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Abstract With the rapid proliferation of GPS-equipped devices, a myriad of trajectory data
representing the mobility of various moving objects in two-dimensional space have been
generated. This paper aims to detect the anomalous trajectories with the help of the his-
torical trajectory dataset and the popular routes. In this paper, both of spatial and temporal
abnormalities are taken into consideration simultaneously to improve the accuracy of the
detection. Previous work has developed a novel time-dependent popular routes based algo-
rithm named TPRO. TPRO focuses on finding out all outliers in the historical trajectory
dataset. But in most cases, people do not care about which trajectory in the dataset is abnor-
mal. They only yearn for the detection result of a new trajectory that is not included in the
dataset. So this paper develops the the upgrade version of TPRO, named TPRRO. TPRRO
is a real-time outlier detection algorithm and it contains the off-line preprocess step and the
on-line detection step. In the off-line preprocess step, TTI (short for time-dependent transfer
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index) and hot TTG (short for time-dependent transfer graph) cache are constructed accord-
ing to the historical trajectory dataset. Then in the on-line detection step, TTI and hot TTG
cache are used to speed up the detection progress. The experiment result shows that TPRRO
has a better efficiency than TPRO in detecting outliers.

Keywords Outlier detection · Time-dependent popular route · Trajectory pattern mining

1 Introduction

In recent years, the booming development of GPS-equipped portable devices has helped us
in gathering a huge amount of trajectory data. According to a report of a data research orga-
nization in China, there are about 66,000 taxis in Beijing and about 1,900,000 passengers
each day. Each carry generates one trajectory and there are about 69 million trajectories in
one single year. Such a big dataset can help us understand the cabbies’ driving behavior, the
city’s traffic condition and so on. On this background, extensive researchers are encouraged
in trajectory pattern mining [32], such as life pattern mining [22, 25, 31], popular routes
discovering [4, 21], transportation mode mining [30] and spatial item recommendation [19,
20, 23, 24].

Trajectory outlier detection (TOD) is also a popular research topic in trajectory pattern
mining. According to J. Han et al. [9], an outlier means a data object that is grossly different
from or inconsistent with the remaining set of data. The trajectory outlier means a trajectory
that has a great difference with most other trajectories in terms of some similarity metric.

Trajectory outlier detection can be used in many practical applications. For example, it’s
necessary for a taxi company analyzing the historical trajectories and finding out which
driver has a bad driving behavior or usually makes dishonest detours. And the taxi company
can also monitor a taxi’s trajectory and give an alert once an anomaly is detected.

Some TOD algorithms have been proposed. Each algorithm addresses certain aspects of
abnormality. Among these TOD algorithms, the most representative methods are TRAOD
(TRAjectoy Outlier Detection) [11] and IBAT (Isolation Based Anomalous Trajectory
detection) [28]. TRAOD firstly splits a trajectory into many trajectory partitions and then
compares each trajectory partition with its neighbors to determine whether it is an outly-
ing portion or not. The main advantage of TRAOD lies in the ability to detect outlying
sub-trajectories. But because of its sub-trajectory detection strategy, TRAOD has a high
time complexity of O(n2). Moreover, the detected result of TRAOD may be influenced by
irrelated trajectories because it detects outliers in the whole dataset, as shown in Figure 1.
IBAT focuses on the test trajectory and tries to separate it from the reset trajectories by ran-
domly selecting points solely from the test trajectory. IBAT is more efficient than TRAOD
because IBAT does not need to partition the trajectory and the time complexity is O(n). But
IBAT has a same insufficiency with TRAOD: both of them do not have enough attention on
the travel time (departure time, arrival time and ongoing time). TRAOD does not take the
time constraint into account and IBAT just assumes the travel time of the trajectories to be
detected are in the same time range but there is no in-depth analysis in IBAT.

Taking the travel time into account can ensure more accurate detection result. Figure 2
shows an example of two groups of trajectories between two areas in different time. τo

and τn are two trajectories that walk the same path. But τo is an outlier while τn is not
because traffic condition changes over time. In other words, outliers’ pattern is not static and
usually changes with the time. To detect the time-dependent outliers, previous work [34]
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Figure 1 A set of trajectories
where Si is the source area and
Di is the destination area. The
S2 → D2 dashed curve is
actually a trajectory outlier. But
each subpart of it has enough
closed neighbors because of
being deceived by S1 → D1 and
S3 → D3 trajectories. TRAOD
can not identify this kind of
outlier

has proposed a novel TOD algorithm called time-dependent popular routes based trajectory
outlier detection (TPRO).

TPRO detects outliers with the help of the popular routes. The popular routes represent
the most trajectories’ pattern, so it is a reasonable solution to detect outliers based on the
popular routes. As mentioned above, TPRO focuses on detecting the time-dependent out-
liers. So time-dependent popular routes are involved to achieve this goal. TPRO does not
partition the trajectories because when facing with a large dataset, efficiency is the first pri-
ority while sub-trajectory detection is time-consuming. Given a trajectory dataset, in order
to eliminate the influence of irrelevant trajectories, TPRO divides trajectories with the same
source and destination (them are called relevant trajectories in this paper) into the same
group. Then the dataset can be divided into many groups and detection is taken group by
group. During the detection, if a trajectory has a great difference with the popular routes
during its travel time, this trajectory is classified as an outlier.

TPRO focuses on finding out all outliers in the historical trajectory dataset. But in most
cases, people do not care about which trajectory in the dataset is abnormal. They only submit
a new trajectory that is not included in the dataset and yearn for the detection result of
this trajectory. So this paper develops an upgrade version of TPRO which is called time-
dependent popular routes based real-time trajectory outlier detection (TPRRO). TPRRO is
a real-time detection algorithm. Given a new trajectory that is not included in the historical
dataset, TPRRO can efficiently evaluate this trajectory and give a detection result according
to the historical trajectory dataset.

