n · log ρ).

Example 1 Consider a private field of phone number. Because a phone number in China
generally consists of 11 numeric characters, the private field created for storing phone num-
bers also consists of 11 character units (n = 11). Besides, the first two numeric characters
of a phone number can only be ‘13’, ‘15’ or ‘18’, so the domain of each character unit of
the phone field is given as follows:

dom(P1) = {‘1’}; dom(P2) = {‘3’, ‘5’, ‘8’}; dom(P3) = ... = dom(P11) = {‘0’, ‘1’, ‘2’, ..., ‘9’}

If the security factor ρ is set to 30, then using Algorithm 1, the partition number for each
character unit of the phone field is assigned as follows:

num(P1) = 1; num(P2) = 3; num(P3) = ... = num(P6) = 10; num(P7) = ... = num(P11) = 5
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Step 2 Based on num(Pi) assigned by Step 1 for each character unit of Ar , we use some
strategy (e.g., Equi-width or Equi-depth) to divide the domain dom(Pi) of Pi into num(Pi)

subsets (called partitions). Let B
(i)
k (k = 1, 2, ..., num(Pi)) denote a partition of Pi . The

partitions of Pi have to meet the following requirements:

(1) Each partition B
(i)
k is nonempty, i.e., ∀k(k ∈ N ∧ k ≤ num(Pi) → B

(i)
k �= ).

(2) Each partition B
(i)
k is mutually disjoint with another partition B

(i)
j , i.e., ∀k∀j (k, j ∈

N ∧ k, j ≤ num(Pi) ∧ k �= j → B
(i)
k ∩ B

(i)
j = ).

(3) The union of all the partitions of Pi is dom(Pi), i.e.,
⋃num(Pi )

k=1 B
(i)
k = dom(Pi).

(4) Each element in the partition B
(i)
k is greater than each element in B

(i)
k−1, that is,

∀k∀a∀b(k ∈ N ∧ 2 ≤ k ≤ num(Pi) ∧ a ∈ B
(i)
k ∧ b ∈ B

(i)
k−1 → a > b).

In our approach, we use Algorithm 2, which is developed based on an Equi-width strat-
egy, to perform Step 2, so as to automatically divide the domain dom(Pi) of each character
unit Pi of the private field Ar into num(Pi) partitions. It can be seen that Line 9 of the
inner loop needs to scan all the elements in B

(i)
k , so the time complexity of the inner loop is

O (|dom(Pi)|), and hence the time complexity of Algorithm 2 is O (n · α) (where α denotes
the averaged domain size of each character unit).

Example 2 Using the result of Example 1 as input, Algorithm 2 obtains a group of partitions
for each character unit of the telephone number field, which are shown as the columns
“partition” in Figure 3. It can be seen that the units P1 and P2 are divided into 1 and 3
partitions, respectively, and the units P3 to P6 and P7 to P11 are divided into 10 and 5
partitions, respectively.

Figure 3 The partitions and identifiers for a private field of telephone number (each number in columns
“partitions” denotes a numeric character)
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Step 3 For each partition B
(i)
k constructed by Step 2 for Pi , we determine a character

id
(
B

(i)
k

)
as the identifier of B

(i)
k . It has to meet the following requirements:

(1) The identifiers of any two partitions of each character unit Pi are not equal to each

other, that is, ∀k∀j
(

1 ≤ k, j ≤ num(Pi) ∧ k �= j → id
(
B

(i)
k

)
�= id

(
B

(i)
j

))
.

(2) The identifer of any partition of each Pi belongs to the same range of values (where

θ is a randomly generated character): ∀i∀k
(

1 ≤ i ≤ n ∧ 1 ≤ k ≤ num(Pi) → 0 ≤
id

(
B

(i)
k

)
− θ ≤ maxn

j=1

(
num(Pj ) − 1

))
.

We use Algorithm 3 to perform Step 3, so as to automatically assign a character identifier

id
(
B

(i)
k

)
for each B

(i)
k of each Pi of Ar . It can be seen that the time complexity of the

inner loop (Lines 5 to 6) is equal to O (num(Pi)), so the time complexity of Algorithm 3 is
O (n · β) (where β denotes the averaged partition number of each character unit).

Example 3 Using the results of Examples 1 and 2 as input, Algorithm 3 assigns the identifier
for each partition of each character unit of the telephone field, and the output results are
shown as the columns “identifier” in Figure 3 (where θ is set to ‘A’). It can be seen that each
partition is set to an identifier within ‘A’ to ‘J’.

