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Abstract Identifying frequently occurring items is a fundamental building block in many
data stream applications. A great deal of work for efficiently identifying frequent items
has been studied on the landmark and sliding window models. In this work, we revisit this
problem on a new streaming model based on the time decay, where the importance of every
arrival item is decreased over the time. To address the importance changes over time, we
propose an innovative heap structure, named Quasi-heap, which maintains the item order
using a lazy update mechanism. Two approximation algorithm, Space Saving with Quasi-
heap (SSQ) and Filtered Space Saving with Quasi-heap (FSSQ), are proposed to find the
frequently occurring items based on the Quasi-heap structure. To achieve better accuracy
of frequency estimation for all the items in the stream, we introduce a new count-min-
min (CMM) sketch structure, which can estimate the count of an item with almost error
free. Extensive experiments conducted on both real-world and synthetic data demonstrate
the superiority of proposed methods in terms of both efficiency (i.e., response time) and
effectiveness (i.e., accuracy).
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1 Introduction

A data stream is a massive unbounded sequence of item continuously received at a rapid rate
and it appears in a variety of applications, such as network monitoring, financial monitoring,
Web logging, etc. Substantial analytical studies have been devoted to the data streams, such
as clustering [9], classification [26], and mining frequent patterns [5, 30]. Finding frequent
items [6, 11, 12, 15, 17, 18, 21, 23, 25, 28] has received considerable attentions in the data
stream analytical tasks. This problem has been served as an important building block for
different data stream mining problems, such as mining frequent itemsets [1, 2, 5, 19, 30]
and computing the entropy of a data stream [4].

In typical data stream scenarios, the item arrival rate is very high so that not all received
items can be kept in the main memory. Thereby, typical solutions scan every arrival item
once (i.e., sequential access) and drop unpromising items (e.g., less frequently occurring
items) when the main memory becomes full. Complying with these constraints, prior stud-
ies mostly focus on how to answer the data stream problem approximately with an error
bound.

Early solutions [11, 12, 15, 16, 18, 23, 25] of this problem are developed based on two
traditional streaming models, the landmark model (i.e., the frequent items can be any item
in the entire stream) and the sliding window model (i.e., the frequent items can only be the
items of the current window).While the landmark model preserves better data completeness,
it ignores the importance of newly arrival items. In many applications, recent data in the
stream is more meaningful. For instance, in an athlete ranking system, more recent records
typically should be given more weight [16]. One way to address this problem is to use
a sliding window model. However, the sliding window model partially address the item
freshness but the items not occurring in the current window are completely ignored.

To address these, answering frequent items in time decayed data streams has received
substantial attention from the community [7, 8, 13, 20, 24, 32, 33]. Under the time decay
model, the weight of the received items is decreased over time and the frequent items are
then computed based on the time decayed counts. This model preserves better completeness
(i.e., every item is considered) and item freshness (i.e., recent items are more important)
than the prior streaming models.

In the landmark and the sliding window models, the count of an item always increases
by one when the item comes from the stream. Hence, given an ordered list of the frequent
items (maintained by a linked list or a heap structure), we can swap the affected item with
its neighbors to maintain the order consistency. Under the time decay model, the weight
of every item is updated over the time subject to the decay function. Such huge number
of updates makes the frequent item problem challenging since the ordered list becomes
difficult to maintain.

To address this challenge, we propose a new heap structure, named Quasi-heap, which
maintains the order of unpromising items in the heap by a lazy manner. Based on the Quasi-
heap, two approximation algorithms are studied to solve the frequent item problem on time
decayed data stream. We briefly list our main contributions as follows.

– We propose a new heap structure, named Quasi-heap, to maintain the frequent items
based on their time decayed counts.
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– We invent two approximation algorithms, Space Saving with Quasi-heap (based on SS
[25]) and Filtered Space Saving with Quasi-heap (based on FSS [16]) to find the fre-
quent items in time decayed data streams. Our improved algorithms answer the frequent
item problem with reasonable memory space and guaranteed error bound. In addition,
we theoretically analyze the algorithm complexity.

– Extensive experiments are conducted to demonstrate the superiority of our algorithms in
terms of the running time and the estimation accuracy. More specifically, our algorithms
reduce response time up to 80 % compared with the ordinary heap solutions and provide
better estimation quality than prior studies.

A preliminary report of this work is published in [31]. The new contents in this ma-
nuscript include (1) studying a new count-min-min (CMM) sketch with higher estimation
accuracy, compared to the previously well-known count-min sketch; and (2) supplement-
ing some lemmas, theorems, and proofs which are left out in the preliminary conference
version [31]; and (3) conducting enhanced experimental evaluation that investigates the effi-
ciency of the proposed Quasi-heap, and adding several sets of experiments that shows the
effectiveness of the proposed CMM sketch (CMM sketch can estimate the count of an item
with almost error free).

The remainder of this paper is organized as follows. A survey of related work is presented
in Section 2. Section 3 formulates the frequent items problem in time decayed data streams.
Section 4 discusses and analyzes the Quasi-heap. Sections 5 and 6 depict two improved
algorithms SSQ and FSSQ, respectively. Section 7 gives the theoretical analysis for our
CMM sketch. Section 8 evaluates the proposed algorithms, and we conclude this paper in
Section 9.

