
World Wide Web (2017) 20:1179–1210
DOI 10.1007/s11280-016-0428-7

A workload-dependent task assignment policy
for crowdsourcing

Ilio Catallo1 ·Stefano Coniglio2 ·Piero Fraternali1 ·
Davide Martinenghi1

Received: 8 March 2016 / Revised: 19 October 2016 /
Accepted: 12 December 2016 / Published online: 14 January 2017
© Springer Science+Business Media New York 2017

Abstract Crowdsourcing marketplaces have emerged as an effective tool for high-speed,
low-cost labeling of massive data sets. Since the labeling accuracy can greatly vary from
worker to worker, we are faced with the problem of assigning labeling tasks to workers so as
to maximize the accuracy associated with their answers. In this work, we study the problem
of assigning workers to tasks under the assumption that workers’ reliability could change
depending on their workload, as a result of, e.g., fatigue and learning. We offer empiri-
cal evidence of the existence of a workload-dependent accuracy variation among workers,
and propose solution procedures for our Crowdsourced Labeling Task Assignment Problem,
which we validate on both synthetic and real data sets.

Keywords Crowdsourcing · Task assignment · Human computation

1 Introduction

Many problems in the field of artificial intelligence, engineering, and medicine require the
availability of very large data sets consisting of hand-labeled data. While unlabeled data are

� Ilio Catallo
ilio.catallo@polimi.it

Stefano Coniglio
s.coniglio@soton.ac.uk

Piero Fraternali
piero.fraternali@polimi.it

Davide Martinenghi
davide.martinenghi@polimi.it

1 Politecnico di Milano, Milan, Italy

2 University of Southampton, Southampton, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-016-0428-7&domain=pdf
mailto:ilio.catallo@polimi.it
mailto:s.coniglio@soton.ac.uk
mailto:piero.fraternali@polimi.it
mailto:davide.martinenghi@polimi.it

1180 World Wide Web (2017) 20:1179–1210

typically readily available, the subsequent labeling process is extremely time consuming
and often represents an important bottleneck that severely limits the applicability of many
automatic algorithms.

In recent years, crowdsourcing marketplaces, among which Amazon Mechanical
Turk [1], emerged as an effective tool for high-speed, low-cost labeling of massive data sets.
Namely, such services allow requesters to publish their own tasks, which are then solved by
the workers on the platform in return of few cents of dollar per completed task. The possi-
bility of inexpensively harnessing such a large workforce has therefore enabled the creation
of extensive hand-labeled data sets.

In this work, we focus on tasks for which the workers are asked to provide a binary label.
Binary classification tasks are prevalent in many application domains, as it is confirmed, for
instance, for the case of Amazon Mechanical Turk in [14]. Since the labeling accuracy can
greatly vary from worker to worker, requesters often collect different labels for the same
instance and, consequently, rely on some aggregation technique in order to increase the
quality of the inferred labels [23] and, thus, reduce the classification error.

In this work, we adopt the perspective of the owner of a crowdsourcing platform, who
provides task requesters with a crowdsourcing labeling service for automatically assigning
a set of human annotators to the requesters’ tasks.

Similarly to previous works in the literature [10, 15, 29], this work is applicable in all
contexts involving binary labels, such as entity matching and recognition, copyright detec-
tion, and image classification. However, differently from previous works, in this paper we
study the problem of assigning annotators to tasks under the assumption that the anno-
tators’ reliability could change depending on their workload, as a result of, e.g., fatigue
and learning. In this regard, a crowdsourcing platform may use all historic data and trends
from previous sessions about its workers to provide a reliable estimate of the typical accu-
racy variations experienced by each annotator, as successfully done by several works in
the literature [5, 16, 28]. These estimates allow us to devise task assignment policies
whose attention to changes in annotators’ accuracies proves extremely beneficial in terms
of reduction of the classification error, as we will better illustrate in the remainder of the
paper.

The main contributions of our work are as follows:

– We introduce the Crowdsourced Labeling Task Assignment Problem (CL-TAP) for
binary classification tasks under the assumption of workload-dependent accuracy
variations among workers.

– We offer empirical evidence of the existence of such a workload-dependent accuracy
variation phenomenon.

– We propose a measure of correctness for task labels, the maximization of which
arguably leads to highly accurate inferred labels.

– We introduce a modified version of our measure of correctness (called linear correct-
ness), which allows us to cast CL-TAP as aMixed-Integer Linear Programming (MILP)
problem.

– Due to the poor scaling of state-of-the-art methods to solve our MILP formulation, we
propose an efficient heuristic for CL-TAP: Correctness-Based Policy (CBP). To validate
the quality of the solutions it provides, we also introduce a certification mechanism
based on a column generation algorithm.

– We extensively validate the solution procedure that we propose on both synthetic
and real data, showing that our algorithm attains close-to-optimal quality and always
outperforms the best methods available in the literature.

World Wide Web (2017) 20:1179–1210 1181

2 Preliminaries

Consider a set T = {1, . . . , t} of tasks of the same kind, where each task i ∈ T is associated
with an unknown true label yi ∈ {−1, 1}, representing the presence or absence of a target
binary property, which we model as a binary random variable. Consider also a set of human
annotators A = {1, . . . , a}. Annotators in A can provide a (noisy) label for each of the t

tasks in T , so that each such label is associated with a measure of accuracy, corresponding
to the probability of the label being correct. We assume this measure of accuracy to be a
function of both the annotator and her workload. In other words, we assume the accuracy of
each annotator to depend on the number of labels that the annotator has already provided.
Indeed, as it is empirically confirmed by the experiments that we report in Section 6.1, in
scenarios involving extensive labeling, the annotators’ performance might either decrease
due to, e.g., fatigue or increase as a result of, e.g., learning. Thus, for each annotator j ∈ A,
we henceforth denote by pjk her accuracy at her k-th labeling iteration. We denote the set
of iterations by I = {1, . . . , t} (each annotator j ∈ A can label at most every task i ∈ T).
Clearly, to be able to assign annotator j ∈ A to some task in her k-th iteration, she must
have been assigned to some other k − 1 tasks in the past.

We assume pjk to be known, as inferrable, e.g., from historical data or from the worker’s
performance on ad-hoc verification tasks, as, e.g., in [5, 28]. Indeed, if we consider the per-
spective of a platform owner, it is reasonable to assume the availability of worker statistics
for each task type supported by the platform, as done in [16]. The availability of such data
would therefore allow for the estimation of each worker’s accuracy. Such an estimation can
then be refined each time the worker participates in new labeling sessions. Since each pjk is
known, we can assume it to be at least 0.5. For any pjk < 0.5, it would indeed be sufficient
to consider as annotator’s accuracy the quantity (1−pjk), while systematically inverting the
provided label. We also assume that, when facing tasks of the same kind, the accuracy pjk

for each annotator j ∈ A does not depend on the specific task at hand, i.e., that annotator j

is equally capable of providing the correct label for each task i ∈ T .
Let zijk ∈ {−1, 1} denote the noisy label that annotator j ∈ A would assign to task

i ∈ T if asked to provide a label for it in her k-th iteration. For each j ∈ A, k ∈ I , we
assume zijk to be a random variable over {−1, 1}, such that:

zijk =
{

yi with probability pjk

−yi with probability (1 − pjk).
(1)

This corresponds to assuming that each annotator j ∈ A provides in her k-th iteration a
label zijk that coincides with the true label yi with probability pjk or the wrong one, −yi ,
with probability 1 − pjk . It is common to assume [21, 23, 27] that, for each task i ∈ T ,
given the true label yi , zijk and zij ′k′ are independent for any j, j ′ ∈ A, j �= j ′, k, k′ ∈ I .

3 Task assignment policy design

As mentioned in the introduction, in this work we assume the perspective of the owner
of a crowdsourcing platform who provides the automated assignment of annotators to the
requesters’ tasks so as to obtain the best possible inferred labels. The natural choice for this
kind of objective would be the minimization of the classification error. However, as we will
discuss in the following, the error does not lend itself well to such an optimization, due
to its combinatorial nature. We will therefore propose an alternative approach based on an
approximation of the expected classification accuracy associated with the inferred labels,

1182 World Wide Web (2017) 20:1179–1210

Constraints

Estimated
labels

Tasks

Annotators

Task
assignment

policy

Annotators'
contribution
on the tasks

(labeling
phase)

Aggregation
of the

contributions

Figure 1 Execution of a task assignment policy

which we call correctness. We show how the corresponding problem of assigning tasks to
human annotators to achieve the largest correctness can be described as a combinatorial
optimization problem that allows a suitable linearization that we can solve efficiently. After
collecting different labels for the same instance, we can rely on some aggregation technique
to determine the estimated labels that will be returned to the task requesters. The overall
execution pipeline of our technique is reported in Figure 1.

For each task i ∈ T , we define the workplan Wi as the set of annotator-iteration pairs
assigned to task i ∈ T . We denote by qi and μi the (unknown) prior and, respectively,
posterior probabilities of the random event yi = 1, defined as follows: qi = Pr(yi = 1) and
μi = Pr(yi = 1 | {zijk}(j,k)∈Wi

). Thus, qi and μi represent our belief on the value of the
true label before and after collecting the annotators’ contributions. The posterior μi can be
interpreted as a soft (i.e., continuous) estimation of the true label yi . A hard (i.e., binary)
estimation ŷi of yi can by obtained by applying a threshold ω (ω = 0.5 in this paper) to μi ,
thus letting ŷi = 1 if μi ≥ ω and ŷi = −1 otherwise.

A summary of our notation is reported in Table 1 (some symbols will be introduced later
in the paper).

