
World Wide Web (2018) 21:687–712
DOI 10.1007/s11280-017-0488-3

Continuous monitoring of range spatial keyword query
over moving objects

Chaluka Salgado1 ·Muhammad Aamir Cheema1 ·
Mohammed Eunus Ali2

Received: 12 February 2017 / Revised: 2 June 2017 / Accepted: 3 August 2017 /
Published online: 11 August 2017
© Springer Science+Business Media, LLC 2017

Abstract In this paper, we propose an efficient solution for processing continuous range
spatial keyword queries over moving spatio-textual objects (namely, CRSK-mo queries).
Major challenges in efficient processing of CRSK-mo queries are as follows: (i) the query
range is determined based on both spatial proximity and textual similarity; thus a straight-
forward spatial proximity based pruning of the search space is not applicable as any object
far from a query location with a high textual similarity score can still be the answer (and
vice versa), (ii) frequent location updates may invalidate a query result, and thus require fre-
quent re-computing of the result set for any object updates. To address these challenges, the
key idea of our approach is to exploit the spatial and textual upper bounds between queries
and objects to form safe zones (at the client-side) and buffer regions (at the server-side),
and then use these bounds to quickly prune objects and queries through smart in-memory
data structures. We conduct extensive experiments with a synthetic dataset that verify the
effectiveness and efficiency of our proposed algorithm.

Keywords Spatial keyword queries · Continuous range queries · Moving objects · Safe
zone · Location based services

� Chaluka Salgado
chaluka.salgado@monash.edu

Muhammad Aamir Cheema
aamir.cheema@monash.edu

Mohammed Eunus Ali
eunus@cse.buet.ac.bd

1 Monash University, Melbourne, Australia

2 Department of Computer Science and Engineering, Bangladesh University of Engineering
and Technology (BUET), Dhaka, Bangladesh

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-017-0488-3&domain=pdf
http://orcid.org/0000-0001-5516-8271
mailto:chaluka.salgado@monash.edu
mailto:aamir.cheema@monash.edu
mailto:eunus@cse.buet.ac.bd

688 World Wide Web (2018) 21:687–712

1 Introduction

The proliferation of GPS-enabled mobile devices, and the huge popularity of location based
social networking sites (LBSN, e.g., Foursquare, Yelp) have facilitated the generation of
a large volume of geo-textual (or spatio-textual) datasets which form the basis of many
emerging location based services (LBS). One of the important and popular forms of queries
in LBS is the spatial keyword query: given a set O of spatio-textual objects where each
o ∈ O is described by its location and a set of keywords, a spatial keyword query q finds
objects that meet the requirements of the query in terms of both spatial proximity and textual
similarity. The spatial keyword queries have been extensively studied in different contexts
that include range query, k nearest neighbour query, top-k query, and publish-subscribe
query. A comprehensive study of these queries can be found in [10]. However, to the best
of our knowledge, we are the first to study continuous monitoring of moving spatio-textual
objects for thousands of continuous (long running) queries in real time. Next, we present
our motivation for studying this problem.

1.1 Motivation

Consider the example of a fast food chain that wants to continuously monitor the potential
customers to send them targeted advertisements and deals. Potential customers of a fast food
outlet are the users that are close to it and whose preferences (keywords) match the menu
of the restaurant. The fast food chain may want to continuously monitor all such potential
customers to increase their sale. Similarly, a supermarket may want to monitor the people
who are close to it and are looking for products sold at the supermarket. These people may
be attracted by sending e-coupons or personalized deals. Spatial keyword queries are also
important in other domains. For example, in an emergency scenario, hospitals could monitor
the locations of health workers or volunteers, and send requests to those who are nearby and
whose expertise match with the required expertise. In all of the above scenarios, we need to
continuously monitor moving spatio-textual objects (e.g. customers or users) for multiple
long running range queries with respect to query objects (e.g., facilities such as restaurants
or hospitals). We call these queries continuous range spatial keyword queries over mov-
ing spatio-textual objects (or CRSK-mo queries). Next, we provide an example of such
queries.

Example 1 Figure 1a shows three range queries q1, q2, and q3 and five spatio-textual mov-
ing objects (users) o1, o2, o3, o4, and o5. Assume that a query wants to track every user
whose current location is inside the query range, and who has at least one common keyword
with the query keywords. In this case, at time t1, the CRSK-mo query returns RS

t1
q1 = {o3},

RS
t1
q2 = {o2, o4} and RS

t1
q3 = {o4} as the result sets of q1, q2, and q3, respectively. Now, at

time t2, objects o1, o3, o4 move to new locations as shown using small blank circles. Thus,
the query results are updated as RS

t2
q1 = {o1, o3}, RS

t2
q2 = {o2} and RS

t2
q3 = {o4}.

In the above example, we explain the concept of CRSK-mo queries by using boolean
range queries [13, 30, 32] where an object is a result of a query if it is within a specific range
and matches a keyword criteria (e.g., at least one keyword matches). A general and often
preferred approach is to define the relevance of an object to a query using a relevance score
that combines both spatial proximity and textual similarity between the query and object.
In this case, a query user may set a threshold score Ts and every object with relevance
score less than or equal to the given threshold score is returned as an answer. Figure 1b

World Wide Web (2018) 21:687–712 689

(a) Boolean range (b) Spatio-textual relevance score based range

Figure 1 An example of CRSK-mo query

shows an example where the objects’ relevance scores are shown next to each object and the
movement to a new location is shown by an arrow. Thus, the results of the query q1 for the
two timestamps are RS

t1
q1 = {o3, o4, o5}, and RS

t2
q1 = {o1, o3, o5}, respectively, where the

threshold score of query q1, is set to 0.5, i.e., Ts = 0.5. In this paper, we study CRSK-mo

queries by considering this general notion of relevance (for more details, see Section 2).

1.2 Challenges

Key challenges of solving CRSK − mo queries are as follows: (i) the range threshold Ts

is determined based on both spatial proximity and textual similarity; any object far from a
query location with a high textual similarity score can still be the answer (and vice versa),
and thus it is hard to prune the search space, and (ii) frequent location updates may invalidate
a query result, therefore, it requires continuously maintaining the up-to-date results while
minimizing the total computation cost and communication cost between clients (objects)
and the server.

To address the above challenges, in this paper, we propose a client-server based com-
prehensive solution for monitoring continuous range spatial keyword queries over moving
spatio-textual objects. Inspired by the usefulness of safe zone based approaches [5, 7–9,
20, 31] for monitoring other types of spatial queries, we also develop a safe zone based
approach where each object is assigned an area (called safe zone) such that the object
does not affect the result of any continuous query in the system as long as the object
remains in its safe zone. The advantage is that the system does not need to recompute
the results (reducing computation cost) and the object does not need to report its loca-
tion to the server (reducing communication cost) as long as the object is inside its safe
zone.

In addition to safe zone, we also maintain another region on the server side, which we
call, buffer region. The buffer region reduces frequent safe zone computations and also
ensures that the workload assigned to each client device is manageable. We propose a novel
framework that elegantly handles frequent updates from objects while answering CRSK-
mo queries. We propose a grid based in-memory data structure that enables us to efficiently
process multiple long-running registered queries over a large number of moving spatio-
textual objects in tandem with the efficient construction of safe zones and buffer regions.
Our experimental study shows that our approach significantly outperforms the competitive
PCR method for a wide range of parameters.

