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Abstract Imbalanced streaming data is commonly encountered in real-world data mining and
machine learning applications, and has attracted much attention in recent years. Both imbal-
anced data and streaming data in practice are normally encountered together; however, little
research work has been studied on the two types of data together. In this paper, we propose a
multi-window based ensemble learning method for the classification of imbalanced streaming
data. Three types of windows are defined to store the current batch of instances, the latest
minority instances, and the ensemble classifier. The ensemble classifier consists of a set of
latest sub-classifiers, and the instances employed to train each sub-classifier. All sub-classifiers
are weighted prior to predicting the class labels of newly arriving instances, and new sub-
classifiers are trained only when the precision is below a predefined threshold. Extensive
experiments on synthetic datasets and real-world datasets demonstrate that the new approach
can efficiently and effectively classify imbalanced streaming data, and generally outperforms
existing approaches.
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1 Introduction

Classification is one of the most important problems in the fields of data mining and machine
learning, and has attracted much attention in recent years. In conventional methods of solving
the classification problem, a classifier is generally trained on a dataset that does not change
over time. As such, the dataset is assumed to have all the information required to learn the
underlying concepts. However, in many real-world scenarios, including spam filtering [8],
credit card fraud identification [25], intrusion detection [18], and webpage classification [26],
datasets are not static. New instances may arrive one by one or batch by batch, and incoming
instances must be classified within a finite period with finite resources. Regardless of whether
new instances arrive incrementally or in batch, only data received prior to the time step t can be
used to train the classifier and predict the instances arriving at the time step t + 1. In other
words, the classifier can only be trained on an incomplete portion of the information.

The problem of class imbalance can be very common in streaming data. For instance, in
credit card fraud identification, a small minority of customers typically engage in fraud. Thus,
class imbalance is a condition of data streams that cannot be ignored when dealing with real-
world problems. Because we are more interested in rare class instances, these are usually
denoted as positive instances and majority instances are denoted as negative instances.

In an earlier stage of development, classification of streaming data and imbalance problems
were studied separately, although, in recent years, increasing attention has been dedicated to
addressing these two problems together. However, as discussed elsewhere [12], most research
efforts have combined algorithms designed for streaming and imbalanced data in a relatively
simple manner, which are almost equivalent to address these two problems separately.

In our earlier work [29], we analyzed this problem in a novel way and proposed a method
using multi-window ensemble learning (MWEL) for classification of imbalanced streaming
data. In this paper, we extend MWEL in several ways. First of all, a more carefully designed
multi-window ensemble learning framework is presented, in which four different kinds of
windows are used to model the imbalanced data stream. Secondly, two different window
update policies correspond to minority window and sub-classifier window are designed in
detail. Thirdly, we improved majority weighted voting approach so that it can deal with more
complicated cases. In addition, we conduct experiments on more datasets from different
domains to further analyze impact of parameters used in our algorithms. Finally, we compare
our improved approach with others methods under 8 different evaluation criteria. The main
contributions of the present work are as follows:

& A multi-window framework is proposed to record the current batch of instances, selected
positive instances, and the ensemble classifier along with the corresponding instances used
to train each sub-classifier. The framework enables us to accumulate the latest positive
instances, and enhances the weight of the positive instances accordingly. Furthermore,
concept drift in data streams can be detected by the error rate together with similarities
between the current window and the history windows used to train each sub-classifier.

& A novel ensemble learning mechanism is designed to classify the incoming instances. The
weight of each sub-classifier is determined by the classification error rate and the window
similarity. New instances are classified using weighted majority voting. Adjusting the
weight according to the error rate can improve the classification accuracy, and weight
adjustment based on window similarity can solve the reoccurring concept drift issue [12]
to a certain extent.
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& Extensive experiments on both synthetic datasets and real-world datasets in different
application domains are conducted, from which optimal parameters for each dataset are
obtained, and the proposed approach is demonstrated to generally outperform alternative
methods.