3.1 Expected classification error and expected classification accuracy

Based on the standard notion of logarithm of the “odds ratio”, commonly referred to as logit,

we now consider the logit of the posterior probability μi , i.e., logit(μi) = log
(

μi

1−μi

)
. It

can be shown that logit(μi) can be expressed as a function of the prior probability qi , the
accuracies {pjk}(j,k)∈Wi

, and the noisy labels {zijk}(j,k)∈Wi
:

Table 1 Summary of our
notation Notation Description

T set of tasks (with |T | = t)

A set of annotators (with |A| = a)

I set of annotators’ iterations (with |I| = t)

Wi workplan (set of annotator-iteration pairs that labeled task i)

yi true label for task i

zijk annotator j ’s estimated label for task i at her iteration k

pjk prob. for annotator j to give the right answer at iteration k

�jk logit of pjk

qi prior probability of the event yi = 1 for task i

μi posterior probability of the event yi = 1 for task i

b budget (max. number of labels that can be obtained)

εi classification error associated with workplan Wi

p̂i classification accuracy associated with workplanWi

World Wide Web (2017) 20:1179–1210 1183

Proposition 1 Let �jk denote logit(pjk). Then:

logit(μi) = logit(qi) +
∑

(j,k)∈Wi

�jkzijk. (2)

Proof In order to ease the notation, let us assume, w.l.o.g., that yi, zijk ∈ {0, 1}. We have:

μi

1 − μi

= Pr(yi = 1 | {zijk}(j,k)∈Wi
)

Pr(yi = 0 | {zijk}(j,k)∈Wi
)

=

= Pr({zijk}(j,k)∈Wi
| yi = 1)Pr(yi = 1)

Pr({zijk}(j,k)∈Wi
| yi = 0)Pr(yi = 0)

=

= Pr(yi = 1)

Pr(yi = 0)

∏
(j,k)∈Wi

Pr(zijk | yi = 1)

Pr(zijk | yi = 0)
=

= qi

1 − qi

∏
(j,k)∈Wi

Pr(zijk | yi = 1)

Pr(zijk | yi = 0)
.

By applying the logarithm on the left and right-hand sides and adopting the notation
log(μi

1−μi
) = logit(μi) and log(

qi

1−qi
) = logit(qi), we obtain:

logit(μi) = logit(qi) +
∑

(j,k)∈Wi

log

(
Pr(zijk|yi = 1)

Pr(zijk|yi = 0)

)
.

We can rewrite the last term as:

∑
(j,k)∈Wi

log
(
(pjk)

zijk (1 − pjk)
(1−zijk)

)
+

−
∑

(j,k)∈Wi

log
(
(pjk)

(1−zijk)(1 − pjk)
zijk

)
=

∑
(j,k)∈Wi

zijk log(pjk) +
∑

(j,k)∈Wi

(1 − zijk) log(1 − pjk) +

−
∑

(j,k)∈Wi

(1 − zijk) log(pjk) −
∑

(j,k)∈Wi

zijk log(1 − pjk).

After collecting, first, log(pjk) and log(1−pjk) and, then, (2zijk−1), the last term becomes:

∑
(j,k)∈Wi

(2zijk − 1)
(
log(pjk) − log(1 − pjk)

) =

∑
(j,k)∈Wi

logit(pjk)(2zijk − 1).

1184 World Wide Web (2017) 20:1179–1210

The claim is obtained after redefining yi, zijk ∈ {−1,+1}, which yields:

logit(μi) = logit(qi) +
∑

(j,k)∈Wi

logit(pjk)zijk.

Equation (2) shows that logit(μi) is the sum of two independent parts: i) the logit of the
prior probability qi and ii) a linear combination of the labels provided by the annotator-
iteration pairs in Wi , each weighted by the logit of the corresponding accuracy pjk . Also
note that, by the definition of logit, we have that �jk = logit(pjk) equals 0 when pjk = 0.5.
This implies that contributions coming from spammers (users that provide random labels
with an accuracy pjk = 0.5) are automatically discarded.

Note that, in this paper, we assume that we are not provided with any knowledge on the
prior probability of the event yi = 1 (respectively, yi = −1). Thus, we will henceforth
assume that qi = 0.5 for each i ∈ T , implying logit(qi) = 0. This assumption suitably
represents the very common situation in which a set of tasks to be labeled is submitted for
the first time, in the lack of other information.

The expected classification error εi incurred by a workplan Wi can be expressed as
follows:

E[εi] = 1 − E[p̂i], (3)

where E[p̂i] denotes the expected classification accuracy associated with workplanWi , i.e.,
the probability that the hard estimation ŷi of yi coincides with yi . The term E[p̂i] can be
expressed as specified in Proposition 2, below. To this end, let θ(·) indicate a step function
whose value is zero for a non-positive argument and one otherwise, i.e.:

θ(x) =
{
0 if x ≤ 0
1 otherwise.

(4)

Proposition 2 The expected classification accuracy E[p̂i] associated with workplan Wi

can be expressed as follows:

E[p̂i] = E

[
θ

(∑
(j,k)∈Wi

�jkzijk

)∣∣∣∣yi = 1

]
. (5)

Proof The term E[p̂i] can be computed as follows:

E[p̂i] = Pr(μi ≥ 0.5 | yi = 1) · Pr(yi = 1)

+Pr(μi < 0.5 | yi = −1) · Pr(yi = −1).

By the definition of logit, we obtain:

Pr(μi ≥ 0.5 | yi = 1) = Pr(logit(μi) ≥ 0 | yi = 1).

By replacing logit(μi) with the right-hand side of (2) and using the fact that qi = 0.5, we
obtain the following expression:

Pr(μi ≥ 0.5

∣∣∣∣∣∣yi = 1) = Pr

⎛
⎝ ∑

(j,k)∈Wi

�jkzijk ≥ 0

∣∣∣∣∣∣ yi = 1

⎞
⎠ .

In a similar fashion, we obtain the same derivation for Pr(μi < 0.5 | yi = −1), i.e.:

Pr(μi < 0.5 | yi = −1) = Pr(μi ≥ 0.5 | yi = 1).

World Wide Web (2017) 20:1179–1210 1185

Therefore, the expected classification accuracy E[p̂i] can be expressed as:
E[p̂i] = Pr(μi ≥ 0.5 | yi = 1) · (Pr(y = 1) + Pr(y = −1))

= Pr(μi ≥ 0.5 | yi = 1)

= Pr

⎛
⎝ ∑

(j,k)∈Wi

�jkzijk ≥ 0

∣∣∣∣yi = 1

⎞
⎠ .

We introduce the function:

IA({zijk}) = θ

⎛
⎝ ∑

(j,k)∈Wi

�jkzijk

⎞
⎠ ,

which can be regarded as the indicator function of the subset A of the probability space of
the random variables {zijk} for which

∑
(j,k)∈Wi

�jkzijk ≥ 0. By the basic properties of
indicator functions, we have:

Pr(A) = E[IA],

and, therefore,

Pr

⎛
⎝ ∑

(j,k)∈Wi

�jkzijk ≥ 0 | yi = 1

⎞
⎠ = E

⎡
⎣θ

⎛
⎝ ∑

(j,k)∈Wi

�jkzijk

⎞
⎠

∣∣∣∣yi = 1

⎤
⎦ ,

from which (5) follows by transitivity.

Note that, from the right-hand side of (5), it follows that it is sufficient to focus on the
case where yi = 1 in order to compute the expected classification accuracy E[p̂i].

In order to derive a closed-form expression of E[p̂i], we rewrite (5) as the sum of the
probabilities of all the disjoint cases (i.e., possible choices of zijk). To this end, let S+ ⊆ Wi

and let S− = Wi \ S+ denote its complement. We obtain:

E[p̂i] =
∑

S+⊆Wi

⎛
⎝θ

⎛
⎝ ∑

(j,k)∈S+
�jk −

∑
(j,k)∈S−

�jk

⎞
⎠ ∏
(j,k)∈S+

pjk

∏
(j,k)∈S−

(1 − pjk)

⎞
⎠ . (6)

Note that, in (6), each S+ ⊆ Wi contributes towards E[p̂i] by the probability that zijk =
yi = 1 for every (j, k) ∈ S+ and zijk �= yi = 1 for every (j, k) ∈ S−, provided that∑

(j,k)∈S+ �jk − ∑
(j,k)∈S− �jk ≥ 0.

Unfortunately, as can be seen in (6), computing the expected classification accuracy asso-
ciated with a workplanWi (and, thus, the associated expected classification error as of (3))
requires to explicitly enumerate all the sets of values that can be taken by the random vari-
ables {zijk}. From a computational viewpoint, the number of elementary operations needed
to compute it is exponential in the cardinality ofWi . Hence, an optimization problem where
this function is maximized is intractable, and most likely too arduous for any interesting
instance with a nontrivial number of tasks and annotators. Therefore, in the following, we
turn our attention to an approximation of the expected classification accuracy that can be
computed efficiently.

1186 World Wide Web (2017) 20:1179–1210

3.2 A tractable approximation of classification accuracy

Our first step in this direction is to consider an approximation of the expected classifica-
tion accuracy that can be linearized so as to obtain a useful lower bound for optimization
purposes. The linearization we use is based on the applicability of Jensen’s inequality to
an expectation of a convex function. As such, this linearization would not be possible for
the expected classification accuracy, which, as indicated in (5), can be expressed as the
expectation of a function (the step function θ(·)) that is not convex.

A convex approximation of the argument of the expectation of (5) can be obtained by
replacing the step function θ(·) with the positive norm ||·||+, whose value is zero for a
negative argument, while it is equal to the argument itself for a positive one, i.e.:

||x||+ = max{0, x}. (7)

The obtained expression will be referred to as correctness function c(·), defined as follows:

c(Wi) = E

⎡
⎣
∣∣∣∣∣∣
∣∣∣∣∣∣

∑
(j,k)∈Wi

�jkzijk

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣yi = 1

⎤
⎦ . (8)

Similarly to E[p̂i], c(Wi) can be expressed as follows:

c[Wi] =
∑

S+⊆Wi

⎛
⎝
∣∣∣∣∣∣
∣∣∣∣∣∣

∑
(j,k)∈S+

�jk −
∑

(j,k)∈S−
�jk

∣∣∣∣∣∣
∣∣∣∣∣∣+

∏
(j,k)∈S+

pjk

∏
(j,k)∈S−

(1 − pjk)

⎞
⎠ . (9)

Intuitively, c(Wi) can be seen as a weighted version of E[p̂i] where each S+ ⊆ Wi such
that

∑
(j,k)∈S+ �jk − ∑

(j,k)∈S− �jk ≥ 0 contributes towards c(Wi) weighted by a factor∑
(j,k)∈S+ �jk − ∑

(j,k)∈S− �jk rather than by 1.
As with (5), computing the correctness function for some workplan Wi still requires

considering an exponential number of terms.
In spite of this, c(Wi) allows us to derive a function that does not suffer from this draw-

back. Indeed, as a result of applying Jensen’s inequality to (8), we can introduce what we
call linear correctness function c′(·) (see the proof of Proposition 3 below for the full
derivation):

c′(Wi) =
∑

(j,k)∈Wi

�jk(2pjk − 1). (10)

Linear correctness c′(·) is much more tractable than correctness c(·), as, for a given Wi ,
c′(Wi) can be computed in linear time. Most importantly, c′(Wi) is a lower bound on
c(Wi):

Proposition 3 For every i ∈ T , c(Wi) ≥ c′(Wi).