690 World Wide Web (2018) 21:687–712

1.3 Contributions

Our contributions in this paper can be summarized as follows:

– To the best of our knowledge, we are the first to study continuous monitoring of moving
spatio-textual objects for multiple continuous range spatial keyword queries.

– We propose a grid based in-memory data structure that elegantly handles frequent
location updates while processing multiple CRSK-mo queries.

– We conduct an extensive set of experiments to show that our proposed approach
outperforms the competitive approach significantly.

The rest of the paper is organized as follows. Section 2 formulates the query studied
in this paper. Section 3 reviews related work. Section 4 explains the overview of the solu-
tion, while Section 5 describes the proposed algorithm. Section 6 reports the results of
experimental evaluation, and Section 7 concludes the paper with a discussion of future
work.

2 Problem statement

Let O be a set of spatio-textual objects (users) and Q be a set of facilities or POIs (queries).
Each spatio-textual object o ∈ O is defined as a pair (o.λ, o.ψ), where o.λ is the current
point location of the user and o.ψ is a set of keywords representing her preferences. Simi-
larly, a query object q ∈ Q is also defined as a pair (q.λ, q.ψ), where q.λ is the location of
the facility and o.ψ is a set of keywords representing its attributes in the form of a textual
description.

The geo-textual relevance between an object and a query is defined in terms of both
spatial proximity and textual similarity. Let dist (q, o) be the spatial distance between query
location q.λ and object location o.λ, and text (q, o) be the textual similarity between the
two keyword sets q.ψ and o.ψ . To convert the textual similarity to the textual distance, we
use textual score as St (q, o) = 1 − text (q, o), here a smaller value of St (q, o) signifies a
higher textual similarity between q and o. We assume our working space is normalized so
that both spatial distance score dist (q, o), and textual distance score St (q, o) lie between 0
and 1 (inclusive). Thus, geo-textual relevance score, score(q, o) of o with respect to q can
be expressed as follows:

score(q, o) = α · dist (q, o) + (1 − α) · St (q, o) (1)

Here, α is a query parameter (user-defined) that lies between 0 and 1(exclusive) to control
the preference of spatial proximity over textual similarity.

We compute the spatial proximity score dist (q, o) = 1 if ||q.λ, o.λ|| ≥ R where
||q.λ, o.λ|| is the normalized euclidean distance between q and o, and R is a system defined
range. If ||q.λ, o.λ|| < R, then dist (q, o) is computed as follows,

dist (q, o) = ||q.λ, o.λ||
R

(2)

The intuition of using R is as follows. Assume that each object has exactly three key-
words. An object o’s textual distance St (q, o) will be 0 if query q contains all keywords.
Its textual distance will be 1/3, 2/3 or 1 if q contains 2, 1 or 0 of its keywords, respec-
tively. Now, consider the example of objects in Los Angeles (the data set used in our

World Wide Web (2018) 21:687–712 691

experiments) and assume that the maximum distance between two points in the space is
100km. Now consider two objects o1 and o2 such that distance between q to o1 is 0.1 km and
distance between q to o2 is 15 km. Their spatial similarity scores (without considering R)
will be their distances from q normalized in the range 0 to 1, i.e., dist (q, o1) = 0.1/100 =
0.001 and dist (q, o2) = 15/100 = 0.15. Now, assume that q contains 2 out of 3 keywords
of o1 (i.e., St (q, o1) = 1/3) and q contains all three keywords of o2 (i.e., St (q, o2) = 0). If
α = 0.5, their total scores will be score(q, o1) = 0.5 × 0.001 + 0.5 × 1/3 = 0.167 and
score(q, o2) = 0.5 × 0.15 + 0.5 × 0 = 0.075. Therefore, o2 gets a better score although
its distance from q is much larger compared to the distance of o1. In other words, the scores
are biased towards textual similarity, i.e., the objects that have better textual similarity have
higher chance to be the result even if they are quite far from q.

Now, consider the same example, and assume that R = 0.2. In this case, dist (q, o1) =
0.001/0.2 = 0.005 and dist (q, o2) = 0.75 and score(q, o1) = 0.169 and score(q, o2) =
0.375. Note that R normalizes the spatial proximity score to reduce the bias towards the
textual similarity score. In short, R was introduced to address the bias towards textual
similarity. Its effect is similar to setting α to a higher value.

Note that, the textual similarity (text) can be computed using any information retrieval
model. In this paper, we use a function [19] similar to the weighted Jaccard coefficient,
described as follows:

text (q, o) =
∑

t∈q.ψ∩o.ψ w(t)

w(o.ψ) = ∑
t∈o.ψ w(t)

(3)

where, w(t) denotes the weight of keyword t , computed by obtaining the inverted document
frequency (idf). And w(o.ψ) indicates the weighted sum of object keywords (i.e., o.ψ).
Table 1 summarizes the notations frequently used in the rest of the paper.

Definition 1 (Range Spatial Keyword Query (RSKQ)) Let O be a set of spatio-textual
objects and, q be a range spatial keyword query, q = {λ,ψ, α, Ts} where λ is the query
location, ψ is the set of keywords, α the query preference factor between spatial proxim-
ity and keyword set similarity, and Ts is the range threshold score combining both spatial

Table 1 The summary of
notations Notation Definition

o a spatial textual object

q a continuous range spatial-keyword query

o.λ(q.λ) the location of object o(query q)

o.ψ (q.ψ) a set of keywords for object o(query q)

o.m capacity of object o

q.Ts threshold score of query q

q.α query preference factor of query q

RSt
q result set of query q at timestamp t

Cloq conditional circle of object o w.r.t query q

ro
q radius of Cloq

BR(o) buffer region of object o

Clmax
q largest conditional circle of query q

rmax
q radius of Clmax

q

� default range of buffer regions

692 World Wide Web (2018) 21:687–712

and textual factors. The query q returns a set of objects, RSq ⊆ O, whose geo-textual
relevance scores are less than or equal to the given threshold score Ts , i.e, ∀o∗ ∈
RSq, score(q, o∗) ≤ Ts .

Definition 2 (Continuous Range Spatial Keyword Query on Moving Objects (CRSK-mo))
Let O be a set of moving spatio-textual objects, and Q be a set of long running static range
spatial keyword queries, for each q ∈ Q, the continuous range spatial keyword query over
moving objects (CRSK-mo) finds a set RSt

q ⊆ O of objects for every time instance t , where
∀o∗ ∈ RSt

q, score(q, o∗) ≤ Ts .

2.1 Client-server model

We utilize the client-server paradigm, in which we have two types of client objects: facilities
(static) and users (moving). The facilities (e.g., restaurants, shops, etc.) are static clients who
issue queries to the server. The users are moving clients who use their GPS-enabled mobile
phones to continuously track their respective locations, and send updates to the server. The
latter type of clients is referred as spatio-textual moving objects in this paper. Figure 2
shows the schematic diagram of our system model where clients send their updates and issue
queries to the central server, and the server is responsible for maintaining moving object
and processing the queries. Finally, the server returns the result sets to the clients.