To simplify the model, we focus only on single-label two-class classification problems,
where each instance can belong only to a single class and only two classes are considered.
Single-label two-class classification tasks are found in many real-world applications, for
example, email messages can be classified into spam and normal messages; credit card users
can be labeled as fraudulent and regular users. Moreover, multi-label classification problems
can be divided into several single-label two-class classification problems [20]. Multi-class
problems can also be subjected to divide and conquer strategies [9, 17, 19]. In addition, we
mainly focus on low dimension problems because high dimension problems can always be
reduced, as discussed in [21].

The remainder of the paper is organized as follows. Works related to streaming data
classification and imbalanced classification are presented in Section 2. Section 3 proposes
the multi-window based ensemble learning approach and describes it in detail. The experi-
ments on both real-world and synthetic datasets, and the discussion of the results are provided
in Section 4, followed by a conclusion and outlook in Section 5.

2 Related work

Classification of streaming data has attracted much attention for some time, and has been
widely studied, particularly with problems related to concept drift. Meanwhile, numerous
researchers have focused on the imbalanced data classification problem. In recent years, an
increasing number of scholars have addressed problems involving both class imbalance and
concept drift. We briefly review these works in the following.

2.1 Classification of streaming data

The attribute values of newly incoming instances in streaming data may vary over time,
resulting in concept drift. Previous methods employed to mitigate this problem can be roughly
divided into three categories: adaptive-based learning, the training set modification method,
and ensemble learning.

Adaptive-based learning attempts to modify existing classifiers to provide adaptability to the
occurrence of concept drift in streaming data. Based on very fast decision tree (VFDT), Hulten
et al. proposed the concept-adaptive VFDT learner (CVFDT) [13], which maintains an up-to-
date classifier by computing new split attributes and comparing them with old attributes using a
sliding window. Other works based on VFDT include the Hoeffding window tree (HWT) and
Hoeffding adaptive tree (HAT) [3]. Both of these methods aim at quickly adapting to concept
drift in different ways. HWT re-computes split attributes once a new instance arrives rather than
waiting for full window-sized instances, and HAT employs an adaptive window.

The training set modification method aims at adjusting the relative weights of different class
instances to fit the target concept. Because the method is independent of existing classifiers, it
is widely used in many applications. This type of method consists of windowing and
weighting techniques. In the windowing techniques, the data stream is segmented into
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windows, and a classifier is trained on each window. The easiest approach is to employ a fixed
window size, although an optimal window size is difficult to determine. Thus, the self-adaptive
method FLORA3 [30] was proposed to fit the present concept using a variable window size.
Also, ADWIN [2] was proposed to determine the optimal window size by calculating the
similarity between two different windows. On the other hand, the weighting techniques impart
different weights to different class instances. For example, all instances are weighted according
to their distance from the current concept [1].

Ensemble learning integrates the results from multiple sub-classifiers to obtain better
performance than a single classifier. For example, SEA [22] trains a sub-classifier on each
non-overlapping window. A newly trained sub-classifier is added to the ensemble classifier or
replaces the worst sub-classifier depending on a predefined maximum ensemble size. Other
works [10, 14] weight each classifier according to its performance (e.g., error rate).

2.2 Classification of imbalanced datasets

As discussed above, when dealing with imbalanced datasets, we are generally more concerned
with the minority class. Therefore, the minority class must be emphasized. Related works can
be divided into three categories depending upon the level at which the method functions [4, 11].
The first category functions at the data-level, which seeks to balance the size of each class by
increasing or decreasing the number of minority or majority instances. In this case, the minority
instances can simply be oversampled or the majority instances can be under-sampled randomly,
although some heuristic methods have been proven to be more stable, e.g., SMOTE [5], which
creates synthetic minority instances rather than duplicating instances to avoid over-fitting, and
Tomek-line [24], which is used to locate redundant majority instances. The second category
functions at the algorithm level, which attempts to modify a specific algorithm, e.g., CCPDT
[16]. The third category functions on the basis of ensemble learning, which is widely used to
handle imbalanced datasets, e.g., SMOTEBoost [6] and AdaC1, AdaC2, and AdaC3 [23].