Proof Given a random variable X and a convex function φ : X → R, Jensen’s inequality
reads:

E[φ(X)] ≥ φ(E[X]).

World Wide Web (2017) 20:1179–1210 1187

For φ = || · ||+ and X = ∑
(j,k)∈Wi

�jkzijk , we have:

E

[∣∣∣∣
∣∣∣∣
∑

(j,k)∈Wi

�jkzijk

∣∣∣∣
∣∣∣∣+

∣∣∣∣yi = 1

]
≥

∣∣∣∣
∣∣∣∣E

[∑
(j,k)∈Wi

�jkzijk | yi = 1
] ∣∣∣∣

∣∣∣∣+.

Due to the linearity of the expectation, we can rewrite the inequality as:

E

[∣∣∣∣
∣∣∣∣
∑

(j,k)∈Wi

�jkzijk

∣∣∣∣
∣∣∣∣+

∣∣∣∣yi = 1

]
≥

∣∣∣∣
∣∣∣∣
∑

(j,k)∈Wi

�jkE

[
zijk

∣∣∣∣yi = 1

] ∣∣∣∣
∣∣∣∣+.

We have:

E
[
zijk | yi = 1

] = (pjk − (1 − pjk)) = 2pjk − 1.

Hence:

E

⎡
⎣
∣∣∣∣∣∣
∣∣∣∣∣∣

∑
(j,k)∈Wi

�jkzijk

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣yi = 1

⎤
⎦ ≥ x

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
(j,k)∈Wi

�jk(2pjk − 1)

∣∣∣∣∣∣
∣∣∣∣∣∣+

=
∑

(j,k)∈Wi

�jk(2pjk − 1).

Due to Proposition 3, for any optimization problem maximizing c′(Wi), we are guaran-
teed to obtain conservative solutions yielding a value of c(Wi) at least as large as c′(Wi),
i.e., the value that they maximize.

3.3 Problem statement

We are now ready to formally introduce our problem. In order to produce solutions whose
workplans are not too unbalanced in terms of their linear correctness value, we adopt a
bottleneck approach. Such an approach finds its justification in the fact that solutions that
are so unbalanced as to leave some tasks without any annotation in favor of other tasks
having multiple annotations are never convenient in terms of expected classification error.
This leads to the following problem formulation:

CROWDSOURCED LABELING TASK ASSIGNMENT PROBLEM (CL-TAP): Given a
set of tasks T , a set of annotators A, a set of iterations I , a set of accuracies
{pjk}(j,k)∈A×I , and a budget b, find an assignment of the annotators to the tasks
that maximizes the minimum linear correctness c′(Wi) achieved by the different tasks
i ∈ T so that:

i) the number of used annotator-iteration pairs is at most b;
ii) if an annotator j ∈ A is assigned to a task i ∈ T in her iteration k ∈ I ,

then she is assigned to k − 1 distinct tasks in T \ {i} for all her iterations
{1, . . . , k − 1} ⊂ I;

iii) no annotator labels the same task twice.

1188 World Wide Web (2017) 20:1179–1210

4 Formalization and solution

In this section, we first provide a mixed-integer linear programming (MILP) formulation for
CL-TAP. Then, we present different solution approaches based on the notion of (linear) cor-
rectness, as defined in (10). Throughout the section, we adopt mathematical programming
and combinatorial optimization concepts. We refer the reader to [19] for an introductory
treatment of the subjects.

4.1 Problem formulation

Let the binary variable xijk be 1 if annotator j ∈ A is assigned to task i ∈ T at her iteration
k ∈ I , 0 otherwise. We obtain the following MILP formulation of CL-TAP:

max η (11)

s.t. η ≤
c′(Wi)︷ ︸︸ ︷∑

(j,k)∈A×I
�jk(2pjk − 1)xijk ∀i ∈ T (12)

∑
i∈T ,j∈A,k∈I

xijk ≤ b (13)

∑
k∈I

xijk ≤ 1 ∀j ∈ A, i ∈ T (14)

∑
i∈T

xijk ≤ 1 ∀j ∈ A, k ∈ I (15)

∑
i∈T

xijk ≤
∑
i∈T

xij,k−1 ∀j ∈ A, k ∈ I \ {1} (16)

xijk ∈ {0, 1} ∀i ∈ T , j ∈ A, k ∈ I. (17)

Constraints (12) allow us to cast the problem as a bottleneck problem by imposing that
η be a lower bound on the linear correctness of each task, which is then maximized in
the Objective Function (11). Constraint (13) guarantees that the budget b is not exceeded.
Constraints (14) impose that each annotator be assigned to a task in, at most, one of her
iterations. Similarly, Constraints (15) establish that each annotator be assigned to at most a
task in each of her iterations. Finally, Constraints (16) guarantee that, if an annotator j ∈ A
is used in her iteration k for some task, then she must be used for some other task in her
iteration k − 1.

A task assignment is a sequence 〈W1, . . . ,Wt 〉 of workplans, one for each task i ∈ T .
The binary variables xijk collectively correspond to a task assignment, where each workplan
Wi amounts to {(j, k) ∈ A×I : xijk = 1}. The task assignment is said to be feasible if the
xijks satisfy Constraints (13)–(17), and optimal if the xijks are a solution to Problem (11)–
(17).

As we will see in Section 6, solving Problem (11)–(17) to optimality with state-of-the-
art MILP solvers is very challenging even for medium-size instances. This motivates us to
design some faster, albeit not exact, heuristic algorithms to tackle CL-TAP, described next.

World Wide Web (2017) 20:1179–1210 1189

4.2 A correctness-based policy

We now present an effective (linear) correctness -based policy (CBP) for solving CL-TAP.
Such a policy, described in Algorithm 1, addresses the case of decreasing as well as increas-
ing annotators’ accuracies, and could, in fact, be used even in the case where the accuracies
are non-monotonic.

In the main loop, CBP looks for the annotator j∗ that reaches the highest average accu-
racy, and indicates as h∗ the horizon of available iterations in which this happens. In order to
comply with the available budget, h∗ may not exceed b. The search for j∗ and h∗ can be effi-
ciently performed as follows: for each annotator, we consider the set of annotator-iteration
pairs starting from her current iteration until the furthest iteration such that the accuracies
are non-decreasing (indeed: adding a lower accuracy would decrease the average). Then,
h∗ equals the size of the set with the highest average accuracy, and j∗ is the correspond-
ing annotator. We then ensure that annotator j∗ is used in all the iterations up to the h∗-th
by assigning, for 1 ≤ h ≤ h∗, the annotator-iteration pair (j∗, h) to the workplan with the
h-th highest linear correctness value (among the h∗ most uncertain workplans that did not
receive an annotation from j∗), and decreasing the available budget correspondingly.

We observe that, in the case of decreasing accuracies, CBP always sets h∗ = 1 and, thus,
boils down to assigning, each time, the single most promising available annotator-iteration
pair to the most needy task (i.e., the one with the lowest linear correctness). Conversely,
in the case of increasing accuracies, CBP always sets h∗ = t and thus, in each repeat
cycle, it assigns all the t annotator-iteration pairs available from the best annotator (j∗) to
all the t tasks, by taking care of providing the most needy tasks with the annotator-iteration
pairs with the highest accuracies. For the latter scenario, we note that, basing the choice
of annotator j∗ on the average of her accuracies provides us with a much more robust
performance than using a single accuracy value (e.g., the initial accuracy value).

CBP has a complexity of O(b(at + t log t)). Indeed, the main loop is executed up to b

times. Each time, up to a· (a annotators along t iterations) available accuracies are explored
to select the best annotator, which is assigned to the h∗ most uncertain tasks (with h∗ ≤ t),
the update of which requires log t time per task.

Example 1 Let A = {1, 2}, T = {1, 2, 3}, and b = 5. If we represent each workplan as a
binary matrix W of size a × t (so that Wjk = 1 if the annotator-iteration (j, k) is present

1190 World Wide Web (2017) 20:1179–1210

in the workplan, 0 otherwise) the set of feasible workplans, neglecting the empty one, is as
follows:

[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
,

[
1 0 0
1 0 0

]
,

[
0 1 0
1 0 0

]
,

[
0 0 1
1 0 0

]
,

[
1 0 0
0 1 0

]
,

[
0 1 0
0 1 0

]
,

[
0 0 1
0 1 0

]
,

[
1 0 0
0 0 1

]
,

[
0 1 0
0 0 1

]
.

Note that

[
0 0 1
0 0 1

]
is not feasible for any task, as a budget b ≥ 6 would be needed to have

both annotators at iteration 3.
Let the accuracies pjk be increasing over the iterations:

p11 = 0.68, p12 = 0.75, p13 = 0.8;
p21 = 0.55, p22 = 0.7, p23 = 0.9.

CBP starts from a task assignment only consisting of empty workplans:

〈W1,W2,W3〉 =
〈 [

0 0 0
0 0 0

]
,

[
0 0 0
0 0 0

]
,

[
0 0 0
0 0 0

] 〉
.