The current location of object o is represented using x-y coordinates, i.e., (o.λ.x, o.λ.y).
Initially, an object sends its location and preferences (keywords) as a tuple (o.λ, o.ψ). Since
objects frequently change their positions (i.e., moving), an object o sends its location update
to the server as < oID, λ.xcur, λ.ycur >, where (xcur , ycur) is the current location of object o.

3 Related work

In this section, we review the existing techniques and indexing structures that are relevant
to our work. First, we introduce some background work on continuous query processing
on spatial data, and then we discuss the existing indexing structures and techniques for
spatial keyword query processing, and finally, we briefly discuss the spatial keyword aware
publish/subscribe systems.

Figure 2 The System Architecture

World Wide Web (2018) 21:687–712 693

Continuous spatial queries Continuous query processing over moving objects has been
extensively studied in the spatial database domain in the context of both stationary and mov-
ing queries. To evaluate continuous static queries over moving spatial objects, Ṡaltenis [28]
and Tao et al. [29] suggested a technique to index moving objects trajectories. However,
maintaining the index continuously for moving objects is expensive. Prabhakar et al. [26]
and Wu et al. [33] introduced a strategy to index the queries instead of the objects which
significantly reduces the index maintenance cost. These techniques impose a high communi-
cation and computational overhead on the server and also affect the battery life of hand-held
devices due to frequent location updates and computations. To overcome these issues, Hu
et al. [18] and Prabhakar et al. [26] proposed an efficient and attractive technique called safe
zones. The intuition behind the safe zone is to compute a region for an object depending on
all the query boundaries, such that as long as the object lies within the safe zone, none of
the query results is changed. Intuitively, the object does not need to send a location update
to the server unless it crosses the safe zone. The safe zone technique reduces the communi-
cation and computational overhead at the server by minimizing frequent location updates.
In addition, Gedik and Lui [14] and Cheema et al. [6] utilized the safe zone concept to
continuously evaluate moving queries.

All the aforementioned techniques considered the spatial information but did not take
into account the textual information. Therefore, these techniques cannot be used in con-
tinuous spatial keyword query processing over moving spatio-textual objects. However, we
have adopted the concept of safe zone in the context of spatio-textual queries.

Spatial keyword query Spatial keyword queries have been extensively studied in differ-
ent contexts that include boolean range query, boolean k- nearest neighbour (NN) query,
and top-k NN query. A boolean range query [13, 30, 32] returns all the objects that match all
the given query keywords and within the spatial range of the query. A boolean kNN [3, 23]
query returns k objects in order of spatial proximity whose keywords match with the query
keywords. A top-k NN query [12, 16, 27] returns k most relevant objects in terms of both
spatial proximity and textual relevance. A comprehensive survey of different types of spatial
keyword queries can be found in [10]. For efficient processing of spatial keyword queries,
a plethora of indexing techniques, e.g., IR-tree [12, 13], CIDR-tree [12], and aR-tree [27]
have been proposed. Since these works focus on one-time disk based query processing,
these techniques are not applicable in our work where queries are evaluated continuously in
which an in-memory data structure is essential.

Wu et al. [31] and Huang et al. [20] investigated moving top-k spatial keyword queries
over stationary geo-textual objects. Wu et a. [31] proposed a technique that uses multiplica-
tively weighted (MW) Voronoi cells. MW-Voronoi cells were generated based on weighted
distance concept, where the weight for each point was computed using an ad-hoc ranking
function. They proposed two algorithms to optimize the safe zone computation by reducing
the search space. However, the proposed technique used polygons to approximate circles
and thereby could not find the exact safe zone. Huang et al. [20] introduced a method
that uses Hyperbolas to compute safe zones. Initially, they identified the dominant zones
for objects and then used those regions to compute the safe zone for a query. They also
proposed some pruning techniques and utilized indexing structures to optimize the compu-
tational time of the safe zones. In these two studies, they evaluate each query against the
set of spatio-textual objects since queries are moving. In contrast, we evaluate each spatio-
textual object against the set of queries in order to maintain an up-to-date result set with
response to the movements of the objects.

694 World Wide Web (2018) 21:687–712

Location aware publish/subscribe queries Another type of spatial keyword query that
is closely related to our problem is the location aware publish/subscribe queries (e.g., [11,
15, 17, 19, 22]). These queries report geo-tagged event notification to the relevant sub-
scribers, where the relevance is measured either by boolean matching or similarity based
method. Guo et al. [17] studied the problem of efficient processing of continuous moving
range queries over dynamic event streams. They propose an efficient index called BEQ-tree
to support spatial subcription matching. Elaps updates the moving subscriber with events
within the given spatial range and also match with the given boolean expression. Thus, their
work cannot be extended to support our problem since our range is a combination of spa-
tial and textual score. Moreover, the similarity based methods are used to address the top-k
publish/subscribe problem where objects are ranked according to the spatial and textual
similarity scores. Chen et al. [11] addressed a problem that takes into account the spatial
proximity, the textual relevance and also the object recency in which the score of the object
decays as the time passes. Hu et al. [19] used prefix filtering and spatial pruning techniques
to address a problem where only the events which are within the pre-given similarity thresh-
old are returned to the subscriber. However, these techniques are different from ours since
we focus on moving spatio-textual objects.

4 Solution overview

In this section, we present a comprehensive solution for monitoring continuous range spatial
keyword queries over moving objects. Processing continuous queries over moving objects is
more challenging since a slight movement of an object may invalidate a query result. Thus,
it requires monitoring the locations of the objects and maintaining the results continuously
as the objects move. To address this challenge, we utilize the concept of safe zones [2,
18, 21, 26]. The safe zone of an object is an area such that as long as the object remains
inside this area, it does not affect the result of any query. Hence, the object does not need
to send location updates to the server unless it leaves the safe zone. Thus, the safe zone
based approach reduces both the query processing cost and the communication cost between
clients and the server.

In CRSK-mo query processing, the query range is determined based on both spatial
proximity and textual similarity; any object far from a query location with a high textual
similarity score can still be an answer for the query (and vice versa). The key idea of our
approach is to exploit the spatial and textual upper bounds between queries and objects to
form safe zones for each object. We also introduce the concept of buffer regions, which is
maintained in the server side to avoid frequent re-computations of safe zones. Moreover, we
utilize these bounds to quickly prune queries through efficient in-memory data structures.
We describe our solution in the following subsections.

Section 4.1 presents the concept of safe zones that form the basis of our algorithm.
Section 4.2 presents the pruning rules based on spatial proximity and textual similarity that
are used by our algorithm to prune the search space.

4.1 Safe zone of an object

In a range spatial keyword query, an object o is a result for a given query q when the
spatio-textual relevance score of the object is less than or equal to the given query threshold
score, i.e., score(q, o) ≤ Ts . To continuously monitor an object for a registered query, we

World Wide Web (2018) 21:687–712 695

need to essentially monitor the corresponding inequality over the time. Hence, we have the
following lemma formalizing it.

Lemma 1 An object o ∈ O is a result of query q (i.e., o ∈ RSq) iff dist (q, o) ≤ Ts

α
−

(1−α)
α

· St (q, o).

