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Abstract In most real life networks such as social networks and biology networks, a node
often involves in multiple overlapping communities. Thus, overlapping community discov-
ery has drawn a great deal of attention and there is a lot of research on it. However, most
work has focused on community detection, which takes the whole network as input and
derives all communities at one time. Community detection can only be used in offline anal-
ysis of networks and it is quite costly, not flexible and can not support dynamically evolving
networks. Online community search which only finds overlapping communities contain-
ing a given node is a flexible and light-weight solution, and also supports dynamic graphs
very well. However, in some scenarios, it requires overlapping community search for group
query, which means that the input is a set of nodes instead of one single node. To solve this
problem, we propose an overlapping community search framework for group query, includ-
ing both exact and heuristic solutions. The heuristic solution has four strategies, some of
which are adjustable and self-adaptive. We propose two parameters node degree and discov-
ery power to trade off the efficiency and quality of the heuristic strategies, in order to make
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them satisfy different application requirements. Comprehensive experiments are conducted
and demonstrate the efficiency and quality of both exact and heuristic solutions.

Keywords Community search · Social networks · Graph mining

1 Introduction

In many real-world networks such as social media and biology, community structure [13]
commonly exists. We know that nodes in one community are more highly connected with
each other than with the rest of the network. Thus, community structure can provide rich
information of the network. For example, community in social media reflects a group of
people who interact with each other more frequently, so they may have common interest or
background; community in protein-association network reflects a group of proteins perform
one common cellular task. Therefore, community discovery [9, 11, 12, 17] is crucial for
understanding the structural and functional properties of networks.

However, communities are often not separated in most real networks, they are often
overlapped. In other words, one node often belongs to multiple communities. This phe-
nomenon could be easily explained in social media: individuals could belong to numerous
communities related to their social activities, hobbies, friends and so on. Thus, overlapping
community detection (OCD) [10, 14, 18, 20] has drawn a lot of attention in recent years.
OCD dedicates to find all overlapping communities of the entire network, which has short-
comings in some applications: First, it is time consuming when the network is quite large.
Second, OCD uses a global criterion to find communities for all nodes in a network, which
is inappropriate when the density of the network distributes quite unevenly. Third, OCD
can not support dynamically evolving graphs, which is a typical characteristic for most real
networks especially social network. Due to these reasons, overlapping community search
(OCS) problem was proposed by Cui et al. [8].

OCS finds overlapping communities that a specific node belongs to. Thus, to support
online query, OCS only needs to specify the query node and discover communities locally.
Hence, OCS is light-weight, flexible, and can support dynamically evolving networks. How-
ever, in some scenarios, we need to search overlapping communities for group query, that
means, the input is a set of nodes instead of one single node. For example, suppose a
piece of news published on social network has been read by a group of people, the service
provider wants to push the news to user communities in which people will also be inter-
ested in this news; or a product has been bought by a group of customers, and the producer
wants to investigate which consumer groups will also buy the product. In these scenarios,
simply iterating the OCS algorithm for each query node could waste many computations
and affect the efficiency. To this end, in this paper we propose an overlapping community
search framework for group query (OCS-G). Because of the computation intractability of
the exact solution, in order to scale up to million-node large graphs, we also proposed heuris-
tic solution which has four strategies, some of which are adjustable and self-adaptive. Two
parameters node degree and discovery power are used to trade off the efficiency and quality
of the heuristic strategies, thus they could satisfy different application requirements. To the
best of our knowledge, this is the first work which discusses the overlapping community
search problem for group query. In summary, we make the following contributions:
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– We introduce an overlapping community search framework for group query.
– We propose an efficient exact solution of overlapping community search for group

query.
– We also propose a series of heuristic strategies which trade off the efficiency and qual-

ity to suit different requirements, and propose an effective adjusting parameter called
“discovery power”.

– We conduct comprehensive experiments on real networks to demonstrate the efficiency
and effectiveness of our algorithms and theories.

The rest of this paper is organized as follows. In Section 2 we review the related work.
We formalize our problem in Section 3 and propose the overlapping community search
framework for group query. In Section 4 we introduce the exact solution. In Section 5 we
propose four heuristic strategies. We present our experimental results in Section 6. Finally,
Section 7 concludes the paper.

2 Related work

Our work is related to overlapping community detection problem, and local community
detection problem, which can also be called community search problem.

