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Abstract Twitter has recently emerged as a popular microblogging service that has 284
million monthly active users around the world. A part of the 500 million tweets posted
on Twitter everyday are personal observations of immediate environment. If provided with
time and location information, these observations can be seen as sensory readings for mon-
itoring and localizing objects and events of interests. Location information on Twitter,
however, is scarce, with less than 1% of tweets have associated GPS coordinates. Current
researches on Twitter location inference mostly focus on city-level or coarser inference, and
cannot provide accurate results for fine-grained locations. We propose an event monitor-
ing system for Twitter that emphasizes local events, called SNAF (Sense and Focus). The
system filters personal observations posted on Twitter and infers location of each report.
Our extensive experiments with real Twitter data show that, the proposed observation fil-
tering approach can have about 22% improvement over existing filtering techniques, and
our location inference approach can increase the location accuracy by up to 36% within
the 3km error range. By aggregating the observation reports with location information, our
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prototype event monitoring system can detect real world events, in many case earlier than
news reports.

Keywords Twitter · Social sensor · Message filtering · Location inference · Event
detection

1 Introduction

Amicro-blogging service such as Twitter allows its users to conveniently create and publish
tweets, which are short messages of maximum 140 characters and are immediately avail-
able for anyone to read online. As Twitter has gained enormous popularity over the past
five years, the number of users and published tweets has increased significantly. Nowadays,
284 million active Twitter users generate 500 million tweets every day1. Moreover, as a
direct effect of the prevalence of smartphone, 80% of Twitter users are using their mobile
phones to create tweets[1]. The use of mobile platform for tweeting implies that users can
conveniently report current events and objects in their physical vicinity.

In this paper, we assume that a user is an ordinary person, as opposed to a community or
a corporation. A user’s tweet can be a description of the user’s mood, a message to a friend,
or a link to an online article the user wants to share. A user may also post observations of
surrounding environments, such as “the air is fresh”, or “I just saw a homeless man outside
of the church”. We call this type of tweets immediate observations, because they describe
the state of the observed object, person, or event, at the time and location when and where
the user posts the message.

The immediate observations of personal Twitter users can be seen as reading values of
some sensory devices [23]. Take, for example, a user posting a tweet in Times Square on
Tuesday morning, saying “the air is fresh”. This can be seen as an air quality sensor installed
in Times Square that just recorded a good reading on Tuesday morning. An immediate
observation posted on Twitter can be converted to sensory values, if the time and location of
the tweet are known. Given the high density of Twitter users in urban areas, the perspective
of Twitter users as sensors instantly provides a dense virtual sensor network, by which some
events and objects of interest can be monitored. Several works have proposed using tweets
as sensory values to monitor environmental disasters [17, 23].

Using personal observations published on Twitter as sensory values, however, has two
challenges. The first is to filter the personal observation reports from other types of
messages. For instance, in one experiment we examined 100 tweets containing the key-
word “hailstorm”, but only 35% were found as actual personal observations of hailstorm.
Tweets that are not immediate observations include hailstorm reported by news agency, and
metaphoric use of the word hailstorm. Previous works has shown filtering Twitter messages
is a challenging task, and existing approaches only achieved unsatisfactory accuracy [23,
28]. Current work on microblog and short text analysis mostly relies on supervised machine
learning methods [4, 24], which require the manual preparation of training samples. This
has several drawbacks, such as the significant manual effort for annotating examples, and
a lack of quality guarantees of the classification solutions, when the classifier is applied to
a wider pool of tweets beyond its training data. In this paper, we thus aim to develop an
unsupervised filtering method.

1https://about.twitter.com/company

https://about.twitter.com/company


World Wide Web (2018) 21:311–343 313

The other challenge is to provide the missing location information. As opposed to time
information, which is readily available for all tweets, location information is scarce. Current
works for obtaining the geo-location information of the tweets rely heavily on the tweets’
GPS data [12, 23]. In one of our experiments, we sampled one thousand random tweets,
but found that only 0.9% had GPS data. This implies that if only considering GPS-enabled
tweets, most of the observations posted on Twitter will not be noticed. Suppose there is an
air pollution around a certain corner of the city, even with ten Twitter users reporting it, the
probability of overlooking the pollution can be as high as 0.912. To increase the availabil-
ity of location information, tweet messages and other publicly accessible information on
Twitter need to be treated as location sources [16, 17].

Extraction of location information from tweets has been studied by several works [6–8,
15–17, 26]. Many of these works focus on the city-level location [6, 7, 16]. However, finer-
grained location information is often vital for local events, such as shooting incidents and
vehicle crashes. Previous studies show that, exact location extraction from tweet texts often
leads to large errors [8, 26]. The issues include the use of informal names, mentioning of a
placename other than the place where the user is located, and the lack of a comprehensive
gazetteer. In tweet messages, “can” could mean Canada, “philly” could mean Philadelphia,
and “central park” could mean the Central Park in New York or Sydney. It is difficult to find
out all associations between locations and their informal names, whether using a learning
model [8] or a gazetteer [26]. If a comprehensive gazetteer is generated to cover all informal
names, on the other hand, many words that do not mean placenames will be mistakenly
captured as placenames.

In this paper, we propose SNAF (Sense and Focus), an event monitoring system that
captures local events reported on Twitter and accurately infers event locations. SNAF has
three components, the personal observation filter, the location estimator, and the event
detector. An overview of the system is shown in Figure 1.

For filtering the personal observation reports, SNAF uses lexical analysis and user pro-
filing based on statistics generated from the Twitter data. Filtered reports are sent to the
location estimator for location inference. The location estimator is based on a large gazetteer
and distance-based data cleaning algorithms. It also takes the poster’s past tweets as sources
to increase the availability of location information. Given the accurately classified personal
observation reports and inferred location information, our event detector is able to success-
fully capture local events, even before news reports. The main contributions of our work are
summarized as follows:

– We propose a method that converts personal observations of events and objects of
interest reported on Twitter into sensory values. This is achieved by first filtering per-
sonal observation reports from other type of tweets, then providing the missing location
information.

– We propose three outlier removal methods that significantly improve the location infer-
ence accuracy. Our experimental results with real Twitter data show that, comparing
with the existing approaches, our method improves the accuracy of location inference
by over 30% in smaller error ranges, and over 20% in larger error ranges.

– We show the potential of further use of converted sensory values from observation
tweets, by designing and implementing an event monitoring system, which aggregates
personal observations of an event or an object of interest based on their locations. We

2As (1 − 0.009)10 ≈ 0.91
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Figure 1 Sense and focus overview

verify the system by comparing the detected events to relevant news articles, and find
that the event detected by our system are in many cases several hours faster than news
articles, while the locations inferred are accurate comparing to the locations reported in
the news.

This paper includes findings and materials from two of our conference papers [36] and
[37], with expanded explanations and literature reviews. In addition, we introduce a new
location inference technique, which is shown to produce significant improvement over
existing results. We also present a prototype web application that incorporates proposed
techniques for realtime event monitoring and display.

2 Related work

Our work follows a current research trend of converting microblog messages to sensory val-
ues for the purpose of monitoring events and objects of interest [16, 23, 38]. Sakaki et al.
[23] proposed and investigated the idea of using tweets as sensory values for environmen-
tal event monitoring. They collected earthquake-related tweets and filtered them to generate
reports about ongoing earthquakes. Using this information, they built a system for predict-
ing the movements of earthquakes in Japan. Their results show that the use of tweets as
sensory values is feasible, and that their system can detect earthquakes within a minute after
they occur, five minutes faster than announcements from meteorological authorities. In a
later work, they extended the system to predict typhoon movements, which achieves a simi-
lar accuracy and response time [24]. Machine learning approach is also used in other works
for filtering observations of particular events [14, 22, 28, 29, 38]. Sriram et al. [28] proposed
a machine learning-based filter for classifying tweet categories such as news, opinions,
events, and private messages, using features including author name, the use of opinioned
words, currency signs, and mention signs. Kwon et al. [14] identified effective lexical and
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temporal features for distinguishing rumors in event-related tweets. Olteanu et al. [22] pro-
posed keyword selection methods for filtering tweets related to particular natural disasters.
While these works identified tweets that can be used for monitoring particular events or
objects of interest, they are not sufficient for converting tweets into sensory values, as the
majority of tweets are not explicitly associated with location data.