Proof Let q be a range spatial keyword query and an object o be one of the results of the
query q, i.e., o ∈ RSq . To satisfy the query condition, the object o must follow the condition,
score(q, o) ≤ Ts as depicted in the Definition 1. Thus, we can rewrite (1) as follows:
α · dist (q, o) + (1 − α) · St (q, o) ≤ Ts . Hence, dist (q, o) ≤ Ts

α
− (1−α)

α
· St (q, o).

Based on the above lemma, we define a circle called conditional circle, Cloq , centred at
the query location q.λ with the radius of ro

q , where the radius is defined as follows:

ro
q = Ts

α
− (1 − α)

α
· St (q, o) (4)

Intuitively, a conditional circle, Cloq , is a spatial area such that object o does not affect
the result of the query q as long as o does not enter or leave the area. We identify this area as
the conditional area. Figure 3a shows an example of the conditional area (shaded in gray)
for object o when the object resides inside (i.e dist (q, o) ≤ ro

q) the conditional circle, i.e.,
Cloq . In this case o remains as a result of q as long as it resides inside the cirlce. Otherwise,
the object o is outside the Cloq , then o /∈ RSq and the conditional area is the shaded area as
shown in Figure 3b.

Intuitively, the safe zone of an object involving multiple queries is constructed by taking
the intersection of the conditional areas of the object with respect to all the queries. For
example, Figure 4 shows conditional circles of object o1 and o2 for queries q1, q2, q3 and
q4. Since o1 only lies inside the Cl

o1
q2 and Cl

o1
q3 , the safe zone of the object o1 is the shaded

area as shown in Figure 4a. As long as the object o1 resides inside this area, it does not affect
the results of any query. The object o1 can determine whether it is inside the safe zone by
checking whether it is inside the two conditional circles Cl

o1
q2 and Cl

o1
q3 .

(a) (b)

Figure 3 Example of conditional areas

696 World Wide Web (2018) 21:687–712

(a) (b)

Figure 4 Buffer regions for (a) object o1, (b) object o2

The number of conditional circle boundaries that an object can monitor entirely depends
on the computational capability of the object (i.e., client device). An object with low
computational capability may result an overwhelming workload on the processor and short
battery life, if the safe zone assigned to that object involves a large number of conditional
circles. For example, assume that both objects o1 and o2 have the same set of keywords, i.e.,
conditional circles for each query is identical for both objects because the textual similarity
is same. Figure 4b shows the safe zone of object o2 shaded in gray, which is outside of all
the conditional circles. In such a scenario, the object may need to monitor a large number
of conditional circles, which is computationally expensive.

To address this problem, we introduce a concept called Buffer Region (BR), to support
clients’ mobile devices with heterogeneous computational capabilities. Based on the com-
putational capability of each registered object, the server assigns a value called capacity
(denoted by m) which is the maximum number of conditional circles that particular object
can monitor at a time. Thus, the capacity of the object is used to bound the number of con-
ditional circles involved in constructing the safe zone of that object. Thereby, each device is
assigned with a reasonable computational workload.

Definition 3 (Buffer Region (BR)) Let o ∈ O be a spatio-textual object, where o =
{λ, ψ,m}. The Buffer region is a circle centered at o.λ and the radius is the Euclidean dis-
tance from o.λ to the m − 1th nearest conditional circle. We denote the buffer region of the
object o by BR(o).

The buffer region of an object includes nearest m−1 conditional circles ensuring that the
number of conditional circles involved in constructing the safe zone of the object does not
exceed the capacity of the object. Figure 4 shows the buffer regions (i.e., dotted circle) and
the safe zones (i.e., shaded area) of object o1 and o2. After the buffer region is constructed,
it is stored in the server and the safe zone is sent to the client device of the particular
object. For example, assume o1 is an object in O, where o1.m = 4. Then the buffer region
of object o1 involves three (i.e., m − 1) conditional circles (see Figure 4a). Thus, o1 will

World Wide Web (2018) 21:687–712 697

monitor four circle boundaries including the buffer region boundary. Hence, the radius of
the buffer region is dist (o1, Cl

o1
q4). Figure 4b shows the buffer region for object o2 assuming

its capacity is also four. Thus, it reduces the number of conditional circles that object o2 has
to monitor to check whether it is inside the safe zone. Note that the buffer region concept
reduces the frequent safe zone computations and ensures the workload assigned to each
client device is manageable.

4.2 Pruning rules

Processing CRSK-mo queries involves computing the results of the queries and constructing
the buffer regions for each object to reduce the computational and communication overhead.
Naively, for each object, we can compute conditional circles for all the queries to determine
the affected queries (i.e., the queries for which the object is a result) and also to construct
the buffer regions. Since the number of objects and queries are large in numbers, this naive
approach is highly inefficient. To avoid this limitation, in this section, we introduce two sim-
ple pruning rules based on the bounds derived from spatial proximity and textual similarity
between an object and a query. Using these pruning rules we filter a large number of irrele-
vant queries and obtain a set of candidate queries. Then we compute conditional circles for
these candidate queries to identify the queries for which the object is a result.

According to (4), the radius of the conditional circle depends on threshold score, textual
relevance, and preference parameter(α). Since the textual relevance is the only value that
can vary from one object to another object, we can obtain an upper bound for the radius of
the conditional circle when we set the textual relevance as zero (i.e., St (q, o) = 0). Thus,
we define Clmax

q as the largest conditional circle of query q, where the radius rmax
q can be

defined as follows,

rmax
q = Ts

α
(5)

Lemma 2 (Pruning Rule 1) Let an object o ∈ O be outside the Clmax
q of query q, then

object o cannot be a result for the query q.

Proof Let an object o be a result of query q. According to Lemma 1, dist (q, o) ≤ ro
q .

Hence, ro
q ≤ rmax

q , and dist (q, o) ≤ rmax
q . It concludes that object o is not a result of the

query if dist (q, o) > rmax
q .

In line with Pruning Rule 1, if the object o is outside the Clmax
q , then the query q can be

pruned. Otherwise, the conditional circle of object o for query q, i.e., Cloq is computed to
verify whether the object is a result of the query (according to Lemma 1). Figure 5 shows
an example for Pruning Rule 1. The solid circles depict the largest conditional circles of
queries q1, q2 and q3 while dotted circles depict the conditional circles of object o1 for each
query. Since object o1 is inside the Clmax

q1
and Clmax

q2
, queries q1 and q2 are identified as

candidates while query q3 is filtered out. Since o1 is inside the Cl
o1
q1 , object o1 can only be

a result for q1.
However, Pruning Rule 1 may include a large number of candidate queries since it only

considers the spatial proximity. So we present our next pruning rule that exploits textual
relevance to filter the irrelevant queries. Next, we determine an upper bound (denoted by
maxT) for the textual similarity between an object and a query as follows.

698 World Wide Web (2018) 21:687–712

Figure 5 An example for
pruning rules

From the scoring function (1), if an object o is a result, then α · dist (q, o) + (1 − α) ·
St (q, o) ≤ Ts . Hence, when the dist (q, o) = 0, (1) can be rewritten as follows.

