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Abstract Flexible and self-adaptive stream join processing plays an important role in a par-
allel shared-nothing environments. Join-Matrix model is a high-performance model which
is resilient to data skew and supports arbitrary join predicates for taking random tuple
distribution as its routing policy. To maximize system throughputs and minimize network
communication cost, a scalable partitioning scheme on matrix is critical. In this paper, we
present a novel flexible and adaptive scheme partitioning model for stream join operator,
which ensures high throughput but with economical resource usages by allocating resources
on demand. Specifically, a lightweight scheme generator, which requires the sample of each
stream volume and processing resource quota of each physical machine, generates a join
scheme; then a migration plan generator decides how to migrate data among machines under
the consideration of minimizing migration cost while ensuring correctness. We do extensive
experiments on different kinds of join workloads and the evaluation shows high competence
comparing with baseline systems on benchmark data and real data.
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1 Introduction

With development of communication technology and hardware equipment, especially the
widespread use of small wireless sensor, data is showing the scale of explosive growth in
many fields, for example in spatial data management [20–22, 37, 38]. It exposes challenges
to such applications to provide efficient online stream processing in real time. Efficient
stream join processing with arbitrary predicates is essential and critical to data stream
systems. Data skew is a common phenomenon in those scenarios and leads to lingering pro-
cessing in parallel shared-nothing environment [10]. In this context, load balancing [16, 19,
28, 33, 34] is crucial for improving throughputs by vanishing those lingering tasks which
are overloaded. There have been work to solve the imbalance problem among tasks for dif-
ferent operations, such as Summarization [5], Aggregation [4, 23] and Join [14, 30, 34],
which may group data by keys for processing. One of the most challenging tasks above is
to support θ -joins [7, 18, 24] in a flexible, efficient and scalable manner under workload
skewness.

There have been great interest in designing stream join algorithms. On one hand, existing
centralized algorithms [6, 15, 29, 32] are mainly tailored for a single server, hence they
cannot scale out and deal with massive data sets; on the other hand, existing distributed
and parallel join algorithms are mostly suitable for equi-join processing and present poor
performance when handling θ -join operators.

Processing θ -joins on streams with skew data distribution, there are two kinds of popular
processing models, namely join-biclique [18] and join-matrix [7, 24]. Lin et al. proposed
a join-biclique model [18] which organizes all the processing units as a complete bipar-
tite graph where each side corresponds to one stream. Given m + n units (tasks), m units
from one side of the bipartite graph are used for managing/storing tuples in one stream
while flowing tuples from the other stream among those m units; n units are for the other
one. Join-matrix model supports distributed join processing with arbitrary join predicates
perfectly. It was studied a decade ago and has been revisited in both MapReduce-like sys-
tem [24] and stream applications [7]. Apparently, it models a join operation between two
streams as a matrix, where each side is on behalf of one stream. Furthermore, the change of
input stream volume will lead to the adjustment of matrix scheme accordingly to handle the
new workload distribution. Based on this model, Okcan [24] et al. introduces two partition-
ing schemes in a MapReduce job, namely 1-Bucket and M-Bucket. It performs well only
when input or output dominates processing cost and it requires to get input statistics before
optimization execution. Dynamic, a join operator designed in [7], adopts a grid-layout par-
titioning scheme on the matrix. Although it is resilient to data skew as taking a random
distribution as routing policy for input tuples and it can perfectly handle any join predicates
for it ensures each tuple of one stream to meet any tuple in the other stream. However, it
suffers from inflexibility and huge amount of tuple duplication while scaling out or down.
For example, Dynamic assumes the number of tasks in a matrix must be a power of two
and scales out by splitting the states of every task to four tasks if a task storing a number of
tuples exceeding the specified storage capacity or processing capacity, and vice versa.

The matrix model seems to be the most suitable one for θ -join with correctness guarantee
and balance load distribution, but it still has the following inherent disadvantages:

1) The number of tasks is strictly decided by the number of cells in the matrix, which is
calculated by multiplying the number of rows and columns of the matrix;

2) In the case of stream change, that is stream volume increasing or shrinking, adding or
removing processing tasks must be consistent with matrix cells.
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Since the allocation of tasks is decided by the number of cells of the matrix, it greatly
limits the flexibility of processing with the dynamics of stream, and may cause resource
waste by generating more tasks than needed.

According to the discussion above, join-matrix model exposes two challenges: 1) how
to generate an appropriate matrix scheme to achieve maximum utilization of resources;
2) when scheme is changed, how to repartition states among tasks to minimize migration
cost.

Our previous work in [9] has shown a flexible and adaptive model for distributed and
parallel stream join processing. In this paper, we continue optimize this model and make
it inherit the characteristics of traditional matrix model but allow irregular shaping of the
matrix to allocate resource in demand. Then it can promise the efficient resource utilization.
In summary, we have made the following contributions in this paper:

1) We adopt the matrix generation strategy based on the idea of square cells having less
resource consumption. In this paper, we give more detailed explaination to scheme
generation and tuple migration.

2) We show the routing strategy for input tuples in the proposed model. To find the migra-
tion plan that leads to minimal data transmission overhead, we present a lightweight
computation model and explain it through particular examples.