Current researches in location inference on Twitter focus on different granularities. A cat-
egory of research aims at inferring city-level locations [6, 7, 16]. Li et al. [16] inferred tweet
location by first inferring the user’s home location, relying on the home location entries in
Twitter’s user profiles, which are usually entered as cities. Graham et al. [6] also exploited
home location entries in user profiles for inferring the location of the tweets and users.

Another category of research aims at inferring finer-grained locations [8, 15, 17, 26].
Li et al. [15] identified placenames in tweet messages based on Foursquare data, but does
not link the location to coordinates. Another Foursquare data application is shown by Ji
et al. [10], in which structured Foursquare location profiles are exploited. Ikawa et al. [8]
inferred tweet locations by matching the tweet with tweets with known locations using
cosine similarity, and also based on Foursquare data. Foursquare is a location-based service
that provides accurate place-coordinate association for commercial places such as hotels and
restaurants, but in a recent business operation, the service has been terminated3. Schulz et al.
[26] leveraged DBpedia for identifying places in tweet messages, but resulted in large errors,
with the median error distance of 1,100km. DBpedia is a large user-contributed database
for name-entities used in the Web [1]. Using a generation tool called DBpedia Spotlight
[5], we can generate a gazetteer containing more than 800,000 places with respective GPS
coordinates, which covers a large number of street-level places. However, as we will discuss
below, such large gazetteer will make location information very noisy.

The earthquake and typhoon detection system proposed in [24] takes all tweets contain-
ing the keyword as the tweets for a single event, assuming that earthquakes and typhoons do
not occur frequently. Local events such as vehicle crashes occur in much higher frequencies
with smaller impact areas. Local event detection thus requires clustering, preferably with
location information [16, 19, 33]. Unankard et al. [33] proposed an event detection method
based on clustering of words. They relate events to locations, but only at a country-level.
Li et al. [16] proposed a classification-based event detection method for crime and disas-
ter events, with a location extraction component focuses on city-level locations. The lack of
accurate and fine-grained location information is the main issue that prevents existing event
monitoring systems from obtaining local details.

Noisy sensor readings have been extensively studied in sensor networks. Basic tech-
niques include temporal and spatial aggregation using mean or median [9, 34, 35].
Particularly, the median is effective for avoiding extreme outlier values in the dataset [34].
More advanced techniques identify and remove outliers in the dataset, based on distance
measures or clustering. Since it is straightforward to interpret the distance between two
location points, the distance-based outlier detection is particularly suitable for location data.
Subramaniam et al. [30] and Branch et al. [2] both used k-Nearest Neighborhood (KNN)
for identifying outliers. An issue of using KNN is how to choose the proper distance thresh-
old that excludes the outliers. Sheng et al. [27] proposed two KNN-based outlier detection
algorithms, using a fixed distance threshold and a relative distance threshold, respectively.

3http://time.com/3024078/foursquare-swarm/

http://time.com/3024078/foursquare-swarm/
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3 Filtering personal observation reports

Our method filters observations of objects and events from personal accounts, by imple-
menting the following steps. First, we identify observations from collected tweets for a
specific keyword. Second, using the collected tweets, we distinguish personal accounts from
other types of accounts. A personal account is a Twitter account employed for personal
use, and is assumed to be free from business or propaganda interests. Our insight is that
tweets from personal accounts often contain realtime and localized observations of objects
and events. Finally, from the observation tweets identified in the first step, we retain only
those made from personal accounts. These personal observations of objects and events have
proved useful in previous works for scenarios such as disaster location and rumor detection
[14, 24].

An overview of our method is shown in Figure 2. To identify observation tweets, we
run lexical analysis on tweet texts based on the par-of-speech (POS) tagging, objectivity
analysis, and originality test. To identify personal accounts, we first analyze four attributes
for each user, namely, objectivity, interactivity, originality, and topic focus. Then we use
a clustering algorithm for classifying personal accounts based on the attribute values. We
describe our method below.

3.1 Observation filtering

After using the Twitter Filter API4 to obtain tweets that contain the object or event key-
word such as “rainbow” or “car accident”, our lexical analysis method focuses on extracting
observation tweets. Not all tweets containing the keywords are observations of objects and
events, since in some cases the keywords can have another semantic, context-based mean-
ing, and the objects and events can be mentioned in general comments instead of specific
observations, e.g., “I dislike car accidents”. We address this by utilizing three techniques,
namely, par-of-speech (POS) tagging, objectivity analysis, and originality test. POS tagging
allows filtering of messages in which the object or event keyword is not used as a subject of
observation. Objectivity analysis allows filtering of uncertain messages, such as questions
and general comments. Originality test removes messages that are not originally created by
the user, such as retweets or quotations.

3.1.1 Filtering based on part-of-speech tagging

Our insight is that the objects and events mentioned in an observation are most likely to be
nouns and gerunds, such as in “I just saw a rainbow”, or “A shooting outside my home”.
On the other hand, keywords not used as nouns and gerunds often indicate that the tweet is
not a specific observation. Some examples of non-observation tweets are shown in Table 1,
with the role of the keyword determined by POS tagging.

POS tagging is a technique that matches words in a text with their part-of-speech cate-
gories, such as modal, noun, verb, and adverb [25]. We use a filtering rule on top of POS
tagging to effectively remove a portion of tweets that are clearly not observations. After
performing POS tagging for a tweet, we accept it if the POS tag for the keyword is NN
(Noun, singular or mass), NNP (proper noun, singular), and VBG (verb, gerund or present
particle). The tweet is rejected if the keyword has other POS tags.

4https://dev.twitter.com/streaming/public

https://dev.twitter.com/streaming/public
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Figure 2 Personal observation filtering method overview

3.1.2 Filtering based on objectivity analysis

Our insight is that a specific observation of an object or event usually is written in a more
objective tone than a general tweet. Generally, the objectivity of a message is affected
by sentimental words and uncertain words, such as “great”, “bad”, “maybe”, “anyone”.
Sentimentality and uncertainty as factors for determining message objectivity has already
been proposed in existing works [3, 21]. We calculate tweet objectivity based on both
sentimentality and uncertainty, using the following formula:

objectivity(t) = 1 − [sentip(t) + 0.5 × sentin(t)]
×(1 − √

uncertainty(t))

where sentip is the positive sentiment and sentin is the negative sentiment. In our previous
works, we have found that negative sentiments have a large presence in observation mes-
sages [38]. We follow this insight here and we weight down the effect of negative sentiments

Table 1 Non-observation tweets filtered by POS tagging, for monitoring flight delay, shooting incidents,
and rainbows

Tweet Text POS

Keep praying for the typhoon to magically delay my flight a day VB

Can we pretend that airplanes, in the night sky, are like shooting stars? JJ

This guy got on a rainbow colored LV belt JJ

VB=base form verb, JJ=adjective
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on reducing the objectivity in the formula. Furthermore, since uncertainty plays an impor-
tant role in determining the objectivity of a message, as discovered in [21], we increase the
effect of uncertainty by scaling it to a larger value.

For sentiment analysis, we employ previously proven effective methods, which employ
a positive/negative words dictionary and the slang sentiment dictionary [32]. The positive
and negative sentiments of a tweet text t are measured as:

sentip(t) = countp(t)

countw(t)

sentin(t) = countn(t)

countw(t)

where countp(t) and countn(t) are the word count for positive and negative words in t , and
countw(t) is the word count of t .

For uncertainty analysis, we use a dictionary of uncertain words based on the LIWC
category of hesitation words [31]. To measure the uncertainty of tweet t , we consider the
number of uncertain words in the text, and whether it is a question.

uncertainty(t) =
{
0.5, if t ends with a question mark
countu(t)
countw(t)

, otherwise

where countu(t) is the word count for uncertain words in t .