Figure 2 Two groups of
trajectories which start from S

and end at D in different time. τo

is an outlier in
8 : 00am ∼ 9 : 00am because it
has a great difference with other
trajectories during this time. But
the traffic condition changes
when 5 : 00pm ∼ 6 : 00pm. τn,
walking the same path with τo, is
a normal trajectory
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Despite that the goal of TPRRO is easy to catch on, it is nontrivial to develop a real-time
detection algorithm based on the time-dependent popular routes. There are mainly three
challenges in TPRRO:

1. In TPRRO, a pending evaluated trajectory will be compared with its corresponding
popular routes to judge if it is an outlier. So given a trajectory (assume its departure
time is ts and arrival time is td ), TPRRO should efficiently retrieve the corresponding
popular routes during the time of ts ∼ td .

2. TPRRO is a real-time algorithm, so it should response in seconds when evaluating a
certain trajectory.

3. When calculating the difference between a trajectory and its corresponding popular
routes, not only the spatial info but also the temporal info (departure time, arrival time
and ongoing time) should be taken into account.

In response to these three challenge, this paper has made a lot of efforts. 1) A data
structure called time-dependent transfer graph (TTG in short) is constructed in this paper.
This graph records how many trajectories have passed through each road in different time.
With the help of the TTG, TPRRO can efficiently retrieve the top-k most popular routes in a
user specified time range. 2) To speed up detection further, this paper puts forward the time-
dependent transfer index (TTI in short) and the hot TTG cache in TPRRO. With the help of
the TTI and hot TTG cache, the response time is efficiently improved. 3) This paper puts
forward the time-dependent edit distance to address the third challenge. The time-dependent
edit distance takes not only the spatial distance but also the temporal distance into account.

The main contributions of this paper are as follows:

1. This paper presents a real-time trajectory outlier detection algorithm based on the
time-dependent popular routes, which takes both spatial and temporal abnormality into
consideration and gives us a novel solution in trajectory outlier detection.

2. This paper puts forward an efficient popular routes query method in this paper, which
can efficiently retrieve the popular routes during a user specified time range.

3. This paper provides a real trajectory dataset in which the outliers have been labelled by
user study.

The rest of this paper is organized as follows. A formal definition of our problem is given
in Section 2. Sections 3 and 4 respectively give a detailed statement of TPRO and TPRRO.
Section 5 shows our experiment’s result. Section 6 gives a brief introduction of the related
work. At last, a conclusion is given in Section 7.

2 Problem definition

This part presents some prior definitions and gives a formal definition of the problem this
paper focuses on.

Definition 1 (Raw Trajectory). A raw trajectory τ̃ is a time-ordered sequence of sampling
points: τ̃ = (p̃1, p̃2, p̃3, ..., p̃x). Each sampling point p̃i is represented by 〈l̃i , t̃i〉 where l̃i
is a geographic coordinate and t̃i is the sampling time.

It is hard to find a common path from a group of raw trajectories because of the discrete
sampling points. So this paper preprocesses the dataset and map each raw trajectory into the
road network to get a mapped continuous trajectory.
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Definition 2 (Road Network). A road network is a directed graph G = (V ,E) where V

is a set of vertices representing road intersections and E is a set of edges representing road
segments.

This paper uses vi to represent a certain vertex in G. If vi and vj are two endpoints of a
certain edge, then ϕ(vi, vj ) = 0. If the edge’s direction is vi → vj , it can be denoted as ei

j .

Otherwise, the edge can be denoted as e
j
i .

Definition 3 (Mapped Trajectory). A mapped trajectory τ is a sequence of time-ordered
road network locations. It can be denoted as τ = (p1, p2, p3, ..., pm). Each road network
location pi is represented as 〈vi, ti〉 where vi is a certain vertex in the road network and for
all i ∈ {1, 2, 3, ..., m − 1} that ϕ(vi, vi+1) = 0. And ti is the time τ passing vi .

Henceforth, this paper will only deal with the mapped trajectories. So for simplicity, this
paper drops themapped qualifier. Thus trajectory in the rest of the article is short for mapped
trajectory. After giving a definition of the trajectory, the time-dependent route is defined as
follows.

Definition 4 (Time-Dependent Route). Given a time range [ts , td ], a v1 → vm time-
dependent route is denoted as γ = (pf1, pf2, pf3, ..., pfm) and each pfi ∈ γ is represented
as 〈vi, t̄i , f reqi〉 where vi represents a certain vertex in the road network and for all
i ∈ {1, 2, 3, ..., m−1} that ϕ(vi, vi+1) = 0. Meanwhile, f reqi means howmany trajectories
have pass through vi in [ts , td ] and t̄i is the average pass time.

For simplicity, the time-dependent qualifier are dropped and route is short for time-
dependent route in the rest of this paper. After giving a definition of the trajectory and
the route, trajectory route distance function is put forward to indicate the difference degree
between a trajectory and a route.

Definition 5 (Trajectory Route Distance Function). A trajectory route distance function
δ(τ, γ ) is a formula that can give a difference score between τ and γ .

Based on above definitions, a formal definition of the trajectory outlier is given as
following.

Definition 6 (Outlier). Given a trajectory τ , a route set R = {γ1, γ2, ..., γk}, a trajectory
route distance function δ and an anomalous score threshold θ , the trajectory’s anomalous
score can be calculated in this way

sτ =
k∑

i=1

wγi
· δ(τ, γi) (1)

where wγi
is the popularity weight of γi among the route set R. If sτ > θ , then τ is a

θ -outlier on R and δ.