2.3 Classification of imbalanced streaming data

The boundary definition (BD) approach [15] was proposed to build classifiers based on
boundary instances, which are more easily misclassified. The approach divides the majority
instances into a correctly classified set and a misclassified set. Random under-sampling is
performed on each set separately to guarantee distribution consistency. Eleftherios et al.
proposed maintaining two windows to record the positive and negative classes separately for
multi-label stream classification problem [31]. A learning framework for an online imbalanced
classification problem, including an imbalanced class detector, a concept shift detector, and an
online learner, was proposed [27]. The researchers also proposed the so-called oversampling-
based online bagging (OOB) and under-sampling-based online bagging (UOB) methods to
improve classification accuracy. In the work, concept drift was simplified to a change of the
imbalance ratio among classes. Thereafter, the authors proposed sampling-based online
bagging (SOB) [28], which aimed at maximizing the G-mean and balanced classes by
adjusting the parameter λ of the Poisson distribution in onling bagging. Recently, a selective
re-training approach based on clustering has been proposed [32]. In this work, a new sub-
classifier is trained when new data arrives, and, if the overall classification performance is
unsatisfied, the new sub-classifier replaces the worst performing sub-classifier. Because a new
classifier is trained each time a new instance arrives, the method is computationally complex.
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3 Framework

3.1 Problem definition

Assume that, at time step t, the existing instances form a data sequence D = {(X0, l0),
(X1, l1), ... , (Xt, lt)} in chronological order, where Xi is a d-dimensional vector and corre-
sponds to a class label li. All class labels constitute a label sequence L = {l1, l2, … , lt}. In a two-
class classification task, li ∈ {+, −}, where ' + ' and ' − ' represent positive (minority) and negative
(majority) classes, respectively. The goal is to train a single classifier or set of classifiers on
existing instances so that the classifier(s) can accurately predicate the incoming instance Xt + 1 at
time step t + 1, and, once Xt + 1 is predicated, we are aware of the true label of Xt + 1, i.e., lt + 1. In
addition, we take the dataset as imbalanced if the ratio of the number of different class instances,
i.e., #{(Xi, li)| li =

' + '}/ # {(Xj, lj)| lj =
' − '}, i , j = 0 , 1 , … , t, exceeds a predefined threshold.

The task is to build the classifier(s) on an imbalanced data stream and obtain
acceptable results.

In the present study, we adopt a windowing or batching approach, where the window size is
pre-calculated by experiments, and then fixed. The sliding window moves forward once
window-sized instances have arrived. Here, the windows on the data stream are non-
overlapping and in chronological order. Suppose the window size is Mb, then, at time
step t, existing instances are divided into ⌈t/Mb⌉ windows or batches. When Mb = 1,
the batching approach is equivalent to incremental learning, where a single instance is
processed at a time.

3.2 Multi-window mechanism

In this section, we describe our multi-window ensemble learning algorithm in detail. First of
all, we must determine the size of the sliding window (WB; window of batch). An overly small
window cannot adequately represent the class characteristics, and may result in a classifier
with poor generalization. On the other hand, an overly large window size will require much
more acquisition time and resources, which are restricted in practical applications. For
instance, a window may not have acquired sufficient instances within the limited time
available after which a prediction is expected. Scant theoretical guidance exists for determining
an optimal window size, which must be obtained through experiments.