3.1.3 Originality test

Our analysis of various datasets show that sometimes personal users may repeat some mes-
sages created by other users, which do not count as their own observations. The repeated
messages not only produce redundancy, but also generate noises for analysis. Thus it is cru-
cial to determine message originality. We proposed a set of rules to determine non-original
messages based on message content, as shown in Table 2. A message satisfies any of the
rules in the table is considered non-original, and will be filtered out.

Some repeated messages are easy to identify, such as retweets, which have “RT” at
the beginning of the messages. Other forms of repeated messages can be more difficult to
spot, such as indirect quotes, which often but not necessarily contain the word “says” or
“claims”. Given the various ways a message may be repeated, the rules listed in Table 2 do
not cover all non-original messages. Nevertheless, we found these rules to filter out most of
the repeated messages.

Table 2 Originality Test Rules

Rule Explanation

retweet contains the word RT

quotation contains quotation marks

speech mention or capitalized word before colon

news title all words capitalized before link

repeat contains “says”, “claims”, “via”, or “according to”

news mention mention contains “news”, “radio”, or “breaking”

news agent mention contains news agent name such as “ABC” or “CNN”
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3.1.4 Lexical analysis algorithm

Algorithm 1 describes our lexical analysis method. The input is a keyword w, and a set T

of tweet texts containing the keyword. The output is a set of predictions of whether each
tweet text t ∈ T is an observation, O. In line 7, we use a parameter θ to control the level of
objectivity a tweet requires to meet to be considered an observation. The default value for θ

is the first quartile of overall objectivity in the tweet set.

Algorithm 1 Lexical Analysis on Single Tweets

INPUT: keyword , tweet set , objectivity threshold
OUTPUT: obervation labels
1: set all as
2: for each do
3: run POS tagging for
4: if POS tag for then
5:
6: end if
7: if objectivity then
8:
9: end if
10: if fails all rules in Table 2
11:
12: end if
13:
14: end for

3.2 User profiling for personal account classification

Previous works have shown that news generated from personal observations on Twitter
can be much faster than traditional media, and the implicitly-associated location data can
be used for localizing the object or the event [24, 36]. However, there are many Twit-
ter accounts that are not for personal use, and do not have the same time and location
association for their observation messages, and while they add noises to the data col-
lected, it is usually difficult to distinguish them from personal accounts. The main issue
is that all accounts on Twitter uses the same format to store data, and usually there is
no effective way to judge the type of account other than looking at the content of the
account posts directly. These accounts include news, business, activist and advertisement
accounts.

Our study of personal and specific-purpose accounts leads to the following observations:

– News accounts tweet about various topics in a strictly objective tone. Their tweets usu-
ally contain links to Web articles. Depending on the specialty, a media account can
cover a wide range of topics.

– Business accounts contain conversations, observations, and product promotions, but the
range of topic is limited to the specific business.

– Activist and advertisement accounts rarely use objective tone, and their range of topics
is also limited.
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A personal account, however, does not have such clear-cut characteristics as specific-
purpose accounts, and usually contains a mix of information sharing, conversation with
other users, and original content that covers various topics. We propose that:

Conjecture 1 A personal account has moderate levels in objectivity, interactivity, original-
ity, and topic focus.

We use various statistics generated from Twitter data to calculate the levels of objectivity,
interactivity, originality, and topic focus for Twitter users. We assume these user qualities
are consistent over time and do not easily change. There are rare cases that the profile of
a user changes drastically, for example, caused by a job change, but currently we do not
consider such cases. To profile a user, first we collect a set of past tweets made by the user,
H . Then we select the original tweets in H based on the rules described in Table 2, as
OH = {oh1, oh2, ..., ohl}, where |OH | = l.

The objectivity of a user is calculated based on the objectivity of each tweet in OH :

uobjectivity =

l∑
i=1

objectivity(ohi)

l

The interactivity of a user is calculated based on the number of tweets containing mention
mark “@” in H :

uinteractivity = count@(H)

|H |

The originality of a user is calculated based on the fraction of original tweets in H .

uoriginality = l

|H |

To calculate a user’s topic focus, we count the frequency of each topic word for all topic
words appearing in OH . For simplicity, we consider a topic word as a word that starts with
a capital letter. The first word in a sentence is ignored. Once we have a descendingly-sorted
list of topic word occurrences {nt1, nt2, ..., ntk}, the topic focus of a user is calculated based
on the fraction of the first quarter of the most frequent topic words:

uf ocus =

n/4∑
i=1

nti

n∑
j=1

ntj

A user is thus profiled by the quadruple:

u = {uobjectivity , uinteractivity , uoriginality , uf ocus}
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3.3 Personal account classification with profiles

We propose an algorithm for automatically identifying personal accounts based on the user
profile. First we define the difference between two user profiles u1 and u2 as the Euclidian
distance between two profiles:

d(u1, u2) =
√∑

(u1 − u2)2

where

∑
(u1 − u2)

2 = (uobjectivity1 − uobjectivity2)
2

+(uinteractivity1 − uinteractivity2)
2

+(uoriginality1 − uoriginality2)
2

+(uf ocus1 − uf ocus2)
2

Following Conjecture 1, we see that the attributes of a personal account are usually closer
to a set of mean values while a specific-purpose account usually holds more extreme values.
Therefore we propose that:

Conjecture 2 Given a set of user profilesU , which contains personal account profiles P and
specific-purpose account profiles S, there exists a mean profile ū, such that

∑
p∈P

d(p, ū) <

∑
s∈S

d(s, ū).

While it is difficult to prove Conjecture 2, we find it generally true in our analysis, as we
will show with our experiments. Given a set of user profiles U , and a mean profile ū, we can
separate from U a subset C that is more likely to contain personal accounts, by selecting
profiles that have shorter distance to ū.

We devise an iterative algorithm for finding the mean profile ū. Intuitively, we can use
the mean attribute values of all profiles in U . However, the extreme attribute values of the
specific-purpose account profiles can bias the mean significantly, making it inaccurate for
deciding personal accounts. In Algorithm 2, we use an iterative approach and a cluster size
threshold δ for selecting a cluster of |U |×δ profiles that are close to an unbiased ū. Starting
from an initial mean profile ū0, the algorithm alters between cluster updating (line 2, 6)
and mean updating (line 4 and 5). In the cluster updating step, a number of profiles close
to the mean are selected. In the mean updating step, a new mean is calculated based on the
selected profiles. If there are extreme values that cause a bias in the cluster, the mean will
move away from the bias, and replace the extreme value profiles with more average profiles
in the cluster. The output of the algorithm, F , is a set of personal account predictions.

While Algorithm 2 generally finds a good mean profile that separates personal accounts
and specific-purpose accounts. However, depending on the choice of the initial mean ū0,
the algorithm sometimes produces undesirable results. To address this issue, we derive a
particle swarm optimization (PSO) algorithm for finding the optimal ū0.
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PSO is an optimization technique that takes a population of solutions, and iteratively
improves the quality of the solutions by moving them toward the best solution in each itera-
tion [11]. A solution in our PSO algorithm is an initial mean ū0 to be given to Algorithm 2.
A PSO algorithm requires the definition of the quality measure and the solution movement.
To define the quality of a solution, we rely on our initial observation that personal accounts
exhibit higher variance than any types of specific-purpose accounts. Therefore we propose
that:

Algorithm 2 Predicting Personal Accounts

INPUT: user profiles , mean profile 0, selected cluster size
OUTPUT:

1: set all as
2: profiles closest to 0
3: while do
4:
5: mean attribute values of profiles in
6: profiles closest to
7: end while
8: for each do
9: if then
10:
11: end if
12: end for

Conjecture 3 Given two user profile clusters C1 and C2, if the profiles in C1 are more
diverse than C2, then C1 is more likely to contain personal accounts.