Problem Given a trajectory dataset T , a route distance function δ and an anomalous score
threshold θ , this paper need to 1) find a trajectory set T ′ = {τ1, τ2, ..., τn} that satisfies:
for all τi ∈ T ′, τi is a θ -outlier on its corresponding popular routes and δ. 2) given a new
trajectory τ that is not included in T , this paper can efficiently judge if τ is an outlier based
on dataset T .
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Figure 3 Overview of TPRO, which is consisted of the grouping step and the detection step

3 TPRO algorithm

TPRO can achieve the first goal in the problem proposed above. Given a trajectory dataset,
to eliminate the influence of irrelevant trajectories, TPRO first divides the trajectories into
the many groups according to their source and destination. Then after trajectory grouping,
the detection is taken for each group respectively. In each group, TPRO firstly constructs a
time-dependent transfer graph from the trajectories. Then with the help of this graph, the
time-dependent popular routes querying can be more efficient. At last, a time-dependent edit
distance based trajectory route distance function is proposed to judge whether a trajectory
is an outlier or not. The overview of TPRO is shown in Figure 3.

3.1 Dataset grouping

The source vertex and destination vertex of a trajectory τ is represented as τ.s and τ.d .
If we adopt the strategy that only trajectories starting at same vertex and ending at same
vertex can be gathered into one group, we find out that each group has few trajectories. So
this paper develops the grid-equal-to relation to enlarge the particle size of source area and
destination area.

Definition 7 (Grid-Equal-To Relation). Given two number m, n, the road network G can
be split into m × n size-equal grids. For two vertices vi , vj , if vi and vj fall into the same
grid, then vi is m-n-grid-equal-to vj . It can be denoted as o(G,m, n, vi, vj ) = 1.

For two certain trajectories τi and τj , after given two grid numbers m and n, if there are
o(G,m, n, τi .s, τj .s) = 1 and o(G,m, n, τi .d, τj .d) = 1, they are divided into the same
group.

3.2 Construction of time-dependent transfer graph

After a certain group of trajectories with the same source and destination are mapped into
the road network, a subgraph of the road network (Figure 4 shows an example of this sub-
graph) can be generated. And for each vertex in this subgraph, this paper develops a vertex
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Figure 4 An example of TTG. vs is the source and vd is the destination. Each table beside the vertex vi is
called vertex frequency table of vi

frequency table (i.e. the table beside each vertex in Figure 4) to record how many trajec-
tories have pass through each vertex in different time range. This subgraph is called the
time-dependent transfer graph (TTG) in this paper.

Before giving a statement of the vertex frequency table, the definition of time-equivalent-
to relation will be introduced. As we known, a timestamp(such as Jan 20 2016 14 : 35 : 24)
contains the date part(Jan 20 2016) and the time part(14 : 35 : 24). In this paper, TPRO
drops the date part when comparing two timestamps. Because in most cases, the traffic
condition take a day for a loop.

Definition 8 (Time-Equivalent-To Relation). Given two timestamps t1, t2 and a time
distance threshold �t , if

|t ime(t1) − t ime(t2)| ≤ �t (2)

then t1 is equivalent to t2. Function t ime(t) drops the date part of t and returns the time part.

In the vertex frequency tables, this paper first establishes a time distance threshold
�t . Then TPRO puts the time equivalent simpling location(vertex) together and calculates
how many trajectories pass through this location(vertex) in different time range. The time
distance threshold �t is called TTG time interval in this paper.

With the help of these vertex frequency tables, TPRO can easily estimate how many
trajectories have pass through a certain vertex during a user specified time range. Taking
Figure 4 as an example, we can infer that there are 26 trajectories (8 trajectories during
8 : 00am ∼ 8 : 30am and 18 trajectories during 8 : 30am ∼ 9 : 00am) have passed through
v1 during 8 : 00am ∼ 9 : 00am. In some cases, the user specified time range does not fully
cover the vertex frequency table time ranges. For example, what if we want to know that how
many trajectories have passed through v1 during 8 : 10am ∼ 9 : 00am. From the TTG, we
can know that there are 18 trajectories have passed through v1 during 8 : 30am ∼ 9 : 00am,
but we can not infer how many trajectories during 8 : 10am ∼ 8 : 30am directly. In such
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situation, TPRO multiply the trajectories number by the proportion of the covered time
range. Thus, the trajectories number during 8 : 10am ∼ 8 : 30am is

8 × 8 : 30am − 8 : 10am

8 : 30am − 8 : 00am
= 8 × 20min

30min
≈ 5

Obviously, the smaller the TTG time interval is, the more accurate the inferred number is.
But the space cost and time cost will increase.

And from the TTG in Figure 4, TPRO can also infer the average pass time of a certain
vertex during a user specified time range. For example, there are 5 and 18 trajectories have
passed through v1 during 8 : 10am ∼ 8 : 30am and 8 : 30am ∼ 9 : 00am respectively. So
the average pass time during 8 : 10am ∼ 9 : 00am is

5 × 8:10am+8:30am
2 + 18 × 8:30am+9:00am

2

5 + 18
≈ 8 : 40am

3.3 Retrieving time-depended popular routes

For a trajectory τ to be tested, TPRO compares it with the popular routes during ts ∼ td (ts
represents the departure time and td represents the arrival time) to judge if it is an outlier. So
this paragraph explains how to query time-dependent popular routes with the help of TTG.