Here, annotator 1 has the highest average accuracy in her first min{t, b} = 3 iterations
and is, thus, the most promising. We have enough budget to let annotator 1 work on
every task. Since annotator 1 will improve while working, we reserve her best annotation
for the least certain workplan. At this point, all workplans have equal linear correctness
(10), so we break ties lexicographically. As a result, workplan W1 is assigned annotator-
iteration (1, 3), whereasW2 (the second-most uncertain) andW3 (the third-most uncertain)
will be, resp., assigned annotator-iteration (1, 2) and (1, 1). The current solution reads:〈 [

0 0 1
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
1 0 0
0 0 0

] 〉
. Annotator 2 is now the only possible choice. With a

remaining budget of 2, the algorithm assigns annotator-iteration (2, 2) to workplanW3 (the
most uncertain) and annotator-iteration (2, 1) to workplanW2 (the second-most uncertain).

The final solution is:

〈 [
0 0 1
0 0 0

]
,

[
0 1 0
1 0 0

]
,

[
1 0 0
0 1 0

] 〉
, whose objective value is 0.57,

obtained as min{c′(W1), c
′(W2), c

′(W3)}. Although not optimal in general, for this small
instance CBP identifies an optimal task assignment, since 0.57 is the value found by solving
Problem (11)–(17) to optimality.

Example 2 Consider now decreasing accuracies. LetA = {1, 2, 3, 4}, T = {1, 2, 3}, b = 5,
and pjk be as follows:

p11 = 0.90, p12 = 0.70, p13 = 0.55;
p21 = 0.80, p22 = 0.75, p23 = 0.68;
p31 = 0.79, p32 = 0.76, p33 = 0.69;
p41 = 0.89, p42 = 0.78, p43 = 0.67.

CBP starts with an initial task assignment solely composed of empty workplans. The
annotator-iteration to be selected next should maximize linear correctness (10), and is
obtained by identifying the annotator with the highest accuracy at her first iteration, since,

World Wide Web (2017) 20:1179–1210 1191

with decreasing accuracies, CBP will always set the horizon of iterations to consider to
h∗ = 1. As such, the algorithm selects the annotator-iteration (1, 1), which is then assigned
to the least certain workplan. Since all workplans have, initially, the same linear correctness,
workplanW1 is selected by lexicographic order. The current solution thus becomes:

〈
⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

〉
.

Next, annotator-iteration (4, 1) is selected. Again, ties are broken lexicographically, lead-
ing to the selection ofW2. CBP proceeds in a similar fashion and assigns (2, 1) toW3. The
current solution then becomes:

〈⎡⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
1 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

〉

At this point, the least certain workplan isW3. Continuing this way, CBP will eventually
produce the following final solution:

〈⎡⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
1 0 0
1 0 0
0 1 0

⎤
⎥⎥⎦

〉

Its objective value is 1.63, which, in this case, is the optimal value.

4.3 Improving upon CBP solutions

In the attempt of improving upon suboptimal solutions, we have implemented a local search
meta-heuristics in order to further explore the set of feasible task assignments. The idea is
to iteratively move from an initial solution to a “neighboring” task assignment by applying
local changes, until either a timeout expires or a target gain in terms of linear correctness
is met. The possible moves, applied only as long as they preserve feasibility (in the sense
introduced in Section 4.1), are

i) internal swaps (swapping two annotations between two different workplans);
ii) external swaps (swapping an annotation in a workplan with one not used in the task

assignment and adjusting iterations as needed);
iii) deletions or additions (if budget allows) of an annotation.

Let � indicate the linear correctness gain associated with a move: the move with the highest
� is chosen; however, if several consecutive moves with negative� are applied, the external
swap with the highest � is forced to take place, as an attempt to escape from local maxima.

5 Certifying solutions

As shown in Section 6, solving MILP (11)–(17) to optimality is very difficult for any
instance of interesting size. In spite of this, one could think of using the MILP formulation

1192 World Wide Web (2017) 20:1179–1210

to construct upper bounds on CL-TAP, to be used to certify the quality of the solutions found
via the correctness -based policy. Indeed, it suffices to relax the Integrality Constraints (17)
on the variables to obtain a Linear Program (LP). Optimal solutions to the LP, although
infeasible, clearly achieve an objective function value UB which is at least as good as that
of any optimal solution to Problem (11)–(17) and, therefore, to CL-TAP. This way, given an
upper bound (UB) to CL-TAP, any feasible solution to the problem (yielding a lower bound
LB) is guaranteed to be at least LB

UB
≤ 1 times the value of an optimal solution. In other

words, the solution of value LB is a ρ-approximate solution to the problem, with ρ = LB
UB

,
which gives us a guarantee on how close we are to an optimal solution.1

Since, for large instances, even the LP relaxation of Problem (11)–(17) can be very time
consuming to solve, we now develop a faster method to calculate the aforementioned LP
upper bound.

5.1 An alternative formulation

We now introduce an alternative formulation which, as we will show in the following, can
be used to construct an alternative upper bound to CL-TAP.

We call a workplan feasible if it is an element of some feasible task assignment. Let
us assume that all the feasible workplans have been precomputed and let H be the corre-
sponding index set. We denote by Wh the workplan of index h, for every h ∈ H. Note the
difference w.r.t. the notation Wi , by which we denote a workplan associated with a task
i ∈ T . Let ch be the linear correctness of workplanWh. We assume, for now, that it has been
precomputed along with Wh. Let the binary parameter whjk be equal to 1 if workplan Wh

uses annotator j ∈ A in her iteration k ∈ I and let whjk = 0 otherwise. We introduce the
binary variable λih, denoting whether workplan Wh is associated with task i ∈ T or not.
The following is an alternative formulation of CL-TAP:

max η (18)

s.t. η ≤
∑
h∈H

chλih ∀i ∈ T (19)

∑
i∈T

∑
h∈H

⎛
⎝∑

j∈A

∑
k∈I

whjk

⎞
⎠ λih ≤ b (20)

∑
i∈T

∑
h∈H

whjkλih ≤ 1 ∀j ∈ A, k ∈ I (21)

∑
h∈H

λih ≤ 1 ∀i ∈ T (22)

∑
i ∈ T
h ∈ H

whjkλih≤
∑

i ∈ T
h ∈ H

whj,k−1λih ∀j ∈ A, k ∈ I\{1} (23)

λih ∈ {0, 1} ∀i ∈ T , h ∈ H. (24)

1To show this, let OPT be the value of an optimal solution. Let ρ = LB
UB

. Due to LB
UB

≤ LB
OPT

, we have
LB ≥ ρ OPT . Since LB ≤ OPT , we conclude ρOPT ≤ LB ≤ OPT , i.e., that the solution of value LB

is a ρ-approximate solution to the problem, with ρ = LB
UB

.

World Wide Web (2017) 20:1179–1210 1193

Constraints (19), (20), (21), and (23) correspond, resp., to the original Constraints
(12), (13), (15), and (16). Constraint (14) is automatically satisfied when assuming that only
feasible workplans are considered, while the new Constraint (22) imposes that a workplan
be assigned to, at most, a task. Note that, in Constraint (20), the quantity

∑
j∈A

∑
k∈I whjk

corresponds to the number of annotators used in workplanWh.

5.2 Column generation algorithm

In principle, it is clear that the MILP (18)–(24) cannot be solved directly, as it requires to
precompute all the (exponentially many) feasible workplans. Yet, its LP relaxation can be
solved quite efficiently with the algorithm that we now describe. The general idea is to solve
the LP relaxation of Problem (18)–(24) on an increasing subset H′ of H while iteratively
inspecting the current solution so as to identify, among the workplans not yet considered, a
convenient one to add.

This very idea is at the core of a broad family of methods called column generation
algorithms, which are designed for the solution of large linear programming problems with,
usually, exponentially many variables (or columns). Given a linear program, those methods
solve, alternately, two subproblems called restricted master problem (RMP) and pricing
subproblem (PSP). The former corresponds to a restriction of the original linear program
to the subset of variables considered so far. The latter is a new problem, which is solved to
identify new promising variables to be added to RMP. For an introduction to this type of
methods, see [26].

For the task assignment problem, we relax integrality in Constraints (24) in Problem (18)-
(24) by imposing λih ∈ [0, 1] (this is, intuitively, equivalent to allowing for fractional
assignments of workplans to tasks). For all i ∈ T , j ∈ A, k ∈ I , let αi, β, γjk, δi , εjk ≥ 0
denote the (linear programming) dual variables of, resp., Constraints (19), (20), (21), (22),
and (23), corresponding to an optimal solution to RMP. For convenience, let εj,|I|+1 = 0
for all j ∈ A. The next workplan to be considered (the index of which we omit for readabil-
ity) is generated by solving the following PSP t times, one per task i ∈ T , each time with
the appropriate value of αi (see Appendix A for the derivation of the subproblem):

max αi

c′(Wi)︷ ︸︸ ︷∑
j ∈ A
k ∈ I

�jk(2pjk −1)wjk−
∑

j ∈ A
k ∈ I

(β+γjk +εjk −εj,k+1)wjk (25)

s.t.
∑
j∈A

∑
k∈I

wjk ≤ b (26)

∑
k∈I

wjk ≤ 1 ∀j ∈ A (27)

wjk ∈ {0, 1} ∀j ∈ A, k ∈ I. (28)

Solving Problem (25)–(28) amounts to deciding which wjk should be set to 1, i.e., decid-
ing which annotator-iteration pairs (j, k) ∈ (A × I) to include in the new workplan, based
on the current (fractional) solution to Problem (18)-(24) (as conveyed by the dual variables
{αi}, β, {γjk}, {δi}, {εjk}). As we show in Appendix A, improving workplans can only be

1194 World Wide Web (2017) 20:1179–1210

found among those with an objective function value of, at least, δi . All the workplans vio-
lating this condition are thus discarded. We remark that PSP can be solved in polynomial
time. This is because, since its constraints form a totally unimodular matrix (refer to [19]
for details on total unimodularity) and its objective function is linear, we can solve it as a
linear programming problem, a task which can be carried out in polynomial time.

The pseudo-code of the column generation (colgen) algorithm is reported in
Algorithm 2.

First, we find an initial set of indexes of feasible workplans H′ by invoking a heuris-
tic procedure heuristic procedure (a good choice are the workplans of the task
assignment found by CBP). Then, column generation is applied until no more improving
workplans are found. In colgen, we substitute the tighter inequality

∑
j∈A

∑
k∈I kwjk ≤

b for Constraint (26), which prevents the generation of many useless workplans. The tighter
constraint reflects the fact that, if an annotator is selected in her k-th iteration, k − 1 extra
units of budget must be reserved to account for her previous k−1 iterations. In spite of forc-
ing us to solve PSP as an MILP (rather than as an LP), overall this leads to a substantially
faster method.