We use pairwise profile differences to calculate the diversity of profiles in a cluster,
C = {c1, c2, ..., ck},

div(C) =
2 ×

k−1∑
i=1

k∑
j=i+1

d(ci, cj )

k · (k − 1)

For the solution movement in PSO, we set a moving speed v so in each iteration, a
solution p moves towards the best solution pb as:

p ← p + (pb − p) · v (1)

Our PSO algorithm is shown as Algorithm 3. It starts with a number of random solutions
(line 1) and for each solution, a profile cluster is generated using Algorithm 2 (line 2 to 4).
Then iteratively, the PSO algorithm moves the best solution towards an optimal solution by
comparing the cluster diversity with each solution (line 5 to 13).
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Algorithm 3 PSO for Finding Optimal 0

INPUT: user profiles , selected cluster size , number of particles , speed
OUTPUT:
1: randomly choose solutions in the solution space
2: for each do
3: generate a cluster using Algorithm 2
4: end for
5: with highest
6: while do
7:

8: for each do
9:

10: generate a cluster using Algorithm 2
11: end for
12: with highest
13: end while

The optimal initial mean produced by Algorithm 3 can then be used in Algorithm 2 for
selecting the cluster of personal account profiles. Although Algorithm 3 requires two more
parameters, during our experiments we find the effect of changing n and v negligible for any
n > 1, 000 and v < 0.2, as the solution already reaches optimal values. Therefore we can
confidently set n and v to fixed values. The only parameter that still affects the classification
result is the cluster size parameter δ, which controls the portion of profiles in the data to be
selected as personal account profiles.

3.4 Overall algorithm

Algorithm 4 identifies observations from personal accounts. Given the input of a keyword
w and a set of tweets M , and the control parameter θ and δ, the output is a set of predictions,
R, of whether each respective tweet is an observation of the object or event of interest from
personal accounts.

Algorithm 4 Filter Observations from Personal Accounts

INPUT: keyword , messages , objectivity threshold , selected cluster size
OUTPUT:
1: set all as
2: tweet text from
3: user profiles from
4: run Algorithm 1 with
5: run Algorithm 3 with
6: run Algorithm 2 with
7: for each that has text and user profile do
8: if then
9:

10: end if
11: end for
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Figure 3 Report location inference method overview

4 Report location inference

A filtered report that does not have the GPS data will be sent to the location estimator. To
infer the location of a report, we consider the tweet text as well as past tweets of the user
who made the report as sources of locations. We follow a gazetteer-based approach. First
we generate a gazetteer covering placenames in a dataset. Then we run name extraction for
the report tweet and the user’s past tweets. In case past locations are considered, we run data
cleaning algorithms to remove noises before inferring a likely location. An overview of the
location inference is shown in Figure 3.

4.1 Location inference for a single tweet

To extract location, we run a gazetteer-based name extraction by comparing the words in the
tweet text with gazetteer entries. As expected, the accuracy of this approach depends on the
quality of the gazetteer. When testing a gazetteer, we found two potential issues, coverage

and noise. The coverage problem occurs when a placename is present in the tweet but not
in the gazetteer. The noise problem occurs when a word in the tweet matches an entry in the
gazetteer but does not mean a placename in the context of the tweet. We take both issues
into account when building our gazetteer.

We generated our base gazetteer using the latest version of DBpedia geo-coordinate
dataset5 and the DBpedia Spotlight name generation tool [5]. DBpedia is a user-contributed
name-entity database for Internet-of-Things data lookup, and in a recent version[5] includes
4.58 million names or things. The geo-coordinate dataset contains a subset of these names
that are associated with a geo-coordinate. DBpedia Spotlight can track the usage of these
names in Web documents such as Wikipedia pages, and produce a gazetteer containing
formal and informal names. Our base gazetteer contains more than 800,000 entries and cov-
ers a large number of street-level places, including their formal and informal names, such
as “penn station”, “lion’s head”, and “east end”. However, it also contains a considerable
amount of names which are usually not referring to a place when people mention them on
Twitter. Table 3 shows examples of four types of such names.

5http://wiki.dbpedia.org/Datasets

http://wiki.dbpedia.org/Datasets
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Table 3 Examples of non-placenames in the geo-coordinate dataset

Common Words in, can, bath, young, act, space, orange, king, cook, north, bucks, tower,
paradise, marathon, racing, shape, corner, path

Person’s Names george, williams, georgia, lewis, nelson, anderson, stanley, monroe,
katherine, clinton, reagan, douglas, harrison

Brand and Organization Names nike, microsoft, nintendo, tesco, fbi, dell, nsa, red cross, mercedes,
cadillac, java, absolute radio, chipotle, texas tech

Symbolic Place Names troy, sparta, wall street, pentagon, third reich, green line, berlin wall,
tiananmen square, pearl harbor, notre dame

We use a heuristic consists of two rules to address the two issues mentioned above and
refine the gazetteer. First we collect a set of GPS-enable tweets and extract locations from
the messages using the base gazetteer. The extracted locations are compared with the GPS
data. If the difference between the extracted location and the GPS data is larger than an
acceptable threshold λ, we count a hit for the location. If the difference is larger than a
rejection threshold θ where θ > λ, we count a miss for the location. Usually a common
location word will be extracted more than once. After the process, each extracted location
will have a hit number and a miss number. We then pick the locations with at least one
hit to put in the refined gazetteer, which ensures the coverage of the refined gazetteer. On
the other hand, if the number of misses is more than half of the total extraction number,
we remove it from the refined gazetteer. The purpose of this heuristic is to keep all the
gazetteer entries relevant to the GPS data, with respect to the training dataset, which reduces
the noise of the gazetteer. In our experiments we chose θ = 10km and λ = 300km. These
numbers are relatively strict because we focus on small granularity, but different numbers
can be chosen with different requirements in error tolerance.

After we had a refined gazetteer, we evaluated the precision of our gazetteer by compar-
ing the coordinates of the location extracted from a single tweet with the GPS associated
with the tweet. The results are shown in Table 4, where the precision for each distance range
is the percentage of locations in all extracted locations that is within that distance range
when compared to the GPS data. If we encounter a case that a name may refer to multiple
locations, for simplicity, we use the first location found.

The precision of the name extraction on single tweets based on the gazetteer is relatively
low. While we can use the general knowledge to distinguish, for example, a person’s name
from a placename, this judgement is not always accurate. Furthermore, a place mentioned
by the user does not always reflect the location of the user or the tweet. For example, when
a user tweets that he wants to go to Gold Coast for a holiday, this place is probably not
related to the current location of the user or the tweet, even if the placename is successfully
extracted from the tweet. Table 5 shows examples of placenames in tweets that do not indi-
cate the current location of the user, where the error is the distance between the mentioned
place and the tweet’s GPS coordinates.

Therefore, even if we provide a gazetteer that accurately extracts placenames from
tweets, we cannot avoid a certain level of noises, and these noises prevent location inference

Table 4 Precision of location extraction on single tweets using refined gazetteer

Error ≤3km ≤5km ≤10km ≤30km ≤100km

Precision 0.225 0.283 0.372 0.518 0.587
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Table 5 Examples of placename in tweets not indicating user location

tweet place error(km)

Someone come with me to the South Shore Plaza South Shore Plaza 8458

What are the chances of @bassnectar playing Outside
Lands this weekend? #ibelieveinmiracles #bayjams

Outside Lands 12800

He was not armed when taken into custody. Just get-
ting this info in from our CBS affiliate in Rockford.

Rockford 9926

going to see the new school The New School 8666

from reaching high accuracy. More location information and further processing are required
for inferring more accurate locations. We will obtain more location information by looking
at users’ past tweets.

4.2 Location resolution given past locations

When considering the past tweets from a user, we can generally extract a handful of past
locations. The past tweets of Twitter users are publicly accessible through the timeline API
provided by Twitter6, with a restricted availability of a maximum of 3,000 most recent
tweets. About 5% tweets have a placename that can be identified using DBpedia-based
gazetteer [26]. We conducted an experiment to analyze 1,000 random tweets and found that,
while only 0.9% of tweets have GPS tags, 87% of the 982 users who made these tweets
have at least one extractable placename in their past tweets, and 68% of them have more
than ten. By using placenames extracted from past tweets to infer the current location, we
can effectively associate location information with a significant portion of tweets.