Now, based on the above partitions and identifiers presented in Steps 1 to 3, we define
n mapping functions: X(1), X(2), ..., X(n). Given any character ui ∈ dom(Pi), the func-
tion X(i) would map ui to the character identifier of the partition which ui belongs to,

i.e., X(i)(ui) = id
(
B

(i)
k

)
, where B

(i)
k is the partition which contains ui . Furthermore,

given any character string u = u1u2...um (m ≤ n) in the domain of the private field
Ar , we can define a mapping function to map u to a new character string as: X(u) =
X(1)(u1)X

(2)(u2)...X
(m)(um).

Example 4 Based on the partitions and identifiers shown in Figure 3, we can generate a
feature index function X for the telephone number field. Now, given a telephone number
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u = ‘13587898721’, we can use X to map u to an index data X(u) = ‘HBCBCIJIABA’. It
can be seen that based on our index construction scheme, the index data will be always of
the same type and length with its plaintext data.

4.2 Encryption storage

Now, we describe how encrypted data and indexed data are stored into the CloudDB.
Given any tuple t = 〈a1, a2, ..., ar , ...〉 over the relational table R (A1, A2, ..., Ar , ...)

(where ar is a privacy data over the private field Ar ), the corresponding encrypted rela-
tional table RE

(
AE,A1, A2, ..., A

X
r , ...

)
in the CloudDB stores an encrypted tuple tE =

〈E (〈a1, a2, ..., ar , ...〉) , a1, a2, ..., X(ar ), ...〉, where E is a function used to encrypt a
tuple of the relational table R. We treat the encryption function as a black box, thus any
well-known data encryption technique (e.g., AES [5]) can be used.

Example 5 Let us consider a relation as: persons (no, name, phone, ...) (see
the left in Figure 4). Then, the CloudDB stores an encrypted relation as:
personsE(tupleE, no, name, phoneX, ...) (see the right in Figure 4), where the first column
“tupleE” stores the binary strings corresponding to the encrypted tuples. For example,
the first tuple in “persons” is encrypted to “110111000011...”, which is obtained by
E (〈1, ‘Ada’, ‘13587898721’, ... 〉). Moreover, the column “phoneX” in “personsE” denotes
the index field corresponding to the private field “phone” in “persons”.

Note that in our approach, the tasks such as encrypting privacy data and generating their
feature index values are all completed on a trusted client side by the index generator; and
then the encrypted data and their index data are transmitted through network and stored into
the CloudDB (see Figure 2).

4.3 Security analysis

In this subsection, we firstly demonstrate that our approach can meet λ-security, and then
briefly analyze the security of the index function generated by our approach in terms of two
types of common attacks: statistical attack and known-plaintext attack.

Observation 1 Given a threshold λ (0 < λ ≤ 1), after the security factor ρ of the privacy
protection scheme is set to �1/λ�, our approach can meet λ-security.

Rationale Based on the index function X constructed in Section 4.1, we know that the
index function X is a many-to-one mapping from privacy domain U to index domain X .
Moreover, each index value in X would correspond to ρ privacy values in U . Thus, we
conclude that if the security factor ρ of the privacy protection scheme is set to �1/λ�, each
index value in X corresponds to �1/λ� privacy values in U , i.e., the probability of inferring
the plaintext from any index value is always less than λ, even if an adversary has mastered

Figure 4 A translation from a relational table and its encrypted relational table
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the index function X. After combining Definition 1, we know that our approach meets
λ-security if the security factor ρ is set to �1/λ�.

The precondition of statistical attack is that an attacker has known a set U∗ of privacy
data and a set X ∗ of corresponding index data. Then, the attacker attempts to establish a set
of two-tuples from U∗ to X ∗, so as to reconstruct the index function X. The implementation
of statistical attack is based on an observation that the probability of occurrences of each
u in U∗ is basically consistent with X(u) in X ∗. However, in our approach, each unit of
privacy data is divided into several partitions by some strategy (e.g., Equi-width or Equi-
depth), so that many privacy values would be mapped into the same index value, as a result,
lightening the consistency of probability distribution between privacy data and index data.

The precondition of known-plaintext attack is that an attacker has known a small set of
two-tuples from privacy data U∗ to index data X ∗. Then, the attacker attempts to reconstruct
the index function X. From Section 4.1, we know that to reconstruct X, we need to know
the partitions of each unit of privacy data. For the unit Pi of privacy data, we at least need to
know |dom(Pi)| two-tuples from privacy data to index data to reconstruct X(i). Therefore,
we probably need to know at least (

∑n
i=1 |dom(Pi)|) two-tuples from privacy data to index

data to reconstruct X. Finally, it should be pointed out that, it is possible for an attacker to
guess the function X using statistical or known-plaintext attack, especially when the security
factor μ is set to a greater value (e.g., equal to 1.0)

However, even if an attacker has completely mastered the index function X based on
statistical attack or known-plaintext attack, it is still difficult for the attacker to guess the
corresponding plaintext u from a given index value x. This is because our approach can meet
λ-security, making that the attacker only has a �1/λ� probability to guess the correspond-
ing plaintext u from the index value x. Besides, based on the index function X constructed
in Section 4.1, we know that although our approach can meet λ-security, the index values
generated by our approach still might reveal some sensitive information to the cloud-side,
e.g., the length of the private field since the index field is of the same length as the corre-
sponding private field. It is our next work how to improve the feature index scheme so as to
make the index safer (not just to meet the λ-security).