3) We introduce a varietal matrix scheme which aims to build an irregular matrix scheme
with minimal task assignment. Besides, we give more detailed theoretical analysis for
our proposed model to prove its usability and correctness.

4) We have implemented the proposed method based on Apache Storm. In this paper,
we do much more extensive experiments using both benchmark datasets and real-work
workloads to confirm the advantages of our method.

The remainder of this paper is organized as follows. Section 2 introduces the background
and problem formulation of our work. Section 3 presents our scheme generation algo-
rithms to support load change. Section 4 proposes the migration plan generation algorithm.
Section 5 will discuss the further optimization for matrix model. Section 6 presents empir-
ical evaluations of our proposal. Section 7 reviews a wide spectrum of related studies on
stream join and workload balancing in distributed systems. Section 8 finally concludes the
paper and addresses future research directions.

2 Background and problem formulation

In this section, we give a detailed introduction to the related matrix model, and then we
present our optimization goal on the matrix model.

2.1 Matrix model

In order to make it easy for explanation, all notations used in the rest of this paper are
summarized in Table 1. A partitioning scheme on the matrix model splits R �� S into a
number of smaller parallel join processing units which are the cells in the matrix decided
by rows and columns. Each cell holds partial subset of data from each stream, which is
represented as a range [b, e] to denote the begin b and end e points along the stream window.
In Figure 1a, a join operation between two data streams R and S can be modeled as a matrix,
each side of which corresponds to one stream. The calculation area can be represented by
a rectangular with width |R| and length |S|. A partitioning scheme splits the area into cells
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Table 1 Table of Notations
Notations Description

M/Mo/Mn matrix / old matrix / new matrix

R, S R, S stream

α, β number of rows and columns of M

i/j ith row, j th column in old shceme

k/l kth row, lth column in new shceme

mij element of i-th row and j -th column

ri/sj stream in i-th row or j -th column

mp the migration plan

hR
ij /hS

ij the sub-range of stream R/S that has

been stored in mij

sR
kl/s

S
kl the sub-range of stream R/S that should

be stored in mkl

V (Vh) memory size of each task(half size Vh = V
2 )

npi the mapping of tasks between old and now scheme

|o| the volume of set o

NP/MP the set of npi/mp

λ
ij
kl data overlapping between mij and mkl

mij = (ri , sj ) (0 ≤ i ≤ α − 1, 0 ≤ j ≤ β − 1) of equal size representing stream volume as
shown in Figure 1b.

Specifically, any process scheme M has the following characteristics when we use it to
perform the operation of R �� S.

1) ∀j, j ′ ∈ [0, β − 1], ∀i ∈ [0, α − 1], then hR
ij = hR

ij ′ and ∀i, i′ ∈ [0, α − 1],∀j ∈
[0, β − 1], then hS

ij = hS
i′j ;

2) ∀j ∈ [0, β − 1], ∀i, i′ ∈ [0, α − 1], i �= i′, then hR
ij ∩ hR

i′j = ∅ and ∀i ∈ [0, α − 1],
∀j, j ′ ∈ [0, β − 1], j �= j ′, then hS

ij ∩ hS
ij ′ = ∅;

3) ∀j ∈ [0, β − 1], ⋃

i∈[0,α−1]
hR

ij = R and ∀i ∈ [0, α − 1], ⋃

j∈[0,β−1]
hS

ij = S.

(a) Calculation Area (b) Partition Scheme

Figure 1 Example of Partition Scheme
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For those characteristics in matrix model, Points 2) and 3) enable this model to support
arbitrary join caculation by that tuples in one stream can meet all tuples in the other stream.
Furthermore, Points 2) and 3) also ensure the correctness of R �� S. Specifically, point
2) guarantees there will exist none reduplicated results and point 3) ensures that there will
not have missing results. In this context, points 2) and 3) act as our principles in designing
scheme generation algorithm.

2.2 Optimization goal

Our optimization goal is to figure out the proper values for α and β to achieve the optimal
resource usages. Supposing the maximum memory size for each task is V , we formulate
our goal as an optimization problem defined as Eq. 1:

min α · β,

s.t. |R| · β + |S| · α ≤ α · β · V (1)

α ≥ 1, β ≥ 1.

In Eq. 1, we can find the minimal number of task for a regular matrix scheme. In other
word, our purpose is to find the proper values for α and β in Eq. 1. However it is still too
strict to generate tasks according to the regular matrix scheme. Then our optimization goal
is changed to find an irregular matrix while guaranteeing correctness as Section 3.

3 Scheme generation

We first introduce two theorems to explain the guild for generating the optimal matrix
scheme. And then, we describe the adaptive process of generating matrix scheme based on
these two theorems according to the real workload.

3.1 Model design

Since those subsets may be replicated along rows or columns, the values of α and β decide
the memory consumption which is proportional to the subarea’s semi-perimeter valued as
|ri | + |sj | as in [7]. Given the area or the perimeter, we introduce the following two well
known theories:

Theorem 1 Given the area with a constant value, the square has the smallest perimeter
among all the rectangles.

Theorem 2 Given the perimeter with a constant value, the square has the biggest area
among all the rectangles.