Under imbalanced conditions, positive instances are sparse, and may even be absent from
some sliding windows. As a result, classifiers trained on these windows may be unable to
represent the positive class. Therefore, we use a minority window (WM; window of minority)
to store newly incoming minority or positive instances. Minority window method has also
been used in the BD approach [15], although the WM employed in BD consumed excessive
time and resources; moreover, early acquired minority instances ran the risk of becoming
meaningless due to concept drift. We adopt a similar strategy to that used elsewhere [7], which
fixes the minority window size and adds only minority instances residing near the current
positive class into the WM. However, it is time consuming to select only the nearest instances
when the window size is very large, and the nearest instances may not be of the same
concept. Consequently, we utilize a simple substitution policy here with fixed size,
and add minority instances into the WM prior to reaching its upper size limit;
otherwise, the oldest instance will be replaced by the newest. Thus, the WM always
represents up-to-date positive instances over time.
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In addition, we use a classifier window (WC; window of classifier) to preserve the requisite
number of newly trained sub-classifiers and their corresponding weights WCweight, as well as
the windows of instancesWCinsused to train each sub-classifier. The size ofWC is determined
in advance through experiments, and is fixed for streaming future instances. Newly trained
sub-classifiers are added toWC prior to reaching the predefined size; otherwise, the oldest sub-
classifier is replaced.

3.3 WC update policy

Because accuracy is not always a reliable metric for imbalanced data (for example, given 99
normal email messages and 1 spam in the dataset, the classifier can treat all 100 messages as
normal and still obtain an accuracy of 99%), it is necessary to evaluate the classification result
for each class simultaneously under imbalanced conditions. In the present study, we use the
precision of both the minority and majority classes to evaluate the classification performance.
If the precisions of both the majority class Precisionmaj and minority class Precisionminof the
newly trained classifier are greater than 0.5, indicating better than random guess, we add it into
the WC. In addition, WCweight is set as the current accuracy, and the current window instances
used to train the new classifier are saved in theWCins. Otherwise, failing the precision test, the
classifier is discarded.

3.4 Multi-window ensemble learning

The overall processing conducted by our Multi-window ensemble learning (MWEL) is shown
in Algorithm 1. When the first window arrives, the WC and WM are initially empty, and the
first classifier is trained on the current window. Then, it is determined whether or not to add the
classifier to theWC by the metric described in Subsection 3.3, which is given by Algorithm 1.
Simultaneously, we update the WM according to rules described in Subsection 3.2, which is
given by Algorithm 3.

When the next window arrives, we must update the weights of the sub-classifiers to fit the
concept in the window. We firstly compute and normalize the similarity between the current
window and each of the existing windows that correspond to existing sub-classifiers to modify
the weights based on the following observation.

Observation 1: The greater the similarity between windowW1 and windowW2, the closer are
the corresponding concepts within W1 and W2. Therefore, those sub-
classifiers trained on windows more similar to the current window should
be given larger weights as follows.

WCweight�i ¼ WCweight�i= 1−sim WB;WCins�ið Þ þ λð Þ i ¼ 1; 2;…;Mc ð1Þ

Here, WCweight · i is the weight of the ith sub-classifier in the WC, WB is the current sliding
window, WCins · i is the window of instances corresponding to the ith sub-classifier in WC,
sim(WB,WCins · i) is the similarity between the current window and WCins · i, and λ is a
constant. Moreover, this observation can be used to address reoccurring concept drift [12]
because an existing sub-classifier corresponding to a reoccurring concept will obtain a larger
weight, which is expected to provide better results.
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For each instance in the WB, we use a majority weighted voting method to predicate the
class label as follows.

l
0
newIns ¼ 1; ∑

WCj j

i¼1
WCweight�i �WCi newInsð Þ > 0:5

0; else

8<
: ð2Þ

Here, WCi(newIns) denotes the classifying instance newIns accompanying the ith sub-
classifier in the WC. The classification result can be the probability with which an instance
belongs to a class or an exact result of 0 or 1 corresponding to a majority or minority instance,
respectively.
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TheWC is comprised of sub-classifiers, the history of the window of instances used to train
each sub-classifier, and the weights of each sub-classifier. All three components are updated
simultaneously, and the primary procedure is described in Algorithm 2.

As show in line 33 of Algorithm 1, theWM is updated at the end of each window. Here, to
save time and resources, we simplified the procedure and saved only the latest minority
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instances rather than store all minority instances [21] or select the nearest instance to the
current window [1]. The primary procedure is described in Algorithm 3.