(1 − α) · St (q, o) ≤ Ts

St (q, o) ≤ Ts

(1 − α)

Thus, the maxTq can be expressed as follows.

maxTq = Ts

(1 − α)
(6)

Lemma 3 (Pruning Rule 2) An object o has potential of becoming a result of query q if
St (q, o) ≤ maxTq .

Proof Let o be an object with St (q, o) > maxTq . By (6), St (q, o) > Ts

(1−α)
. Hence, we have

Ts

α
− (1−α)

α
· St (q, o) < 0. By (4), ro

q < 0 concludes that object o can never be a result of
query q.

If an object does not satisfy Pruning Rule 2 for a query, then that object can never be a
result for the query as the conditional circle of that object does not exist (i.e., ro

q < 0). Thus,
we filter those queries in order to reduce the search space. Consider the previous example
(see Figure 5), if St (q2, o1) > maxTq2 then q2 will be filtered out even though the Clmax

q2
overlaps with object o1.

5 Algorithm

In this section, we discuss our algorithm for processing CRSK-mo queries. First, we present
the server-side query processing framework, and then we propose a filter-verification algo-
rithm that constructs buffer regions for each object while computing the result sets for each
query. After that, we discuss continuous monitoring of range spatial keyword queries with

World Wide Web (2018) 21:687–712 699

respect to location updates of the objects. Finally, we present client-side processing of the
system.

5.1 The framework

We use a gird-based index structure to index the CRSK-mo queries. We prefer grid-based
index over the other index structures like an R-tree as it supports frequent location updates
and also it is usually preferred in continuous query processing [24, 25, 34]. In our index,
the data space is partitioned into 2n × 2n grid cells (where n ≥ 0) as shown in Figure 6.
To access a particular cell quickly, we consider the grid as a conceptual tree as used in [4].
The root of the conceptual tree is a rectangle that covers the whole work space (i.e., all the
cells). The root cell is divided into four equal grid cells that represent the next level of the
tree. The process continues until each entry of the leaf level represents one grid cell.

Since the grid-tree is a conceptual visualization of the grid, the root entry and interme-
diate entries do not physically exist. So that the information is stored only in leaf level grid
cells. Hence, in each grid cell, we store all the queries whose Clmax

q circles overlap with
the particular cell. So that when an object lies inside the cell, we can filter out all the other
queries according to Pruning Rule 1. To efficiently access the queries based on keywords,
instead of using a flat list we use an inverted list (i.e., iQList) to store these overlapping
queries. Figure 7 shows our grid based index structure that consist of inverted lists at each
grid cell. In the inverted index, for each keyword ki , we store the queries whose description
contains ki . Accordingly, each keyword contains a posting (query) list ordered by the query
id. Thus, we access the inverted list by using document at a time access method. Thereby,
we consider only the queries contains at least one matching keyword with the objects. More-
over, by using the inverted index and Pruning Rule 2, we obtain the candidate set more
efficiently.

5.2 CRSK-mo processing

We assume that all registered queries are indexed using our grid-based index structure, and
objects arrive into the system in a stream-like fashion. As soon as an object arrives, it is

Figure 6 Conceptual grid-tree
of a 4 × 4 grid [4]

700 World Wide Web (2018) 21:687–712

Figure 7 The index structure

immediately evaluated by our algorithm to see whether it can affect any query result. At the
same time, our algorithm determines the buffer region (BR) for the object in tandem with
the query evaluation. The buffer region is stored in the server and the safe zone is sent to
the device of the corresponding object. Finally, query results are reported to the respective
query client.

Our approach consists of two phases: filtering phase and verification phase. In the fil-
tering phase, all the queries whose Clmax

q do not overlap with the object location (Pruning
Rule 1) and the queries whose textual relevance is greater than its maxTq (Pruning Rule 2)
are filtered out. Then, in the verification phase, conditional circles for each candidate query
are computed and the result sets of candidate queries are updated. Finally, the buffer region
and the safe zone of the object are constructed.

Algorithm 1 shows the pseudocode of our algorithm. The algorithm takes an object o,
and grid-based index G as input, and updates the result sets of the queries and returns the
buffer region and safe zone of the object o. We start traversing the conceptual grid-tree
from the root. The root entry is first inserted into the priority queue, Qp . The elements
in the priority queue are maintained in increasing order of their minimum Euclidean dis-
tance from the object. If the dequeued element is an intermediate cell and satisfies a system
defined default range denoted by � (later we explain the intuition of this value), then
we insert its children into the queue, where mindist (chlidCell, o) is the key (Lines 5-
7). If the dequeued element is a cell, we use the inverted list iQList of the cell to select
a candidate list of queries cQList , and for each q ∈ cQList , we compute the condi-
tional circle Cloq , and finally, the object o is inserted into the result set for the query q if
the object falls inside the conditional circle Cloq . Note that, when we process the inverted
list of each cell, we record the queries already processed in order to avoid the redundant
access.

World Wide Web (2018) 21:687–712 701

To compute the buffer region in tandem with the CRSK-mo query processing, we con-
tinue inserting the conditional circle into the priority queue, where mindist (Cloq , o) is used
as the key. If the dequeued item is a Cloq then it is added to the list maintaining conditional
circles for computing the buffer region. When this list size becomes m− 1, we stop the pro-
cess since we have sufficient Cloqs to construct the buffer region of object o, BR(o) (Lines
22-24). Note that, it may happen that an object has less than m − 1 nearby queries so that it
is required to traverse a wider area to compute its buffer region. In such a scenario, we take
a system defined default range for the buffer region, denoted by �, that bounds the traversal
area. From the conditional circle list, CLList of object o, we compute the buffer region of
the object, BR(o) in Line 28. Thus, the safe zone of the object o is also determined while
the buffer region is generated.

5.3 Continuous monitoring

Since the objects may frequently update their positions, we need to update the results of all
the queries. In this section, we discuss our approach for handling frequent location updates
of moving objects for processing CRSK-mo queries. When an object o sends its location to

702 World Wide Web (2018) 21:687–712

the server, the server performs the following steps to update the results (see Algorithm 2).
First, the server checks whether the new location is inside the current BR(o), if it is true,
then it checks against each conditional circle that forms the BR(o) to identify which queries
have been affected by this location update. Then the affected queries are updated accord-
ingly. If the new reported location is outside the current BR(o), a new buffer region needs
to be computed using Algorithm 1.

5.4 Client side

In our system, we assume that the client tracks its own location and nearby conditional
circles. Since the client has a limited computational capability and wants to be a part of a
limited number of nearby conditional circles, each client is assigned with a capacity (i.e m)
to limit the number of conditional circles that involve in constructing the safe zone. The
client initially sends its current point location and a set of keywords to the server. Then
the server evaluates the object against all registered queries, and sends the safe zone to the
object. Subsequently , the client sends its location update to the server when it leaves the
current safe zone and then the server sends back a new safe zone.

6 Experimental evaluation

In this section, we evaluate the performance of our algorithm (Our) by comparing with two
competitive algorithms. Section 6.1 explains the PCR approach. Section 6.2 introduces the
parameters and the settings we used in our experiments while Section 6.3 describes how
the default parameters were determined. Section 6.4 compares our algorithm with a spatial
filtering based algorithm. Section 6.5 presents a detailed discussion on empirical studies.