Based on these two theories, we have the following corollary on partitioning scheme:

Corollary 1 If there exist α and β which can make |R|
α

= |S|
β

= Vh, the consumption of
processing resource for R �� S is minimal.

Proof Supposing CPU resource is a constant value in each task, in order to ensure any
tuple meets the others, the computation complexity for stream join is |R| · |S|. However the
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memory usage will be minimized if |R|
α

= |S|
β

= Vh according to Theorem. 1. Supposing the
memory resource of each task is constant, the number of tasks used for the calculation (total
area) is smallest when |R|

α
= |S|

β
= Vh according to Theorem. 2. The network communica-

tion cost is decided by memory usages, that is to say the volume of tuples stored in memory
equals to the transmission volume. In other words, optimization over memory consumption
always lows the bandwidth consumption at the same time. Based on the discussion above,
we can draw a conclusion that Corollary. 1 is established.

According to Corollary. 1, if the volumes of two streams |R| and |S| can both be divis-
ible by Vh, receiving tuples with quantity of Vh from both streams is a prefect solution to
generate matrix scheme M with minimal resource usages. However, stream volumes may
not always be divisible by Vh. Given that the number of row (column) in matrix M must be
an integer, we get the row number α = 
 |R|

Vh
�, and the column number β = 
 |S|

Vh
�. Then the

number of tasks N used in matrix M can be expressed as

N = 
|R|
Vh

� · 
 |S|
Vh

� (2)

In those N cells, we primarily load the first α − 1 rows or β − 1 columns of cells. When
the stream volume can not be evenly divided by Vh, it generates fragment data for the tasks
(called fragment tasks) in the last row or the last column in matrix M .

For example, given task memory V = 10GB, R stream volume |R| = 6GB and S stream
volume |S| = 6GB, its calculation area is shown in Figure 2a. Processing R �� S will take
up 4 tasks for its matrix M with two rows and two columns shown as Figure 2b. In M ,
m00 = (5GB, 5GB), m01 = (5GB, 1GB), m10 = (1GB, 5GB) and m11 = (1GB, 1GB).
Then m01, m10, m11 are fragment tasks in that the sum memory consumption of |rij | and
|sij | in these tasks is smaller than V .

3.2 Generation scheme

To find an optimal processing scheme, we differentiate the two streams as a primary stream
P and a secondary stream D. Supposing we split P into Pγ subsets assigned to each task,
we first ensure the memory usage for those subsets from P . And the remaining memory
V − P

Pγ
in each task is used for the subset of data from D. The number of tasks Dγ required

for D can be calculated as:

Dγ = 
 D

V − P
Pγ

� (3)

We use Nc to represent the number of tasks and it can be calculated as Eq. 4:

Nc = Pγ · Dγ = Pγ · 
 D

V − P
Pγ

� (4)

As declared in Corollary. 1, the number of tasks is minimized when |R|
α

= |S|
β

= Vh, but
we can not promise to find such α and β. According to Theorem 4, we can select Pγ from
{
 |R|

Vh
�, � |R|

Vh
, 
 |S|

Vh
�, � |S|

Vh
}, and there exit one Pγ to generate the minimal number of tasks

Nc calculated as in Eq. 4.

Theorem 3 Given stream volumes |R|, |S| and memory size V of task , using matrix model
for R �� S, the number of tasks generated by Pγ ∗ Dγ as Eq. 4 by selecting Pγ from {
 |R|

Vh
�,

� |R|
Vh

, 
 |S|
Vh

�, � |S|
Vh

} is the minimal.
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(a) Calculation Area of (b) Calculation Area Partition of

Figure 2 A Toy Example of Calculation Partition

Proof We assume that there exists a matrix M ′ with row number α′ and column number
β ′ which can be used for R �� S and the number of tasks N ′ is smaller than Nc. In other
words, there is a number P ′

γ : P ′
γ /∈ {
 |R|

Vh
�, � |R|

Vh
, 
 |S|

Vh
�, � |S|

Vh
} and N ′ < Nc. According

to Corollary. 1, square has the largest area. Then |R|
α′ is closer to Vh than |R|

α
, and |S|

β ′ is

also closer to Vh than |S|
β
. However, it is impossible for |R|

α′ and |S|
β ′ to get closer to Vh

simultaneously. Moreover, Pγ occupies all possible values that make P
Pγ

nearest to Vh.

Hence, there is not any smaller N ′ existing.

The algorithm of finding an optimal partition scheme is described in Algorithm 1. Firstly,
the minimal number of tasks is determined in line 1 according to Eq. 4; then in line 5 ∼ 8,
the number of rows α and columns β can be calculated according to values of P and Pγ . If
Pγ ∈ {
 |R|

Vh
�, � |R|

Vh
}, R is the primary stream, or else S is the primary one. After we select

the P stream, each task will first be fed up with data from P with memory |P |
Pγ

and leave the

remaining memory V − |P |
Pγ

for D stream.
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Theorem 4 Algorithm 1 will consume the minimal number of tasks and ensure the correct-
ness of operation when using matrix model for R �� S with the memory size of each task V .