2 Related work

2.1 Landmark model and sliding window model

In the landmark and the sliding window models, there are a great deal of work proposed
to find the frequent items from a data stream. These work can be classified into two main
streams [10], counter-based and sketch-based.

The counter-based algorithms [15, 18, 23, 25] are deterministic algorithms which only
monitor a subset of items from the data stream. These algorithms maintain a set of coun-
ters to track the frequent items over the subset. Space Saving [25], Lossy Counting [23],
Frequent [15, 18] are the representative algorithms in this stream.

Another line of work is the sketch-based algorithms which use a set of array counters to
estimate the frequency of the items. Different from the counter-based algorithms, each item
is projected into a set of corresponding sketches by some hash functions. The frequency of
an item is estimated from the counter of its corresponding sketches. To minimize the colli-
sion probability of the hash functions, we can increase the granularity of sketch (i.e., more
counters are used). However, this will lead to huge memory consumption. CountSketch [6],
Count-Min Sketch [11, 12], and FSS [16] are the representative algorithms in this stream.

However, these work either treat the stale and the fresh data the same (i.e., the landmark
model) or remove the stale item by a subjective window length (i.e., the sliding window
model). In real world applications, it is more desirable if the frequent item problem not only
considers every arrival item but also treats the fresh items more important than the stale
items.
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2.2 Time decay model

Finding frequent items in a time decayed data stream has received remarkable attentions
from the community recently [7, 8, 13, 20, 24, 32, 33]. Zhang et al. [32] proposed two ε-
approximation algorithms called Frequent-Estimating (FE) and FE with Heap (FEH). FE
updates the frequent item result for an item arrival in O(ε−1) time by a linked list and FEH
updates the result in O(log ε−1) by a heap structure. Chen et al. [8] proposed another ε-
approximation algorithm, called Frequent-item Counting algorithm (FC), which finds the
frequent data items based on the fading factor. It takes O(1) time to maintain the answer for
each arrival item by a hash function. Mei and Chen [24] proposed to estimate the frequency
of items by multiple hash functions. However, their work did not give the analysis of the
memory consumption and the result accuracy.

Recent developments attempted to improve the estimation accuracy by either exploit-
ing the decay function or employing new data structure. Lim et al. [20] proposed a new
ε-approximation algorithm, TwMinSwap, which takes O(ε−1) time to process each arrival
item. The basic idea is to drop the minimum item (with the smallest counter) when the
memory becomes full, where the counters are updated over time by multiplying the decay
rate. λ-HCount algorithm [7] employs a double linked list to record the frequent items and
improves the frequency estimation accuracy by multiple hash functions. The items moni-
tored in the double linked list are arranged in the descending order of their recently updated
time. Since the items are organized in a double linked queue structure, the algorithm can
reallocate an item entry to the end of the list in O(1) time.

All the above algorithms are based on a backward decay function where the item impor-
tance is decreased over time. The main challenge under the backward decay function is that
the weight of the existing items is constantly changed. To address this, Cormode et al. [13]
studied an alternative decay function that is a monotone increasing function to the age of
an item (i.e., the subtraction of the arrival time and the origin time). In this model, the item
weight is fixed when the age of an item is decided. In other words, the weight of the existing
items becomes stable and the problem of finding the frequent items becomes easier. How-
ever, the forward weight of an item will become very large (due to the age) if the system has
been running for a long time. One possible solution is to reset the origin time periodically
but it needs extra effort to recompute the frequent items. The effectiveness of the forward
decay model on the frequent item problem is unknown.

For clarity, in this work we focus on finding the frequent items based on the backward
decay function as it is widely adopted in prior studies.

3 Definitions and preliminaries

Table 1 summarizes the notations to be used in the rest of this paper. We use a standard
stream model with discrete timestamp labeled as < 0, 1, 2, 3, ... > and only one item ai

arrives at every timestamp. The current data stream Dn is the set of items that have been
received so far, i.e., Dn =< I1, I2, ..., In >.

While processing a long stream, it is reasonable to treat a recent itemmore important than
an old item. In this work, we adopt a backward time decay model that is used to gradually
decrease the effect of obsolete items.
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Table 1 Summary of notation
Notation Description

Dn The data stream up to time n

|Dn| Sum of the decayed counts of all items in Dn

ai An item in a data stream

It The received item at time t

Ct (ai ) The decayed count of the item ai at time t

ct (ai ) The estimated decayed count of the item ai at time t

τ Time decay rate

φ Frequency threshold

ε Error tolerance parameter

nk The frequency of the k-th frequent item

m The length of the monitored list

n The number of all the items in a data stream

D The number of all the distinct items in a data stream

Definition 1 (Decayed Count of An Item,Ct(ai)[5]) Given a time decay rate τ (0 < τ ≤ 1),
Ct(ai) is the decayed count of item ai at time t, i.e.,

Ct(ai) = Ct−1(ai) × τ + Wt(ai) (1)

where C1(ai) = W1(ai) and Wt(ai) is a function that indicates the arrival of item ai at time
t . Specifically, if It = ai , Wt(ai) = 1; otherwise, Wt(ai) = 0.