Assume that ts = 8 : 00am and td = 9 : 00am, TPRO should find the top-k most popular
routes during this time. First of all, our algorithm can traverse the TTG and calculate each
vertex’s trajectories numbers and the average pass time during ts ∼ td . Then all possible
routes during ts ∼ td are figured out as follows:

– γ1 = (〈vs, 8 : 33am, 52〉, 〈v1, 8 : 36am, 26〉, 〈v3, 8 : 41am, 22〉, 〈vd, 8 :
45am, 29〉)

– γ2 = (〈vs, 8 : 33am, 52〉, 〈v4, 8 : 40am, 17〉, 〈vd, 8 : 45am, 29〉)
– γ3 = (〈vs, 8 : 33am, 52〉, 〈v2, 8 : 38am, 8〉, 〈vd, 8 : 45am, 29〉)

Now that all routes have been figured out, TPRO will judge which route is more popular.
Inspired by Luo et al. [14], the route popularity and more-popular-than relation are proposed
in following definitions.

Definition 9 (Route Popularity). The popularity of a certain route γ =
(pf1, pf2, pf3, ..., pfm) can be represented as an ordered frequency sequence:
ργ = (f reqj1 , f reqj2 , f reqj3 , ..., f reqjm), where:

1. {f reqj1 ,f reqj2 ,f reqj3 ,...,f reqjm}⇔{pf1.f req, pf2.f req,pf3.f req,...,pfm.f req}
2. f reqj1 ≤ f reqj2 ≤ ... ≤ f reqjm

Definition 10 (More-Popular-Than Relation). For two routes γ and γ
′
, assume their

popularity sequences are ργ = (f reqj1 , f reqj2 , f reqj3 , ..., f reqjm) and ργ′ =
(f req

′
j1

, f req
′
j2

, f req
′
j3

, ..., f req
′
jn

). If one of the following statements holds:

– ργ is the prefix of ργ′
– or there exists a number q ∈ {1, 2, 3, ..., min(m, n)} such that:

1. f reqjx = f req
′
jx

for all x ∈ {1, 2, 3, ..., q − 1}, if q > 2.

2. f reqjq > f req
′
jq

then γ is more-popular-than γ
′
, denoted as γ � γ ′.
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According to Definition 9 and Definition 10, there are ργ1 = (22, 26, 29, 52), ργ2 =
(17, 29, 52) and ργ3 = (8, 29, 52). Obviously, ργ1 � ργ2 � ργ3 . It means that γ1 is more
popular than γ2 and γ2 is more popular than γ3. Assume that k = 2, then the top-k most
popular routes during 8 : 00am ∼ 9 : 00am are γ1 and γ2.

Luo et al. has proved that the selected popular routes by this method satisfies three
key properties: suffix-optimal (i.e., any suffix of the popular route is also popular), length-
insensitive (i.e., popular does not mean the shorter/longer the better), and bottleneck-free
(i.e., popular routes should not contain infrequent vertices or edges) in [14].

3.4 Outlier Detection

After the top-k popular routes have been figured out, TPRO compares the trajectory with
each popular route. As we know, edit distance can represent two sequences’ difference
degree. But trajectory (or route) is not just a vertex sequence, it also carries the temporal
information. So this paper proposes a time-dependent edit distance based trajectory route
distance function to handle this problem.

Assume τ−1 = (p1, p2, p3, ..., pm−1) is a sub-trajectory of τ = (p1, p2, p3, ...,

pm−1, pm) after removing the last point pm. And γ−1 = (pf1, pf2, pf3, ..., pfn−1) is
the prefix of γ = (pf1, pf2, pf3, ..., pfn−1, pfn) after removing the last tuple pfn. The
trajectory route distance function in TPRO is defined as a recursive equation:

δ(τ, γ ) = Min

⎧
⎨

⎩

δ(τ−1, γ ) + delete cost (pm)

δ(τ, γ−1) + delete cost (pfn)

δ(τ−1, γ−1) + replace cost (pm, pfn)

(3)

where

delete cost (pm) =
{
0.5, m < 2 orpm.v �= pm−1.v

0, otherwise

+
{
0.5, m < 2 or|pm.t − pm−1.t | > �t

0, otherwise

(4)

delete cost (pfn) =
{
0.5, n < 2 orpfn.v �= pfn−1.v

0, otherwise

+
{
0.5, n < 2 or|pfn.t̄ − pn−1.t̄ | > �t

0, otherwise

(5)

replace cost (pm, pfn) =
{
1, pm.v �= pfn.v

0, otherwise
+

{
1, |pm.t − pfn.t̄ | > �t

0, otherwise
(6)

If there is only one vertex in τ (or γ ), which means that m = 1 (or n = 1), then there is
τ−1 = φ (or γ−1 = φ). Assume that the number of vertices of τ and γ are represented as
τ.len and γ.len, then these two initial conditions in this recursive equation are

δ(τ, φ) = τ.len; (7)

δ(φ, γ ) = γ.len; (8)

From (4), (5) and (6), we can see that the delete cost or the replace cost can be broken
down into the spatial cost and the temporal cost. If two vertices are different, the spatial cost
is 0.5 (delete) or 1 (replace). Otherwise, the spatial cost is 0. When calculating the temporal
cost, TPRO has the aid of the TTG time interval �t in Subsection 3.2. If the time lag is
larger than �t , the temporal cost is 0.5 (delete) or 1 (replace). Otherwise, the temporal cost
is 0.
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The pseudo code of the time-dependent edit distance based trajectory route distance
function is shown in Algorithm. 1.

The trajectory route distance function can give a difference score between a trajectory
and a popular route. But in most cases, there are more than one popular route between two
areas. But it does not mean that each popular route has the same popularity degree. So this
paper proposes the popularity weight to represent how popular a route is among a set of
routes.