Proof Assuming that there exists another matrix M ′ with the number of row α′ and column
β ′. It could be used for R �� S and the number of tasks N ′ used in M ′ is smaller than Nc.
To find the smaller Nc, Algorithm 1 tries all possible values that make |P |

Pγ
nearest to Vh in

line (1 ∼ 4). In other words, it is impossible for |R|
α′ and |S|

β ′ to get more closer to Vh than |R|
α

and |S|
β
. According to Theorem. 1 that squared cells consume the minimal resources. Then,

the assumption of existing regular matrix M ′ does not hold. For ensuring the correctness of
join, it is obvious that Algorithm 1 can ensure join correctness when it generates a regular
matrix scheme according to the characteristics of matrix model in Section 2.

4 Implementation

After we generate the new scheme, we should calculate a migration plan from the old
scheme to the new scheme. In this section, we will first introduce how to route the input data
stream which is designed to promise the correctness of join results, and then we describe
how to map tasks between the new and old scheme with the target of lowing the migration
cost.

4.1 Tuple routing

In this section, we introduce how to route tuples in the basic matrix model with a random
tuple distribution manner. As described in Section 2.1, matrix model randomly routes tuples
to cells of each stream corresponding to one side of the matrix. Hence, it can handle data
skewness perfectly. The whole procedure of basic tuple routing is described in Algorithm 2.

We use �(� ∈ {row, column}) to represent which side of matrix the input tuple corre-
spond to and use ε (ε ∈ [0, (α − 1)] or ε ∈ [0 ∼ (β − 1)]) representing to which line in the
side of � the tuple should be sent. Then the return pair (�, ε) of Algorithm 2 means the input
tuple should be sent to the εth line in � side of matrix. In Algorithm 2, line (2 ∼ 3) and line
(5 ∼ 6) identify which side of the matrix the input tuple belongs to, then, line 4 and line 7
accordingly generate a random position. Finally, for the routing of matrix model, the input
tuple will be sent to all the processing tasks which located in the line ε along the side of �.
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4.2 Task-load mapping generation

Supposing mij and mkl corresponds to two cells in the matrix which are Mo in old schema
and Mn in new schema respectively, and each cell corresponds to one join processing task.
In order to lower the data migration among cells during schema change, it is crucial to find
the optimal task for each cell in Mn. Less migration cost means there are more data overlap
for the cells between old and new scheme. We then define a overlapping coefficient λij

kl for

each pair of tasks corresponding to mij and mkl , which are in Mo and Mn respectively. λij
kl

is a measurement for the cell data overlapping between mij and mkl calculated as Eq. 5.

λ
ij
kl = (hR

ij ∩ sR
kl) · |R| + (hS

ij ∩ sS
kl) · |S| (5)

A new indicant npi =< mij ,mkl, λ
ij
kl > (task mapping item) is defined to represent the

effort for migration (|sR
kl | + |sS

kl | − λ
ij
kl) when using the task in charge of mij for the data

in mkl . The whole procedure of task pairing is described in Algorithm 3 and can be divided
into two parts:

1) part I enumerates all the possible npis shown in line (2 ∼ 5) in Algorithm 3;
2) part II generates task pairing relationship with the purpose of minimizing migration

by selecting npi with the biggest λ
ij
kl into NP set. This NP set will generate the task-

load mapping with the least migration cost according to Theorem. 5.

Theorem 5 Among task pairings between the old and new scheme, NP set produced by
Algorithm 3 leads to the minimal migration cost.

Proof For part I in Algorithm 3, it enumerates all the possible npis with the size of |Mo| ·
|Mn|. In other words, αo · βo · αn · βn items are generated where αo and βo are the number
of row and column in old scheme Mo, and αn and βn are the number of row and column
in new scheme Mn. Obviously, |NP | is a smaller one and each mij or mkl appears in NP

only once at most(guaranteed by line 7). Then we can conclude that the current maximal
λ

ij
kl is independent of others. That is to say partII described as line (6 ∼ 9) in Algorithm 3
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produces the maximal cumulative sum of λ
ij
kl . It means there is the maximal volume of non-

migrating data in NP , and that the task mapping NP leads to the minimal migration cost.
Based on the discussion above, we can draw that Theorem. 5 is established.

4.3 Migration plan generation

As described above, a migration plan defines how to migrate data among tasks when scheme
changes. In order to make it easy for explanation, we describe data moving among tasks
with Stream R, and it will be the same for Stream S. We use nR

kl to denote the range of data
should be moved into area mkl from stream R, calculated as Eq. 6:

nR
kl = sR

kl − (sR
kl ∩ hR

kl) (6)

Migration plan mp =< mij ,mkl, N
R
ij > tells the data moving between two area mij in

old scheme Mo and mkl in new scheme Mn, with NR
ij representing the data moving from

area mij to area mkl for R. We define two kinds of actions for moving: duplicating and
migrating. Duplicating happens among tasks along the same row/column, otherwise, it is
data migrating. Supposing for each cellmkl in new schemeMn, hR

kl and sR
kl are the tuples in it

for the last schema and should be kept in current schema. Then cell mkl deletes the migrated
data in set hR

kl − sR
kl for stream R, which is represented as mp =< �,mkl, h

R
kl − sR

kl >. All
the calculations are the same for stream S.