Palla et al. first addressed overlapping community structure existing in most real net-
works [20], they proposed a clique percolation method (CPM), in which a community
was defined as a k-clique component. Based on CPM, they developed a tool CFinder
[1] to detect communities on biology networks. Clique percolation was successfully used
on real-world networks [15, 16]. Besides structure based method like CPM, overlapping
community detection could also be modeled as link-partition problem [2, 10, 18]. It first
converts the original graph G into link graph L(G), in which each node is a link of
L(G), and two nodes are adjacent if the two links they represent have common node in
G. Then link partition of G can be mapped to node partition of L(G), and by perform-
ing random walk [10], Jaccard-type similarity computation [2], or density-based clustering
algorithm SCAN [18], node clusters of L(G) are derived and then they can be converted
to overlapping node communities of G. Label propagation method has been also widely
used for detecting communities [14, 26], they propagate all nodes’ labels to their neigh-
bors for one step to make their community membership reach a consensus. Compared to
OCD, OCS is more light-weight and flexible, it only needs to explore a part of the graph
around the query nodes, but not the whole graph, thus it is more appropriate for online
query.

Considering the scalability of community detection, local community detection problem,
also called community search, has also received a lot of attention [3, 4, 6, 7, 11, 19, 22,
23]. These methods start from a seed node or node set, and then attach adjacent nodes to
the community as long as these nodes can increase some community quality metrics such
as local modularity [7], subgraph modularity [19], or node outwardness [3]. In [4, 23], a
localized community detection algorithm is proposed based on label propagation. In [25],
the community is searched in an opposite way: they take the entire graph as input and
delete one node which violates the condition such as minimum degree at each step, the
procedure iterates until the query nodes are no longer connected or one of the query nodes
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has the minimum value of the condition. Although these community search methods are
more flexible than OCD, none of these methods can discovery overlapping communities,
they can just find one community or separated communities.

Our work is inspired by Cui et al. [8], they proposed online overlapping community
search problem. They defined a community as a k-clique component, and an algorithm
which finds overlapping communities a given node belongs to was given. However, the
algorithm of OCS still has a large room for performance improvement, and also, they did not
consider the problem of overlapping community search for group query. Although simply
iterating the algorithm in [8] could solve the problem, this method could produce a lot of
waste computations and it is not an effective solution. Thus, we propose an OCS framework
for group query, including both exact and heuristic solutions. As far as we know, this is the
first work considering OCS problem for group query. Besides, in [8], they just proposed an
unadjustable approximate algorithm, the efficiency and result quality of this algorithm can
not be controlled. But some of our heuristic strategies are adjustable and self-adaptive. By
tuning the adjusting parameters, we could trade off the efficiency and result quality, and
make them to satisfy different requirements.

The differences of this extended manuscript from our conference version [24] are as
follows:

– We focused on the problem of searching overlapping communities for group query, and
reorganized the structure of the paper to make the expression clearer.

– We proposed an adjust parameter called discovery power, and utilized it in the heuristic
algorithm, Section 5.3 was newly added.

– We proposed an advanced heuristic algorithm, which was self-adaptive and utilized
discovery power to adjust the efficiency and quality of the heuristic algorithm, and
Section 5.4 was newly added.

– We conducted experiments on a new added dataset called Friendster, and compared the
efficiency of the four heuristic strategies, and also added the evaluation of the efficiency
and quality performance of the advanced heuristic strategy. Besides, we evaluated the
influence of the adjust parameter discovery power.

3 Problem definition and framework

In this section, we define the problem of overlapping community search for group query
more formally, and propose the OCS framework for group query.

3.1 Problem definition

Intuitively, a typical member of a community is linked with many but not necessarily
all other nodes in the community. Base on this basic principle, there are many types of
definitions as mentioned in [21], which could be classified into three classes: local def-
initions, global definitions, and process-based definitions. Local definitions consider the
community-ness of vertices locally, which means detecting communities on a connected
subset of vertices, such as n-clubs, n-clans, k-cores and so on; global definitions consider
the community-ness of vertices globally, which means detecting communities on the whole
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Figure 1 A toy social network
graph

network, such as normalized cut, conductance, modularity and so on; process-based defini-
tions define community by means of considering community formation process taking place
on the network under study, the most typical definition is the Clique Percolation Method
(CPM) proposed by Palla et al. [20], this method considers a k-clique template rolling on the
network and resulting in a community. This community formation process based definition
is the most suitable for the idea of searching a community from a vertex on the graph, and it
could find overlapping communities. So we use k-clique as building blocks of a community
just as CPM: given a graph, we can derive a k-clique graph in which each node represents
a k-clique, and if two cliques share k − 1 nodes, there exists an edge between them. A
community is defined as a k-clique component, which is a union of all k-cliques sharing
k − 1 nodes.