We introduce a few other enhancements. First, in order to focus on the most promis-
ing workplans, we take a new workplan into consideration only if the corresponding
objective function value � is at least δi and the best one seen so far in the current iter-
ation. At each iteration, we use the new workplan Wh to bootstrap a heuristic search
(heuristic search) for a feasible task assignment. Let {h} ∪ Hl be the indexes of
its workplans. Then, the indexes Hl are added to H′. This way, we try to anticipate the
construction of promising workplans, so as to achieve faster convergence of the method.

6 Experimental evaluation

In this section, we present the results for the two classes of experimental evaluations we
conducted. Namely, we first provide empirical evidence of the existence of a workload-
dependent accuracy variation among workers, whether coming from a volunteer or a
professional crowd. Then, we evaluate the performance of the proposed task assignment
policy on different (synthetic and real) data sets, showing the need of taking such accuracy
variations into account.

World Wide Web (2017) 20:1179–1210 1195

6.1 Estimating the accuracy model

We conducted three experiments involving real crowds with the aim of verifying that the
accuracy level of each annotator changes as the number of assignments increases.

6.1.1 Methodology

Experiments The first experiment was conducted on a volunteer crowd of 80 participants,
who were required to solve a sequence of CAPTCHAs within a time frame of 30 minutes.
Each participant was allowed to leave the session at any time. The contributions were sub-
mitted via an in-house Web application specifically implemented for the experiment, while
CAPTCHAs were provided by the reCAPTCHA service [22]. The contributions for the sec-
ond experiment were collected via a GWAP for image segmentation [11]. Specifically, each
one of the 159 players who took part in the experiment was presented with a sequence of
images, where each image depicted one or more individuals wearing fashionable clothes.
Participants were asked to draw the contour of a specific garment in the image. Such a con-
tour was then automatically filled so as to obtain a binary mask of the image, effectively

Figure 2 Segmentation task a: the participants were asked to draw the contour of a given garment in the
image. Visual perception tasks b–c: the participants were asked to answer the binary question “Are the
X-pointed stars more numerous than the Y -pointed ones?”

1196 World Wide Web (2017) 20:1179–1210

segmenting the garment from the rest of the image, as reported in Figure 2a. For each image
in the dataset, we compared the the obtained contour with the actual one (available as a
“gold standard”), and then computed the accuracy of the worker accordingly. As with the
first experiment, players were free to leave at any time. The third experiment was conducted
on the MicroTask platform [17], with 30 workers involved. In this case, the participants
were asked to solve a sequence of 1000 visual perception tasks within a time frame of 5
hours. Differently from the two previous experiments, in order to reflect more accurately
the working conditions of a paid crowd, we mandated participants to complete the entire set
of tasks. Given two natural numbers X and Y , for each task, workers had to inspect a pic-
ture similar to those reported in Figure 2b and c and answer the binary question “Are the
X-pointed stars more numerous than the Y -pointed ones?”. The sequence of images was
obtained by alternating between tasks with (X = 5, Y = 6), as in Figure 2b, and tasks with
(X = 7, Y = 9), as in Figure 2c. Finally, in order to make the images more challenging,
each star was randomly rotated and scaled down.

Incentive model Since, in the first and the second experiments, the contributions were
made on a voluntary basis, no incentive model was adopted. Conversely, in the third exper-
iment we adopted a pay-per-performance incentive model. Namely, we fixed 5USD as a
fair payment in return for 950 correct answers. Each worker was then paid proportionally
w.r.t. the number of correct answers. If such a number exceeded 950, the payment function
was adapted so as to set a wage of 20USD in return for 1000 correct answers, thus dramat-
ically increasing the payment with the number of correct answers provided. Moreover, as
we required workers to annotate the whole data set within a maximum of 5 hours, we set
an additional multiplier on the total payment for the first 5 fastest workers to complete the
session among those providing at least 950 correct answers. Specifically, the multiplier was
computed as 1.5− 0.1(R − 1), where R = 1, . . . , 5 is the worker’s rank. We opted for such
an incentive model in order to discourage as much as possible malicious behaviors, since
a pilot experiment revealed that a high percentage of the total workforce provided labels at
random if hired with a flat pay-per-hour incentive model.

Methods and evaluation metrics We characterize the behavior of both the volunteer and
the professional crowd by means of two aspects:

i) the average accuracy variation w.r.t. the number of already provided labels;
ii) the delay between two consecutive answers.

Since participants in the first two experiments were free to leave at any time, the last tasks
in the sequence may receive a low number of labels. In order not to bias the results, the
histogram of the contributions provided by the participants was constructed so as to suppress
any negligible tail in the distribution. For instance, even though the single best participant
in the CAPTCHA validation experiment provided 378 correct answers, by analyzing the
overall distribution, we decided to consider only the first 100 answers. Moreover, in order to
better highlight the emerging trends, we smoothed the data by means of a moving average
filter.

6.1.2 Results

Average accuracy variation Figure 3a, c, and e show the aggregated accuracy variation
as a function of the number of provided labels for the CAPTCHA validation experiment,

World Wide Web (2017) 20:1179–1210 1197

Figure 3 Average accuracy variation and task duration

the segmentation experiment, and the visual perception experiment, respectively. As shown,
the trend of the accuracy function strictly depends on the specific task to be executed. In
particular, an improvement in the accuracies of the annotators emerged in the CAPTCHA
validation experiment (Figure 3a). Conversely, annotators exhibited decreasing accuracies,
likely due to fatigue, during the visual perception experiment (Figure 3e). Finally, a station-
ary accuracy trend emerged from the segmentation experiment (Figure 3c). This might be
explained if we consider that humans can easily recognize visual objects in images, even
if they are partially visible or appear in unusual lighting conditions or view points. Fur-
thermore, possible fatigue phenomena could have been counterbalanced by the engagement
factor induced by the game-based interaction of the GWAP. Indeed, the average accuracy
value exceeded 0.9 for the entire duration of the experiment.

1198 World Wide Web (2017) 20:1179–1210

Task duration Figure 3b, d, and f report the average task duration observed during the
three different experiments. Although all experiments showed a decreasing task duration,
the reported accuracy trends suggest that this could be due to different reasons. Namely, the
decreasing trend in Figure 3b could be a consequence of the learning phenomenon reported
in Figure 3a, i.e., learning impacted positively not only on accuracy, but also on task com-
pletion speed. The same rationale applies for the segmentation experiment (Figure 3d), in
which participants maintained the initial high level of accuracy, while reducing progres-
sively the task completion time as they learned how to play. Conversely, the decreasing trend
in the visual perception experiment (Figure 3f) coupled to a decrease in accuracy could
be considered as a different manifestation of the same fatigue phenomenon emerged in
Figure 3e, i.e., as participants got more fatigued, they decided to invest less time to complete
each single task, thus worsening the accuracy.

6.2 Evaluating the task assignment policies

Once the task assignment problem is solved and tasks are accordingly assigned to work-
ers and completed by them, each task i ∈ T gets associated with a set of noisy labels
{zijk}(j,k)∈Wi

. At that point, a label aggregation technique can be used in order to obtain
an estimation ŷi of the true label yi . Namely, for each task i ∈ T , we first compute its
posterior probability μi starting from (2). As anticipated in Section 3, the estimated label
ŷi is then computed by applying a threshold ω = 0.5 to the posterior probability μi , thus
letting ŷi = 1 if μi ≥ 0.5 and ŷi = −1 otherwise. Hence, we evaluate the performance
of a task assignment policy in terms of the final classification error (i.e., the percentage of
misclassified tasks):

ε = 1

t

∑
i

1≤i≤t

εi = 1

t

∑
i

1≤i≤t

ŷi �=yi

1. (29)

In order to evaluate the effectiveness of the proposed task assignment policy, we investigate
how close the obtained linear correctness is to the optimal value and how the classification
error is affected by:

i) the budget availability;
ii) different degrees of accuracy variation (either decreasing or increasing);
iii) the number of tasks;
iv) the number of available annotators; and
v) the crowd expertise.

The relevant parameters are shown in Table 2, with defaults in bold.

Table 2 Operating parameters for the task assignment policy evaluation (defaults in bold)

Full name Param. Tested value

Size of the task set t 3, 4, 5, 100, 200, 1K, 10K, 100K

Size of the annotator set a 3, 10, 20, 50, 100, 150, 200

Budget b 1.5t , 2t, 2.5t , 3t

Accuracy variation degree τ 0.25, 0.5, 1, 10, 100, mixed population

Type of crowd − NAIVE, EXPERT

World Wide Web (2017) 20:1179–1210 1199

6.2.1 Methodology

Data sets The first data set family consists of synthetically generated tasks and annotators.
For each annotator j ∈ A, her initial accuracy pj1 is randomly sampled from a Beta distri-
bution. In particular, for a “naive” crowd, pj1 is sampled from a Beta with mean 0.7 (resp.,
0.6) for decreasing (resp., increasing) accuracies; the standard deviation is 0.14 – a high
value, since the crowd is heterogeneous. Conversely, for an “expert” crowd, pj1 is sampled
from a Beta with mean 0.9 and standard deviation 0.03, since all annotators are consistently
good, both for decreasing and increasing accuracies. Accuracy was modeled as a power law:

pjk = σkτ + ζ, (30)

where τ can be interpreted as an endurance factor (resp., improvement rate), and the param-
eters σ and ζ are appropriately defined so that the obtained curves cover several different
trends, including those of the curves shown in Figure 3. Namely, a random value t̄ where
accuracy “saturates” (i.e., pjt̄ = 0.5 for decreasing accuracies, and pjt̄ = 1 for increas-
ing accuracies) is sampled from a Beta distribution in the interval2 [1, 2t]. The remaining
parameters σ and ζ are then computed by solving (30) in two cases:

i) when k = 1, and thus pjk = pj1, and
ii) when k = t̄ , and thus pjk = pjt̄ ,

i.e., for the initial and the final accuracy values of annotator j . In order to model annotators
with different accuracy trends, the default population is “mixed”, and consists of 5 equally
sized groups – one per tested value of τ (see Table 2). Task labels yi are equally balanced
between the two possible binary labels.