5 Privacy query scheme

In our approach, privacy data will be encrypted before being stored into the CloudDB, so
as to ensure the security. However, this leads to that a number of user query operations
defined over the private field will be no longer able to be executed correctly on the encrypted
CloudDB. In this section, we discuss the privacy query scheme used in our approach, i.e.,
how each database query qu over the private field Ar is mapped into a new cloud-side query
qx over the corresponding index field AX

r , so that the query qx can be executed on the
CloudDB correctly. To this end, we first discuss how each type of basic query conditions
over the private field is mapped to the cloud-side representation over the index field. Second,
based on the condition mappings, we discuss how a database query qu is transformed to its
cloud-side query qx . Finally, we analyze the usability and efficiency of the proposed privacy
query scheme.

5.1 Mapping query conditions

A database query operation consists of several basic query conditions. Thus, once we know
how each type of basic query conditions over the private field is mapped correctly into its
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cloud-side representation, we can know how a database query operation is mapped into its
cloud-side query operation. In this subsection, we consider three main types of basic query
conditions over the private field Ar : (1) equivalent conditions, e.g., R.Ar = ‘123’; (2)
similarity conditions, e.g., R.Ar LIKE ‘%123%’; and (3) range conditions, e.g., R.Ar >

‘123’. Below, we call the process of mapping a basic query condition to its cloud-side repre-
sentation as condition mapping for short, and use map to denote such a condition mapping.
Besides, we use the table in Example 5 and the index function generated in Example 4 to
illustrate the condition mapping.

Mapping 1 R.Ar = u: this is the basic form of an equivalent condition, where u denotes
a character string constant, and R.Ar denotes a private field of a relational table R. If u =
u1u2...um(m ≤ n), then the condition mapping is defined as follows:

map(R.Ar = u) ⇒ RE.AX
r = X(u) ⇒ RE.AX

r = X(1)(u1)X
(2)(u2)...X

(m)(um).

For example, since ‘13587898721’ would be mapped into ‘HBCBCIJIABA’ by the index
function generated in Section 4, we have a condition mapping as follows:

map (persons.phone = ‘13587898721’) ⇒ personsE.phoneX = ‘HBCBCIJIABA’

A similarity query condition generally contains some wildcards, and the similarity wild-
cards include: (1) ‘%’, it denotes to match one or more characters; (2) ‘ ’, it denotes to
match only one character; and (3) ‘[CharList]’, it denotes to match any character described
in ‘CharList’. Thus, we below present the mappings for three main types of similarity
conditions.

Mapping 2 R.Ar LIKE u v: this is the basic form of a similarity condition based on the
wildcard ‘ ’, where u and v represent two character string constants. If u = u1u2...um and
v = v1v2...vk (m + k ≤ n − 1; 0 ≤ m; 0 ≤ k), then the condition mapping is defined as
follows:

map(R.Ar LIKE u v) ⇒ RE.AX
r LIKE uX vX , where

{
uX = X(1)(u1)...X

(m)(um)

vX = X(m+2)(v1)...X
(m+k+1)(vk)

For example, we have a mapping of similarity condition as follows:

map (persons.phone LIKE ‘1358789 721’) ⇒ personsE.phoneXLIKE ‘HBCBCIJ ABA’

Mapping 3 R.Ar LIKE u[l]v: this is the basic form of a similarity condition based on the
wildcard ‘[]’, where u and v denote two character string constants, and l denotes a character
list. If l = l1l2...lt , u = u1u2...um and v = v1v2...vk (m+ k ≤ n−1; 0 ≤ m; 0 ≤ k; 0 ≤ t),
then the condition mapping is defined as follows:

map (R.Ar LIKE u[l]v) ⇒ RE.AX
r LIKE uX[lX]vX , where

⎧
⎨

⎩

uX = X(1)(u1)...X
(m)(um)

lX = X(m+1)(l1)...X
(m+1)(lt )

vX = X(m+2)(v1)...X
(m+k+1)(vk)