However, the definition of community above is too strict. Therefore, Cui et al. [8] pro-
posed a less strict definition: two k-cliques are adjacent if they share at least α nodes, where
α ≤ k − 1; and k-clique can be replaced by γ -quasi-k-clique [5] in which k nodes have at
least �γ k(k−1)

2 � edges. Now, we give the problem definitions of OCS for single query node
and group query.

Problem 1 ((α, γ )-OCS) For a graph G, a query node v0 and a positive integer k, the
(α, γ )-OCS problem finds all γ -quasi-k-clique components containing v0, and two γ -quasi-
k-clique nodes of one component are adjacent if they share at least α nodes, where α ≤
k − 1.

Figure 2 Clique graphs for OCS-G
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Example 1 For the graph shown in Figure 1, suppose we want to find all the communities
which contain node a (v0 = a), let k = 5, α = 4, γ = 0.8, we have two 0.8-quasi-5-cliques
containing a: C1 = adefg, C2 = abchi, the clique graph is shown in Figure 2a. Thus, we get
two communities {a, d, e, f, g} and {a, b, c, h, i} containing a.

Problem 2 ((α, γ )-OCS-G) For a graph G, a group query Vq which is a node set and a posi-
tive integer k, the (α, γ )-OCS-G problem finds all γ -quasi-k-clique components containing
at least one node in Vq , and two γ -quasi-k-clique nodes of one component are adjacent if
they share at least α nodes, where α ≤ k − 1.

Example 2 For the graph in Figure 1, suppose given a group query Vq = {a,b,c}, let k =
4, consider (3, 1)-OCS-G, as shown in Figure 2b we get three communities {a, d, g, f },
{a, b, c, h, i}, {b, c, j, k, l} containing nodes in Vq .

Apparently, both OCS problem and OCS-G problem are NP-hard, because they can be
reduced from k-clique problem.

3.2 Framework of OCS-G

As shown in Algorithm 1, when given a group query, for each node vi in Vq , we first find
a clique containing vi , and then find the clique component which the clique belongs to.
Notice that for a clique component (i.e. a community), we derived the same component no
matter which clique of it is started from. Thus, to avoid redundant enumeration, we only
enumerate unvisited cliques for each round of iteration. Base on this framework, we propose
both exact and heuristic solutions for OCS-G, and the details are introduced in the following
two sections, note that our solutions are not just iterating the OCS algorithm for each node.

4 Exact solution of OCS-G

In this section, we first optimize the OCS algorithm by boundary node limitation, then we
give the exact solution of OCS-G, both of which are based on a series of theorems with
strong proofs.
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4.1 Optimized OCS algorithm

OCS algorithm searches overlapping communities of one single input node. For a query
node v, OCS first finds a clique containing v by next clique(), and then finds the clique
component which the clique belongs to by expand(). We omit the details and refer readers
who are interested to [8]. The function and basic idea of next clique() and expand() are
as follows:

– next clique(): It is in charge of enumerating each γ -quasi-k-clique containing v. It
starts from v, and when traverses to a new adjacent node of the current node, iteratively
takes the adjacent node as start node until a new valid clique is found. The iterative
procedure will stop until all valid cliques contain v are found.

– expand(): It is used to find the clique component of Clique C. It starts from
C, and we replace C’s each subset S1 with S2, in which each node is the neigh-
borhood of C − S1, and |S1| = |S2| ≤ k − α. If the new combination (C −
S1) ∪ S2 is a valid clique, we iteratively take the new clique as start clique.
The iterative procedure will stop until all cliques of the clique component are
found.

Though the DFS procedures of next clique() and expand() are pruned by checking the
edge number of subgraph induced by current visiting node set in [8], we find a way which
could further prune nodes to be checked. To optimize OCS algorithm, we first introduce
two definitions, interior node and boundary node.

Definition 1 (Interior Node) In the process of searching community Cm, given a node i, if
i and all its neighbors neighbor(i) both exist in the currently found result set of Cm, we
say i is an interior node.