A general intuition is that the locations of a person are spatially correlated, and the loca-
tions appear in the past tweets can be used to infer the location of the current tweet. To verify
this intuition, we investigated the temporal-spatial pattern of Twitter users based on GPS
data. We extracted the past locations of 743 random users with at least 100 GPS-enabled
tweets, and divided the location into months, based on number of days past until the last
tweet. We then calculated the mean distance of locations in each month to the location of
last tweet for each user. The results as the average of all users are shown in Figure 4.

The results showed that, more than 63% of the tweets in the past year are within 100km
from the last tweet, regardless of how old they are. Also, even in the worst month, the eighth
month, more than 50% of the tweets are within 30km from the last tweet, and 37% are
within 10km. Therefore we conclude that past locations can be a good indicator for inferring
current locations.

Various techniques have been proposed to infer the current location of an object based
on past locations, such as Kalman filters and Particle filters. Since it is difficult to define
a dynamic model for the movement of Twitter users, the Bayesian Filter-type inference
techniques are ineffective. In sensor networks, a common way to aggregate spatial data is
using the average. However, when the data are noisy and erronous, the average will also
deviate significantly from the correct location. As reported by Schulz et al. [26], using the

6https://dev.twitter.com/rest/public/timelines

https://dev.twitter.com/rest/public/timelines
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Figure 4 Mean location
differences and percentages for
tweets in different past months

mean of locations found in tweet messages, the inferred location has an average error of
1,100km. Therefore it is quite crucial to clean the noisy and erronous data before runningg
average-based inference.

4.2.1 Distance-based outlier removal

A common way to clean noisy data is by removing outliers. Since it is straightforward
to interpret the distance between location points, we choose two representative distance-
based outlier detection techniques from the sensor network literature, called DK-Outlier and
NK-Outlier [27].

Both outlier detection techniques are based on the k-Nearest Neighbor (KNN). Given a
set of locationsH , and a location l ∈ H , let V (l) be the distances from l to all other locations
inH , sorted in ascending order. Then Vk(l) is the distance from l to its k-th nearest neighbor.
Introduced in [13], given an acceptable distance threshold d, DK-Outlier is defined as:

Definition 1 A location l is a DK-Outlier if Vk(l) ≥ d.

NK-Outlier is a new type of outlier proposed by [27]. NK-Outlier detection sets a relative
distance threshold based on comparison between locations in the dataset. Given n, the num-
ber of other locations in the data a location needs to be comparable in order to be considered
acceptable:

Definition 2 A location l is a NK-Outlier if there are no more than n − 1 other locations p,
such that Vk(l) < Vk(p).

The choice of d, n and k depends on the desired data accuracy and expected errors in the
dataset. For example, we consider an acceptable past location is within 100km of the current
location, and thus the maximum distance between two acceptable locations is 200km, so we
set d as 200. When testing the accuracy of location extraction on single tweets, we found
58.7% extracted locations are within 100km error range, and 24% locations extracted had an
error larger than 1,000km, so we set k as 0.587× |H |, and n as 0.76× |H |. The algorithms
for removing DK-Outlier and NK-Outlier are shown below as Algorithm 5 and 6.
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Algorithm 5 Removing DK-Outlier

INPUT: , extracted past locations of the user
OUTPUT: , past locations after outliers removed

1:

2: for each do
3: distances from to all other locations in
4: sorted in ascending order
5: if then
6: add to
7: end if
8: end for
9: remove all from
10: return

For removing DK-Outlier, we generate a distance list of one location to all other loca-
tions, V , for each location in the data (line 3). For each location, we sort the distance list in
ascending order, and compare the k-th element with the predefined threshold d to decide if
the location should be removed as an outlier (line 4 - 6).

Algorithm 6 Removing NK-Outlier

INPUT: , extracted past locations of the user
OUTPUT: , past locations after outliers removed

1:

2: for 1 to do
3: distances from to all other locations in
4: sorted in ascending order
5:

6: end for
7: for 1 to do
8: 0
9: for 1 to do
10: if then
11: count++
12: end if
13: end for
14: if then
15: add to
16: end if
17: end for
18: remove all from
19: return

For removing NK-Outlier, we also generate a distance list of each location to all other
locations (line 3), and then take the k-th element in the ascendingly-sorted list as the rep-
resentative value (line 4, 5). Then we compare the representative value of one location
to other locations, count how many other representative values are greater than the one
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associated with this location (line 9 - 13), before deciding if the location should be removed
as an outlier (line 14 - 15).

4.2.2 Probabilistic outlier removal

We also propose a probabilistic outlier removal algorithm, called Simple Expectation Max-
imization (SEM). This algorithm is inspired by the Expectation Maximization framework
[20], and incorporates a latent variable indicating whether each location mentioned reflects
the correct location of the user. Given a number of past locations H = {h1, ..., h|H |}, the
algorithm aims to find a latent variable Z = {z1, ..., z|H |}, where zi = 1 if hi is a correct
location, and 0 otherwise. The algorithm alternates between two phases. In the first phase,
it calculates a most-likely correct location given Z. In the second phase, it updates Z with
the new parameter. The algorithm terminates when Z is no longer changing. The details of
the algorithm is shown in Algorithm 7.

Algorithm 7 Simple Expectation Maximization

INPUT: , extracted past locations of the user
OUTPUT: , past locations after outliers removed

1: 1 for each
2:

3: while do
4: for each do

5:

6: then
7: 0
8: else
9: 1
10: end if
11: end for
12:

13: end while
14: remove all 0
15: return

This algorithm is similar to an Expectation Maximization algorithm with the Expectation
step and the Maximization step, but does not have rigidly defined maximum likelihood. The
latent variable Z is uniformly assigned an initial number (line 1). The model parameter θ

is the mean location and is calculated using all locations considered as correct (line 2, 12).
With a mean location, we find the likelihood of a mentioned location, assuming the correct
locations are distributed normally around the mean location (line 5). If the likelihood of a
location hi is too low, we consider it as incorrect and assign the respective zi to 0 (line 6 -
10). The threshold δ can be chosen considering the relative likelihood values, and usually
set to such a value that 30% zi ∈ Z will get 1. If a new mean location θ ′ calculated using
the updated Z is the same as the previous θ then the algorithm terminates, returning outlier
removal results based on Z. Since this algorithm does not strictly follow the EM framework,
we have no proof that it will always terminate, but in experiments we find that the algorithm
terminates in less than 10 iterations most of the time.
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4.2.3 Burst compression

When examining the data, we notice that users may have a burst of interest in a certain
location, and post messages about this location intensively within a short period of time.
For example, after a football match, an user may engage in an intense conversation with a
friend about the match, which involves mentioning of the name of the football team that
will be detected as a placename. This phenomenon often distorts the location inference sig-
nificantly. Therefore we propose a compression algorithm, called burst compression, which
basically removes consecutive occurrences of a location within three days from the first
occurrence, as shown in Algorithm 8. This algorithm can be added to the above outlier
removal algorithms as a pre-processing step.

Algorithm 8 Burst Compression

INPUT: , extracted past locations of the user
OUTPUT: , past locations after outliers removed

1: days lapsed for each
2:

3:

4:

5: for 2 to do
6: if and 3 then
7: add to
8: else
9:

10:

11: end if
12: end for
13: remove all from
14: return

To remove repetitive locations, first we associate each past location with the number of
days between the message containing the location and the current message (line 1). Then we
move along the timeline, making each location as a cursor (line 5). If the following location
is the same as the current location and the time lapsed is within three days, we mark the
location as an outlier (line 6), otherwise we move the cursor to the following location (line
9, 10).

The final inference of the location is thus the median location of all remaining locations
extracted from the user’s past tweets, after outliers are removed. The median location is
chosen as the location that has the smallest total distance to all other locations. This median
location can also be considered as the centroid in the clustering problems.

5 Realtime event monitoring

Events such as car crashes and shooting incidents attract attention easily, especially if they
happen in urban areas. In areas where Twitter is popular, such events usually trigger multiple
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immediate observation reports posted to Twitter. By aggregating these reports, we can
potentially detect the event and raise early alarms.