For example, since each character in the list ‘[789]’ is respectively mapped to ‘H’, ‘I’
and ‘I’ by the index function X, we have a condition mapping as follows:
map (persons.phone LIKE ‘1358789[789]721’) ⇒ personsE.phoneXLIKE ‘HBCBCIJ[HII]ABA’

Mapping 4 R.Ar LIKE u%v: this is the basic form of a similarity condition based on the
wildcard ‘%’, where u = u1u2...um and v = v1v2...vk (m + k ≤ n − 1; 0 ≤ m; 0 ≤ k).
Since the wildcard ‘%’ represents to match one or more characters, it is equivalent to ‘ ’
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(i.e., one character), ‘ ’ (i.e., two characters) etc., and the maximum number of ‘ ’ is not
more than (n − m − k). Based on such an observation, with the help of Mapping 3, the
condition mapping is defined as follows:

map (R.Ar LIKE u%v) ⇒ ORn−m−k
i=1 RE.AX

r LIKE uX
i

︷︸︸︷
... vX

i , where

{
uX = X(1)(u1)...X

(m)(um)

vX
i = X(m+i+1)(v1)...X

(m+i+k)(vk)

Specially, if k = 0, then the condition mapping can be defined as follows:

map (R.Ar LIKE u%) ⇒ RE.AX
r LIKE X(1)(u1)...X

(m)(um)%

Specially, if m = 0, then the condition mapping can be defined as follows:

map (R.Ar LIKE %v) ⇒ RE.AX
r LIKE %X(n−k+1)(v1)...X

(n)(vk)

For example, we have three mappings about similarity condition as follows:

map (persons.phone LIKE ‘135%’) ⇒ personsE.phoneXLIKE ‘HBC%’
map (persons.phone LIKE ‘%721’) ⇒ personsE.phoneXLIKE ‘%ABA’
map (persons.phone LIKE ‘135%898721’) ⇒ personsE.phoneXLIKE‘HBC BJJHGJ’ OR

personsE.phoneXLIKE ‘HBC IJIABA’

Mapping 5 R.Ar ≥ u: this is the basic form of a range query condition. Without loss of
generality, we assume that u = u1u2...um(m ≤ n) and note vi as a character of the greatest
value in the character unit Pi(i = 1, 2, ..., n), i.e., ∀v∗(v∗ ∈ dom(Pi) → v∗ ≤ vi). Then,
any character string u∗ = u∗

1u
∗
2...u

∗
h(1 ≤ h) is greater than u, if and only if it satisfying that:

(u1 = u∗
1, u2 = u∗

2, ..., um = u∗
m,m ≤ h); or (u1 ≤ u∗

1 + 1); or (u1 = u∗
1, u2 ≤ u∗

2 + 1; or
...; or (u1 = u∗

1, u2 = u∗
2, ..., uk−1 = u∗

k−1, uk ≤ u∗
k + 1), where k is equal to m (if m ≤ h)

or h (if m > h). Based on such an observation, the range condition mapping is defined as
follows:
map (R.Ar ≥ u) ⇒ ORm

i=1 map (R.Ar LIKE u1u2...ui−1[(ui + 1) − vi ]) % OR map (R.Ar LIKE u) %

For example, we have a mapping about range query condition as follows:

map (persons.phone ≥ ‘13587’) ⇒ personsE.phoneXLIKE ‘HBCBC%’ OR
personsE.phoneXLIKE ‘H[FG]%’ OR
personsE.phoneXLIKE ‘HB[DEFG]%’ OR
personsE.phoneXLIKE ‘HBC[A]%’ OR
personsE.phoneXLIKE ‘HBCB[BA]%’

Besides, we can define a similar mapping for another range condition: R.Ar < u.

Above, we describe the condition mappings for three main types of basic query
conditions defined over privacy data. It can be seen that all the cloud-side condition repre-
sentations are defined over the index field RE.AX

r , thus can be executed on the encrypted
CloudDB. Besides, it can be noted that each cloud-side representation px is a sufficient
condition of the corresponding query representation pu over privacy data, i.e., the result of
executing px on the CloudDB would be a superset of that of pu (i.e., R(pu) ⊆ D(R(px))).

5.2 Privacy query processing

For any SELECT query operation from a client side, from the WHERE clause of the query,
we can first obtain all the relevant basic query conditions defined over the privacy field.
Second, based on the condition mappings (i.e., Mappings 1 to 5) mentioned above, we map
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each basic query condition into a new condition representation defined over the correspond-
ing index field of the CloudDB. Finally, we combine all the new condition representations
to form a new cloud-side query operation. Note that all the works are completed by the
query translator running on a trusted client side (see Figure 2).