Definition 11 (Popularity Weight). Assume there is a route set R = {γ1, γ2, γ3, ..., γk} and
for each γi = (pf1, pf2, pf3, ..., pfm) ∈ R, the summary frequency of γi can be calculated
in this way:

γi .sum =
m∑

a=1

γi .pfa.f req (9)

then the popularity weight of γi can be represented as

wγi
= γi .sum

∑k
b=1 γb.sum

(10)

For the top-2 popular route set R = {γ1, γ2} in the above example, base on Definition
11, each popular route’s popularity weight is that wγ1 = 0.57 and wγ2 = 0.43.

3.5 Time complexity

The overall pseudo code of TPRO has been shown in Algorithm 2. From the pseudo code,
we can see that the time complexity of TPRO is O(k · n) where k is the number of popular
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routes used to detect outliers and n is the number of trajectories in the dataset. In most
cases, k is a small number (less than 10), so we can use approximation O(n) for the time
complexity.

4 TPRRO algorithm

Based on TPRO, this paper develops a real-time detection algorithm called TPRRO. TPRRO
can successfully achieve the second goal in the problem proposed in Section 2. It means
that given a new trajectory that is not included in the historical dataset, TPRRO can evaluate
this trajectory and give an anomalous score about this trajectory. The overall process ends
in seconds.

4.1 Overview

The overview of TPRRO is shown in Figure 5, which consists of off-line preprocessing and
on-line detection step.

In the off-line preprocessing step, TPRRO builds a data structure called time-dependent
transfer index(TTI) according to the historical dataset. TTI can speed up random trajectory
query. In order to achieve higher efficiency, TPRRO also selects top-n hottest source and
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Figure 5 Overview of TPRRO, which consists of the off-line preprocessing step and on-line detection step

destination pairs and construct the TTG for each pair in advance. The pseudo code of the
off-line preprocessing is shown in algorithm 3.

For a pending evaluated trajectory in the on-line detection step, TPRRO will check if the
source and destination pair of this trajectory hits in the TTG cache. If hits, then TPRRO
just takes the TTG from the cache. If not hits, TPRRO will construct a new TTG with the
help of TTI and update the cache when the evaluation is over. After the TTG is figured
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out, the follow-up process is similar to the detection step in TPRO. With the help of TTG,
TPRRO first retrieves the top-k most popular routes. Then the trajectory is compared with
each popular route and the anomalous score is calculated. The pseudo code of the on-line
detection is shown in algorithm 4.

4.2 Time-dependent Transfer Index

Time-dependent transfer index(TTI) is actually a reverse index itself. It records which tra-
jectory has passed through which location at which time. Figure 6 shows a set of trajectories
and Figure 7 shows an example of TTI that constructed from these trajectories. For a tra-
jectory dataset, TPRRO maps each trajectory on the grid-partitioned road network. Then in
each grid, TPRRO builds a B-tree like structure called tranfer B-tree. Tranfer B-tree records
which trajectory has passed through this grid at which time period. By means of the TTI,
TPRRO can efficiently retrieve all the trajectories that satisfy user-specified spatial and
temporal constraints.

With the help of TTI, TPRRO can efficiently find out which trajectories have transferred
from location loci to location lj in the time range ti ∼ tj . First of all, TPRRO maps loci

and locj on the grid-partitioned road network, and figures out the two grids girdi and gridj

that loci and locj fall into. Then TPRRO retrieves the trajectories Ti that pass through girdi

in the time range ti ∼ tj by means of tranfer B-tree. In the same way, TPRRO retrieves the
trajectories Tj that pass through girdj in the time range ti ∼ tj . At last, TPRRO takes the
intersection of Ti and Tj as the final result.

4.3 TTG cache

To speed up the progress of the on-line detection further, this paper puts forward a cache
data structure called TTG cache. In the preprocessing step, this paper selects top-n hottest
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Figure 6 A set of trajectories that are mapped on the grid-partitioned road network. The legend is on the
right side of the map

source and destination pairs and constructs the TTG for each pair in advance. In the progress
of detection, TTG cache uses LRU-based algorithm to discard the least recently used items
first.

As we know, Least Recently Used (LRU) is the most famous algorithm in cache main-
tainance field. This algorithm discards the least recently used items first. Figure 8 shows the
procedure of LRU algorithm. The new data is added to the head of the list. And if a data is
recently used, it will be moved to the head. When the list is full, the data at the tail of the
list will be removed.

The overall procedure of the LRU algorithm is easy to understand and it has a good
performance in most cases. But in some instances, the LRU algorithm is instable because of
its update policy. For example, the capacity of LRU list is set to n, which means that there
are up to n items in LRU list. Under normal circumstances, the hottest items gather around
the head of the list. But if there continuously comes n infrequent items, previous hot items

Figure 7 An example of TTI. This TTI is constructed from the trajectories in Figure 6
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Figure 8 Procedure of the LRU algorithm

move backward and will be eliminated because the new data will be added to the head. In
this situation, the head of list is occupied by the infrequent items, which takes some time
for frequent items’ counterattack.

Above phenomena is called Cache Pollution and to avoid this phenomena, TTG cache
uses an upgraded version of the LRU algorithm, which is called Multi Queue [33]. Multi
Queue(MQ) is a multi-level cache algorithm. It satisfies three key properties: 1) Mini-
mal lifetime: hot items should stay in the cache list for at least given time minDis. 2)
Frequency-based priority: data items should be prioritized based on their access frequen-
cies. 3) Temporal frequency: data items that were accessed frequently in the past, but have
not been accessed for a relatively long time should be replaced.

As shown in Figure 9, the MQ algorithm uses multiple LRU queues: Q1,Q2, ..., Qm to
maintain the cache. Items in Qj have longer lifetime in the cache than those in Qi(i < j ).
MQ also uses a history buffer Qout to record access frequencies of recently evicted items.