Migration plan generation is described in Algorithm 4 and is divided into two steps as
follows:

Step-1: Splitting stream data for matrix cells. According to matrix characteristics
described in Section 2.1, it is easy for us to get the whole data set of stream R or
S by combining the data from the first row or the first column in Mo. According
to the new scheme Mn, we can divide the streams evenly to fill each cell as in line
(1 ∼ 8);

Step-2: Deleting migrated tuples. It deletes migrated data under the new scheme Mn in
line (9 ∼ 11).

Let’s take Figure 3 as an example. A partitioning scheme changes from 2× 1 to 2× 2. In
old schemeMo, each area manages a half of data volume fromR and the total volume of data
from S shown in Figure 3a: hR

00 = [0, 1
2 ], hR

10 = [ 12 , 1] and hS
00 = [0, 1], hS

10 = [0, 1]. When
the workload of streams increases, system may scale out by adding one more column with
two tasks forming a 2×2 scheme as shown in Figure 3b. In this case, data partitions of R are
unchanged where tasks in the first row still manage a half of data volume (sR

0j = [0, 1
2 ], j ∈

{0, 1}) and tasks in the second row manage the other half (sR
1j = [ 12 , 1], j ∈ {0, 1}). Stream

S should be split into two partitions for two columns, each of which manages 1
2 range of

data, that is sS
i0 = [0, 1

2 ], sS
i1 = [ 12 , 1], with i ∈ {0, 1}.

According to the discussion in Section 4.2, NP is {< mo
00,m

n
00 >, < mo

10,m
n
10 >} as

shown in Figure 3b. In Figure 3b, we label the relevant task pairs between Mo and Mn by
assigning tasks the same numbers. The tasks tagged with red new in m01 and m11 are new
additive tasks. m01 needs data nR

01 = [0, 1
2 ] and nS

01 = [ 12 , 1]; m11 needs data nR
11 = [ 12 , 1]

and nS
11 = [ 12 , 1]. According to Algorithm 4, sR

01 and sR
11 are generated by duplicating R

data from m00 and m10, respectively. m01 and m11 generate S by duplicating [ 12 , 1] from
m00. Since S has been reallocated according to discussion above, then the range of data in
[ 12 , 1] from S are deleting from m00 and m01.
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5 Discussion

In this section, we will discuss the further optimization for matrix model to pursue a more
cost-effective model. And then, we describe the tuple routing approach in the variant model
which may have better resource usage.

5.1 Optimized matrix

In Figure 2 of Section 3, if we take R as the primary stream P and the number of divisions
generated by primary stream is Pγ = 
 |R|

Vh
�, then the matrix scheme of example in Figure 2a

should have only one column with two cells. However, Nc calculated in Eq. 4 will have
fragment tasks if its rounding up value is not equal to the rounding down value. For example

(a) Old Scheme (b) New Scheme

Figure 3 Example of Scheme Change
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in Figure 4, given V = 10GB, |R| = 9GB, and |S| = 7GB, a matrix M with α = 2 and
β = 2 will be generated. Since S is the primary stream, each task first gets data assginment
from S by |S|

β
= 3.5GB and the remaining space 6.5GB can be used for divisions from R.

The memory utilization percentage of the two tasks in the last row is 60 %.
In Figure 4, since data for m11 and m10 both join with r1, it is then feasible to move

tuples in s1 tom10 to complete the join work but still satisfies memory threshold V = 10GB

(2.5 + 3.5 + 3.5 = 9.5 < 10) and promise the completeness of results. Then, an optimized
partition scheme with only 3 tasks forR �� S can be generated, which is muchmore resource
ecomomic. We will study the optimization strategy of matrix model, the definition of tuple
routing, and the specific migration procedure in further study.

5.2 Optimized routing

For tuple routing in the matrix model, we load data to rows and columns in a top-down
manner. Since we have divided the load along the primary stream randomly and also assign
the load from the other one evenly to each cell. In such a case, each cell may have free
resouces. In this section, we propose an optimized routing method to make full use of our
resources.

We differentiate the two streams as a primary stream P and a secondary stream D to
find an optimal processing scheme. Here we propose to differentiate the routing policy for
the primary stream and the secondary stream that is the tuples in the primary stream will
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Figure 4 Example of the
Further Optimization for Matrix

be sent into the row or column randomly while tuples in the secondary stream will be sent
selectively instead of randomly.

Our algorithm is shown in Algorithm 5 and we take the cells in Figure 2. For the pri-
mary stream, line(2∼8) randomly split the incoming data into a number of non-overlap
substreams. Then, we process the secondary stream. We use Random[0 ∼ ψ]ω → ε

(ε ∈ [0, ψ]) to represent that a tuple randomly selects a line ε between 0 and ψ in the
probability of ω. And then, χω → ε means the input tuple will be sent to the χth in the
probability of ω. In our design, we expect to fill the secondary stream as much as possi-
ble to the cells except the last row (S is primary one) or column (S is the secondary one),
which is V −P/Pγ . Line (10∼13) in Algorithm 5 shows the tuple routing process when the
input tuple τ belongs to the secondary stream and S stream is the primary stream. Line 12

means the first (α − 1) rows will have the probability of
(V − P

Pγ
)·(α−2)

D
to receive the input

tuple randomly. And line 13 assigns the input tuple into the last row in the probability of

1 − (V − P
Pγ

)·(α−2)

D
. Line (14∼17) shows the procress of tuple routing when the input tuple

belongs to the secondary stream and the primary stream is R. This procedure is simlar to
the process in line (10∼13). It may find that the cells in the last row or column managed
by the secondary stream will be underloaded. Those cells can be combined to save system
resources and then we may get the irregular matrix as discussed in Section 5.1.