Because an imbalanced condition can exist at any time, it must be detected and addressed at
all times. We compare the predicated label with the true label of each instance in the current
window. If one or both of Precisionmaj and Precisionmin is less than 0.5, an imbalance is very
likely to exist within the current sliding window, and all instances within the window will be
resampled. The sampling procedure is presented in Algorithm 4. Rightly classified positive
instances remain unchanged because they are not likely to be of assistance in increasing the
precision, while wrongly classified positive instances are oversampled to increase their weights
when used to train a new sub-classifier. Here, SMOTE [5] is used to oversample minority
instances and random under-sampling is applied on correctly classified majority instances.
After several iterations, the imbalance ratio gradually decreases to the predefined threshold.
Finally, correctly classified minority instances, wrongly classified majority instances,
oversampled wrongly classified minority instances, and under-sampled correctly classified
majority instances are combined together as the new training set.
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Note that the new classifier will receive the largest weight of 1 by default on the basis of the
observation below.

Observation 2: Considering the influence of time factor, the latest classifier is more likely to
accord with the concept of the current window, and, therefore, this classifier
deserves a larger weight.

In general, the factors of time, similarity between windows and the precision of sub-classifiers
are all considered by our method, which should be more reasonable and comprehensive.

Regarding the ensemble classifier, it is very important to increase its diversity to enhance its
robustness and performance. However, if the current window exhibits little concept drift, using
this window to train a new sub-classifier brings no diversity, but does add to the computational
burden. Therefore, we assume that little benefit is gained by building a new sub-classifier on
each sliding window. In contrast, our approach builds new sub-classifiers only when
Precisionmaj and/or Precisionmin is less than 0.5, which ensures diversity, and reduces the
computational load.

4 Experiment

We evaluated our approach on both real-world and synthetic datasets using a variety of metrics.
Experiments were initially conducted to obtain optimal window sizes for the different datasets.
The results of the proposed method were compared with those of two existing approaches.

4.1 Datasets

As shown in the first eight rows of Table 1, we conducted experiments on eight real-world
datasets. The Elec, Forest, Airlines, Poker1, and Pocker2 datasets are publicly available at
MOA datasets.1 The Mushroom, Thyroid1, and Thyroid2 datasets are publicly available at the
UCI Machine Learning Repository.2

& Elec (ele) was collected from the Australian New South Wales electricity market to predict
the rise and fall of electricity prices, where prices are affected by market supply and
demand, and are set every five minutes.

& Forest (for) contains the forest cover type for 30 × 30 m cells obtained from the US Forest
Service with 7 classes in the original dataset. We extracted classes 4 and 2 as the minority
and majority classes.

& Airlines (air) was used to predict whether or not a flight would be delayed.
& Mushroom (mus) includes descriptions of hypothetical samples corresponding to

23 species of gilled mushrooms, where each species is identified as either edible
or poisonous.

& Thyroid datasets (th1, th2) were used to identify whether or not a patient has thyroid
disease. To form naturally imbalanced data, we selected class 1 and class 3 to form th1 and
class 2 and class 3 to form th2.

1 http://moa.cs.waikato.ac.nz/datasets/
2 http://archive.ics.uci.edu/ml/datasets.html
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& Poker datasets (po1, po2) consist of five playing cards drawn from a standard deck of 52
cards. Each card is described using its suit or rank.

Moreover, experiments were conducted on three types of synthetic datasets generated by
algorithms provided in MOA3 which is shown in Figure 1:

& Gradual concept drift (gcd), where a gradual concept drift begins at the 30,000th instance
to the 100,000th instance.

& Sudden concept drift (scd) takes place suddenly at the 50,000th instance, and the dataset
maintains the new concept until the 100,000th instance.

& Reoccurring concept drift (rcd) occurs at the 30,000th instance, and begins to shift back to
the original concept at around the 50,000th instance until the 100,000th instance.

During the instance generation, we randomly removed some instances from one class to
form imbalanced datasets.