Definition 2 (Boundary Node) In the process of searching community Cm, given a node b,
if b exists in the result set of Cm, and one or more neighbors of b do not exist in the result
set, we say b is a boundary node.

Nodes which are not interior nodes or boundary nodes are called exterior nodes. Based
on the three types of nodes, we propose a theorem to optimize the OCS algorithm.

Theorem 1 For OCS algorithm, one community can be derived by only expanding
boundary nodes and exterior nodes without losing completeness.

Proof At the beginning of searching community Cm, every node is exterior node, thus a
clique containing the query node can be found. In the procedure of expanding the clique,
suppose set R is the result set including nodes of Cm that have already been found, node i

is an interior node, if there exists an exterior node n ∈ Cm − R, and it can be added into R

from i, there must exist a clique Cl including i and n. Because n must be connected to at
least one node b in Cl − n, thus the node b is a boundary node, and n can be added into Cm
from b, therefore the theorem holds.
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According to Theorem 1, when expanding the current clique, if candidate nodes which
are used to replace the current clique nodes are interior nodes, these nodes can be skipped.
Besides, node degree could be taken into consideration as a pruning condition. For a γ -
quasi-k-clique, the minimum degree of a node should be dmin(v) = �γ (

k
2

) − (
k−1

2

)�. Based

on the definition of community, if one node has less than dmin(v) = �γ (
k
2

) − (
k−1

2

)�
edges, it is impossible to belong to a community. When γ = 1, the node should have
at least k − 1 edges. Thus, utilizing interior node and node degree as pruning condi-
tions, we could optimize next clique() and expand() of OCS as depicted in Algorithms 2
and 3.

As mentioned before, we use DFS strategy to traverse nodes from the query node. Tra-
versed nodes are iteratively added into set U , and check if a new valid clique is found
(Algorithm 2 line 4-8), we use node degree condition to prune nodes needed to be traversed
(line 12), neighbor(v) represents the degree of v. Besides, g(U) is another pruning condi-
tion proposed in the original OCS Algorithm [8](line 9), it represents the maximal number
of edges that the result clique has, and

g(U) = |E(U)| + (k − |U |)|U | + (k − |U |)(k − |U | − 1)

2
, (1)

where |E(U)| is the number of edges in the subgraph induced by U .
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After find a clique C, we use expand(C) to get the clique component of C, which can
constitute a community. We adopt a DFS traversal on the clique graph. The key operation of
the expanding procedure is to replace subset S2 of C (|S2| ≤ k−α) with the remaining subset
S1’s (|S1| ≥ α) neighbors S′

2 (line 15), where |S′
2| = |S2|, and these neighbors should satisfy

1) they are not interior nodes, 2) their degree should be not less than the lower bound (line
10). We use dnc(v) to denote the number of v’s neighbors which are not in a community,
dnc(v) = 0 means v is an interior node of the current explored community. Note that dnc is
defined on the nodes which are already in the current community result set, if node v is not
in the result set, its dnc(v) is unknown, and we initialize the value of dnc(v) with the degree
of the node at the beginning. For the new combination C′, we check if it is a new valid clique
(line 16), if so, S′

2 is added into the result set A (line 17) and dnc values of nodes in A need
to be updated (line 18), then we expand C′ (line 19). Note that at the beginning of expand
procedure, we sort nodes of clique C by dnc in ascending order (line 5), then we pick nodes
of C by the order to form S1. By doing this, we could guarantee that nodes with lower dnc

value change into interior nodes earlier, and we could get more interior nodes as early as
possible.
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Benefited from interior node and node degree pruning conditions, the enumerations of
finding and expanding clique are sharply reduced. Thus the efficiency of OCS algorithm is
highly improved, and this is shown by experiments in Section 6.

4.2 Exact OCS-G solution

After optimizing OCS algorithm, we could utilize it for each node in the group query
for OCS-G problem. However, when it comes to OCS-G problem, there is still room for
efficiency improvement. Instead of simply iterating OCS, we try to avoid repeated compu-
tations by utilizing existing results. Note that there exists a consistency property for OCS
problem:

Property 1 In (α, γ )-OCS, if Cm is a community that contains query node v0, for any other
node v ∈ Cm as query node, Cm is also returned as its community.

According to Property 1, we can get a corollary to save some duplicate steps which
involve in query nodes.