The second data set family includes three real data sets, comprising tasks and annotators
coming from the CAPTCHA validation, the image segmentation, and the visual perception
experiment.

Methods and evaluation metrics We compared the performance of the algorithms of
Section 4 (indicated as CBP and local search) with the state-of-art CPLEX tool,
denoted optimal, which solves Problem (11)-(17) to optimality, and four baseline
policies:

i) a policy named random (RND), which randomly assigns annotators to tasks until
budget exhaustion, so that each task gets at least an annotation;

ii) the task assignment policy proposed in [15], in which annotators are randomly
assigned to tasks so that the resulting solution can be represented as a regular bipartite
graph, here referred to as regular (RGL);

iii) the offline task assignment policy proposed in [13], indicated as primal
approximation (PA); and

iv) an offline task assignment policy inspired by the top annotator selection criterion used
in iCrowd [10], indicated as top annotators (TA).

Note that PA has the objective of minimizing the budget, while guaranteeing a maximum
value ψ ∈ [0, 1) for a proxy of the classification error. Such a value ψ thus needs to be pro-
vided as an input parameter to PA, while our policy uses the budget b as input. Fortunately,

2For decreasing accuracies, mean = 0.15 · 2t ; for increasing accuracies, mean = 0.85 · 2t . Standard deviation
= 0.14.

1200 World Wide Web (2017) 20:1179–1210

for every value of ψ a corresponding value of b can be found. Therefore, in the experiments,
we first map the value b under test into the smallest corresponding value of ψ , and then exe-
cute PA. Moreover, since PA is agnostic with respect to the presence of different iterations
for the same annotator, and thus gives no indication about the order in which an annota-
tor labels the different tasks, we adopted, for PA, a random order. For the same reason, PA
only “sees” one accuracy value per annotator; to improve PA’s performance, we provided

Table 3 (a),(c) classification error epsilon. (b),(d) linear correctness value (see (10)); in parentheses, the
ratio between the solution found by the algorithm and the optimal value; when the latter is not available
(t > 5), we replace the optimal value by the upper bound provided by the column generation method (see
Section 5.2). Synthetic data sets: task set size t and annotator set size a vary, defaults otherwise

optimal CBP local search

(a) Decreasing accuracies - classification error ∈
t = 3, a = 3 0.30 0.30 0.30

t = 4, a = 3 0.30 0.30 0.30

t = 5, a = 3 0.32 0.32 0.32

t = 100, a = 10 − 0.21 0.21

t = 200, a = 20 − 0.17 0.17

t = 1000, a = 100 − 0.07 0.07

(b) Decreasing accuracies - linear correctness

t = 3, a = 3 0.43 (100 %) 0.43 (100 %) 0.43 (100 %)

t = 4, a = 3 0.38 (100 %) 0.37 (98.30 %) 0.38 (100 %)

t = 5, a = 3 0.35 (100 %) 0.35 (100 %) 0.35 (100 %)

t = 100, a = 10 − (100 %) 0.96 (≥86.30 %) 0.98 (≥88.48 %)

t = 200, a = 20 − (100 %) 1.41 (≥87.81 %) 1.42 (≥88.70 %)

t = 1000, a = 100 − (100 %) 2.71 (≥93.26 %) 2.72 (≥93.47 %)

(c) Increasing accuracies - classification error ∈
t = 3, a = 3 0.21 0.21 0.21

t = 4, a = 3 0.19 0.19 0.19

t = 5, a = 3 0.19 0.20 0.19

t = 100, a = 10 − 0.13 0.13

t = 200, a = 20 − 0.12 0.12

t = 1000, a = 100 − 0.04 0.04

(d) Increasing accuracies - linear correctness

t = 3, a = 3 1.28 (100 %) 1.27 (99.25 %) 1.28 (100 %)

t = 4, a = 3 1.33 (100 %) 1.32 (99.41 %) 1.33 (100 %)

t = 5, a = 3 1.35 (100 %) 1.34 (99.46 %) 1.35 (100 %)

t = 100, a = 10 − (100 %) 1.86 (≥83.99 %) 1.86 (≥83.99 %)

t = 200, a = 20 − (100 %) 2.04 (≥83.27 %) 2.04 (≥83.27 %)

t = 1000, a = 100 − (100 %) 2.80 (≥86.53 %) 2.80 (≥86.53 %)

World Wide Web (2017) 20:1179–1210 1201

Figure 4 Classification error ε on large-scale data sets: budget b varies, defaults otherwise

PAwith the average accuracy of the annotator during her available iterations. Other choices,
such as providing PA with the initial or the final accuracy value, would entail a significant
reduction in the result quality.

We also point out that TA is a particularly fair offline counterpart of iCrowd. First of all,
iCrowd spends a relevant part of the budget on a step whose sole purpose is to estimate the
accuracies of the annotators, and in particular to assess their ability on kinds of tasks they
have not dealt with before. In our context, instead, we deal with tasks that are all of the
same kind, and accuracies are already available from the start. Therefore, our baseline TA ,
unlike iCrowd, completely avoids the above step. In addition, in iCrowd each task receives
the same amount K of annotations (where K is a fixed odd number). Such a constraint
leads to extremely poor quality whenever the available budget b largely differs from K · t .
Therefore, to alleviate this problem, TA chooses each time the most suitable value for K

depending on the available budget b.
For all these algorithms we report both linear correctness c′(·) (Table 3) and classification

error ε (Table 3 and Figures 4, 5, 6, 7, 8, 9, 10 and 11). Since the time needed to aggre-
gate the annotators’ labels is negligible w.r.t. the time needed to find a task assignment,
only the latter will be shown when we report execution times (Figure 6). All metrics are
averaged over 10 different instances. When evaluating the quality of the random, PA, and
regular baselines, metrics are additionally averaged over 10 rounds so as to properly take
into account the stochastic component of the methods. All the experiments have been con-
ducted on a computer with an Intel� Core i7 processor operating at 3.4GHz and 16GB of
RAM.

Figure 5 Classification error ε on large-scale data sets: task set size t varies, defaults otherwise

1202 World Wide Web (2017) 20:1179–1210

Figure 6 Execution time on large-scale data sets: task set size t varies, defaults otherwise

Figure 7 Classification error ε on large-scale data sets: annotator set size a varies, defaults otherwise

Figure 8 Classification error ε on large-scale data sets: accuracy variation τ varies, defaults otherwise

Figure 9 Classification error ε on large-scale data sets: crowd type varies, defaults otherwise

World Wide Web (2017) 20:1179–1210 1203

Figure 10 Classification error ε

on large-scale data sets: budget b
varies, non-monotonic trends

6.2.2 Results

Certification of the solution quality We initially compared the methods for a small
problem size (t = 3, 4, 5), so as to be able to compute the results of the optimal algo-
rithm. Table 3 reports a comparison between CBP , local search, and optimal in
terms of both linear correctness and classification error, as t increases. Table 3a and b also
report in parentheses the ratio LB

OPT
between the solution found by the algorithm (LB) and

the optimal linear correctness value (OPT), when available (t ≤ 5). When OPT is not
available (t > 5), we report the ratio LB

UB
, whereUB is the upper bound provided by our col-

umn generation method (see Section 5.2), showing that the solution is at least LB
UB

· OPT .
As shown in Table 3a–b (decreasing accuracies) and Table 3c–d (increasing accuracies),
CBP is practically as good as the more expensive algorithms in terms of classification error,
as shown by the fact that, except for a single case, it attains the same error value for all the
test scenarios in Table 3a-c. As mentioned in Section 5.2, we can use our column generation

Figure 11 Classification error ε (real data set): budget b varies within the values in Table 2

1204 World Wide Web (2017) 20:1179–1210

method colgen in order to produce an indication of how far, in terms of linear correct-
ness , a given solution is from an optimal one, even when the latter cannot be computed in
reasonable time by optimal, such as, e.g., for t = 100. Yet, after inspecting the upper
bounds computed by colgen, we conclude that the linear correctness values found by CBP
were always guaranteed to be, on average, at least 86.30 % of the optimal linear correctness
value (93.26 % with default parameter values) when decreasing accuracies are considered
(83.27 % when increasing accuracies are considered). In fact, the actual ratio between a
given solution and an optimal solution is unknown in practice, but could be well above such
values. As for our experiments, these ratios give us an indication of the fact that, even in
the practically more challenging case of annotators suffering from decreasing accuracies
(for which the classification error is significantly higher than for increasing accuracies), we
are guaranteed to be rather close to an optimal solution. Note, in addition, that CBP and
local search keep finding solutions of comparable or identical quality even for task set
sizes that cannot be dealt with by optimal, as shown in Table 3 for t ≥ 100. Therefore in
the following experiments on large-scale data sets we will only focus on CBP and contrast
it with the random, regular, TA and PA baselines.

Budget availability Figure 4 shows the classification error ε as the budget b varies within
the values defined in Table 2. Predictably, the classification error ε decreases as the budget
b increases, and CBP outperforms the baselines in all the execution scenarios. Namely, CBP
leads to an error value 29 % smaller, on average, than the closest baseline (TA , here) in
the decreasing accuracy scenario; the same distance to the closest baseline is attained in the
increasing case, although against a different algorithm (PA, here). For poorer baselines, ε

may exceed 30 %.

Size of the task set Figures 5 and 6 show the classification error ε and the algorithm
execution time as the task set size t varies within the values reported in Table 2. In order not
to change the population of annotators throughout the experiment, we set a limit of 1000
iterations per annotator (which equals t in the default case). As shown in Figure 5a–b, the
error increases as t increases. This can be easily explained by noticing that we require a
hundred annotators to make, e.g., 20000 annotations overall for t = 10000, i.e., on average
200 each. Because of this, it is reasonable to expect the accuracy to be low for some of
those annotations. Nevertheless, CBP leads to a classification error 32 % (22 %) smaller for
t = 1000, and 6 % (18 %) smaller for t = 10000 when compared to the nearest baseline, for
decreasing and increasing accuracies, respectively. Note that, since only 1000 iterations are
available per annotator, when t = 100000 (a size hardly ever needed by a requester) each
task receives exactly one annotation, thus causing all the algorithms to perform the same.