5.3 Others for optimized scheme

Besides scheme generation and routing tuples as discussed above, there are also others prob-
lems needed to be studied for the irregular matrix shceme, such as migration actions and
correctness guarantee. Specifically, due to the content that stored in each cell of irregular
matrix is different to the regular one, then the migration action will be challenge. Further-
more, the correctness of system during the process of migration also should be re-designed.
We will keep this as our future work.

6 Evaluation

All of the approaches in our experiment are implemented and run on top of Apache
Storm [1]. The adaptive processing architecture is shown in Figure 5 and the overall work-
flow of the adjustment components for distributed stream join is as follows. At the end
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Figure 5 Architecture of Adaptive Processing for Matrix Model

of each time interval(such as 5 seconds), the tasks report the information about current
resource usages ( such as memory load ) to an controller module. Then the controller

decides whether to change the processing scheme; if processing scheme needs change,
controller first produces a new scheme (Section 3.2); accordingly, it expects to explore the
task-load mapping function for mapping tasks in an old scheme to the ones in a new scheme
(Section 4.2); Finally, it schedules the data migration among tasks (Section 4.3).

6.1 Experimental setup

6.1.1 Environment

The Storm system (version 0.10.1) is deployed on a 21-instance HP blade cluster with Cen-
tOS 6.5 operating system. Each instance in the cluster is equipped with two Intel Xeon
processors (E5335 at 2.00GHz) having four cores.

6.1.2 Data sets

We evaluate all the approaches using the existing benchmark TPC-H [2] and generate
databases using the dbgen tool shipped with TPC-H benchmark. Before feeding data to
the stream system, we pre-generate and pre-process all the input data sets. Specifically, we
adjust the degree of skew on the join attributes by defining skew parameter z for the Zipf
function and we set z = 1 by default. Furthermore, we also use 10GB real social data1 from
Weibo which is the biggest Chinese social media data to test each approach.

6.1.3 Queries

We conduct the experiments on three join queries, namely EQ5 , BNCI and BMR , among
which the first two are used in [7, 18]. EQ5 is an equi-join which represents the most expen-
sive operation in query Q5 from TPC-H benchmark. BNCI and BMR are both band-joins,
which are different in memory usage by different data selectivity on attribute Quantity.

1http://open.weibo.com/wiki/2/statuses/user timeline

http://open.weibo.com/wiki/2/statuses/user_timeline
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EQ5 : SELECT * FROM LINEITEM, REGION, NATION, SUPPLIER WHERE REGION.orderkey =

LINEITEM.orderkey AND LINEITEM.suppkey = SUPPLIER.suppkey AND SUPPLIER.nationkey =

NATION.nationkey

BNCI : SELECT * FROM LINEITEM L1, LINEITEM L2 WHERE L1.orderkey - L2.orderkey�1

AND L1.shipmode = ’TRUK’ AND L2.shipinstruck = ’NONE’ AND L2.Quantity > 48

BMR : SELECT * FROM LINEITEM L1, LINEITEM L2 WHERE L1.orderkey - L2.orderkey�1

AND L1.shipmode = ’TRUK’ AND L2.shipinstruck = ’NONE’) AND L2.Quantity > 10

We also implement a Social data query which is a full band-join and requires each tuple
from one stream meets all the tuples from the other stream. We implement both full-history
joins and window-based joins, where full-history joins are used to verify system’s scalability
and window-based joins are used to validate algorithms’ flexibility and self-adaptability.

6.1.4 Baseline approaches

For the purpose of comparison, we implement four different distributed stream join algo-
rithms: MFM , Square, Dynamic [7] and Readj [11]. MFM and Square are proposed
in this paper. MFM denotes our flexible and adaptive algorithm that generates the scheme
with less tasks according to Eq. 4. Square adopts a naive method to obtain the task number
defined in Eq. 2. Dynamic [7] assumes the number of tasks in a matrix must be a power
of two. If one stream doubles its volume, Dynamic adjusts matrix scheme by doubling the
cells along the side corresponding to this stream. Meanwhile, it halves cells along the other
side of the matrix. Besides, Dynamic scales out by splitting the states of every task to four
tasks if a task stores a number of tuples exceeding specified memory capacity(Here we do
not consider the division of matrix shceme). Readj [11] is designed to minimize the load
by redistributing tuples based on a hash function on keys. It introduces a similar tuple dis-
tribution function, consisting of a basic hash function and an explicit hash table. However,
the workload redistribution mechanism used in Readj is completely different from ours. The
algorithm in Readj always tries to move back the keys to their original destination by hash
function, followed with migration schedules on keys with relatively larger workload. Their
strategy might work well when the gralularities of the keys are almost unchanged. When the
gralularities of keys vary dramatically, their approach either fails to find a reasonable load
balancing plan, or incurs huge routing overhead by generating a large routing table.