Corollary 1 Given a group query Vq = {v1, ...vn}, we do OCS-G and take input nodes in
the order of their subscripts, when taking vi as input node, if any node in {v1, ..., vi−1} can
be traversed, it can be skipped.

Proof Suppose vj (1 ≤ j ≤ i − 1) is traversed when input node is vi , due to the complete-
ness of OCS algorithm, all communities containing vj have been found when taking vj as
input node, and we also have that all communities containing vi and vj are also contained
in communities containing vj , so all communities containing vi and vj also have already
been found, thus the traversal can skip vj .

Consider Example 2, suppose we already finished the first round taking a as input node
and got Community{a, d, f, g}, {a, b, c, i, h}, and now consider node b as input. Intu-
itively, since we already got {a, b, c, i, h}, according to Property 1, when we take b as input
node, we will still get {a, b, c, i, h}. Thus, we wonder if we could omit some traversals
related to {a, b, c, i, h}. According to Corollary 1, query node a can be skipped. The ideal
situation is that all nodes in {a, b, c, i, h} could be skipped, however, if we do that, we
could only get {b, l, j, k} as the result of the second round, and the exact result should be
{b, c, l, j, k}. Apparently, node c is missing. So we try to find besides query nodes, which
nodes in the existing community can be skipped and which can not, and we get Theorem 2.

Theorem 2 For (k−1, 1)-OCS-G, given a node v which is a member of existing community
Cm, and the node v’s degree d(v) ≤ k, then v cannot exist in a new community C′

m.

Proof Suppose v ∈ C′
m, so there exists a clique C′

l : vn′
1 . . . n′

k−1 which belongs to C′
m,

and the degree of v in C′
l is dC′

l
(v) = |n′

1 . . . n′
k−1| = k − 1, and we know that v ∈ Cm,

so there exists a clique Cl : vn1 . . . nk−1 which belongs to Cm and dCl
(v) = |n1 . . . nk−1|

= k − 1. Because Cl and C′
l are not in the same community, they are not adjacent, and

satisfy |Cl ∩ C′
l | < k − 1, so we have |(Cl − v) ∩ (C′

l − v)| < k − 2. We know that
dmin(v) = |(Cl − v) ∪ (C′

l − v)| = |Cl − v| + |C′
l − v| − |(Cl − v) ∩ (C′

l − v)|, so
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by computation we can derive d(v) > k, and this conflicts with the condition d(v) ≤ k.
Therefore, the theorem holds.

According to Theorem 2, we could easily infer that for (k − 1, 1)-OCS-G, if a node
already exists in a community and its degree is not larger than k, it can be skipped when
traversed. Consider the example above, only d(c) is larger than 4, it cannot be skipped, other
nodes a, h, i can be skipped during DFS procedure taking b as input in the second round.

Now we discuss which nodes can be skipped for (α, γ )-OCS-G. For a γ -quasi-k-clique,
the minimum degree of a node should be dmin(v) = �γ (

k
2

) − (
k−1

2

)�, and to keep the clique
connected, dmin(v) ≥ 1. Also, if two quasi cliques are not in the same community, they
share less than α nodes. Thus, we replace the conditions in the proof of Theorem 2 and get
Theorem 3

Theorem 3 For (α, γ )-OCS-G, given a node v which is a member of existing community
Cm, and the node v’s degree d(v) ≤ max{2�γ (

k
2

) − (
k−1

2

)� − (α − 1), �γ (
k
2

) − (
k−1

2

)�},
then v cannot exist in a new community C′

m.

Example 3 For the graph in Figure 1, suppose a group query Vq = {a, b, c}, let
k = 5, consider (3, 0.9)-OCS-G, after the first round of input node a, we get
Community{a, b, c, h, i}, when taking input node b in the second round, according to The-
orem 3, we only need to traverse nodes with d(v) > 4, thus h and i can be skipped during
the DFS procedures of next clique() and expand().