Based on Definition 1, we should update the decayed count of every item for each time
step. We observe that (1) is a monotone decreasing function (i.e., decreased by a factor of
τ ) until the item is received again from the data stream. Accordingly, at the current time t ,
the decayed count of an arrival item ai can be updated by

Ct(ai) = Cut(ai) × τ (t−ut) + 1

if the last updated time ut of ai is recorded.
The following Definition 2 defines our frequent item problem in this work which aims at

returning a set of highly occurring items subject to a frequency threshold φ. Specifically, an
item ai is in the result set if and only if its normalized decayed count is higher than φ and
the normalization factor is the sum of all items |Dn| (= (1− τn)/(1− τ), which approaches
to 1/(1 − τ) when n → ∞).

Definition 2 (φ-Frequent Item) Given a stream Dn of < I1, I2, ..., In >, and a frequency
threshold φ, 0 < φ ≤ 1. If the decay weight Cn(ai) is higher than φ × |Dn|, then ai is a
φ-frequent item.

We need huge memory to maintain the φ-frequent items exactly in a long running data
stream, where the space complexity is Ω(D) space when the number of distinct items in the
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stream is D [10]. Thereby, typical solutions focus on answering this problem approximately
subject to an error bound ε. Formally, the approximation version of the problem is defined
as follows.

Definition 3 (ε-Approximate Decayed Frequent items) Given a stream Dn of <

I1, I2, ..., In >, the ε-approximate frequent item set contains all items where their decayed
counts are higher than (φ − ε) × |Dn|.

4 Quasi-heap

To find the frequent items in a data stream, a group of counters is used to record the candi-
date items. We assume that there are m counters available (subject to the memory budget)
and these counters are organized into a linked list or a heap structure. To address the mem-
ory budget, prior studies [25] replace the smallest item by the newly arrival item when the
memory becomes full.

A heap is a partially sorted complete binary tree which is usually compactly stored in
an array data structure, as shown in Figure 1. Although a heap is not completely in order,
it conforms to a sorting principle: every node has a value less than or equal to both of
its children (actually, the value of every node can also be larger than or equal to both of
its children, but here we only use the heap with smaller value on the upper nodes, i.e.,
min-heap). More specifically, a file of keys K1,K2, ..., Km is a heap if K�j/2� ≤ Kj , for
1 ≤ �j/2� < j ≤ m, thus K1 ≤ K2, K1 ≤ K3, K2 ≤ K4, etc. It implies in particular that
the smallest key appears on top of the heap, i.e., K1 = min(K1,K2, ..., Km). An efficient
approach to the heap creation has been suggested by R. W. Floyd [14].

In the landmark model, the count value always increases by 1 for each coming item.
This fact ensures the updated time for each coming item is constant by using the linked list
or heap data structure, since we only need to move counters between neighboring parent
buckets in linked list or neighboring nodes in heap to keep correct order.

According to Definition 1, the decayed count of an item ai is increased when ai is
received from the stream. Thereby, the position of ai in the counters should be changed in
order to keep the order correct. Suppose we use a typical structure to keep these counters,
the complexity of each update takes O(m) (for the linked list) and O(logm) (for the heap
structure) time which is definitely too time consuming in a data stream environment. Hence,
we propose a new data structure called Quasi-heap which aims at postponing unpromising
sorting operations when the decayed count of an existing item is increased. In other words,

a

b

Figure 1 An example of an ordinary min-heap
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we allow certain inconsistency in the Quasi-heap structure. An example of the Quasi-heap
is given in the following Example 1.

Example 1 (An example of Quasi-heap) In Figure 2, we demonstrate the running proce-
dures of the Quasi-heap. Each node consists of the item name and its decayed count. We
adopt τ = 1 for ease of presentation. Figure 2a shows a Quasi-heap that contains 12 items
where the order is identical to that of the ordinary heap. Upon receiving the next sequence
< a, b, a, b, e, e >, the corresponding counts of a, b, e are increased. Instead of running
heapify to maintain the heap structure, we only mark these items as delayed (e.g., these
items are marked by thick lines in Figure 2b) since they are the old items in the Quasi-heap.
While receiving a new item n, we start to run the heapify partially to those delayed nodes
starting from the root. After the heapify process, item c becomes the root node as it is the
smallest item in the Quasi-heap (shown in Figure 2c). Then, item c is replaced by item n

(cf. Figure 2d) where the estimated count of n is set to 4 (i.e., the count of the evicted item
c + 1) as followed the suggestion of other counter-based algorithms [25].

According to the discussion in Example 1, the main operation, delayedSorting, is to
execute heapify partially on the Quasi-heap so that the minimum node can be properly
identified and removed.

Algorithm 1 describes the delayedSorting operation in detail. The information of an item
is updated in line 1. If the delayed flag of an item is not marked, in line 2, then its count
must be the minimum count in its subtree according to Lemma 1 (being discussed shortly).
If the delayed flag of an item is marked, the order of this item may be inaccurate so that
we need to execute the delayedSorting operation on its each child (lines 4–5). After the
recursive calls, if the count of the root is larger than the children, we swap the root with its
child in lines 7–8. If the counts are identical, we swap the root with its child only when the
child has larger estimated error than c (i.e., the estimated error is decided when the node is
inserted into the Quasi-heap, cf. line 9 of Algorithm 2 and Example 1).