6.1 Pre-Circular Range(PCR) approach

The straightforward approach for processing CSRK-mo queries involves evaluating each
incoming object updates against all the registered queries, which is very expensive in terms
of computational and communication overhead. Thus, we develop a competitive approach

World Wide Web (2018) 21:687–712 703

called Pre-Circular Range(PCR) to compare with our technique. In the PCR approach, for
each object, we first identify a set of queries that can be affected by the movement of the
object for a certain period of future time. We set a circular area, Cir(o) around the object
where the object can belong in a defined period of time. Thus, we first identify a set of
queries whose results can be affected by the movement of the object within this circular
area. In general, there can be four categories of queries: (i) a query whose Cloq is completely
inside the Cir(o), (ii) a query whose Cloq partially overlaps with Cir(o), (iii) a query whose
Cloq is completely outside Cir(o), and (iv) a query whose Cloq completely contains Cir(o).
Naturally, the movement of object o within Cir(o) only affects the queries, say AQ(o), that
fall under category (i) and (ii), as the boundaries of these Cloqs can be crossed by the object.
Then we select the nearest m − 1 queries from AQ(o) to construct the BR(o). If the object
goes outside BR(o), we need to assign a new Cir(o) and repeat the above procedure. The
communication between the client and the server remains similar to our approach where an
object sends a location update to the server as it leaves the safe zones and so on.

6.2 Experiment settings

The experiments were conducted on a dataset which was generated as follows. We used a
real world dataset(from Yelp) that contains check-in data in Los Angeles to extract the POIs.
The keywords for POIs were collected from the descriptions of the relevant user check-
ins. Thus, the trajectories of the moving objects were generated using the brinkhoff data
generator [1] based on the road network of the Los Angeles. Then we selected a set of POIs
for each object by taking the nearest POI to the object trajectory at different timestamps
assuming the users checked-in to those places. Finally, we obtained the keywords for each
object (user) by randomly selecting keywords from the checked-in POIs.

We have varied a wide range of parameters to test the supremacy of our approach over
the PCR approach in a wide variety of real world settings. The details about the parame-
ter values are given in Table 2. All the experiments were conducted in an Intel processor of
3.30GHz and 4GB of RAM, running Linux Ubuntu. We used C++ to implement all the algo-
rithms and used in-memory setting by adopting the grid index structure since continuous
result computation is essential.

We have measured the query processing time on the server side in two different metric:
initial time and the continuous monitoring time. The initial time is the time spent to compute
results for all the queries and construct safe zones for all the objects for the first time. Since
all the queries are continuously monitored for 100 timestamps, in each timestamp server
needs to maintain an up-to-date result set for all the queries as it receives location updates.
In which server updates the query results, compute new buffer regions and send new safe

Table 2 The parameters used
for experiments Parameter Default Range

Threshold score 0.5 0.1–0.9

Preference parameter 0.5 0.1–0.9

Keywords per object 5 2–10

Keywords per query 15 10–30

Number of queries 10K 5–20K

Number of objects 100K 50–200K

Speed medium slow, medium, fast

704 World Wide Web (2018) 21:687–712

Figure 8 Effect of grid size

 10

 12

 14

 16

 18

 20

 22

1 2 4 8 16 32

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Grid size

Our

zones to the particular objects. The continuous monitoring time sums up the time consumed
by the server to maintain an up-to-date result set for the duration of 100 timestamps. In
Section 6.5, we use the term continuous time to represent the continuous monitoring time
for brevity.

6.3 Default parameters

In this section, we describe how the default parameters were determined to obtain the best
performance of the proposed framework for all simulations.

6.3.1 Grid size

We conducted experiments to study the effect of the grid size. Figure 8 shows the effect of
grid size where we change the grid size from 1 × 1 to 32 × 32 and report the continuous
time. The performance degrades if grid size is too small or too large. This is because if grid
cells are too large then the number of queries in each cell (and the size of inverted index)
increases resulting in a poor performance. On the other hand, when the grid cells are too
small, the algorithm needs to access more cells of the grid to compute the safe zone resulting
in a higher computation time. Based on these experiments, we chose 4 × 4 as our default
grid size in the experiments.

6.3.2 Omega

In Figure 9a, we conducted experiments by varying the default range (i.e., �) and study its
effect on the total cost at the server side and the total cost at the client side. Figure 9a shows

 20

 40

 60

 80

 100

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Omega

server client

(a)

 0

 20

 40

 60

 80

0.01 0.05 0.1 0.15 0.2 5 10 15 20 25 30

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Capacity

server client

(b)

Figure 9 Varying � and m

World Wide Web (2018) 21:687–712 705

Figure 10 The performance of
our approach, PCR and SF

 0

 1000

 2000

 3000

 4000

 5000

5K 10K 15K 20K

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Number of queries

Our PCR SF

that the total cost at server side reduces as � increases. This is because, as � increases,
the buffer region size increases which results in requiring to recompute the buffer regions
fewer times. In contrast, the computation cost at the client side increases as � increases
because the area that the client device needs to monitor becomes larger. In our experiments,
the default value of � is set to 0.1 with an aim to minimize the total cost at the server side.

6.3.3 Capacity

Recall that the capacity of an object(i.e., m) is decided based on the computational power of
each client device (i.e., object) because the system consists of objects with heterogeneous
computational capabilities. In Figure 9b, we study the effect of capacity on the total com-
putation cost on the server and the total computation cost on all client devices for all 100
timestamps.

Figure 9b shows that the total cost on server side is reduced as the capacity increases.
This is because the size of buffer region increases as the capacity increases and, as a result,
the server needs to update the buffer regions fewer times. In contrast, the total cost on client
devices increases as the capacity increases. This is because, to check whether a client is
inside its safe zone or not, it needs to check its location against m circles and this cost
increases as m increases. Therefore, there is a trade off in choosing a suitable value of m.
In this paper, we choose m = 20 to optimize the total cost at the server side. In real world
scenarios, the client devices may be asked for their preferred values of m based on their
computational capabilities.

 0

 50

 100

 150

 200

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Threshold score

Our PCR

(a)

 0

 400

 800

 1200

 1600

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

In
it

ia
l t

im
e

(s
ec

)

Threshold score

Our PCR

(b)

Figure 11 Varying threshold score

706 World Wide Web (2018) 21:687–712

 0

 50

 100

 150

 200

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Alpha

Our PCR

(a)

 0

 400

 800

 1200

 1600

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

In
it

ia
l t

im
e

(s
ec

)

Alpha

Our PCR

(b)

Figure 12 Varying alpha

6.4 Comparison with spatial filtering based approaches

Even though a simple spatial filtering based approach (e.g., range queries) may not work, we
designed another competitor that first filters based on a particular range ρ and then retrieves
the results among the filtered queries. The range ρ is set assuming the maximum possible
textual similarity for each object, i.e., ρ is set such that an object o which has distance
greater than ρ from q cannot be an answer even if it has maximum textual relevance. We
call this approach spatial filtering (SF). This approach first applies spatial filtering based on
distance ρ and then processes the candidates within the range to determine if they are the
results or not.