6.1.5 Evaluation metrics

We measure resource utilization and system performance through the following metrics:

T ask Number is the total number of tasks used in system and each task is equipped with
a constant quota of memory V ;

T hroughput is the average number of tuples that processed by system per time unit
(second or minute);

Migration V olume is the total amount of tuples migrated to other tasks during scheme
change;

MigrationP lanT ime is the average time spent on generating a migration plan.
LoadRatio is the ratio of the average load of tasks and the task current load.
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6.2 Load skewness phenomenon

To understand the phenomenon of workload skewness, we report the workload imbalance
phenomenon on the task instances by routing keys with the traditional hash-based mecha-
nism. The results of load imbalance (route 1000 keys into 15 tasks) is shown in Figure 6.
Figure 6a shows the probability distribution of keys under the skew of z = 0.9. Figure 6b
reflects the load ratio of each task. Among those tasks, the load skewness phenomenon is
obvious where the maximal workload is around 4 times larger than the minimal one.

6.3 Task consumption of each scheme

The task consumption of each scheme under different loading data volume as shown in
Figure 7. As data loading in Figure 7, our algorithms MFM and Square have stable per-
formance while Dynamic meets sharp increase in task number, for Dynamic has a strict
requirement that the number of tasks must be a power of two. Contrarily, our algorithms
MFM and Square generate the processing scheme based on current workload. Further-
more, Optimized produces a smaller scheme than MFM and Square. This is because it
generates the irregular matrix scheme as discussed in Section 5.1. However, how to define
the migration action and ensure the correctness of system for irregular matrix scheme are
challenges, and we will focus on this work in our future work.

6.4 Scalability

To testify the scalability of our join algorithm, we set V = 8 · 105 and continue load all
6 ·106 tuples into our system by executing BNCI . Figure 8 shows increasing of task number
and migration cost during loading data into the system. With the increase of task number
shown in Figure 8a, the memory utilization consumed by Dynamic also increases dramat-
ically which is proportional to task number. The naive method Square consumes more
memory compared to MFM since its task number increases a little bit more. Our algo-
rithm MFM performs the best among those methods, which can scale out with minimal

(a) Skew of Key Granularity (b) Skew of Task Workload

Figure 6 Performance on Workload Skew



World Wide Web (2017) 20:1089–1110 1105

Figure 7 Task Consumption of Different Scheme while Loading Different Size of Data

number of tasks and apply for resources on its real demand. Figure 8b illustrates the changes
on migration cost with query BNCI when loading the whole dataset into our system. Con-
sistently, Dynamic causes the highest migration cost than all other algorithms, because
Dynamic suffers from massive replications to maintain its matrix structure. Furthermore,
Square and MFM yield low migration volume in that they involve less tasks. From
Figure 8 we find that the migration volume increases along with data loading. This is
because all matrix schemes progressively get larger.

In addition, we examine the latency for generating migration plan and throughput for
equi-join EQ5 with different algorithms. For the purpose of load balance, we define the

balance indicator θt for task instance d during time interval Tt as θt = |Lt (d)−L̄t

L̄t
|, where

L̄ is the average load of all task instances. For this group of experiments, we set θt ≤
0.05. Figure 9a provides the latency for generating migration plan. Obviously, the latency
of Readj is much larger than all other algorithms for Readj is designed to minimize the
load difference among tasks by redistributing data on keys with a hash function and it must
recalculate the balance states for each scale-out processing. The other algorithms including

(a) Task Number Consumption (b) Migration Cost

Figure 8 Performance of Full-history Join with BNCI
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(a) Migration Plan Time (b) Average Throughput in Different Skew

Figure 9 Performance of Full-history with EQ5

Dynamic use random distribution as routing policy, so they need not do calculation for
balance scheduling. Figure 9b draws the throughput of each algorithm under different data
skewness. Throughput of Readj decreases with severer skewness because it spends more
time for generating migration plan. Although tasks used by Dynamic is much more than
our methods, the throughput of ours is more than Dynamic due to its massive migration
cost.

6.5 Dynamics

This group of experiments shows the performance with window-based join, which bounds
the memory consumption based on the window size. For this experiment, we set window
size as 5 minutes and the average input rate is about 1.8 · 104 tuples per second. We provide
maximum 32 tasks for this group testing. The dynamics is simulated by altering the relative
stream volume ratio |R|/|S| between stream R and S [7] with the total volume 2 ·107 tuples,
where the ratio fluctuates between f and 1

f
with f defined as the fluctuation rate.

Figure 10a and b depict the throughput and number of tasks used for query BMR .
Figure 10a shows that our methods have better throughput compared to Dynamic. For our
algorithms MFM and Square, the given 32 tasks are far more than our needs as shown
in Figure 10b, while Dynamic exhausts all the tasks at any time. This determines the
difference of throughputs between Dynamic and other ones as shown in Figure 10a.

Figure 10c shows the throughputs of different algorithms under different dynamic ratios
f for Query BNCI . As described in this paper, the effectiveness of generating migration
plan and the network cost of migration determine the efficiency of different algorithms. As
shown in Figure 10c, the overall throughput of ours is stable for dynamic ratios f .