We give the properties of Quasi-heap in the following Lemma 1 and Theorem 1.

Lemma 1 Let p and q be two counters in a Quasi-heap and p is an ancestor of q. if
p.delay = 0, then the decayed count of p is no larger than q.
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a b

d c

Figure 2 A running example of Quasi-heap

Proof When the Quasi-heap is not full, the Quasi-heap is identical to an ordinary heap so
that p.cnt ≤ q.cnt due to the heapify.

When the Quasi-heap becomes full, there are two cases. If the item p is not received from
the data stream again, then p.cnt ≤ q.cnt is still held no matter whether q has been updated
or not due to the monotonicity of the decayed count function (cf. (1)). If the item p has been
received from the data stream again, the delay flag of p must be set to 1. The delay flag
is reset to 0 only when the subtree of p is refined by the heapify (cf. Algorithm 1) so that
p.cnt ≤ q.cnt is still held.

According to the Lemma 1, we can get another property. If c.delay = 0, the decayed
count of c is no larger than that of any descendent in its subtree. So, c has the smallest
decayed count in its subtree.

Theorem 1 After executed delayedSorting (i.e., Algorithm 1) on item c, c must have the
minimum decayed count among its subtree.

Proof We prove it by induction. Let ht be the height of the subtree with c as its root. When
ht = 1, the statement is obviously true.

Suppose the statement is true for ht − 1, now we prove that it is also true for ht. If
c.delay = 0, then c is already the minimum decayed count in its subtree. If c.delay = 1,
Algorithm 1 is called for its two children counter. After the execution of algorithm 2 for
the two children counter, they both have the minimum decayed count in their own subtrees
by the assumption. By comparing and swapping counter c with the smaller of two children
counter, the item kept in the counter c becomes the minimum decayed count in its subtree.

Time complexity analysis When the newly arrival item is in the Quasi-heap, we only
update the decayed count of this item and mark the delay flag. Hence, processing an existing
item take O(1) time.
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When the newly arrival item is not in the Quasi-heap, we replace the minimum item of
the Quasi-heap by this new item. To find the minimum item in the Quasi-heap, we execute
Algorithm 1 to ensure the correctness of the order. The cost of Algorithm 1 is O(m) as it
may traverse the entire tree in the worst case. However, this case is very rare to happen in
real datasets. In addition, a frequent item is likely kept in the Quasi-heap (as their count is
high) and it is more frequently received form the data stream than other items. The response
time of processing the existing items is dramatically reduced from O(logm) to O(1). In
our experiments, the Quasi-heap can reduce response time up to 80% as compared with the
ordinary heap.

5 Space saving algorithm with Quasi-heap (SSQ)

We study a counter-based algorithm, SSQ (that is based on the SS algorithm [25]), to
find the ε-approximate decayed frequent items. Algorithm 2 depicts the SSQ in detail. If the
new arrival item c is already in the Quasi-heap (lines 2–3), we update its statistics and mark
the delay flag as 1. Otherwise, we first check whether the Quasi-heap is full or not. If the
Quasi-heap is not full (lines 12–15), we simply execute heapify to maintain the consistence
of the Quasi-heap. Otherwise, we run the delayedSorting from the root of the Quasi-heap
and replace the refined root by the new item c. Similar to the SS algorithm, the estimated
count of a new item c is derived from the count of the removal item r .

We present two properties of our SSQ algorithm, which are based on the properties
proposed in the Space-Saving algorithm [25] and the FE algorithm [32] with some minor
modifications.

Lemma 2 Among all m counters, the minimum counter value μ is no greater than (1 −
τn)/m(1 − τ).
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Proof The sum of estimated counts of all m items in the monitored list is no greater than the
sum of decayed counts of all n items in the data stream, i.e., �icn(ai) ≤ (1 − τn)/(1 − τ).

mμ ≤ �icn(ai) ≤ (1 − τn)/(1 − τ)

so, μ ≤ (1 − τn)/m(1 − τ)

Based on the Lemma 2, the SSQ algorithm can use confined space (i.e., setting m =
�1/ε�) to find ε-Approximate frequent items by securing the error ratio at most ε × |Dn|
[25].

Theorem 2 (No False Negative) For any item ai with decayed count Cn(ai) greater than μ

(the minimum counter value in Quasi-heap) is present in the Quasi-heap.

Proof We prove the theorem by contradiction. Assume in the current time t, an item ai with
decayed count Ct(ai) > μ is not in the Quasi-heap. Then, ai must be evicted sometime
in the past. Suppose ai was last evicted at time unit t ′ in the past. When ai was evicted,
its decayed count was Ct ′(ai) = Ct(ai)/τ

t−t ′ , which is larger than μ/τ t−t ′ (according to
the assumption Ct(ai) > μ). Let μt ′ be the minimal counter value at time unit t ′, then
μt ′ is no larger than μ/τ t−t ′ . We can get Ct ′(ai) = Ct(ai)/τ

t−t ′ > μ/τ t−t ′ ≥ μt ′ . So,
clearly, Ct ′(ai) ≥ μt ′ . This fact means that estimated count of item ai was greater than the
minimum counter value when it was evicted at time unit t ′. This contradicts the fact that the
SSQ algorithm evicts the item with the minimum counter value.