Figure 6a and b show that the presence of an accuracy variation phenomenon does not
affect the execution time of CBP . Moreover, for t = 100000, the regular baseline dom-
inates the execution time. This is because the algorithm may need several attempts to build
a graph that is both random and regular. However, in all cases the time required to com-
pute offline the task assignments under any of the policies is negligible w.r.t. the total time
needed for an annotator to label her tasks. Indeed, even in the best experimental scenario
reported in Figure 3, an annotator needs on average over 5 seconds to provide a single
answer.

Size of the annotator set Figure 7 shows the classification error ε as the annotator set
size a varies within the values in Table 2. When considering decreasing accuracies, the
classification error ε achieved by CBP is from 4 % (a = 10) to over 38 % (a = 200)

World Wide Web (2017) 20:1179–1210 1205

smaller than the nearest baseline. Similarly, when considering increasing accuracies, the
classification error ε ranges from 15 % (a = 10) to more than 22 % (a = 100) smaller than
the nearest baseline.

Accuracy variation degree The default populations of annotators tested so far were mix-
ing groups of annotators with several values of τ (accuracy variation degree). Figure 8
now shows the classification error ε as τ varies within the values in Table 2. As shown
in Figure 8a, when considering decreasing accuracies, the effectiveness of the algorithms
is greatly reduced by smaller values of τ . Indeed, when τ = 0.25, CBP leads to a 13 %
improvement against the nearest baseline. However, the performance of CBP significantly
improves for more realistic values of τ , e.g., τ = 1 (which best match the trends of the
curves in Figure 3), in which CBP achieves a classification error ε over 26 % smaller than
the nearest baseline. Figure 8b reveals a similar trend for increasing accuracies. In this case,
however, larger values of τ (corresponding to very unlikely situations in practice) lead to a
stalled increase in the accuracy of the annotators until the very last iterations. This entails
flattening the performance of the different approaches and, therefore, for τ = 100, CBP
exhibits no observable improvement with respect to the closest baseline, and a modest 2 %
improvement is achieved for τ = 10.

Type of crowd Figure 9 shows the classification error ε when testing the algorithms
against two crowds of different expertise (whose parameters are reported in Section 6.2.1).
As shown, the crowd expertise deeply affects the outcome of the random and regular
baseline methods, regardless of the type of accuracy variation. Conversely, CBP shows more
robust and consistent performance when moving from a crowd of heterogeneous expertise
(such as NAIVE, which has a high variance) to a professional crowd. Moreover, in the
NAIVE case, CBP leads to a classification error ε 32 % smaller for decreasing accura-
cies (Figure 9a) and more than 22 % smaller for increasing accuracies (Figure 9b) w.r.t.
the nearest baseline. Similarly, in the EXPERT case, CBP’s error is 44 % and 25 % smaller
than the closest baseline in the decreasing and, resp., increasing scenario. This shows that,
both in the realistic case of a heterogeneous crowd and in the desirable case of an expert
crowd, it becomes crucial to explicitly consider the expected linear correctness for each
task.

Non-monotonic trends In order to assess the robustness of CBP to different possible
accuracy functions, we tested its performance with annotators featuring non-monotonic
accuracy functions. Specifically, we constructed an annotator population so that annotators
would first improve up to a given iteration, beyond which they would instead start decreas-
ing their accuracy. These accuracy variations were simply obtained by juxtaposition of one
increasing trend and one decreasing trend, defined similarly to what is done in Section 6.2.1,
with the additional indication that the iteration marking the transition between increasing
and decreasing trend is sampled from a uniform distribution in the interval [1, t]. Figure 10
shows the attained classification error ε for all methods under test. When compared with
the nearest baseline, CBP leads to a classification error 38 % and 53 % smaller for b = 1.5t
and b = 3t , respectively.

Real data sets In the case of real data sets, the budget b is the only parameter that can vary,
as all the other parameters are fixed given the specific real crowd in use. Due to the iterative
nature of CBP , we needed to execute the experiment just once, with the largest budget
value b = 3t , and measured the outcomes at all the intermediate points indicated in Table 2.

1206 World Wide Web (2017) 20:1179–1210

Figure 11 shows the classification error ε using the real data set as described in Section 6.1.
The resulting classification error for CBP is, resp., 93 %, 46 %, and 91 % smaller than the
closest baseline, see Figure 11a (excluding b=3t , where CBP achieves ε=0), 11b and c.

7 Related work

We proposed an offline approach for the task assignment problem in order to completely
determine the task assignment before collecting the contributions coming from the anno-
tators. Alternative formulations of the offline task assignment problem are present in the
literature. We have already compared our work to [15] and [13], and we have devised an
offline counterpart of the online iCrowd algorithm [10], which we have used as three of our
baselines.

In [18], the authors propose an algorithm for the assignment and pricing of tasks under
quality and temporal constraints. In [24], the authors focus on the problem of allocating
budgets to a set of tasks so that the total allocated budget does not exceed a certain limit,
and provide a Probably Approximately Correct (PAC) bound on the classification error.
Nevertheless, all the afore-mentioned works do not explicitly take into account that the
annotators’ accuracy may change.

Clearly, other solving approaches are possible, and, indeed, a significant number of
works [2, 4, 7, 10, 12, 25, 29] cast the task assignment problem as an online decision-
making problem, thus assuming that each annotator must be assigned to a task in an online
fashion. Unlike our work, the accuracy of each annotator is initially unknown, and must
be learnt through observation. As a result, such an online policy needs to find a trade-off
between exploration (sampling the accuracy of the annotators) and exploitation (assigning
the annotators believed to be the most accurate). As with offline approaches, these works
do not consider changes in the annotators’ accuracy either.

As regards changes in annotators’ accuracies, of particular interest are the works [3, 8, 9]
and [20], which, similarly to what we presented, try to explicitly take into account temporal-
dependent phenomena. Namely, in [9], the authors propose an online task assignment
policy that adaptively assigns annotators based on the current, time-dependent, estima-
tion of their accuracy. Unlike our approach, the accuracy of each annotator varies at each
time step, regardless of the number of times the annotator is assigned (that is, the anno-
tators’ workload is assumed not to be related with the accuracy variations). To wit, the
annotator accuracy value at time t is computed as the sum of the accuracy value at time
t − 1 and a zero-mean Gaussian noise. In [3] and [8], the average accuracy and response
time variation of two crowd platforms over a certain number of weeks is studied. More-
over, the authors in [3] and [8] propose a crowd platform selection algorithm based on the
multi-armed bandit framework and the supervised learning framework, respectively. On the
other hand, instead of focusing on how crowd platforms globally differ in their accuracy
trend, we address the problem of leveraging the accuracy variation of each single annota-
tor within the same platform. In [20], the hourly trend in average accuracy and response
time (over a one-week period) of an undisclosed crowd platform is reported. Such data
are synthetically extended over a period of four weeks, and consequently used to evaluate
an online task assignment policy that adaptively selects the task batch size to be submit-
ted to the crowd. When the performance parameter to optimize is the task accuracy, the
task assignment policy estimates the size of the next batch based on the accuracy of the
previous batch. Thus, we cannot directly compare to this work due to the implicit assump-
tion that the task requester is able to instantly and accurately evaluate the correctness of

World Wide Web (2017) 20:1179–1210 1207

the tasks. Indeed, in the context of binary tasks, verifying the quality of the answer (i.e.,
assessing that a given binary property holds for a task) has the same cost as executing the
task.

8 Conclusions and future work

In this work, we studied the problem of assigning human workers to tasks under the
assumption that the workers’ reliability could change over time, as a result of, e.g.,
fatigue and learning. In this respect, we provided empirical evidence of the existence of a
workload-dependent accuracy variation among workers, both for volunteer and professional
crowds.

When attacking the problem, we adopted the perspective of the owner of a crowdsourcing
platform, who has all the historic data and trends from previous sessions about its workers.
A platform may then offer a service for automatically assigning human annotators to tasks
that a requester, endowed with a given budget, needs to label. Thanks to the collected data,
the owner could maintain typical trends (as a collection of templates) for the different types
of tasks and potential workers. This way, once a new worker enters the system, her perfor-
mance could be sampled on a small subset of (possibly, test) tasks, such as it is done in, e.g.,
CrowdFlower [6]. This would allow the owner to decide which template she is most likely
to follow, so to be able to rely, in the subsequent task assignment phase, on a forecast of pjk

for a sufficiently large sequence of labeling iterations k.
After introducing a suitable measure of the quality of the aggregate annotations provided

by a set of workers to each task (correctness) and its linearized counterpart, we cast the
task assignment problem as a mixed-integer linear programming problem, with the objec-
tive of finding a feasible assignment of the workers (i.e., one compatible with the given
budget) that maximizes the minimum of the (linear) correctness that is achieved over the
different tasks. We proposed several implementations of our approach, including a (lin-
ear) correctness -based policy and a local-search meta-heuristic. The performance of the
algorithms was experimentally evaluated on both synthetic and real data sets, and com-
pared with several baselines from the state of the art, which are always outperformed by
our approaches. We also developed a procedure based on column generation that allowed
us to conclude that the results found by the (linear) correctness -based policy are of very
high quality, guaranteeing solutions at least 86 % as good as optimal ones for large problem
instances.

According to Section 2, all human annotators provide a (possibly) noisy binary label
zijk with a certain accuracy pjk . We have shown the benefits in terms of error reduc-
tion of an offline task-to-worker assignment policy that maximizes the linear correctness
while taking into account the worker’s reliability and its evolution. However, the proposed
approach is not relevant only to crowdsourcing scenarios: the described data labeling capa-
bilities are not a prerogative of human beings, and, in fact, there are other information
sources that adhere to the aforementioned definition. In many binary classification prob-
lems, e.g., detecting the presence of an object in an image, a pre-processing phase can
be carried out by means of automatic algorithms, whose outcome can usually be mod-
eled as a binary label. Hence, in future work, the annotator set could be extended so as
to comprise both human and automatic annotators. Differently from the human annotators,
automatic annotators can be freely assigned without affecting the available budget. As a
consequence, it could be convenient to let the automatic annotators express their label for
each task before determining the assignment, so that the provided labels contribute to the

1208 World Wide Web (2017) 20:1179–1210

linear correctness of each task. In the subsequent assignment phase, the linear correctness
of each task would serve as a first indication of which tasks are in greater need of additional
labels.