Example 6 Consider the relation “persons” and the encrypted relation “personsE” men-
tioned in Example 5. First, we present a SQL query operation (qu.) as follows:

SELECT p.no, p.name FROM persons p WHERE p.phone = ‘15858707069’ OR
p.phone LIKE ‘1358789 721’.

Then, based on the condition mappings, the query operation qu can be mapped into a
new cloud-side query operation (qx) defined over the index field “personsE .phoneX”:

SELECT p.tupleE FROM personsE p WHERE p.phoneX = ‘HFFHBCHABCC’ OR
p.phoneX LIKE ‘HBCBCIJ ABA’.

Finally, the cloud-side query qx will be submitted to the cloud side, instead of the query
qu. After the query qx is executed by the CloudDB, a set R(qx) of encrypted tuples will be
returned to the client side, which is a superset of the result R(qu) of qu. Then, on the client
side, the query executor will decrypt the set R(qx) of encrypted tuples, and execute the
original query qu over the decrypted tuples again, so as to obtain the accurate query result
R(qu).

From above, we can see that, for a user query qu, its corresponding cloud-side query
qx and the intermediate query result R(qx) are both revealed to the untrusted cloud-side.
However, the cloud-side query qx and the query result R(qx) are not plaintext, where the
query result R(qx) are in the form of ciphertext, and the conditions of qx are defined over
the index fields. Therefore, although R(qx) and qx are visible to the cloud-side, it is difficult
for the cloud-side to guess the private information from them.

5.3 Usability and efficiency analysis

In this subsection, based on Definitions 2 and 3, we use some observations to demonstrate
the usability and efficiency of our proposed approach.

Observation 2 Let Pu denote a set of all the basic query conditions defined over the private
field R.Ar . Then, any query requirement that is relevant to the private field R.Ar can be
described using a logical operation (i.e., an expression connected by NOT, AND and OR)
among the basic query conditions in Pu.

Observation 3 Let p1 and p2 denote two basic query conditions over the private field R.Ar ,
and p∗

1 and p∗
2 two cloud-side query representations corresponding to p1 and p2. Then, the

result of executing the AND condition “p∗
1 AND p∗

2” on the CloudDB will be a superset
of that of “p1 AND p2” (i.e., R(p1 AND p2) ⊆ D(R(p∗

1 AND p∗
2))). Similarly, we have

R(p1 OR p2) ⊆ D(R(p∗
1 OR p∗

2)).

Rationale The two observations mentioned above can be easily demonstrated by the
fundamentals of the logic algebra and the relation algebra.

In Observation 3, we have not mentioned the NOT condition. Actually, based on Map-
pings 1 to 5, we know that R(NOT p1) � D(R(NOT p∗

1)), that is, our approach cannot
support NOT logical operations. However, for any NOT condition, we generally can gen-
erate an equivalent positive condition. For example, “NOT p.phone > 13587898721” is
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equivalent to “p.phone <= 13587898721”. Thus, based on Observation 2 and 3, we have
an observation as follows.

Observation 4 The privacy query scheme used in our approach can meet usability, i.e.,
any user query operation qu over private data can be transformed into a cloud-side query
operation qx , which is defined over the corresponding index data, and the result R(qu) of
qu is contained in the result R(qx) returned by qx , i.e., R(qu) ⊆ D(R(qx)).

Observation 5 Given any threshold μ (0 < μ ≤ 1), after setting a suitable value for the
security factor ρ of the privacy protection scheme, our approach can meet μ-efficiency.

Rationale Let us consider an extreme case where the security factor ρ = 1. At this time,
the index function become an one-to-one mapping, and thus all the non-target tuples can
be filtered out by cloud-side query operations, i.e., at this time, our approach can meet
1.0-efficiency. Thus, for any given threshold μ (0 ≤ μ ≤ 1), our approach can meet μ-
efficiency.

Based on Observation 1 and Observation 5, we can conclude that the security factor ρ is
proportional to the security of our approach, but is inversely proportional to the efficiency
of our approach.

6 Experiment evaluation

In Section 4.3, we have demonstrated the efficiency of our approach by theoretical analysis.
In this section, we evaluate the efficiency of our approach by experiments, i.e., to evaluate
the filtering rate (refer to Definition 4) of cloud-side query operations generated by our
approach to filter out non-target tuples in the CloudDB.

6.1 Experimental setup

Before the experimental evaluation,we briefly describe the experimental setup, including
the dataset preparation, user queries and system configuration.