6 Filtered space saving algorithm with quasi-heap (FSSQ)

In this section, we propose a sketch-based algorithm, Filtered Space Saving algorithm with
Quasi-Heap (FSSQ) (that is based on the Filtered Space Saving algorithm [16]), to find
the frequent items. The FSSQ algorithm employs two data structures, (1) the Quasi-heap
and (2) a sketch (i.e., a two-dimensional array with the width w and the depth d). The
count-min sketch data structure used in this work is similar to that of the Count-Min algo-
rithm [10]. The structure is conceptually described in Figure 3. Each entry of the sketch
is composed of an estimated count and the time of last update, denoted as (cnt, ut). To
update the value of the sketch entries, we need d pairwise-independent hash functions:
h1, ..., hd : {1, 2, ..., D} → {1, 2, ..., w}. FSSQ improves the estimation accuracy since the
count of a new item is estimated by d sketch entries instead of the minimum item in the
Quasi-heap (cf. SSQ).

Figure 3 The data structures used in FSSQ algorithm
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Algorithm 3 depicts the FSSQ, whose idea is similar to that of Algorithm 2 except the
situation that a new item is not tracked in Quasi-heap and the Quasi-heap becomes full,
hence we omit to describe the similar parts. We first run delayedSorting from the root (line
7) in order to find the minimum item. Next we update the corresponding sketch entries by
c (lines 9–11), and estimate its minimum value among d corresponding sketch entries (line
13). If the estimated minimum count is larger than the root of Quasi-heap, then we replace
the root by the new item c (lines 19–20) and update the corresponding sketch entries by the
evicted item r (lines 15–17).

The properties of the FSSQ algorithm are given in Lemmas 3–5 and Theorem 3.

Lemma 3 At any moment, for each item ai , the minimum count μ in the Quasi-heap is
no less than the minimum entry that the hash function values of ai associates, i.e., μ ≥
min1≤j≤ds[j, hj (ai)].

Proof In the initialization phase, all the hits in stream are reflected in the counters of Quasi-
heap, and all the entries in sketch have value of 0. Hence, the conclusion is trivially true.
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Now we consider the situation when the Quasi-heap has been full. For a new coming
item, if it is being monitored in the Quasi-heap, its counter in Quasi-heap increases and
all the entries in the sketch remain unchanged. With the same decay rate and initially μ ≥
min1≤j≤ds[j, hj (ai)], the inequality is still true.

If a new coming item is not being monitored in the Quasi-heap, the increment of the
entry in the sketch may lead to the situation that the minimum entries become larger than μ.
However, at this case, a replacement is taken place. Hence, the conclusion is still true.

Lemma 4 For any item in the Quasi-heap, its overestimated error is no greater than μ.

Proof For any item ai in the Quasi-heap, its maximum overestimated error is always
assigned the minimum decayed count in the entries that ai associates, when a replace-
ment takes place. This value is no greater than μ according to Lemma 3, so the maximum
overestimated error is no greater than μ.

Lemma 5 Assume w = �e/ε� and d = �ln(1/δ)�, in which e is the Euler’s constant, i.e.,
the base of natural logarithms. For any item in the Quasi-heap, its count error is no greater
than ε/(1 − τ) with probability at least 1 − δ.

Proof We introduce indicator variables Ii,j,k as follows.

Ii,j,k =
{
1 if ai �= ak ∧ hj (ai) = hj (ak)

0 if otherwise

By pairwise independence of the hash functions, then the expectation of variables Ii,j,k is

E(Ii,j,k) = Pr[hj (ai) = hj (ak)] ≤ 1/w ≤ ε/e

Let Xi,j = �k=1,...,D(Ii,j,k × Cn(ak)). Since all Cn(ak) are non-negative, Xi,j is a
non-negative variable. By construction, s[j, hj (ai)] = Cn(ai) + Xi,j . Thereby,

min1≤j≤ds[j, hj (ai)] ≥ Cn(ai)

By pairwise independence of hj , and linearity of expectation, we observe that

E(Xi,j ) = E(�k=1,...,D(Ii,j,k × Cn(ak)))

= �k=1,...,D(E(Ii,j,k) × Cn(ak))

≤ ε/e�k=1,...,DCn(ak) ≤ ε

e × (1 − τ)

By the Markov inequality,

Pr[Xi,j > eE(Xi,j )] < E(Xi,j )/eE(Xi,j ) < 1/e

By combining these,

Pr[∀j, Xi,j > eE(Xi,j )] < e−d(1 ≤ j ≤ d)

P r[cn(ai) > Cn(ai) + ε/(1 − τ)] = Pr[∀j, s[j, hj (ai)] > Cn(ai) + ε/(1 − τ)]
= Pr[∀j, Cn(ai) + Xi,j > Cn(ai) + ε/(1 − τ)]
= Pr[∀j, Xi,j > ε/(1 − τ)]
≤ Pr[∀j, Xi,j > eE(Xi,j )] < e−d ≤ δ
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Theorem 3 For any item with Cn(ai) > μ is present in the Quasi-heap.