The final module of SNAF focuses on aggregation-based event detection, which uses
the location inference described above to find out the correct location of the event. The
aggregator is based on the connected component of the graph theory. In our approach, a
connected component links reports that are geographically close to each other. Reports and
their locations are added to the graph one-by-one. An alarm is raised to indicate that an
event is detected, if the connected component after adding a new report now has enough
connected nodes. Figure 5 illustrates this process. We set 5 as the number of reports needed
for raising an alarm, because if we have 50% report classification accuracy, 1−0.55 > 0.95,
we can confidently alarm an incident with 5 reports.

The figure indicates observation reports and their geographical locations. (a) Adding
report A. (b) A is connected to the nearest report. The connected component now has five
nodes, so an alarm is raised, with location of the event calculated as the mean location of
nodes A, B, C, D, and E.

The relevant information such as all reporting tweets for the event are written to a log
file when an alarm is raised, which can be then exported to an online platform such as a
website, making detected events publicly accessible in realtime. To maintain the timeliness
of the monitoring system, we only store the most recent tweets, and reports older than a day
are removed. Algorithm 9 shows details of our method.

To monitor an event, we incrementally added the detected reports from Twitter data
stream to a graph (line 2). For each added report, we calculated the distance between the
new report to the nearest report in the graph, and if the distance is smaller than a threshold,
an edge is added between the two reports (line 3 - 5). Then we check the connected com-
ponent the new report is connected to (in case no edge is created for the new report, the
connected component has only one node), and if the number of nodes in the connect com-
ponent reaches five, we raise an alarm and record the time, location and the reporting tweets
(line 8 - 13). We also remove old reports once every hour to keep the information update
(line 15 - 17).

Our event detection can leverage distance-based connected components because we are
confident about the accuracy of our location inference at fine granularity. Since the reports
are added to the system individually, SNAF is also capable of processing realtime streams,
making it a realtime event detection system.

Figure 5 Event detection based on connected components
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Algorithm 9 Event Detection and Alarming

1: initialize an empty graph
2: for each incoming report do
3: find geographically nearest to
4: if distance from to is less than then
5: add to
6: end if
7: add to
8: the connected component is connected to
9: the number of nodes in
10: if 5 then
11: compute location as the mean of locations of all nodes in
12: output an alarm, record time, location, and connected nodes to the log file
13: end if
14: end for
15: for once each hour do
16: remove all nodes older than 24 hours from G
17: end for

6 Experimental analysis

We verified our method of report filtering, location inference, and event monitoring in
separate experiments. First we tested our report filtering method effectiveness by running
the method on controlled and crowd-sourced datasets. Then we tested our location infer-
ence method accuracy by running location inference on two datasets. Finally we run our
event detection algorithm and manually examine the results. In this section, we discuss our
experimental setup and results.

6.1 Report filtering effectiveness

We prepared three datasets for testing the effectiveness of our report filtering method. First
we manually collected and labelled two tweet sets, containing the keyword hailstorm and
accident , respectively, according to whether each tweet is a personal observation of the
event. The controlled dataset contains a total of 1,629 tweets. Then we used a publicly
available crowd-sourced dataset that contains eyewitness and other relevant tweets about
crisis events, such as flood and riot. The crowd-sourced dataset contains 3,646 tweets.

6.1.1 Experiment setup

For setting up our method, we deployed an existing implementation for POS tagging. After
comparing several existing POS tagging implementations including OpenNLP and Ling-
Pipe, we chose StanfordNLP POS module to run our POS tagging because it is relatively
fast and provides a high tagging accuracy of around 95% [18].

For parameter θ in Algorithm 1, we chose the first quartile of overall objectivity in the
dataset for all experiments, which generally provides good results. For parameter δ, we
compared three different values, including 0.9, 0.8 and 0.5. To ensure the consistency of
the experiments, instead of randomly choosing initial values for the particles in Algorithm
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3, we chose combinations of evenly distributed values for the four attributes as the initial
values, i.e., 0.2, 0.4, 0.6, 0.8, and 1. Our analysis shows that randomly initialized particles
provide similar results. For user profiling, up to 1,000 recent tweets were collected for each
user using Twitter Timeline API.

6.1.2 Baseline methods and comparison metrics

We compared our approach with three baseline filtering strategies, namely, Accept All,
Sakaki filter, and Sriram. Accept All takes all tweets in the dataset as the positive for per-
sonal observations. Sakaki classifier, proposed by Sakaki et al. in [24], is a supervised
method that deploys a Support Vector Machine (SVM) classifier with linear kernel built on
manually annotated training data. Among the three feature sets proposed in [24], we imple-
mented the reportedly most effective set, Feature Set A, which is based on word counts and
keyword positions. We deployed an existing SVM implementation in an R language pack-
age called e10717. We used a weighting function according to class imbalance to ensure
optimal performance of the classifier. The performance of the Sakaki classifier was mea-
sured using the three-fold cross validation. One drawback of the Sakaki classifier is that it
requires the presence of a keyword. The user profiling in our approach, though, does not
have this requirement.

The Sriram classifier, proposed by Sriram et al. in [28], is also a supervised method that is
based on eight features and the Naive Bayes model. The eight features include author name,
use of slang, time phrase, opinionated words, and word emphasis, presences of currency
signs, percentage signs, mention sign at the beginning and the middle of the message. The
evaluation is based on the five-fold cross validation. The Sriram classifier is shown to be
effective in classifying tweets into categories such as news, opinions, deals and events, but
has not been tested in other applications.

All datasets for evaluation were manually annotated according to whether each tweet is
a personal observation of an object or event of interest, which were considered ground truth
in our experiments. The output of the filtering methods were compared with the manual
annotations. If a filtering output is positive in manual annotations, it is considered a true
positive. We use precision, recall and f −value as the measurements of filtering accuracy,
where given the set of positive filtering results P and the set of true positives in the dataset

T P , The precision = |P ⋂
T P |

|P | , recall = |P ⋂
T P |

|T P | , and f -value = 2 · precision·recall
precision+recall

.

6.1.3 Effectiveness on controlled datasets

We first tested our method on two controlled datasets. We collected a dataset of around 5,000
tweets containing the keyword hailstorm during August, 2015, and a dataset of around
5,000 tweets containing the keyword car accident during September, 2015. After removing
retweets and tweets containing links, we manually labelled the remaining tweets as positive
or negative examples, according to whether the message is about a direct observation of a
hailstorm or a car accident. The resulted hailstorm dataset contains 675 tweets, with 251
positive examples and 424 negative examples. The labelled accident dataset contains 954
tweets, with 347 positive examples and 607 negative examples.

We tested the filtering methods on the two datasets. Accuracy results for the baseline
methods, lexical analysis-only filtering (LX), and lexical analysis combined with personal

7https://cran.r-project.org/package=e1071

https://cran.r-project.org/package=e1071
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Table 6 Filtering accuracy for hailstorm and car accident datasets

Accept Sakaki Sriram LX PA PA PA

All (δ = 0.9) (δ = 0.8) (δ = 0.5)

hailstorm dataset

precision 0.37 0.43 0.37 0.53 0.62 0.64 0.70

recall 1 0.70 0.98 0.80 0.76 0.71 0.46

f-value 0.54 0.53 0.54 0.63 0.68 0.67 0.56

car accident dataset

precision 0.38 0.50 0.44 0.53 0.58 0.59 0.60

recall 1 0.73 0.84 0.76 0.74 0.69 0.43

f-value 0.55 0.60 0.57 0.63 0.65 0.64 0.50

account filtering using three δ values, PA(δ = 0.9), PA(δ = 0.8), and PA(δ = 0.5), are
presented in Table 6.

As shown in the table, the Accept All strategy captured all the positives in the annotations
and had the maximum recall of 1. All other methods improved the precision by sacrificing
the recall to some degree. Personal account filtering with δ set to 0.9 achieved the highest
overall performance, indicated by the highest f-value. Using lexical analysis only and PA
with δ = 0.9 and delta = 0.8 all performed better than the Sakaki classifier and the
Sriram classifier, the latter of which provided almost no filtering effect in the hailstorm
dataset. Setting δ to a lower value improved the precision but also lowered the recall. When
setting δ to 0.5, PA achieved the highest precision, while still held a relatively high f-value.
The performance of all methods were consistent across two datasets, with LX improving
precision from the Accept All strategy by around 15% and PA(δ = 0.9) further improved it
by 5%-7%.