Figure 10 compares the performance of our approach, PCR and SF methods for different
number of queries. Our algorithms and PCR both outperform SF approach and scale much bet-
ter with the increase in the number of queries. The performance of SF severely deteriorates
as the number of queries increases mainly because more queries are found in the filtering
range ρ and require verification. Since the performance of SF is comparatively much worse
than PCR, we compare our algorithm only with PCR in the forthcoming experiments.

6.5 Performance evaluation

In this section, we present the experimental results of proposed algorithm and compare our
approach with the pre-circular range(PCR) approach by varying different parameters.

 0

 100

 200

 300

 400

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Number of objects

Our PCR

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

50K 100K 150K 200K 50K 100K 150K 200K

In
it

ia
l t

im
e

(s
ec

)

Number of objects

Our PCR

(b)

Figure 13 Varying the number of objects

World Wide Web (2018) 21:687–712 707

 0

 200

 400

 600

 800

 1000

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Number of queries

Our PCR

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

5K 10K 15K 20K 5K 10K 15K 20K

In
it

ia
l t

im
e

(s
ec

)

Number of queries

Our PCR

(b)

Figure 14 Varying the number of queries

6.5.1 Effect of query parameters

First, we evaluate the performance of our algorithm by varying the threshold score from 0.1
to 0.9 . As the Figure 11 shows, our algorithm significantly outperforms PCR approach in
terms of continuous time and initial time due to the efficient filtering techniques. With the
increase of threshold score value, the continuous time shows an increasing trend for both
algorithms as higher threshold scores incur large result sets.

Moreover, we varied the value of alpha from 0.1 to 0.9. Figure 12 shows the results. It
can be clearly seen that our algorithm performs better compared to PCR when the alpha
is increased. Furthermore, the continuous time of our algorithm is approximately 12 times
faster than PCR while the initial time of our algorithm outperforms PCR in two orders of
magnitude for both settings.

6.5.2 Scalability

In this experiment, we evaluate the scalability of our algorithm in terms of continuous time.
First, we scale the number of objects from 50K to 200K. Figure 13 shows the performance of
both algorithms decrease as the number of objects is increased. But our algorithm performs
much better in all cases due to the efficient pruning techniques. PCR performs 10 times
slower than our algorithm when the algorithms run with 200K objects. Moreover, the initial
time of our algorithm is much smaller compared to PCR.

 0

 500

 1000

 1500

 2000

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Speed

Our PCR

(a)

 0

 500

 1000

 1500

 2000

 2500

Slow Medium Fast Slow Medium Fast

In
it

ia
l t

im
e

(s
ec

)

Speed

Our PCR

(b)

Figure 15 Varying the speed

708 World Wide Web (2018) 21:687–712

Figure 16 Varying timestamps

 0

 100

 200

 300

 400

 500

 600

50 75 100 125 150

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Timestamps

Our PCR

Figure 14 studies the performance of our algorithm with respect to the number of queries.
We scaled the number of queries from 5K to 20K. Obviously, the continuous time of the
both algorithms increases as the the number of queries increases. Note that, our algorithms
performs much better compared to PCR due to the effective pruning techniques. Moreover,
our algorithm performs approximately 40 times faster when the number of queries is 20K
and also the initial time of our algorithm outperforms PCR in two orders of magnitude.

6.5.3 Varying speed

In this experiment, we study the effect of the speed of the objects on the performance of
our algorithm. Figure 15 shows an increasing trend in continuous times for both algorithms.
This happens because the probability of an object leaving its buffer region is proportional
to the moving speed of the object. Thus, when the speed increases, the performance starts
to decrease as the number of times the server regenerates the buffer regions increases. The
performance of PCR decreases dramatically since its computation cost of regenerating a
buffer region is really high. Moreover, our algorithm performs 40 times faster than PCR
when the objects move fast.

6.5.4 Varying timestamps

In Figure 16, we vary the monitoring time interval from 50 to 200 timestamps and study
its effect on both approaches. As shown in Figure 16, our approach outperforms PCR and
scales better. The performance of the PCR degrades drastically since the number of times
the buffer regions are generated increases as the size of the time interval is increased.

 0

 100

 200

 300

 400

 500

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Number of object keywords

Our PCR

(a)

 0

 500

 1000

 1500

 2000

 2500

2 5 10 2 5 10

In
it

ia
l t

im
e

(s
ec

)

Number of object keywords

Our PCR

(b)

Figure 17 Varying the number of object keywords

World Wide Web (2018) 21:687–712 709

 0

 200

 400

 600

 800

C
o

n
ti

n
u

o
u

s
ti

m
e

(s
ec

)

Number of query keywords

Our PCR

(a)

 0

 500

 1000

 1500

 2000

5 15 30 5 15 30

In
it

ia
l t

im
e

(s
ec

)

Number of query keywords

Our PCR

(b)

Figure 18 Varying the number of query keywords

6.5.5 Varying number of keywords

Figures 17 and 18 illustrate the effect of number of keywords on the performance of
the algorithms. Both algorithms present an increasing trend as the number of keyword is
increased. Our algorithm performs much better compared to PCR since our algorithm uses
efficient pruning rules and inverted indices to filter the queries. Moreover, our algorithm
performs approximately 30 times faster than PCR when each query has 30 keywords.

6.5.6 Effectiveness of safe zones

In this experiment, we illustrate the effect of safe zones on communication cost. In Figure 19,
we study the effect of capacity (which affects the safe zone size) and the effect of total num-
ber of objects(users) on total communication cost. The baseline approach requires every
object to send its location at every timestamp. In contrast, the safe zone based approaches
(our and PCR) require the objects sending their locations only when they leave their respec-
tive safe zones. Since PCR is designed such that it always assigns the same safe zone as our
approach, it has the same total communication cost as our approach. Figure 19 shows that
safe zones significantly reduce the total communication cost. In Figure 19a, the total com-
munication cost reduces as the capacity increases because the safe zone size increases with
the increase in capacity.

 1.23x106

 1.28x106

 1.33x106

 1.38x106
baseline = 1e+07

C
o

m
m

u
n

ic
at

io
n

 c
o

st

Capacity

safezone

(a) Varying capacity

 0

 5x106

 1x107

 1.5x107

 2x107

5 10 15 20 25 30 50K 100K 150K 200K

C
o

m
m

u
n

ic
at

io
n

 c
o

st

Number of objects

safezone baseline

(b) Varying number of objects

Figure 19 Communication cost

710 World Wide Web (2018) 21:687–712

 1

 10

 100
40.21 39.58

4.10

0.95
0.67 S

af
e

zo
n

e
ar

ea
 (

km
2)

Threshold score

safezone

(a) Average area of safe zones

 0

 100

 200

 300

 400

 500

0.1 0.3 0.5 0.7 0.9 50K 100K 150K 200K

T
im

e
(s

ec
)

Number of objects

our no BR

(b) Effectiveness of buffer regions

Figure 20 Experiments on safe zones and buffer regions

Moreover, Figure 20a shows the average size of safe zones for different thresholds. Note
that we designed our competitor PCR such that it assigns the same sized safe zone as our
approach and then retrieves queries to guarantee that the results are unaffected as long as
the objects remain in their respective safe zones. Therefore, the safe zone size for both
approaches is the same. Figure 20a shows that the size of safe zones reduces as the thresh-
old increases. This is mainly because, as the threshold increases, the object is an answer for
more queries which results in a reduced safe zone size. Nevertheless, even for large thresh-
olds, the safe zone is reasonably large (0.67km2 – roughly 800m × 800m) which is critical
for its effectiveness, e.g., the safe zone based approach is effective when an object stays in
it for longer.