Proof We first prove that ai is present in the Quasi-heap. If the last arrival time of ai is t1
time unit ago, then the estimated count of ai in the sketch t1 time units ago is no less than
Cn(ai)/τ

t1 . Thereby, min1≤j≤ds[j, hj (ai)]/τ t1 ≥ Cn(ai)τ
t1 > μ/τ t1 . This means that ai

was inserted in the monitored counters t1 time units ago. We also need to show there is
no false negative result. The proof is identical to that of Theorem 2 if ai is present in the
Quasi-heap.

7 Count-Min-Min (CMM) sketch

In this section, we will introduce our Count-min-min (CMM) sketch which is an improved
sketch based on the best well-known count-min (CM) sketch. CMM sketch provides a
tighter bound of frequency estimation error.

In recent years, several different sketches [6, 11, 29] have been proposed in the data
stream context to solve large-scale computation. These sketches in general consume rea-
sonable space overhead and offer high accuracy result. Our CMM sketch lies in the same
framework, and finds inspiration from these previous sketches. The common framework has
been described in Figure 3 of Section 6.

Two well-known sketches are count sketch [6] and count-min sketch [11]. These two
sketches both use multiple hash functions to define a projection from incoming items to a
set of array counters. Each item is hashed by some hash functions into one or more values,
which can be used to index the counters to update. The count sketch uses the mean or median
of these estimates to achieve an estimation count. However, the count-min sketch uses the
minimum count of all corresponding counters to estimate the count of an item.

In the count-min sketch, an array of d ×w counters (each counter is initialized with zero)
is maintained, along with d hash functions. When a new item c comes, it is projected by d

hash functions into d corresponding counters in the array and each of which is incremented,
shown in Figure 4. A query for the frequency of any item in the data stream reports the
minimum count of all corresponding d counters.

According to Lemma 5, it is known that the counts estimated by the count-min sketch
are overestimated. Now, when a new item c comes, we only increase the minimum count
of these d corresponding counters, not each of them. Even so, it is still guaranteed that the
frequency estimation of every item is overestimated. We call the improved count-min sketch
for count-min-min (CMM) sketch, shown in Figure 5. We argue that the accuracy of the
frequency estimation will be improved.

Noted that, we will increase all the counts when multiple corresponding counters all have
the minimum value.

Figure 4 The update in the CM sketch
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Figure 5 The update in the CMM sketch

On theoretical aspect, the following Lemma 6 will show that the counts estimated by the
count-min sketch are still overestimated and the estimation error is tighter.

Lemma 6 In CMM sketch, the estimate cn(ai) has the following guarantees: Cn(ai) ≤
cn(ai), and with probability at least 1 − δ, cn(ai) ≤ Cn(ai) + ε

(1−τ)×ln(1/δ) .

Proof We introduce indicator variables Ii,j,k as follows.

Ii,j,k =
{
1 if ai �= ak ∧ hj (ai) = hj (ak) ∧ s[j, hj (ak)] = min1≤j≤ds[j, hj (ak)]
0 if otherwise

By pairwise independence of the hash functions, then the expectation of variables Ii,j,k is

E(Ii,j,k) = Pr[hj (ai) = hj (ak)∧s[j, hj (ak)] = min1≤j≤ds[j, hj (ak)]] ≤ 1

wd
≤ ε

eln(1/δ)

Let Xi,j = �k=1,...,D(Ii,j,k × Cn(ak)). Since all Cn(ak) are non-negative, Xi,j is a
non-negative variable. By construction, s[j, hj (ai)] = Cn(ai) + Xi,j . Thereby,

min1≤j≤ds[j, hj (ai)] ≥ Cn(ai)

By pairwise independence of hj , and linearity of expectation, we observe that

E(Xi,j ) = E(�k=1,...,D(Ii,j,k × Cn(ak)))

= �k=1,...,D(E(Ii,j,k) × Cn(ak))

≤ ε

eln(1/δ)
× �k=1,...,DCn(ak)

≤ ε

eln(1/δ) × (1 − τ)

By the Markov inequality,

Pr[Xi,j > eE(Xi,j )] < E(Xi,j )/eE(Xi,j ) < 1/e



World Wide Web (2017) 20:1111–1133 1125

By combining these,

Pr[∀j, Xi,j > eE(Xi,j )] < e−d(1 ≤ j ≤ d)

P r[cn(ai) > Cn(ai) + ε

(1 − τ) × ln(1/δ)
] = Pr

[
∀j, s[j, hj (ai)] > Cn(ai) + ε

(1 − τ) × ln(1/δ)

]

= Pr

[
∀j, Cn(ai) + Xi,j > Cn(ai) + ε

(1 − τ) × ln(1/δ)

]

= Pr

[
∀j, Xi,j >

ε

(1 − τ) × ln(1/δ)

]

≤ Pr[∀j, Xi,j > eE(Xi,j )] < e−d ≤ δ

8 Experimental study

In this section, we empirically evaluate the efficiency of SSQ and FSSQ using both real and
synthetic datasets. We compared our proposed solutions with the state-of-the-art solutions,
TwMinSwap [20] (counter-based) and λ-HCount [7] (sketch-based). Most of the existing
works arrange the items in the monitored list according to their updated time and remove
the item with the least updated time when the monitored list is full. Hence, all implemented
algorithms in our experiments also follow this convention. All methods were implemented
in C++ and compiled using Microsoft Visual Studio 2012 compiler. All experiments were
conducted on a 3.20 GHz Pentium PC machine with 8GB main memory running Windows
7 Professional Edition.