Figure 10d illustrates the throughput of different queries under the workload 2·107 tuples.
Because the intermediate results are materialized before being stored in memory, different
queries generate different volume of states which are to be stored in memory. Since EQ5 is
lack of filters on predicate, it should store all tuples within a window for join processing and
then it requires more memory. In this way, throughput of Dynamic decreases dramatically
due to its memory requirement for EQ5 . For the two band-joins, BNCI will have more
throughput for its filters Quantity > 48 can filter out more tuples than Quantity > 10
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(a) Real-time Throughput (b) Task Number Consumption

(c) Avegrage Throughput of Different Dynamic Ra- (d) Throughput of Different Query

Figure 10 Performance of Window-based Join

in BMR . This also indicates that BMR requires more tasks than BNCI and it has lower
throughput when the total memory size is predefined.

6.6 Performance on real data

To prove the usability of our algorithm, we do band-join Social data query on 10GB

Weibo dataset. We load the 10GB dataset continuously, and measure resource consumption
of different algorithms. In Figure 11a, Readj uses less tasks, however, it is the slowest for
its lack of CPU resources as shown in Figure 11b. Our method MFM provides a flexible
matrix scheme which applies for new tasks according to its real load while Dynamic scales
out in a generous way.

7 Related work

With the demand of more diverse applications [13, 17, 31, 36, 39], in the past decades,
there have been much effort put into designing distributed join algorithms to deal with the
rapid growth of data. Blanas et al. Graefe [12] gave an overview of parallel join algorithms.
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(a) Task Consumption (b) Execution Time

Figure 11 Performance on Real Data

However, all these algorithms were mainly proposed for non-streaming scenarios and cannot
be directly deployed in streaming processing environments. For non-stream join processing,
there also has been much research. To name a few, the symmetric hash join SHJ [32] extends
the traditional hash join algorithms and highly supports pipelined processing in parallel
database systems. However, it requires that the entire hash tables should be kept in main
memory. XJoin [29] is based on SHJ and allow parts of the hash tables to be spilled out
to disk for later processing, enhancing the applicability of the algorithm. Similarly, RPJ
[27] takes a statistics-based flushing strategy and tries to keep tuples which are more likely
to join in memory. Dittrich et al. [6] developed sorted-based but non-blocking progressive
merge join algorithm PMJ. However, all these algorithms delegated the processing work
to a centralized entity and were not easy to scale when handling the massive data stream
workload.

In recent years, there are great interest in designing stream join algorithms in a distributed
environment. Photon [3] is a prototype system designed by Google to join data streams such
asWeb search queries and user clicks on the advertisements. It relies on a central coordinator
to support fault-tolerance and scale-out join. It processes incoming tuples through key-value
matching in real time in a non-blocking way, but cannot support theta-join well. D-Streams
[35] is a data stream operating object defined in Spark Streaming. It adopts mini-batch on
data streams in a blocking way. Though it supports theta-join well, some tuples may miss
each other due to the constraint of window size. As a result, it can only give approximate
join results. TimeStream [25] exploits the resilient substitution and dependency tracking
to ensure the dependability of stream computing. It provides MapReduce-like batch pro-
cessing and non-blocking tuple processing, but encounters high communication cost due to
the maintenance of join states. Join-Biclique [18] is based on a bipartite-graph model and
supports both full-history and window-based stream joins.

Joining on steams is generally modeled as a matrix, each side of which corresponds to
one stream. Stamos et al. [26] adopt the idea of replicating input tuples, extend the fragment
and replicate(FR) algorithm [8] and propose a symmetric fragment and replicate algorithm.
Okcan [24] employs the join-matrix for processing theta-joins in MapReduce and designs
two partitioning schemes, namely 1-Bucket and M-Bucket. The former scheme is content-
insensitive and performs load balancing well by assigning equal cells to each region but
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suffers from too much replication, while the latter one is content-sensitive because it maps
a tuple to a region according to its join key. Due to the nature of MapReduce, the algorithms
are offline and require all input statistics must be available beforehand, which incurs block-
ing behaviors. Consequently, it is more favorable for batch computing rather than stream
computing. In data stream scenario, Elseidy et al. [7] present a (n,m)- mapping scheme
dividing the matrix into J(J = n × m) regions of equal area and introduce the DYNAMIC
operator which adjusts the state partitioning scheme adaptively according to data charac-
teristics continuously. However, all the approaches are based on the hypothesis that the
number of partitions J is restricted to powers of two and predefined without intermediate
change, and that the ratio of |R| and |S|(the number of arrived tuples of two data streams
respectively) falls in between 1

J
and J. What’s more, the flexibility of the matrix structure is

deteriorated when the matrix need to scale out (down).

8 Conclusion

In this paper, we propose a novel flexible and adaptive stream join model, called MFM , for
real-time join processing with arbitrary predicates in distributed and parallel systems. Based
on the join-matrix method which can ensure the correctness of join results and be immune
to data skewness, the new scheme change algorithm designed in this paper inherits all
the advantages of traditional methods but improves them on scalability and effectiveness.
We implement our design on Storm and compare it with the other state-of-art work to verify
our idea In the future, we will continue to design a more flexible partitioning scheme algo-
rithm for θ − join to break the limits of the matrix shape aiming to take the best usage of
system resource.
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