The overall procedure of the MQ algorithm is listed as follows:

1. New data item is insert at the head of Q1.
2. In each queue Qi , when a data item is recently used, move it to the head of this queue.
3. When the access frequency of a data item reaches a certain level, MQ will upgrade its

priority. In other words, MQ deletes it from current queue Qi and moves it to the head
of next queue Qi+1.

Figure 9 Procedure of the MQ algorithm



126 World Wide Web (2017) 20:111–134

Table 1 Summary of dataset
All dataset Labeled dataset

Trajectories number 412,032 1,324

Car number 10,720 1,170

Spatial range lat:[39.45 ∼ 40.51]
lng:[115.71 ∼ 117.37] lat:[39.79 ∼ 40.51]
lng:[116.24 ∼ 117.36]

4. If a data item is not accessed in a specified time period, MQ will downgrade its prior-
ity. In other words, MQ deletes it from current queue Qi and moves it to the head of
previous queue Qi−1.

5. If a queue Qi is full, delete the data item at the tail of this queue and add this data item
to the head of Qout .

6. If a data item in Qout is reused, delete it from Qout and move it to the head of the queue
where it is deleted from.

7. If Qout is full, the data item at the tail completely eliminated.

5 Experiment results

This section gives an exhibition of our experiment and the results. The first subsection gives
an introduction to the experiment dataset and environment setting. Then the following two
subsections give an analysis on TPRO’s and TPRRO’s experiment results.

5.1 Experiment setting

Dataset Our experiments are taken under a real-world trajectory dataset which contains
412,032 trajectories. This dataset is collected from around 10,700 taxis in Beijing in 2012.
The summary information of the dataset is shown in Table 1. Figure 10a is the visualization
of this dataset. Figure 10b is the distribution of travel time and Figure 10c is the distribution
of travel distance.

Figure 10 Visualization (a), travel time distribution (b) and travel distance distribution (c) of the real-world
trajectory dataset
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To evaluate the accuracy of TPRO and TPRRO, this paper also picks up about 1,300
trajectories from the dataset and asked volunteers to manually label whether each trajectory
is abnormal or not. The labeling process is in the way of crowdsourcing. Each pending
labelled trajectory is sent to 10 different persons to judge if it is an outlier. Only if more
than 80 % of the appraisers make the same judgment, this trajectory can be concluded as
abnormal or normal. Otherwise, this trajectory will be sent to another different 10 persons
to rejudge. And an example is exhibited following to show how to label a trajectory in our
crowdsourcing system. Assume there is a trajectory τ that needs to be labelled and its source
is τ.s, destination is τ.d , travel time is ts ∼ td . The crowdsourcing system first retrieves
all the trajectories that start from τ.s and end at τ.d during the time range ts ∼ td . Then
the system maps these retrieved trajectories and the pending labelled trajectory τ on the
real-world geographic map. The appraiser needs to tell if τ is an outlier. If τ travels a very
different route comparing with other most trajectories, it should be labelled as an outlier.

Road Network The road network in our experiment contains about 165,000 vertices and
226,000 edges. And the road network is split into 120 × 130 grids in the grouping step1.
Each grid’s size is about 1.5km × 1.5km.

Environment Our algorithm is implemented in cpp. The machine we use to accomplish
the experiment has a quadcore Inter Core i5 CPU (3.2GHz) and 8G memory. The operating
system is Linux 3.13.0 x86 64 and the compiler is g++ 4.8.2.

5.2 Result of TPRO

In this part, we introduce the experiment result of TPRO in efficiency and accuracy. In
next following two parts, we will first analyze how the experiment parameters affect the
experiment result. Then we will give a comparison between TPRO, TRAOD and IBAT on
efficiency and accuracy.

5.2.1 Varying parameters

There are mainly three parameters in the detecting step of TPRO: anomalous score thresh-
old θ , popular routes number k and TTG time interval �t . So this paragraph elaborates
how these three parameters affect the the efficiency(process time), accuracy(detection rate
and false alarm rate)2. Figure 11 shows how anomalous score threshold θ , popular routes
number k and TTG time interval �t affect the process time, detection rate and false alarm
rate.

Efficiency The green line in Figure 12a shows how θ affects the process time when k = 5
and �t = 600s. We can see that as θ increases, the process time is stable because θ only
affects the final result but has no relationship with the the details of calculating process.

The green line in Figure 12b shows how k affects the process time when θ = 1.0 and
�t = 600s. It shows that as k increases, the process time will go up linearly. Because k

1That’s to say m is set to 120 and n is set to 130 in the grouping step.
2These three evaluating indicators are counted under the labeled dataset.



128 World Wide Web (2017) 20:111–134

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4  0.6  0.8  1  1.2  1.4  1.6
 0

 100

 200

 300

 400

 500

 600

 700

de
te

ct
 / 

fa
ls

e 
ra

te

T
im

e(
s)

score threshold

detect rate

CPU time

false rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10
 0

 100

 200

 300

 400

 500

 600

 700

de
te

ct
 / 

fa
ls

e 
ra

te

T
im

e(
s)

k popular routes

detect rate

CPU time

false rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200
 0

 100

 200

 300

 400

 500

 600

 700

de
te

ct
 / 

fa
ls

e 
ra

te

T
im

e(
s)

split time interval

detect rate

CPU time

false rate

Figure 11 Detection rate, false alarm rate and time cost under varying θ , k and �t

represents how many popular routes will be used to judge if a trajectory is an outlier and
each trajectory will be compared with each route. Of course, the more popular routes are
used, the more time-consuming it will be.

The green line in Figure 12c shows how �t affects the process time when k = 5 and
θ = 1.0. The more smaller the �t is, the more specific the TTG vertex frequency table is.
But the popular routes query time will be longer. So as �t increases, the process time falls.