In the sequel, we first present the experimental setup in Section 8.1, and report the exper-
imental results and our findings in Section 8.2, and a comparison between Quasi-heap and
an ordinary heap is made to investigate the performance gains from Quasi-heap in Sec-
tion 8.3, and then several sets of experiments are conducted to evaluate the effectiveness of
our proposed CMM sketch in Section 8.4.

8.1 Experimental settings

We employed both synthetic and real datasets in our experiments. The synthetic datasets are
generated based on Zipfian distributions. Table 2 shows every parameter and their values
used in the experiments. (An appropriate Zipfian parameter is chosen so that the data is not
overly skewed, which will make it very easy to distinguish frequent items. But at the same
time it also guarantees that the number of frequent items which is above the threshold is
not very little). We also used two real datasets, e.g., Kosarak and Retail, that are widely
evaluated in data stream research [22, 27]. The Kosarak dataset is an anonymized click-
stream on a Hungarian online news portal.1 It consists of transactions, each of which has
several items, expressed as integers. The Retail dataset contains retail market basket data
from an anonymous Belgian store [3]. In our experiments, we consider every single item in
sequential order. The detail statistics of the real datasets is listed in Table 3.

1Frequent Itemset Mining Dataset Repository, available at http://fimi.cs.helsinki.fi/data/ (last accessed on 17
November, 2016)

http://fimi.cs.helsinki.fi/data/
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Table 2 Parameters

Parameter Values Default values

n 104, 105, 106, 5 × 106, 107 107

z 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 1.0

φ 0.0001, 0.0005, 0.001, 0.005, 0.01 0.001

space(bytes) 104, 2 × 104, 3 × 104, 4 × 104, 5 × 104 4 × 104

τ 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1.00 0.995

For fairness, we used common subroutines for similar tasks (e.g., hash tables) to increase
comparability and allocated identical memory budget to all the algorithms. Based on FSS
algorithm proposed by Homem and Carvalho [16], m2, the number of counters in sketch-
based algorithms, is almost half of m1, the number of counters in counter-based algorithms.
The budgeted memory for all algorithms are the same, i.e., 40×m1 = 40×m2+16×d ×w

(40 bytes for every counter, 16 bytes for a unit in the sketch structure, the depth d of the
sketch and the width w of the sketch). A large number of experiments also show that the
conflict can be down to very low when d is 4. And in all experiments, the default value of
m1 is 800. We verify the performance of algorithms with respect to:

– Time: Each algorithm is run for 20 times and their average response time is reported.
– Precision: The fraction of the items identified by the algorithm that are actually

frequent.
– Recall: The fraction of the actual frequent items that the algorithm identified. In all

algorithms, all the frequent items are detected due to the overly estimated count (cf.
Theorem 2).

8.2 Experimental results

To verify the scalability of the algorithms, we varied one parameter in each set of experi-
ments while setting other parameters to their default values. In our experiments, we showed
the response time and precision of the algorithms as a function of stream size (n), data
skew (z), frequency threshold (φ), space consumed and decay rate (τ ) on three datasets,
respectively.

Performance Overview In terms of the response time, SSQ yields better performance
than state-of-the-art solutions, due to the Quasi-heap data structure proposed which can save
the response time by up to 80 %. In terms of the precision, FSSQ performs the best among
all methods due to the sketch structure which can get a better bound on the estimation count
error.

Table 3 Statistics of the real data streams

Dataset Size n Distinct Min Max Mean Median Standard Median

name items (D) deviation

Kosarak 8019015 41270 1 41270 2387.2 640 4308.5 3.5

Retail 908576 16470 0 16470 3264.7 1564 4093.2 1.5
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Figure 6 Varying stream size on Synthetic dataset

Figure 6 shows the response time and the precision by varying the cardinality of the
items. Notably, the response time of all methods increases as the stream size becomes larger.
We find that the counter based algorithms are faster than the sketch based algorithms; how-
ever, the counter based algorithms is less accurate than the sketch based algorithms as
discussed in Section 6.

It is obvious that the response time decreases when the data becomes more skewed (cf.
Figure 7a). That is because that the cost of processing an existing item in the Quasi-heap is
less than that of processing a new item in the Quasi-heap. The probability of receiving an
existing item becomes higher when the data is more skewed. In other words, the skewness
of data can simplify the problem as there are fewer frequent item candidates. Therefore, the
response time of all methods decreases when the data become more skewed.

Figures 8 and 9 show the experiments conducted φ and τ , respectively. Due to space
limit, each figure only reports two sets of experiments as all methods preform similarly on
these three datasets. For instance, SSQ is 35–40 % faster than TwMinSwap on average for
the frequency threshold φ and the decay rate τ in all three datsets. In Figure 9, we observe

Figure 7 Varying data skew on Synthetic dataset
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Figure 8 Varying frequency threshold on Synthetic dataset (a and b) and Kosarak datasets (c and d)

that the trend of the response time and precision almost keep unchanged as the decay param-
eter changes. There should not be mush significant dependence on this parameter, since the
underlying problem is the same, just the input weight are being implicitly modified.