4.2 Evaluation criteria

We employ accuracy, precision, recall, F1, and G-mean to evaluate our method in this paper.
As discussed in Subsection 3.3, the accuracy may be skewed by the prominence of the

negative class. However, G−mean ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recallmin � Recallmaj

p
considers the recalls of both

the minority (Recallmin) and majority (Recallmaj) classes together, and can only be large when
both Recallmin and Recallmaj are large, which is a better choice under imbalanced conditions.

When evaluating the classification performance on a data stream, we adopt a previously
proposed strategy [15], which evaluates the classifier using the average performance over all
batches in the data stream as follows.

F ¼ 1

t=Mbd e ∑
t=Mbd e

i¼1
f i

f ; F∈
n
Accuracy; Precisionmin; Precisionmaj;

Recallmin;Recallmaj; F1min; F1maj;G−mean
o

ð3Þ

Table 1 Dataset statistics

ID Name #All
instances

#Positive
instances

#Negative
instances

#Attributes Positive
index

Negative
index

Imbalance
rate

ele Elec 45, 312 19, 237 26, 075 8 1 2 1:1.35
for Forest 286, 048 2747 283, 301 54 4 2 1:103
air Airlines 539, 383 240, 264 299, 119 7 2 1 1:1.24
mus Mush 8, 124 3, 936 4, 188 23 1 2 1:1.06
th1 Thyroid1 6, 832 166 6, 666 21 1 3 1:40
th2 Thyroid2 7, 034 368 6, 666 21 2 3 1:18
po1 Poker1 454, 958 39, 706 415, 252 11 3 1 1:11
po2 Poker2 367, 967 17, 473 350, 494 11 4 2 1:21
gcd GCD 100, 000 24, 652 75, 348 20 2 1 1:3
scd SCD 100, 000 25, 178 74, 822 20 2 1 1:3
rcd RCD 100, 000 24, 280 75, 720 20 2 1 1:3

3 http://moa.cms.waikato.ac.nz/
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Here, f is the indicator of each sliding window, and F is the average indicator of the data
stream. We compared all the indicators in our experiments, but, owing to length restrictions,
we report here only the results regarding accuracy, G-mean, Recallmin, and processing time.
Many real-world applications are expected to accomplish necessary processing within a finite
period, where a batch must at least be processed before the next batch arrives. Therefore, data
streaming algorithms require a tradeoff between efficiency and effectiveness.

4.3 Sliding window size setup

As discussed in Subsection 3.2, no widely accepted standards are available for selecting an
optimal sliding window size with regard to different types of datasets. A larger window size
provides a smaller number of windows with respect to a specific dataset length, which reduces
the frequency of classifier training, whereas, contrarily, a smaller window size introduces a
greater number of windows with respect to a specific dataset length, increasing the frequency
of classifier training. Moreover, a smaller window size also provides less training time for each
classifier. Therefore, in present study, experiments were first conducted to determine the
optimal sliding window size for different datasets.

Figure 2 shows how the sliding window size affects the classification results, and substan-
tial differences in the various indicators are observed for different datasets. For instance, in
Figure 2(a), the for, th1, th2, po1, and po2 datasets exhibit quite high accuracy when the
window size is 1000, and the accuracy remains relatively stable with increasing
window size with the for, th1, po1, and po2 datasets, but decreases slowly for the
th2 dataset.

However, as shown in Figure 2(b), the maximum G-mean value for the for dataset occurs at
a window size of 500, whereas maximum values are obtained at 400 and 600 for the th1 and
th2 datasets, respectively. By comparing the Recallmin values shown in Figure 2(c), we find
that, as the window size increases, the Recallmin values for the th1 and th2 datasets, which lack
positive instances, decline sharply, leading to decreasing G-mean values. This indicates that
the density of minority instances becomes increasingly sparse with increasing window size.
Furthermore, we note from Figure 2(d) that an increasing window size initially decreases the
training and classifying time, but, for a window size greater than 1000, the time cost exhibits a
general trend of slow growth for all datasets considered except scd. For a fixed data
stream length, the processing time is the product of two parts: the training and
classifying time of each window and the number of windows. The initial reduction
in the processing time is due to the decreasing number of windows, whereas the
longer processing time required for each window results in the general rise in later
stages with increasing window size.
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Figure 1 Synthetic datasets given in Table 1

1518 World Wide Web (2017) 20:1507–1525



Based on considerations of the effectiveness and processing efficiency, we established the
optimal window size for each dataset. The values are listed in Table 2, and the following
experiments were conducted according to this standard.