6.1.4 Effectiveness on crowd-sourced dataset

We tested our approach on a publicly available dataset produced by Castillo et al. [22], and
is available online8. The dataset contains around 20,000 tweets related to crisis events, such
as the Colorado wildfires and the Pablo typhoon in 2012, and the Australia bushfire and
NewYork train crash in 2013. These crisis tweets were manually annotated by hired workers
on Crowdflower, a crowdsourcing platform9. The tweets were labelled according to their
relevance to the crisis event, and the type of information they provide into four categories,
namely, related and informative, related but not informative, not related, and not applicable.
The seven information types include Eyewitness, Government, NGOs, Business, Media,
Outsiders, and Not applicable.

We consider that the Eyewitness-type tweets in the dataset are personal observations,
while other types of tweets are not. Hence we expect our approach to filter Eyewitness
tweets from other tweets. With this goal, we re-organized the dataset. First we selected two
categories of related tweets from the dataset. Then we selected five information types of
tweets: Eyewitness, Government, NGOs, Business and Media. We then produced a list of

8http://crisislex.org/
9http://www.crowdflower.com/

http://crisislex.org/
http://www.crowdflower.com/


World Wide Web (2018) 21:311–343 335

labels, with Eyewitness tweets as positives, and other types of tweets negatives. We also
removed retweets from the data. Our labelled dataset had 3,646 tweets with 528 positives.

Since the tweets do not contain a specific keyword, we did not run POS and objectivity
analysis. The Sakaki classifier is not applicable without a keyword. As such we ran the
originality test in the lexical analysis and the personal account classification, and compared
only to the Sriram classifier (Table 7).

The results are similar to previous experiments, where PA(δ = 0.9) achieved the highest
f-value and PA(δ = 0.5) achieved the highest precision. The lexical analysis was particu-
larly effective for this dataset, improving the precision by around 38%, mainly because the
dataset includes a large portion of news messages, which failed the originality test. After
the lexical analysis, PA(δ = 0.9) further improved the precision by 12%. Both LX and
PA(δ = 0.9) significantly outperformed the Sriram classifier.

6.2 Location inference accuracy

We used two other datasets for testing our location inference method. We collected two
sets of tweets by containing the keywords homeless and shooting. The homeless dataset
contains around one million tweets dated from August 5 to September 9, 2014. The shoot-
ing dataset contains around two million tweets dated from September 24 to October 17,
2014. We run our filtering method on both datasets. Filtering the homeless dataset generated
20,229 reports, 1,331 of which contained GPS data. Filtering the shooting dataset generated
10,216 reports, 359 of which contained GPS data.

6.2.1 Measurements and baseline methods

We set five distance error buckets of 3, 5, 10, 30, and 100 kilometers, and counted an inferred
location in a bucket if the difference between the inferred location and the GPS data of the
report was within that error range. If the error of the inferred location was more than 100
kilometers, we counted it as failed. The accuracy of a method in an error range is calculated
as the percentage of reports counted in that distance error bucket, in all reports considered.
If no location information was found for a report, we still counted it as failed. Since we
count all the reports, the accuracy we use here is the same as recall in information retrieval.
Because we can extract a location from most of the reports, the precision would be very
close to the recall, and is not included in the measurement.

We tested three of our methods, DKO+BC, NKO+BC, and SEM+BC, as defined in the
previous section. We also tested two baseline methods for comparison, the Mean method,
and the method proposed by Ikawa et al. in [8], which we term Ikawa method. The Mean
method, which uses the mean coordinate value of all past locations as the tweet location,
was investigated in a work by by Schulz et al. [26]. The Ikawa method associates messages

Table 7 Filtering accuracy for the crisis dataset

Accept Sriram LX PA PA PA

All (δ = 0.9) (δ = 0.8) (δ = 0.5)

precision 0.14 0.32 0.52 0.64 0.64 0.65

recall 1 0.52 0.47 0.50 0.48 0.27

f-value 0.24 0.40 0.47 0.56 0.55 0.38
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with locations using messages containing location words, and then infers the location of a
newmessage by matching the message with the trained messages, based on cosine similarity
and term frequency. The Ikawa method has two variations, trained by all data, and trained
by user. We chose the trained by user variation, because it performs better in smaller error
ranges.

6.2.2 Location accuracy results

We applied the location inference methods on 1,331 homeless reports and 359 shooting
reports, and generated a location for each report. Figure 6 shows some of the locations
identified around North America, with dense areas roughly corresponding to large cities
that have dense populations and high Twitter usage.

The accuracy of the proposed inference methods for each of the two datasets is shown in
Table 8. The highest accuracy in each distance error bucket is highlighted in bold font. From
the table, we can see that for the homeless dataset, SEM+BC achieved the highest accuracy
in all error ranges. For the shooting dataset, DKO+BC achieved the highest accuracy in
smaller error ranges, while within 100km error range, SEM+BC was more accurate.

Comparing to the mean method, our methods, which essentially cleaned the data before
applying median, successfully improved the accuracy by over 30% in smaller error ranges.
For the 3km error range the improvement was 36%, and for the 100km error range the
improvement was 12%. Our best achieving method was also more accurate than the Ikawa
method in all error ranges. The accuracy of the Ikawa method was lower in smaller error
ranges than the numbers reported in their paper, because the Foursquare data, which they
relied on to get accurate location extraction, are no longer available, and our automatically
generated gazetteer based on DBpedia was used instead. The accuracy of Ikawa method in
larger error ranges was nevertheless higher than the numbers reported in their paper, because
we extracted locations from more messages using the gazetteer approach, thus allowed the
locations of more tweets to be found, even though the errors are larger.

6.3 Event detection results

In this experiment, we tested the event detection of the SNAF system using the Shoot-
ing dataset. In particular, we sorted 10,216 reports in chronological order, sent each report
to SNAF, from the oldest to the newest, and SNAF generated a number of alarms. We

Figure 6 Identified report locations in North America
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Table 8 Accuracy of location inference methods

error ≤3km ≤5km ≤10km ≤30km ≤100km

Dataset: Homeless

Mean 0.086 0.113 0.192 0.327 0.432

Ikawa 0.084 0.113 0.184 0.284 0.363

DKO+BC 0.109 0.142 0.247 0.374 0.481

NKO+BC 0.113 0.151 0.259 0.383 0.480

SEM+BC 0.117 0.152 0.259 0.392 0.488

Dataset: Shooting

Mean 0.091 0.116 0.194 0.298 0.387

Ikawa 0.066 0.089 0.155 0.256 0.334

DKO+BC 0.108 0.147 0.233 0.331 0.423

NKO+BC 0.103 0.144 0.233 0.334 0.420

SEM+BC 0.103 0.142 0.222 0.331 0.426

manually examined 100 alarms and found that 54 of them contained reports of actual
shooting incidents. Due to the difficulty of finding corresponding news article, we did not
evaluate all detected events. Table 9 shows three instances of the detected shooting incidence
compared to corresponding news articles.

For each instance, the time alarmed is the time of the last report that triggered the alarm.
The earliest news article is the earliest online news article about the event we found using
our best effort. We found these news articles mostly on Google News10, making use of their
“sort by date” feature. The news article time is the time of the publication of the news. The
time before news article indicates how much faster our alarm was than the publication of
the earliest news article, measured in hours. A positive number means the alarm is faster
than news, while a negative one means the alarm is slower. All times are converted to the
local time where the event happened. Supported tweets shows tweet messages of the reports
in the connected component that triggered the alarm.

In the Indiana State University Shooting case, although the news reacted quickly and
reported less than one hour and a half after the incident, our system was able to capture the
incident 9 minutes earlier than the news. From the supporting tweets we also identified a
mistake in the news, that the incident happened not at 6:30, but at 16:30. In the Fern Creek
High School Shooting case, although we were able to detect it just one hour after the shoot-
ing, it was half an hour slower than the news. In the third instance, the Marysville Shooting
on the night of October 15, 2014, which happened around midnight, was not reported by
the news until next morning. However, our monitoring system was able to detect it at mid-
night, only an hour after the shooting. In all three instances, the event locations the system
inferred were very close to the reported location, with distance errors between a few hun-
dred meters and 1.5 kilometers. The inferred location for the last event was less accurate
because the event involved a series of sub-events each had a different location.