Figure 10 shows that the precision increases significantly when we have more space for
the Quasi-heap and sketch based algorithms are more accurate than counter based algo-
rithms. As an example in Figure 10b, SSQ and TwMinSwap find 86 % true frequent items
when the space is set to 40000 bytes while FSSQ and λ-HCount find 99 % true frequent
items using the same memory budget.

8.3 Effectiveness of Quasi-heap

We also performed an experiment to investigate the advantage of the Quasi-heap (SSQ) as
compared to the ordinary heap (SS). We reported the number of comparisons performed in
the heap and response time.

Figure 11a shows that the performance between the Quasi-heap and the ordinary heap.
For example, when stream size is 106 and data skew is 1.5, the number of comparisons in
Quasi-heap is 278Kwhich is 35 % smaller than 429K in the ordinary heap. The advantage of
our Quasi-heap becomes more significant when the data becomes more skewed. Figure 11c
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Figure 9 Varying decay rate on Kosarak dataset (a and b) and Retail datasets (c and d)

shows that the number of comparisons in Quasi-heap is only 2K when data skew is set to
3.0 which is 118 times smaller than 236K in the ordinary heap. From Figure 11b and d, we
can find that the Quasi-heap reduce the response time by up to 80 % since huge amount of
unpromising comparisons are delayed by the delaySorting method.

8.4 Effectiveness of CMM sketch

We theoretically discussed the estimation error of our improved count-min-min sketch
(CMM) and the count-min sketch (CM) in Lemma 6 and Lemma 5, respectively. Next, we
verify it by a set of experiments. For a more direct comparison, we use the CM sketch and
CMM sketch to estimate the count of an item. The sketch depth is set to d = 4 and the
width to w = 2/φ, based on the analysis of the CM sketch[11].

Firstly, we define the estimation error rate of these two sketches by the following
equation:

EER = Estimated count by sketch − T rue count

T rue count
. (2)
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Figure 10 Varying memory space on Synthetic dataset (a and b) and Retail datasets (c and d)

Next, we define the reduced error rate by our CMM sketch, compared to CM sketch by
the following equation:

EER′ = Estimated count by CM − Estimated count by CMM

Estimated count by CM
. (3)

We used the CM sketch and CMM sketch to estimate the count of an item, and the
results of the estimated counts and the error rate on Retail dataset and Kosarak dataset
are shown in Tables 4 and 5, respectively. It is exciting that the estimated counts by our
CMM sketch are always lower than that by the CM sketch. For example, from Table 4,
the true count of the item ’1’ is 266, the estimated count by CM sketch is 3695 and the
estimated error rate ERR = (3695 − 266)/266 = 1289 %, which is vastly overestimated.
However, the estimated count by our CMM sketch is only 272 and the estimated error rate
ERR = (272−266)/266 = 2.25 %, which is more accurate and acceptable in a data stream
environment. The estimated error is reduced by ERR′ = (3695 − 272)/3695 = 92.64 %,
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Figure 11 The number of comparisons varying data skew in Ordinary heap and Quasi-heap, respectively

which is a significant improvement. Even more, we can see that the estimated error rate of
our CMM sketh EER sometimes reaches 0.

In summary, our CMM sketch can estimate the count of an item with little, and often
with no error at all.

Table 4 Estimation error of CM sketch and CMM sketch on Retail

Item ID True count Estimated count EER of Estimated count EER of CMM EER′

by CM CM by CMM

1 266 3695 1289 % 272 2.25 % 92.64 %

2 549 1001 83.24 % 562 2.36 % 43.86 %

3 8 213 2562 % 155 1837 % 27.23 %

10 712 801 12.5 % 712 0 11.11 %

20 5 63 1160 % 59 1080 % 6.35 %

30 540 612 13.33 % 540 0 11.76 %

100 54 198 211 % 161 198 % 18.67 %

200 239 412 72.38 % 240 0.41 % 41.75 %

300 37 91 145 % 79 113 % 13.19 %
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Table 5 Estimation error of CM sketch and CMM sketch on Kosarak

Item ID True count Estimated count EER of Estimated count EER of CMM EER′

by CM CM by CMM

1 197522 198725 0.61 % 197522 0 0.61 %

5 5930 6644 12.04 % 5930 0 10.75 %

10 294 2099 613 % 1073 264 % 48.89 %

50 1445 2241 55.08 % 1449 0.27 % 35.34 %

100 963 1350 40.18 % 1001 3.94 % 25.85 %

500 49 582 1087 % 576 1075 % 1.03 %

1000 2266 2916 28.68 % 2266 0 22.30 %

9 Conclusion and future work

In this paper, we focused on the problem of finding frequent items in data streams with a
time decay model. In order to reduce the maintenance cost of the ordinary heap, we proposed
a Quasi-heap data structure with a delayed sorting operation and invented two algorithms
based on it. In order to improve the estimation accuracy, we propose a count-min-min
(CMM) sketch structure based on the best well-known count-min sketch. We extensively
evaluated our methods on three datasets. Our algorithms with the Quasi-heap reduce
response time up to 80 % compared with the ordinary heap solutions and the proposed
CMM sketch can estimate the count of an item with almost error free.

In the future, we intend to further study how to extend the proposed approaches to a
distributed environment to handle greater scales of data streams, when a single machine is
no longer capable of managing the large volumes of data and computation.
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