It is necessary to point out that, in actual applications, it is unrealistic to calculate the
optimal sliding window size in advance. As an alternative, the optimal sliding window size can
be determined based on a small set of available instances. Here, we focus on examining the
effect of window size on different datasets, and a self-adaptive optimal sliding window is
reserved for future study.

4.4 Minority window size setup

We examined the influence of the minority window size on the classification performance, and
present the results in Figure 3. The results indicate that most datasets are insensitive to the
minority window size. However, the mus, gcd, scd, and rcd datasets exhibit a decreasing
accuracy with increasing minority window size, as shown in Figure 3(a). As shown in

Table 2 Optimal sliding window sizes for different datasets

ID ele for air mus th1 th2 po1 po2 gcd scd rcd

Window size 1300 1300 800 900 100 200 600 1000 1400 1400 1300
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Figure 2 Sliding window size for different datasets
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Figure 3(b), the G-mean values of most datasets, except air, gcd, scd, and rcd, remain stable
around a window size of 100. Because the minority window is designed to improve the
probability of identifying positive class instances under imbalanced conditions, the results in
Figure 3(c) demonstrate that an increasing window size increases the Recallmin values for most
datasets. However, the for, ele, th1, and mus datasets remain nearly unchanged regardless of
the window size because minority instances within these four datasets are distributed more
evenly than in the other datasets. In addition, the ele dataset has a low imbalance rate (1:1.35),
and, thus, the window size has little influence on Recallmin.

Figure 3(d) indicates that the processing time typically increases as the minority window
size increases, although the processing times of th1 and th2 remain nearly unchanged because
the total numbers of minority instances within these two datasets are only 166 and 368. Based
on considerations of effectiveness and efficiency, we established the optimal size of the
minority window for each dataset, as listed in Table 3, and the following experiments were
conducted according to this standard.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.5

0.6

0.7

0.8

0.9

1

Minority window size

(a)

A
cc

ur
ac

y

ele
for

air

mus

th1

th2
po1

po2

gcd

scd
rcd

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minority window size

(b)

G
-m

ea
n

ele
for

air

mus

th1

th2
po1

po2

gcd

scd
rcd

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minority window size

(c)

R
ec

al
l o

f 
m

in
or

ity ele
for

air

mus

th1

th2
po1

po2

gcd

scd
rcd

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Minority window size

(d)

T
im

e/
se

co
nd

s

ele
for

air

mus

th1

th2
po1

po2

gcd

scd
rcd

Figure 3 Minority window size for different datasets

Table 3 Optimal minority window sizes for different datasets

ID ele for air mus th1 th2 po1 po2 gcd scd rcd

Window size 500 700 700 100 300 300 100 200 800 800 900
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4.5 Classifier window size setup

Because we employ an ensemble classifier and weighted majority vote, experiments were
conducted to determine the optimal classifier window size, and the results are shows in
Figure 4.

As shows in Figure 4(a), the accuracies of th2 and scd initially increase with increasing
classifier window size, and then remain stable, whereas gcd and rcd are observed to decrease,
particularly for small window sizes. The other datasets however appear to be insensitive to the
classifier window size. The G-mean values shown in Figure 4(b) exhibit very similar trends to
those of the accuracy. However, the Recallmin values showns in Figure 4(c) decrease slowly
with increasing classifier window size, indicating that a large number of sub-classifiers is not
always a good choice. The processing time consumed with respect to the classifier window
size is show in Figure 4(d). Based on considerations of effectiveness and efficiency, the
optimal classifier window sizes for most of the datasets considered are less than 6.