From Example 3 we can see that utilizing Theorem 3, the performance of OCS-G Algo-
rithm is remarkably improved. However, taking (k − 1, 1)-OCS-G as example, the lower
bound of community node degree is k, which is not big enough for efficient pruning. Thus,
we further discover other pruning rules. Based on the definitions of interior and boundary
node, we have Theorem 4:

Theorem 4 If one node i is an interior node of existing community Cm, it cannot exist in a
new community C′

m

Proof We know that node i exists in community Cm, suppose it still exists in community
C′
m, then there exists a clique C′

l : in′
1 . . . n′

k−1 which belongs to C′
m, because community

Cm 
= C′
m, thus there exists at least one node of n′

1 . . . n′
k−1 which is not in community Cm,

this conflicts with that node i is an interior node of Cm, therefore the theorem holds.
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According to Theorem 4, after get the first community by expanding a clique, we could
find the next clique of a query node by only traversing boundary nodes and exterior nodes
in OCS-G problem. Utilizing Theorems 3 and 4, we could modify Algorithm 4 by replacing
line 12-13 with Algorithm 4. When traversing to a node v, we first check if it is not an inte-
rior node (line 1), then check if it is already in an existing community (line 2), R represents
the result set of OCS-G, if the node already exists in a community, we use the lower bound
mentioned in Theorem 3 as pruning condition (line 3); if it does not exist in a community,
we use the lower bound of node degree mentioned in Algorithm 2 (line 6).

Similarly, Algorithm 3 could also be modified in OCS-G problem, we could replace line
10-11 with Algorithm 4, in which line 4 and line 7 are changed into Cand ← Cand ∪ v.

After modify Algorithms 2 and 3, we apply them in the OCS-G framework which is
shown in Algorithm 1, thus we get the exact solution of OCS-G, the improvement of
performance will be shown through experiments in Section 6.

Complexity analysis Consider a k-clique community Cm, the time complexity of the
exact OCS-G solution is O(

(|Cm|
k

)
). This is the worst time cost when all the nodes in Cm are

boundary nodes, and other filtering conditions can not be satisfied either. But when there
exist a certain amount of interior nodes, the performance of our optimized exact algorithm
is greatly improved. Since our algorithm does not utilize any index, the space complexity is
O(|Cm|).

5 Heuristic strategies of OCS-G

Although the performance of the exact solution has been greatly improved, it is still an
NP-hard problem. Thus, to scale up to million-node large graphs, we propose a series
of heuristic strategies for OCS-G problem. First we give a naive heuristic strategy which
discards all boundary nodes and only traverses exterior nodes. Second we propose two
adjustable heuristic strategies intuitively using node degree to adjust the proportion of nodes
needed to be explored. Then we introduce an advanced parameter discovery power which
could better adjust the efficiency and quality of the heuristic strategy. At last we present
an advanced adjustable heuristic strategy which utilizes discovery power to control the
computing process.

5.1 Naive heuristic strategy

Considering the search process of one community Cm, it starts from the query node, and
adjacent nodes are added into Cm as long as they satisfy that 1) they belong to a γ -quasi-k
clique, 2) the clique they belong to can be reached from the start clique, 3) they are not in
Cm.

We see the community as a growing circle with nodes scattering in it, if we explore the
nodes out of the circle, but not wander in the circle, the entire community can be found more
earlier. According to Theorems 1 and 4, the exact solution only traverse boundary nodes
and exterior nodes. Intuitively, the naive heuristic strategy can omit all boundary nodes and
just traverse the exterior nodes, Thus we have:

Strategy 1 (Naive Heuristic Strategy) Traverse only exterior nodes during expand() pro-
cedure. That is, skip interior and boundary nodes when expanding the current community.
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Note that we only apply our heuristic strategy on expand() procedure, next clique()

procedure is still exact. Because compared to expanding seed cliques, the computations of
finding a new clique as seed occupy only a small portion of the whole procedure. But if we
lose one seed clique, we may miss a bunch of cliques which could be reached from the seed
clique. Thus, to guarantee the quality of the results, we only apply it on expand() procedure.

5.2 Adjustable heuristic strategies

Strategy 1 only use boundary node as filter condition to prune nodes to be traversed.
However, boundary node is an uncontrollable condition, which is determined by the
nature characteristic of the graph. Thus, we introduce a parameter which could adjust the
computing procedure.

Intuitively, nodes with higher degree have more possibility to belong to one or more
cliques. Thus, if we want to prune traversed nodes during the process, we could raise the
lower bound of neighbor(v), the higher the lower bound is, the less traversed nodes are,
and the more the quality loss is. Combined node degree restriction with boundary node, we
could form two adjustable heuristic strategies:

Strategy 2 (Adjustable Heuristic Strategy (fine)) Traverse boundary nodes with node
degree restriction and all exterior nodes during expand() procedure. That means partially
traversing boundary nodes and completely traversing exterior nodes.