(1) Dataset preparation. To perform the experiments, we in advance constructed a
database, which only contains one relational table “persons”. The schema of the table
“persons” is similar to that shown as Example 5, but it contains two private fields
“phone” and “name”. Table 1 presents some information related to the two private
fields. Then, we randomly generated a million of tuples for the table “persons” (i.e.,
the database size is about one million orders of magnitude), where the privacy field
values were generated based on the two regular expressions presented in the fifth col-
umn of Table 1. As shown in Table 1, each value of the field “name” is defined over a
set of 100 Chinese characters, and consists of at least three but up to five characters.

Table 1 The information about the private field that needs to be encrypted

Table name Private field Data type Tuple number Regular expression

Persons phone CHAR (11) 1,000,000 [1][358][0-9]{9}
Persons name CHAR (5) 1,000,000 [\u4e00-\u5200]{3,5}
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Table 2 The similarity and range conditions used in the experiments, where A1, A2 and A3 denote three
characters

Symbols LIKE conditions Symbols Range conditions

PL1 phone LIKE “%A1” PR1 phone ≥ “15A1”

PL2 phone LIKE “%A1A2” PR2 phone ≥ “15A1A2”

PL3 phone LIKE “%A1A2A3” PR3 phone ≥ “15A1A2A3”

NL1 name LIKE “%A1” NR1 name ≥ “A1”

NL2 name LIKE “%A1A2” NR2 name ≥ “A1A2”

NL3 name LIKE “%A1A2A3” NR3 name ≥ “A1A2A3”

(2) User query operations. Table 2 presents the basic query conditions used in our exper-
iments. Table 2 shows the general cases for two main types of basic queries (i.e., basic
similarity queries and basic range queries) over the private field “phone” or “name”.
It should be noted that equivalent queries can be considered as a special kind of simi-
larity queries. In addition, other more complex similarity queries or range queries can
be generated based on these basic query operations.

(3) System configuration. The experiments were conducted over two Lenovo personal
computers with an Intel (R) Core (TM) I7-4510U CPU and 8 GB RAM, where one of
the two computers performed as the cloud-side, and the other as the client side. The
network speed between computers is about 2.0 MB/s, and the disk speed is about 200
MB/s. In addition, we used Microsoft Windows 7 as the operating system, and MySQL
(version 5.7.17) as the database system.

6.2 Efficiency evaluation and analysis

In the experiments, we used the metric Fr (i.e., the filtering rate defined in Section 3.3)
to evaluate the efficiency of the approach. Aiming at similarity queries, we conducted two
groups of experiments over the private fields “phone” and “name”, respectively, by setting
different values for the security factor ρ. The experimental results are shown in Table 3,
where each value was obtained by performing 10 experiments and then computing their
average value.

From Table 3, we have the following four observations. First, with the increasing of the
security factor ρ, the Fr value decreases, i.e., the effectiveness of the cloud-side query oper-
ations to filter non-target tuples is reduced, and thus the efficiency of the approach is also

Table 3 The Fr values for different similarity query conditions over the private field “phone” or “name” (ρ
is set to 29 − 221)

Factor (ρ) ρ = 29 ρ = 211 ρ = 213 ρ = 215 ρ = 217 ρ = 219 ρ = 221

PL1 0.88889 0.83951 0.79012 0.74074 0.69136 0.64198 0.59259

PL2 0.96970 0.94974 0.92580 0.89787 0.86594 0.83003 0.79012

PL3 0.99299 0.98638 0.97687 0.96393 0.94703 0.92566 0.89927

NL1 0.97374 0.96566 0.95758 0.94949 0.94141 0.93333 0.92525

NL2 0.99880 0.99816 0.99740 0.99650 0.99548 0.99432 0.99304

NL3 0.99995 0.99992 0.99986 0.99978 0.99969 0.99956 0.99941
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Table 4 The Fr values for different range query conditions over the private field “phone” or “name” (ρ is
set to 29 − 221)