In addition to the three examples discussed, we also found five other instances for which
we found corresonding news articles. Based on these instances, on average, our system

10http://news.google.com

http://news.google.com


338 World Wide Web (2018) 21:311–343

Table 9 Examples of detected events

Detected event: Indiana State University Shooting, 27/09/14

Time alarmed 27/09/14 17:43

Location inferred 39.469222,−87.41235737

Earliest News article http://www.wthr.com/story/26644661/2014/09/27/
isu-reports-shooting-near-lincoln-quad-residence-hall

News article time 27/09/14 17:52

News article location Indiana State University (39.471345, −87.408071)

Time before news article +9 minutes

Location error 0.43km

Reporting Tweets

27/9 16:28 Shooting on campus.. #MoreToBlue

27/9 16:26 An actual shooting on campus. On family day. What has happened to Indiana State.

27/9 16:42 ok basically witnessed someone die earlier and now there’s a shooting on campus.

27/9 16:58 Niggas really out here shooting on campus in terre haute

27/9 17:43 WTF is terre haute coming to there was just a shooting at isu..

Detected event: Fern Creek High School Shooting, 30/09/14

Time alarmed 30/09/14 14:09

Location inferred 38.1597,-85.5877

Earliest News article http://www.tristatehomepage.com/story/d/story/
shooting-confirmed-at-louisville-high-school/27354/
izZd6FZn8kaM9yx3V2PFoQ

News article time 30/09/14 13:37

News article location Fern Creek High School (38.1563, −85.5923)

Time before news article −32 minutes

Location error 0.5km

Reporting Tweets

30/09 13:28 Damn shooting at fern creek

30/09 14:09 One student suffered injuries not believed to be life-threatening, WLKY reports.

30/09 13:57 Fern Creek High still on lockdown after reports of shots fired. Student text parent that there

was someone shooting at another person.

30/09 13:47 Damn, kids shooting at fern creek. Smh

30/09 13:51 damn, shooting at fern creek

Detected event: Marysville Shooting, 15/10/14

Time alarmed 16/10/14 00:38

Location inferred 48.062,-122.163

Earliest News article http://www.marysvilleglobe.com/news/279423142.html

News article time 16/10/14 07:00

News article location 64th Ave, Marysville (48.059219, −122.144871)

Time before news article +6 hours 28 minutes

Location error 1.38km

Reporting Tweets

16/10 00:22 Damn, I guess there was a guy shooting at police and and drove through marysville

http://www.wthr.com/story/26644661/2014/09/27/isu-reports-shooting-near-lincoln-quad-residence-hall
http://www.wthr.com/story/26644661/2014/09/27/isu-reports-shooting-near-lincoln-quad-residence-hall
http://www.tristatehomepage.com/story/d/story/shooting-confirmed-at-louisville-high-school/27354/ izZd6FZn8kaM9yx3V2PFoQ
http://www.tristatehomepage.com/story/d/story/shooting-confirmed-at-louisville-high-school/27354/ izZd6FZn8kaM9yx3V2PFoQ
http://www.tristatehomepage.com/story/d/story/shooting-confirmed-at-louisville-high-school/27354/ izZd6FZn8kaM9yx3V2PFoQ
http://www.marysvilleglobe.com/news/279423142.html
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Table 9 (continued)

16/10 00:09 Gunman shot at Granite Falls and Lake Stevens police stations, shooting at pursuing officers

in Marysville.

16/10 00:05 Another lake Stevens shooting going on as we speak.

16/10 00:38 That’s so scary. I told my dad I heard like 15 gun shots go off and it was that guy shooting

up the lake Stevens police department

16/10 00:29 There’s a police chase on state and the guy is shooting at the cops #MarysvilleProbs

alarmed the incident 2.8 hours before the earliest news report, with a mean location error of
4.1km. We found that a shooting incident usually will not make it to news article unless a
sensitive location or person is involved, such as shooting happened in a school or a univer-
sity. There are many shooting incidents, while clearly happened based on examining tweets,
have no related news reports.

7 A prototype realtime event monitoring system

We designed and implemented a prototype realtime event monitoring system for monitoring
shooting incidents, called SNAF-Shooting, based on the methods and techniques proposed
in this article. We implemented the components shown in Figure 1 using Java 1.7. The Java
program continuously listens to Twitter Filter API, and upon capturing a tweet containing
the keyword shooting, it classifies, infers the location, and aggregates with previous tweets,
and outputs an event record if an event alarm is raised. Except for the final event information
output, the program runs entirely in memory. We tested the program on a computer with
a pair of Intel Core 2 Duo CPU, 7.9 GiB Memory, 621 GiB hard-drive, and runs a 32-bit
Linux-based operating system. Setting 1024 MB memory for the Java Virtual Machine is
proven to be sufficient for running the program continuously over a week.

We then setup a webpage that contains a PHP code that reads the event record file and
displays them on the webpage. The PHP code converts the coordinates of the inferred event
location to pixel values, and displays a marker on top of a map shown on the webpage,
as can be seen in Figure 7. The numbers above the markers indicates event numbers, and
the details of each event, including time, exact location, and reporting tweets, can be found
below the map, as shown in Figure 8. We put a “Report Faulty Alarm” button alongside each
event to allow the user to provide feedback for faulty event alarms. Each time the webpage
is reloaded, the latest information on detected shooting incidents will be displayed on the
webpage.

We set 5 as the number of required tweets for raising an event alarm, so the time needed
for event detection after the event happened depending on the time of the emergence of the
5th report, and may vary between a few minutes and several hours. Classifying, inferring
location, and aggregation for a single tweet, though, generally takes around 10 seconds.
Most of this time is spent on waiting on Twitter API’s rate limit. Twitter sets a rate limit
of 180 calls in 15 minutes, or five seconds per call, for its timeline API. Each timeline
API allows retrieval of up to 200 past tweets. We made two calls to retrieved 400 past
tweets for location inference of each tweet, and we set a delay of four seconds between each
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Figure 7 The map view of the event detection system

call, assuming that the location inference itself generally takes more than one second to
complete. Actual statistics shows that, for 1,000 location inferences, the average time taken
for each inference was 10.8 seconds. The time needed for classifying and aggregation was
neglectable, comparing to the time needed for location inference.

Figure 8 The tweet view of the event detection system
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8 Conclusion

Twitter can be seen as a dense sensor network in urban areas, and each Twitter user can
be seen as an individual sensor. Such a sensor network can be used for monitoring events
and objects of interest, as Twitter users post observations of their immediate environments
continuously and constantly. This information can be collected for detecting local events,
potentially much earlier than any news reports or official announcements. For such usage,
we identify two challenges. The first is to filter observations from other unrelated messages.
The second is to fill the missing location information. Unfortunately, the portion of unrelated
message on Twitter is large and the location information is sparse. Current works on both
message filtering and location inference have not achieved satisfactory accuracy.

In this paper, we propose Sense and Focus (SNAF), an event monitoring system that clas-
sifies personal observation reports, and infers fine-grained locations for each report, based
on a comprehensive place gazetteer and users’ past tweets. By using lexical analysis and
user profiling, we improve the report filtering accuracy by around 22%. For location infer-
ence, we increase the availability of location information by using location names in tweet
messages and users’ past tweets. By applying sensor data cleaning techniques, we remove
the noises in the location data and improve the accuracy of the location inference over exist-
ing location inference approaches. For various error ranges between 3km and 100km, our
method improves the location accuracy between 12% and 36%. Taking shooting incidents as
the target event, our prototype event monitoring system captures local events and provides
accurate location information based on the inferred locations, in some cases with less than
1km error. Based on the effective report classification and message location inference, the
event detected by our system are actual event of interest more than half of the time. In the
future, we plan to extend our approach for monitoring events with multiple, continuously
changing locations.
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