Accuracy Figure 12a shows how θ affects the detection rate(red line), false alarm rate(blue
line) when k = 5 and �t = 600s. As θ increases, which means that the detection criterion
becoming more conservative, the detection rate and the false alarm rate will fall. When
θ ≈ 1.0, we have a high detection rate and a low false alarm rate.

Figure 12b shows how k affects the detection rate(red line), false alarm rate(blue line)
when θ = 1.0 and �t = 600s. It shows that as k increases, the false alarm rate will fall.
Because the more popular routes are used, the more accurate the result will be. But in most
cases, there is only one popular route between two areas, so k has a small effect on the
detection rate. On the contrary, if we use too many top-k popular routes, the false alarm will
go up because there are not so many popular routes between two areas. When k = 5, we
can have a high detection rate and a low false alarm rate.

Figure 12c shows how �t affects the detection rate(red line), false alarm rate(blue line)
when k = 5 and θ = 1.0. If �t is too small, TPRO will overstate the temporal cost when
calculating the distance between a trajectory and a route. So the false alarm rate is very high
and will fall as �t increases. But smaller �t leads to more accurate selected popular routes,
which results in higher detection rate. When �t = 600s, we can have a low false alarm rate
and a less process time.
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Table 2 Parameter setting of
TPRO, TRAOD and IBAT Algorithm Parameters

TPRO k = 5, �t = 600s

TRAOD D = 80, p = 0.95

IBAT m = 100, ψ = 256

5.2.2 TPRO vs. TRAOD and IBAT

This paragraph gives a comparison between TPRO, TRAOD(group-and-partition method)
and IBAT(isolation based method). All of the three algorithms are tested in their best param-
eters, which are listed in Table 2. The contrastive experiment results are shown in Figure 12,
which consist of efficiency comparison and accuracy comparison.

Efficiency Figure 13a and b show the process time of TPRO, TRAOD and IBAT under
different scale datasets. Because the time complexity of TRAOD is O(n2), which is very
time consuming in larger dataset detection, we only test it on the small dataset. From these
two figures, we can see that the time cost of TPRO is between IBAT’s and TRAOD’s.

Accuracy In practice, detection rate (the fraction of anomalous trajectories that are suc-
cessfully detected) and false alarm rate (the fraction of normal ones that are predicted to be
anomalous) are two important measures to evaluate the performance of an anomaly detec-
tion method. Obviously, a good outlier detection method should have a high detection rate
and a low false alarm rate. After we plot the detection rate on y-axis and the false alarm rate
on x-axis, we can get a curve called Receiver Operating Characteristic (ROC) [5] curve. The
AUC [1] value is defined as the area under the ROC curve. For a randomly chosen normal
trajectory τn and a randomly chosen anomalous trajectory τa , the AUC value is equal to the
probability that sτa > sτn . Obviously, if the AUC value is close to 1, the outlier detection
method is of high quality.

Figure 13c shows the ROC curves of TPRO, TRAOD and IBAT. For better illustration,
the ranges of false alarm rate and detection rate are set to [0 ∼ 0.5] and [0.4 ∼ 1]. We can
see that TPRO has a larger area under the ROC curve than TRAOD and IBAT. It means that
TPRO has a better performance than TRAOD and IBAT in accuracy.
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5.3 Result of TPRRO

As we mentioned in Section 4, thanks to TTI and TTG cache, TPRROmakes some improve-
ment in efficiency compared to TPRO. So this part gives a statement of the experiment
result of TPRRO. The first subpart analyzes the effectiveness of TTI and TTG cache. Then
the second subpart gives a comparison between TPRRO and IBOAT (the real-time version
of IBAT).

5.3.1 Effectiveness analysis

Efficiency This paragraph gives a specific statement of how much TTI and TTG cache
can speed up the detection progress. This paper takes four comparative experiments to
demonstrate the effectiveness of TTI and TTG cache.

Figure 13a shows the effectiveness in average response time caused by TTI. The purple
line shows the average response time that uses TTI and the green line shows the result that
doesn’t use TTI. And Figure 13b shows the memory footprint of TPRRO with TTI (purple
line) and without TTI(green line). These two figures show that TTI can greatly reduce the
response time and it only consumes a little more memory.

Figure 14a shows the average response time with TTG cache (purple line) and without
TTG cache(green line). It shows that the average response time with TTG cache is very high
at first, because TTG cache is in its initial state and the cache hit ratio is very low. But as
the algorithm running, TTG cache tends to be perfect gradually, so the response time falls.
When the algorithm has processed about 6,000 detection requests, the average response time
with TTG cache is equal to the average response time without TTG cache. As the algorithm
continues running, the average response time with TTG cache further falls and approaches
to the level of 2 ∼ 3s. Figure 14b shows the distribution of each detection request’s response
time. It shows that 60 % requests are processed below one second, which means that the
TTG cache can greatly reduce the response time. Figure 15 shows the tendency of TTG
cache hit ratio as TPRRO is running.

Accuracy As we mentioned above, TPRRO is a real-time version of TPRO. The main
detection idea of TPRRO is same to TPRO’s, namely, detecting outliers based on the
time-dependent popular routes. TPRRO makes some improvements in efficiency but the
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Figure 15 Tendency of cache
hit ratio as the number of
detection request rising. It shows
that the cache hit ratio increases
as receiving more detection
requests. But the cache hit ratio
will be stable after receiving
enough detection requests
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evaluation criteria of outlier is unaltered. Sections 5.2.1 and 5.2.2 has elaborated the
accuracy of TPRO, so this section does not belabour the accuracy of TPRRO.