Factor (ρ) ρ = 29 ρ = 211 ρ = 213 ρ = 215 ρ = 217 ρ = 219 ρ = 221

PR1 0.80000 0.75556 0.71111 0.66667 0.62222 0.57778 0.53333

PR2 0.81818 0.79798 0.77778 0.75758 0.73737 0.71717 0.69697

PR3 0.85586 0.84585 0.83584 0.82583 0.81582 0.80581 0.79580

NR1 0.96400 0.95600 0.94800 0.94000 0.93200 0.92400 0.91600

NR2 0.98090 0.97630 0.97158 0.96673 0.96176 0.95666 0.95143

NR3 0.99521 0.99283 0.99036 0.98779 0.98511 0.98231 0.97939

reduced accordingly. The reason is that with the increasing of ρ, it would increase the num-
ber of different privacy field values mapped into the same index field value by the index
function, consequently, decreasing the probability of non-target tuples being filtered. Sec-
ond, different similarity conditions lead to the different change trends of Fr values, and the
Fr values would increase with the increasing of quantity of information contained by the
similarity matching conditions (PL1−PL3 and NL1−NL3). This is because the increasing
of quantity of information in the matching conditions would decrease the number of tuples
returned by the cloud-side query (i.e., R(qx) in Definition 4), resulting in the increasing of
the Fr values. Third, each Fr value related to “name” is generally greater than that related
to “phone”, which is caused by the larger value domain of the private field “name”. Finally,
we find that the mathematical expectation of the Fr values for the similarity query opera-
tions over the private field “phone” is equal to 0.86222 (we assume the same probability
of occurrence of each similarity query operation); and the mathematical expectation over
“name” is equal to 0.98183. As a result, this would reduce the number of encrypted tuples
transmitted from the cloud side to the client, thereby, improving the efficiency of similarity
query operations.

Aiming at range queries, we also conducted two groups of experiments over the pri-
vate fields “phone” and “name”, respectively. The experimental results are presented in
Table 4. In general, the experimental results are similar to those of similarity queries: (1)
the increasing of the security factor ρ decreases the effectiveness of the cloud-side query
operations to filter non-target tuples of the CloudDB, thereby, decreasing the efficiency of
the approach; (2) the greater value domain of the private field “name” makes that each Fr
value of “name” is generally greater than that of “phone”; and (3) the mathematical expecta-
tions over “phone” and “name” are respectively equal to 0.75003 and 0.96468, i.e., most of
non-target tuples generally can be filtered by the cloud-side query operations, consequently,
improving the efficiency of range query operations.

In addition, we have also conducted experiments to evaluate the actual execution per-
formance of our approach. In the experiments, we compared our approach (below, denoted
by “We”) with the following two ways: (1) decrypting the encrypted data before query-
ing them (denoted by “Bw”); and (2) querying data without encryption (denoted by “Bn”,
i.e., directly storing plaintext into the CloudDB). In the experiments, the execution perfor-
mance of our approach is computed by adding: (1) the time of executing a cloud-side query
on the CloudDB, and transmitting the encrypted data from the cloud-side to the client, i.e.,
the time consumed on the cloud-side; and (2) the time of decrypting and querying the data
on the client, i.e., the time consumed on the client-side. The experiments were performed
based on the basic similarity queries “PL2” and “NL2”, and the basic range queries “PR2”
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(a) (b)

Figure 5 The execution times for performing similarity and range queries over the private field “phone” or
“name”

and “NR2”. The experimental results are shown in Figure 5, where the security factor ρ is
set to 215. From the two subfigures, we see that based on the feature index generated by our
approach, the overall execution performance of similarity and range queries over the private
fields can be improved effectively: compared with those of “Bw”, the overall execution time
of a basic similarity query is decreased to about 0.3, and the execution time of a range query
is decreased to about 0.6. In addition, we also see that the execution performance of our
approach is almost twice that of “Bn”, which is mainly because the volume of the encrypted
tuples is greater than the volume of the original tuples (i.e., the tuples without encryption).

Finally, based on the above experimental results, we conclude that the increasing of the
security factor ρ would decrease the efficiency of the proposed approach, i.e., it would
decrease the effectiveness of the cloud-side query operations generated by our approach to
filter non-target tuples of the CloudDB.

6.3 Effectiveness comparison and analysis

From the related work section, we know that there have been many approaches to database
encryption, but most of them were not designed for personal privacy protection in a
CloudDB, thereby, making them difficult to be applied into a CloudDB. In this subsection,
we compare our approach with three existing ones proposed in [18], [29], and [33], respec-
tively. It should be pointed out that all the approaches were not designed for a CloudDB.
For comparison, we have re-implemented the approaches over our prototype experimental
system.

First, we make an effectiveness comparison in terms of efficiency (i.e., Definition 4). In
the experiments, (1) for our approach, the security factor ρ is set to 215; (2) for the approach

(a) (b)

Figure 6 The efficiency comparisons between our approach and other existing ones
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Table 5 The effectiveness comparison, where “low” denotes non-support, “high” denotes good support, and
“medium” denote some support

Approach in [18] in [29] in [33] Of ours

Similarity queries Medium Medium High High

Range queries Low Low High High

Security Medium Medium High High

Efficiency High High Medium High

in [29], the number of bits of characteristic index field is set to 32 (that is recommended by
the authors); and (3) for the approach in [33], the size of an index matrix is set to 8 (for the
private field “phone”) or 20 (for the private field “name”). The experiments were performed
based on the basic similarity queries “PL2” and “NL2”, and the basic range queries “PR2”
and “NR2”. The experimental results are shown in Figure 6, where “AP-1”, “AP-2” and
“AP-3” denotes the approaches presented in [18, 29], and [33], respectively, and “AP-We”
denotes our approach. From Figure 6, we see that, our approach has nearly the same running
efficiency to the approaches presented in [18] and [29], and has better running efficiency
than that presented in [33].