6.5.7 Effectiveness of buffer regions

In order to show the effect of buffer regions on client workload, we evaluate the effect of
buffer regions on the total computation cost at the client devices. Specifically, we compare
our approach that uses the buffer region with a version (denoted as “No BR”) that does
not use buffer regions (i.e., default range � and the capacity m are both set to infinity).
In Figure 20b, we study the effect of total number of users (client devices) on the total
computation cost on all clients for all 100 timestamps. Figure 20b shows that the buffer
region reduces the client side computation cost by up to four times.

7 Conclusion

We have proposed an efficient solution for processing continuous range spatial keyword
queries over moving spatio-textual objects (namely, CRSK-mo queries). To efficiently pro-
cess CRSK-mo queries, we have exploited the spatial and textual upper bounds between
queries and objects to form safe zones (at the client-side) and buffer regions (at the server-
side) to reduce both communication and computational overhead. We have also devised
efficient pruning rules to quickly prune objects and queries through smart in-memory data
structures for faster processing of queries. Our experimental results show that our approach
achieves high performance and good scalability compared to the competitive PCR approach.
As for future work, we will extend our work to support top-k queries. Moreover, we are
also interested in studying this problem in an environment where keywords are frequently
changed.

World Wide Web (2018) 21:687–712 711

Acknowledgments Muhammad Aamir Cheema is supported by ARC DE130101002 and DP130103405.

References

1. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–
180 (2002)

2. Cai, Y., Hua, K.A., Cao, G., Xu, T.: Real-time processing of range-monitoring queries in heterogeneous
mobile databases. IEEE Trans. Mob. Comput. 5(7), 931–942 (2006)

3. Cary, A., Wolfson, O., Rishe, N.: Efficient and scalable method for processing top-k spatial boolean
queries. In: International Conference on Scientific and Statistical Database Management, pp. 87–95.
Springer (2010)

4. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to
continuously monitoring reverse knn. Proc. VLDB Endow. 2(1), 1138–1149 (2009)

5. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to
continuously monitoring reverse knn. PVLDB 2(1), 1138–1149 (2009). http://www.vldb.org/pvldb/2/
vldb09-720.pdf

6. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based
range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011)

7. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitoring of distance-based
range queries. IEEE Trans. Knowl. Data Eng. 23(8), 1182–1199 (2011). doi:10.1109/TKDE.2010.246

8. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest neighbors queries in
euclidean space and in spatial networks. VLDB J. 21(1), 69–95 (2012). doi:10.1007/s00778-011-0235-9

9. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: A safe zone based approach for monitoring moving
skyline queries. In: Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, pp. 275–286. Genoa
(2013). doi:10.1145/2452376.2452409

10. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation.
In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228. VLDB Endowment (2013)

11. Chen, L., Cong, G., Cao, X., Tan, K.L.: Temporal spatial-keyword top-k publish/subscribe. In: 2015
IEEE 31st International Conference on Data Engineering, pp. 255–266. IEEE (2015)

12. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc.
VLDB Endow. 2(1), 337–348 (2009)

13. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE 24th International
Conference on Data Engineering, 2008. ICDE 2008, pp. 656–665. IEEE (2008)

14. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on moving objects
in a mobile system. In: Advances in Database Technology-EDBT 2004, pp. 67–87. Springer (2004)

15. Guo, L., Chen, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Elaps: An efficient location-aware pub/sub
system. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1504–1507. IEEE
(2015)

16. Guo, L., Shao, J., Aung, H.H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road
networks. GeoInformatica 19(1), 29–60 (2015)

17. Guo, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Location-aware pub/sub system: When continuous mov-
ing queries meet dynamic event streams. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 843–857. ACM (2015)

18. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving
objects. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
pp. 479–490. ACM (2005)

19. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.L.: A location-aware publish/subscribe framework for parame-
terized spatio-textual subscriptions. In: 2015 IEEE 31st International Conference on Data Engineering,
pp. 711–722. IEEE (2015)

20. Huang, W., Li, G., Tan, K.L., Feng, J.: Efficient safe-region construction for moving top-k spatial key-
word queries. In: Proceedings of the 21st ACM international conference on Information and knowledge
management, pp. 932–941. ACM (2012)

21. Jung, H., Kim, Y.S., Chung, Y.D.: Qr-tree: An efficient and scalable method for evaluation of continuous
range queries. Inform. Sci. 274, 156–176 (2014)

22. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 802–810. ACM
(2013)

http://www.vldb.org/pvldb/2/vldb09-720.pdf
http://www.vldb.org/pvldb/2/vldb09-720.pdf
https://doi.org/10.1109/TKDE.2010.246
https://doi.org/10.1007/s00778-011-0235-9
https://doi.org/10.1145/2452376.2452409

712 World Wide Web (2018) 21:687–712

23. Li, Z., Lee, K.C., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: An efficient index for geographic
document search. IEEE Trans. Knowl. Data Eng. 23(4), 585–599 (2011)

24. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in
spatio-temporal databases. In: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pp. 623–634. ACM (2004)

25. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An efficient method for
continuous nearest neighbor monitoring. In: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 634–645. ACM (2005)

26. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and veloc-
ity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans
Comput 51(10), 1124–1140 (2002)

27. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword
queries. In: Advances in Spatial and Temporal Databases, pp. 205–222. Springer (2011)

28. Ṡaltenis, S.: Indexing the positions of continuously moving objects. In: Encyclopedia of GIS, pp. 538–
543. Springer (2008)

29. Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive
queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp.
790–801. VLDB Endowment (2003)

30. Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Ap-tree: Efficiently support continuous spatial-
keyword queries over stream. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE),
pp. 1107–1118. IEEE (2015)

31. Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query
processing. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 541–552.
IEEE (2011)

32. Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans.
Knowl. Data Eng. 24(10), 1889–1903 (2012)

33. Wu, K.L., Chen, S.K., Yu, P.S.: On incremental processing of continual range queries for location-aware
services and applications. In: The Second Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, pp. 261–269. IEEE (2005)

34. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: 21st
International Conference on Data Engineering (ICDE’05), pp. 631–642. IEEE (2005)

	Continuous monitoring of range spatial keyword query over moving objects
	Abstract
	Introduction
	Motivation
	Challenges
	Contributions

	Problem statement
	Client-server model

	Related work
	Continuous spatial queries
	Spatial keyword query
	Location aware publish/subscribe queries

	Solution overview
	Safe zone of an object
	Pruning rules

	Algorithm
	The framework
	CRSK-mo processing
	Continuous monitoring
	Client side

	Experimental evaluation
	Pre-Circular Range(PCR) approach
	Experiment settings
	Default parameters
	Grid size
	Omega
	Capacity

	Comparison with spatial filtering based approaches
	Performance evaluation
	Effect of query parameters
	Scalability
	Varying speed
	Varying timestamps
	Varying number of keywords
	Effectiveness of safe zones
	Effectiveness of buffer regions

	Conclusion
	Acknowledgments
	References