5.3.2 TPRRO vs. IBOAT

To further elaborate the effectiveness of TPRRO, this paper takes a comparative experiment
with IBOAT. IBOAT is a real-time version of IBAT and it is of high efficiency. Figure 16
shows the tendency of the average response time as algorithms running. It shows that the
average response time of TPRRO is very high at first, but as TPRRO running, TTG cache
tends to be perfect gradually and the response time falls. When TPRRO has processed about
16,000 requests, the TTG cache hit ratio becomes stable and TPRRO’s average response
time is equal to IBOAT’s. It shows that TPRRO is also of high efficiency. TPRRO and
IBOAT are two real-time algorithms that originate in TPRO and IBAT, respectively. The
main idea of TPRRO and TPRO (or IBOAT and IBAT) is same. Section 5.2.2 has elaborated
the accuracy comparison of TPRO and IBAT, so this section does not belabour the accuracy
comparison of TPRRO and IBOAT.

6 Related work

Some related works are introduced in this part, which can be categorized into two groups.
The first one focuses on trajectory outlier detection and the second one focuses on popular
route mining.

Figure 16 The average response
time of TPRRO is very high at
first, but as TPRRO running, the
response time falls. When
TPRRO has processed about
16,000 requests, TPRRO’s
average response time is equal to
IBOAT’s
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Trajectory Outlier Detection Some algorithms have been proposed to detect trajectory
outlier, but each addresses certain aspects of abnormality. Lee et al. [11] put forward a
group-and-detect framework and develop an algorithm called TRAOD. TRAOD splits a tra-
jectory into various subparts (at equal intervals), then a hybrid of the distance-based and
density-based approach is used to classify each subpart is abnormal or not. Zhang et al. [28]
propose an isolation based method, called IBAT. They focus on the test trajectory, and try to
separate it from the reset trajectories by randomly selecting points solely from the test trajec-
tory. For a group of trajectories and a trajectory will be tested in this group, they randomly
pick a point from the test trajectory and remove other trajectories which do not contain this
point. This process is repeated until no trajectory is left or all the trajectories left contain all
the points the test trajectory has. If the test trajectory is an outlier, this process will end very
soon. And Li et al. [13] emphasize on historical similarity trends between data points. At
each time step, each road segment checks its similarity with the other road segments, and
the historical similarity values are recorded in a temporal neighborhood vector at each road
segment. Outliers are calculated from drastic changes in these vectors [8]. Guan et al. [27]
use a feature vector, such as 〈direction, speed, angle, location〉, to represent a trajectory
segment and detect the outliers according to these features. Mohamad et al. [15] take the
speed and turn directions into consideration. If a trajectory has a sudden speed change or
some unexpected turns, it is an abnormal trajectory. And there are also some studies have
used learning methods to identify anomalous trajectories [12, 18]. But these methods usu-
ally need training data, which is inconvenient to label. Recently, Zhang et al. [29] combine
multi-factors into outlier detection to find more meaningful trajectory outliers. They resort
to Canonical Correlation Analysis (CCA) to optimize the number of factors when deter-
mining what factors will be considered. In [2], they propose data structures and algorithms
employing local clustering and piecewise VP-tree based rescheduling to efficiently conduct
such a task. Ge et al. [6] compute a score based on the evolving moving direction and den-
sity of trajectories, and make use of a decay function to include previous scores. In [13],
they identify outlier road segments by detecting drastic changes between current data and
historical trends. And Chen et al. [3] believe that anomalous trajectories are few and dif-
ferent. They use the idea of isolating trajectories and adopt an adaptive working window of
the latest incoming GPS points to compare against the set of historical trajectories. In [26],
they propose novel neighbor-based trajectory outlier definitions. Furthermore they design
an optimized MEX strategy scalable to big data trajectory streams to detect the new classes
of outliers, rendering moving object outliers detection practical in real time applications.

Popular Route Mining Finding the most desirable path has been a hot research topic for
decades. Many works [7, 10, 16] have been done in finding the shortest/fastest path. But the
popular route does not mean the shortest or fastest path. In most cases, we prefer the most
frequent path as the popular route. Lots of algorithms have been proposed for popular route
searching. Zaiben et al. [4] introduce a transfer probability network to discover popular
route from historical trajectories. They derive the probability of transferring from every
significant location to the destination based on the historical trajectories, and the transfer
probability is used as an indicator of popularity. The popularity of a route is defined as the
product of transfer probabilities of all significant locations on the route. Luo et al. [14] also
construct a network graph (called footmark graph) to mine frequent path. But they describe
the edge frequency as the total number of trajectories passing through the edge. Then they
define a descending edge frequency sequence to judge which path is more frequent. Another
work, such as [21], aims at deriving routes from uncertain trajectory data. And in [17], they
use mobile gps data to generate the on-line heat maps of popular routes.
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7 Conclusions

In this paper, we propose a time-dependent popular routes based real-time outlier detection
algorithms named TPRRO. It takes spatial and temporal abnormality into consideration.
TPRRO is an upgrade version of TPRO. TPRO focuses on finding out all outliers in the
historical trajectory dataset. But in most cases, people do not care about which trajectory
in the dataset is abnormal. They only yearn for the detection result of a new trajectory that
is not included in the dataset. TPRRO can address this problem and it contains the off-line
preprocess step and the on-line detection step. In the off-line preprocess step, TTI and hot
TTG cache are constructed according to the historical trajectory dataset. Then in the on-
line detection step, TTI and hot TTG cache are used to speed up the detection progress.
The experiment result shows that TPRRO has a better efficiency than TPRO in detecting
outliers.

In the future, we plan to enhance our algorithm in two directions. Firstly, we are going
to develop an algorithm that focuses on sub-trajectory detection based on time-dependent
popular routes. Secondly, we want to develop a outlier detection system based on TPRO and
TPRRO.
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