Second, based on the above results and the results mentioned in [18, 29], and [33], we
make an overall effectiveness comparison in terms of security (i.e., Definition 1), usability
(i.e., Definition 3) and efficiency (i.e., Definition 4). The comparison results are shown in
Table 5. From Table 5, we can see that, compared to the other approaches, our approach
not only has better usability better, namely, which can support all kinds of query operations
over text private fields (including similarity queries and range queries), but also has better
security, enabling us to prevent attackers from attacking, thus, better ensuring the security
of personal privacy in a CloudDB. Overall, our approach has a better overall effectiveness
in terms of security, usability and efficiency than the other approaches.

7 Conclusion

In this paper, we proposed a client-based approach to protect personal privacy in a CloudDB.
The approach presents a privacy protection scheme and a privacy query scheme, which can
ensure not only good security of privacy data, but also good efficiency of query operations
over privacy data. Moreover, we demonstrated the effectiveness of the approach by theo-
retical analysis and experimental evaluation. The results show that: (1) the feature index
constructed by the approach has good security, i.e., it is difficult to infer the plaintext from
the feature index data; (2) the approach has good usability, i.e., with the help of the feature
index, each type of familiar query operations over privacy data can be transformed into a
cloud-side query operation that can be performed correctly at the cloud-side; and (3) the
approach has good efficiency, i.e., with the help of a cloud-side query operation, most of
non-target tuples can be filtered out at the cloud-side, consequently, improving the execution
efficiency of a client-side query operation over privacy data.

However, the approach proposed in this paper is not the end of our work. As the future
work, we will try to further study some problems, e.g., (1) how to establish a solution to
automatically determine the security factor ρ based on the characteristics of users’ privacy
data, instead of being preset by users; (2) how to improve the approach, so as to support
more privacy data types, not just text data type; and (3) the practical implementation of this
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approach in a CloudDB. In addition, in this work, we only focus on the protection of users’
privacy data; however, in a CloudDB, users’ behaviour may potentially pose a threat to
personal privacy. Therefore, it is also our future work of how to protect the privacy behind
users’ behaviour.

Acknowledgements We would like to thank anonymous reviewers for their valuable comments. The work
is supported by the National Social Science Fund of China (No. 17CTQ011).

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-molina, H., Kenthapadi, K., Motwani, R., Srivastava, U.,
Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure database services. In:
Proc. of the CIDR (2005)

2. Ahituv, N., Lapid, Y., Neumann, S.: Processing encrypted data. Commun. ACM 30(9), 777–780 (1987)
3. Alfred, B., Melissa, Z.: Database Security. Delmar Cengage Learning (2011)
4. Arvind, A., Spyros, B., Ken, E., Manas, J., Raghav, K., Donald, K., Ravi, R., Prasang, U.: Secure

database-as-a-service with cipherbase. In: Proc. of the SIGMOD (2013)
5. Ashwini, M.D., Mangesh, S.D., Devendra, N.K.: Fpga implementation of aes encryption and decryption.

In: Proc. of the 2009 International Conference on Control, Automation, Communication and Energy
Conservation (2009)

6. Bharath, S., Wei, J., Elisa, B.: Privacy-preserving complex query evaluation over semantically secure
encrypted data. In: Proc. of the ESORICS (2014)

7. Bijit, H., Sharad, M., Gene, T.: A privacy-preserving index for range queries. In: Proc. of the VLDB
(2007)

8. Boyang, W., Ming, L., Haitao, W., Hui, L.: Circular range search on encrypted spatial data. In: Proc. of
the ICDCS (2015)

9. Chen, F., Liu, A.X.: Privacy and integrity preserving multi-dimensional range queries for cloud
computing. In: Proc. of the IFIP (2014)

10. Chen, K., Weimin, Z.: Cloud computing: System instances and current research. J. Softw. 20(5), 1137–
1148 (2010)

11. Feng, D., Zhang, M., Zhang, Y., Xu, Z.: Study on cloud computing security. J. Softw. 22(1), 71–83
(2011)

12. Ganapathy, V., Thomas, D., Feder, T., Garcia-Molina, H., Motwani, R.: Distributing data for secure
database services. In: Proceedings of the 4th International Workshop on Privacy and Anonymity in the
Information Society. ACM (2011)
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