Strategy 3 (Adjustable Heuristic Strategy (coarse)) Traverse only exterior nodes with node
degree restriction during expand() procedure. That means skipping all boundary nodes,
and partially traversing exterior nodes.

Theoretically, the relation of efficiency and quality of these three strategies is as depicted
in Proposition 1, and the proof of the proposition is obvious so we omit it for brevity.

Proposition 1 For the three heuristic strategies of OCS-G, the relation of their efficiency
is Strategy 2¡Strategy 1¡Strategy 3, and the relation of their quality is Strategy 2 >

Strategry 1 > Strategy 3.

However, using node degree as the adjusting parameter is an intuitive method, and this
method is limited. For example, if there exists a node whose degree is very large, but its
neighbors can form few cliques with it. In this situation, it will waste the searching cost and
influence the accuracy. Thus we try to seek a reasonable parameter to tune the efficiency
and quality, and we call it “discovery power”.

5.3 Discovery power

For heuristic strategies, as the efficiency improves, the result quality will be sacrificed, thus
the adjusting parameter could be used to tune the efficiency and quality to make it sat-
isfy different requirements. So we try to seek a reasonable adjusting parameter with strong
theoretical support. To this end, we introduce E(Nk

v ), which is the expectation of k-clique
number that node v belongs to.

Now we introduce the method of computing E(Nk
v ). Suppose node v has d(v) neighbors,

and there exist |e| edges between v’s neighbors, the problem of calculating E(Nk
v ) can be
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transformed to calculating E(Nk−1
Nb(v)), which is the expectation of the number of (k − 1)-

cliques existing in v’s neighbors Nb(v). The transformation is reasonable because each
node in Nb(v) is connected to node v, thus if there exists a (k − 1)-clique in Nb(v), this
(k − 1)-clique and v can form a k-clique.

Considering E(Nk−1
Nb(v)), given d(v) nodes and |e| edges, there are p = ((d(v)

2 )
|e|

)
ways to

place |e| edges, and each way is equally likely with the probability 1/p. For each placing
solution, suppose the corresponding value of the random variable Nk−1

Nb(v) is ni , then the
expectation can be defined as:

E(Nk−1
N(b)) = 1

p

p∑

i=1

ni , (2)

where p = ((d(v)
2 )
|e|

)
.

Now we discuss the semantics of the summation
∑p

i=1 ni , it represents the clique number
summation of all edge placing solutions. Note that besides adding up the clique number of
each solution, we could compute the summation from another perspective: transform the
summation of clique number to the summation of clique count, which is the number of times
that a clique occurs in all the solutions.

Given d(v) nodes and |e| edges, there are
(
d(v)
k−1

)
ways to choose a (k−1)-clique. Once the

clique is chosen, the way of placing the clique’s edges is set. For each chosen clique, there

are
((d(v)

2 )−(k−1
2 )

|e|−(k−1
2 )

)
ways to place the remaining edges. Thus, the summation can be defined as:

p∑

i=1

ni =
(

d(v)

k − 1

)((
d(v)

2

) − (
k−1

2

)

|e| − (
k−1

2

)
)

(3)

Example 4 Consider the graph shown in Figure 3, node v has 4 neighbors (d(v) = 4),
suppose there exist 5 edges between these nodes (|e| = 5), to compute the summation of
3-clique number (k − 1 = 3) of all edge placing solutions, we can see that there are 6 ways
of placing these edges, and the clique number of each way is 2, thus the clique number
summation

∑p

i=1 ni = 12. The tables show the transformation, we can see that the clique
count of each clique is 3, thus the clique count summation is also 12. And

∑p

i=1 ni =
(4

3

)((4
2)−(3

2)
5−(3

2)

) = 12, which shows the correctness of (3).

Figure 3 A example of computing
∑p

i=1 ni with d(v) = 4, |e| = 5, k − 1 = 3
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Finally, we get the expression of E(Nk
v ) as shown in (4), which is derived from (2).