The solution proposed in this paper was specifically designed for sets of tasks that, within
the same set, are all of the same type. This is a common enough scenario in crowdsourc-
ing applications that deserved a focused study. Accommodating batches of heterogeneous
tasks in the proposed model might require a certain level of asymmetry between the consid-
ered scenarios of increasing and decreasing accuracies. For instance, a worker’s “fatigue”
naturally continues across tasks of different type; instead, a worker’s “learning” might have
specific per-type rates and may not carry from one task type to another. Future research
might try to address these issues.

Acknowledgments The authors acknowledge support from the EC’s FP7 “Smart H2O” project (http://
smarth2o-fp7.eu/). The work of S. Coniglio is partly supported by the German Federal Ministry for
Economic Affairs and Energy, BMWi, grant 03ET7528B.

Appendix A: Derivation of the pricing subproblem

Consider the primal linear program max{cx : Ax ≤ b, x ≥ 0}, with c ∈ R
n, x ∈ R

n,
A ∈ R

m×n, and b ∈ R
m. By aggregating the constraints Ax ≤ b with a vector y ∈ R

m+, we
have the valid inequality yAx ≤ yb. If we choose y such that yA ≥ c, then cx ≤ yAx ≤ yb.
This implies that, for any y ≥ 0 satisfying yA ≥ c, we obtain an upper bound of value
yb on the value of an optimal solution to the primal problem. The tightest upper bound is
obtained by solving min{yb : yA ≥ c, y ≥ 0} (the dual problem). For each j = 1, . . . , n,
the dual constraint of xj can be obtained by first aggregating all the primal constraints
as

∑m
i=1 yi

∑n
j=1 aij xj ≤ ∑m

i=1 yibi , then collecting xj on the left-hand side, yielding∑n
j=1 xj (

∑m
i=1 yiaij) ≤ ∑m

i=1 yibi , and finally imposing
∑m

i=1 yiaij ≥ cj .
We now derive the dual constraint for Problem (14)–(19), corresponding to variable λih.

We first aggregate the inequalities (15)–(19), each of which multiplied by the corresponding
dual variable (the calculation of the right-hand side is omitted):

∑
i∈T

αi

(
η −

∑
h∈H

chλih

)
+

+β

⎛
⎝∑

i∈T

∑
h∈H

⎛
⎝∑

j∈A

∑
k∈I

whjk

⎞
⎠ λih − b

⎞
⎠+

+
∑
j∈A

∑
k∈I

γjk

(∑
i∈T

∑
h∈H

whjkλih − 1

)
+

+
∑
i∈T

δi

(∑
h∈H

λih − 1

)
+

+
∑
j∈A

∑
k∈I\{1}

εjk

(∑
i∈T

∑
h∈H

(whjk − whj,k−1)λih

)
≥ (·). (31)

http://smarth2o-fp7.eu/
http://smarth2o-fp7.eu/

World Wide Web (2017) 20:1179–1210 1209

Let εj,|I|+1 = 0. After collecting λih (and omitting the coefficient for η and the right-hand
side), Inequality (31) becomes:

∑
i ∈ T
h ∈ H

⎛
⎜⎜⎜⎜⎝−αich+

∑
j ∈ A
k ∈ I

(
β + γ jk + εjk −εj,k+1

)
whjk + δi

⎞
⎟⎟⎟⎟⎠ λih

+(·)η ≥ (·).

For each i ∈ T and h ∈ H, the dual constraint corresponding to λih thus reads:

− αich +
∑
j∈A

∑
k∈I

(
β + γjk + εjk − εj,k+1

)
whjk + δi ≥ 0, (32)

where the right-hand side is zero since λih does not show up in the objective function of
Problem (14)–(19).

By standard linear programming duality, we have that the reduced cost of a column is
equal to the slack of the corresponding dual constraint. More precisely, to a primal column
with nonnegative reduce costs corresponds a dual constraint which is violated. Hence, the
pricing subproblem amounts to finding a feasible workplan that minimizes the left-hand side
of (32) (or, equivalently, that maximizes its opposite). Thus, Problem (21)–(24) is obtained.
When solving it for index i, any solution of value greater than or equal to δi yields a new
column with a nonnegative reduced cost which, when added to Problem (14)–(19), might
improve its solution.

References

1. Amazon Mechanical Turk. https://www.mturk.com
2. Abraham, I., Alonso, O., Kandylas, V., Slivkins, A.: Adaptive crowdsourcing algorithms for the bandit

survey problem. In: COLT, pp. 882–910 (2013)
3. Celis, L.E., Dasgupta, K., Rajan, V.: Adaptive crowdsourcing for temporal crowds. In: Proceedings of

the 22nd International Conference on World Wide Web, pp. 1093–1100 (2013)
4. Chen, X., Lin, Q., Zhou, D.: Optimistic knowledge gradient policy for optimal budget allocation in

crowdsourcing. In: ICML (3), pp. 64–72 (2013)
5. Ciceri, E., Fraternali, P., Martinenghi, D., Tagliasacchi, M.: Crowdsourcing for top-K query processing

over uncertain data. IEEE Trans. Knowl. Data Eng. (2015)
6. CrowdFlower. https://www.crowdflower.com
7. Dai, P., Lin, C.H., Mausam, Weld, D.S.: Pomdp-based control of workflows for crowdsourcing. A. I.

202, 52–85 (2013)
8. Dasgupta, K., Rajan, V., Karanam, S., Ponnavaikko, K., Balamurugan, C., Piratla, N.M.: Crowdutility:

know the crowd that works for you. In: CHI, pp. 145–150 (2013)
9. Donmez, P., Carbonell, J.G., Schneider, J.G.: A probabilistic framework to learn from multiple

annotators with time-varying accuracy. In: SDM, pp. 826–837 (2010)
10. Fan, J., Li, G., Ooi, B.C., Tan, K.-l., Feng, J.: iCrowd: an adaptive crowdsourcing framework. In:

SIGMOD, pp. 1015–1030. ACM (2015)
11. Galli, L., Fraternali, P., Martinenghi, D., Tagliasacchi, M., Novak, J.: A draw-and-guess game to segment

images (2012)
12. Ho, C.-J., Vaughan, J.W.: Online task assignment in crowdsourcing markets. In: AAAI, pp. 45–51 (2012)
13. Ho, C.-J., Jabbari, S., Vaughan, J.W.: Adaptive task assignment for crowdsourced classification. In:

ICML, pp. 534–542 (2013)
14. Ipeirotis, P.G.: Analyzing the amazon mechanical turk marketplace. XRDS, 16–21 (2010)

https://www.mturk.com
https://www.crowdflower.com

1210 World Wide Web (2017) 20:1179–1210

15. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems. In: NIPS, pp. 1953–
1961 (2011)

16. Kobren, A., Tan, C.H., Ipeirotis, P., Gabrilovich, E.: Getting more for less optimized crowdsourcing with
dynamic tasks and goals. In: WWW, pp. 592–602 (2015)

17. Microtask. http://microtask.com
18. Minder, P., Seuken, S., Bernstein, A., Zollinger, M.: Crowdmanager - combinatorial allocation and

pricing of crowdsourcing tasks with time constraints. In: ACM-EC 2012 Workshops (2012)
19. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization, vol. 18. Wiley, New York

(1988)
20. Rajan, V., Bhattacharya, S., Celis, L.E., Chander, D., Dasgupta, K., Karanam, S.: Crowdcontrol: an

online learning approach for optimal task scheduling in a dynamic crowd platform. In: ICMLWorkshop:
Machine Learning Meets Crowdsourcing (2013)

21. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning from crowds.
J. Mach. Learn. Res., 1297–1322 (2010)

22. reCAPTCHA. https://www.google.com/recaptcha
23. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? Improving data quality and data mining using

multiple, noisy labelers. In: KDD, pp. 614–622 (2008)
24. Tran-Thanh, L., Venanzi, M., Rogers, A., Jennings, N.R.: Efficient budget allocation with accuracy

guarantees for crowdsourcing classification tasks. In: AAMAS, pp. 901–908 (2013)
25. Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of unknown experts using

bounded multi-armed bandits. A. I. 214, 89–111 (2014)
26. Wolsey, L.A.: Integer programming, vol. 42. Wiley, New York (1998)
27. Yan, Y., Rosales, R., Fung, G., Dy, J.G.: Active learning from crowds. In: ICML, pp. 1161–1168 (2011)
28. Zhang, C.J., Chen, L., Jagadish, H.V., Cao, C.C.: Reducing uncertainty of schema matching via

crowdsourcing. PVLDB 6(9), 757–768 (2013)
29. Zheng, Y., Wang, J., Li, G., Cheng, R., Feng, J.: QASCA a Quality-Aware task assignment system for

crowdsourcing applications. In: SIGMOD, pp. 1031–1046 (2015)

http://microtask.com
https://www.google.com/recaptcha

	A workload-dependent task assignment policy for crowdsourcing
	Abstract
	Introduction
	Preliminaries
	Task assignment policy design
	Expected classification error and expected classification accuracy
	A tractable approximation of classification accuracy
	Problem statement

	Formalization and solution
	Problem formulation
	A correctness-based policy
	Improving upon CBP solutions

	Certifying solutions
	An alternative formulation
	Column generation algorithm

	Experimental evaluation
	Estimating the accuracy model
	Methodology
	Experiments
	Incentive model
	Methods and evaluation metrics

	Results
	Average accuracy variation
	Task duration

	Evaluating the task assignment policies
	Methodology
	Data sets
	Methods and evaluation metrics

	Results
	Certification of the solution quality
	Budget availability
	Size of the task set
	Size of the annotator set
	Accuracy variation degree
	Type of crowd
	Non-monotonic trends
	Real data sets

	Related work
	Conclusions and future work
	Acknowledgments
	Appendix A A: Derivation of the pricing subproblem
	References