4.6 Comparison with existing methods

The performance of the proposed MWEL (MW) method was compared with those of two
existing approaches, denoted as the BD [15] and CS [32] approaches. The authors claimed that
their approaches performed better than those to which they were compared, but these two
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methods have not been compared directly with each other under equivalent evaluation metrics.
The results of the comparison are shown in Figure 5.

Figure 5(a) shows that the accuracy of MW is comparable those of BD and CS for most of the
datasets considered. Because MW focuses greater attention on minority instances, the precision of
the majority instances suffers, which affects the accuracy. Figure 5(b) shows that the G-mean values
of MW are generally close to those of BD, and that MW outperforms CS for all datasets. When
consideringG-mean andRecallmin in Figure 5(c) together, we note that, for th1 and th2, BD exhibits
obvious advantages in Recallmin relative to MW, while the advantages are reversed with respect to
G-mean. BD obtains betterRecallmin results because the approach accumulates all positive instances
to build successor sub-classifiers. However, an excessive number of minority instances may

ele for air mus th1 th2 po1 po2 gcd scd rcd
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets

(a)

A
cc

ur
ac

y

MW

BD
CS

ele for air mus th1 th2 po1 po2 gcd scd rcd
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets

(b)

G
-m

ea
n

MW

BD
CS

ele for air mus th1 th2 po1 po2 gcd scd rcd
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets

(c)

R
ec

al
l o

f 
m

in
or

ity

MW

BD
CS

ele for air mus th1 th2 po1 po2 gcd scd rcd
0

5

10

15

20

25

Datasets

(d)

T
im

e/
se

co
nd

s
MW

BD

CS

Figure 5 Performance comparison of the proposed MW with BD and CS approaches

Table 4 Wilcoxon signed rank test statistics

p-value

Accuracy G-mean Recall of minority Time

MW vs. BD 0.27832031 0.14746094 0.14746094 0.03222656
MW vs. CS 0.46484375 0.00488281 0.76464844 0.00976563
BD vs. CS 0.14746094 0.00097656 0.36523437 0.32031250
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overwhelm the majority, and, thus, the G-mean results suffer. In addition, a large number of
minority instances also incur greater processing time, as shown in Figure 5(d). MW is much more
efficient than BD, except for datasets for and mus, which are nearly balanced, and is consistently
more efficient that CS except for datasets po1 and po2. In actuality, the processing time for BD on
the air dataset was greater than twenty hours, but we set it to 25 s for display purposes.

In addition to the visual comparison given in Figure 5, we also applied the Wilcoxon signed
rank test to compare the statistical differences among MW, BD, and CS, and the corresponding
p-values are listed in Table 4. Although BD achieves larger G-mean and Recallmin values than
MW for some datasets, no statistically significant difference is observed among the three
methods in terms of accuracy with a significance level α = 0.05. However, for G-mean and
Recallmin, MW is better than CS. As for processing time, MW performs better than BD and CS
at the given significance level.

5 Conclusions

For classification of imbalanced streaming data, we proposed a multi-window based ensemble
learning (MWEL) framework to predict the class labels of newly arriving instances. We utilize
multiple windows to preserve the current data batch, selected positive instances, and the set of
latest sub-classifiers as well as the corresponding sets of instances used to train each sub-
classifier. Moreover, before predicting the label of incoming instances, we update the weight of
each sub-classifier by calculating the similarity between the current window and previous
windows used to train each sub-classifier. A weighed majority voting strategy is then used to
predict the class label. A new sub-classifier is trained only when the current ensemble classifier
exhibits low precision for one or both minority and majority classes. Under conditions of
substantial imbalance, we oversampled minority instances and under-sampled majority in-
stances. Extensive experiments on both real-world datasets and synthetic datasets demonstrat-
ed that our method can process imbalanced stream data efficiently and effectively, and, in
certain respects, outperforms existing methods, particularly with respect to processing time.
Owing to problem complexity, we considered only two classes in the present study. However,
many real-world applications involve multi-class or multi-label problems, so imbalanced
multi-class and multi-label stream classification will be the focus of future research.
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