E(Nk
v ) = E(Nk−1

Nb(v)) =
(
d(v)
k−1

)((d(v)
2 )−(k−1

2 )
|e|−(k−1

2 )

)

((d(v)
2 )
|e|

) , (4)

where Nb(v) is a node set containing all the neighbors of node v, and |Nb(v)| = d(v).
Consider the graph shown in Figure 3, given node v, d(v) = 4, |e| = 5, to compute the

expectation of 4-clique number of v, we have E(Nk
v ) = 12/

((4
2)
5

) = 2.
Note that (4) computes the expectation of k-clique number that node v belongs to, when

considering (α, γ )-OCS-G problem, the discovery power parameter should be changed to
E(N

γk
v ), which is the expectation of γ -quasi-k-clique number that node v belongs to. How-

ever, when node v belongs to a γ -quasi-k-clique, the minimum degree value of node v is
dmin(v) = �γ (

k
2

) − (
k−1

2

)�, which means that node v does not need to be connected to all
the other k − 1 nodes in the quasi-clique. Thus, given a node v, even nodes which are not
v’s neighbors can form a quasi-clique with v. Because of this reason, to directly compute
E(N

γk
v ) is difficult. So for γ -quasi-k-clique, we reduce k to dmin(v) + 1, and the discover

power of (α, γ )-OCS-G problem is defined as E(N
dmin(v)+1
v ), as shown in (5):

E(Ndmin(v)+1
v ) = E(N

dmin(v)
Nb(v) ) =

(
d(v)

dmin(v)

)((d(v)
2 )−(

dmin(v)

2 )

|e|−(
dmin(v)

2 )

)

((d(v)
2 )
|e|

) , (5)

where dmin(v) = �γ (
k
2

) − (
k−1

2

)�.
Although the parameter k in discovery power of γ -quasi-k-clique is reduced to dmin(v)+

1 and it is not the exact expectation of γ -quasi-k-clique, it still can reflect the possibility a
node belonging to a γ -quasi-k-clique. Consider the graph in Figure 3, given k = 4, Table 1
shows the expectation of each node with γ = 1 and γ = 0.8 respectively. We can see that
they have the same varying tendency.

Note that we compute the discovery power of each node during the offline phase when
constructing the network, and see the parameter as a basic attribute of one node just as node
degree, thus when we do OCS-G, we can use the parameter directly without any time cost.

5.4 Advanced adjustable heuristic strategy

After introducing the discovery power parameter, we now propose the advanced adjustable
heuristic algorithm, which utilizes the parameter discovery power to adjust the efficiency
and quality of the heuristic algorithm. Note that we still keep the next clique() proce-
dure exact, and only apply the heuristic strategy to the expand() procedure. The heuristic
algorithm of expand() procedure is shown in Algorithm 5.

Table 1 Expectations of nodes in Figure 3 with k = 4, γ = 1 and γ = 0.8

E(Na) E(Nb) E(Nc) E(Nd) E(Nv)

γ = 1 2 2 1 1 2

γ = 0.8 5 5 3 3 5
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As shown in Algorithm 5, we use discovery power to filter nodes in the current clique.
For the nodes in the current clique, if their discovery power exceeds the threshold ητ , we
keep them in the set Ce to explore their neighbor nodes (line 6-8), and if the node number
in set Ce is less than α, that means it has little possibility to find a new clique which shares
α nodes with the current clique, thus there is no new node can be added into the current
community, so we give up to expand the current clique (line 9–10). If |Ce| ≥ α, we explore
the neighbor nodes of Ce the same way as we do in the exact algorithm (line 11–31).

Notice that Algorithm 5 is a self-adapting algorithm correlated with the discovery depth,
with η being the self-adapting parameter and l representing the discovery depth (line 5),
and τ being the tuning parameter which could adjust the performance and quality of the
heuristic algorithm. At the beginning of the expanding procedure, the discovery depth is
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layer 1 (line 2), and η = 1, thus the filtering threshold is τ . As the depth increases (line
31), the self-adapting parameter η increases, thus the threshold also increases. So, as the
procedure goes deeper, more nodes are filtered. The reason of doing self-adapting correlated
with discovery depth is that, nodes close to the start node are more important for getting the
result. If a clique is missed at the first layer, that means a group of nodes which belong to
the community will be pruned. As the depth increases, the importance decay decreases. For
example, the loss of a clique at the first layer is more influential than that at the second layer.
However, the difference of losing a clique at the 11th layer and the 12th layer is not that
much. Hence, we adopt η as the self-adapting parameter to further balance the efficiency
and the result quality of the heuristic algorithm. We will further discuss the parameter value
setting of Algorithm 5 in Section 6. The advanced adjustable heuristic strategy is:

Strategy 4 (Advanced Adjustable Heuristic Strategy) Traverse boundary nodes and exte-
rior nodes from expandable nodes in the current clique, and the expandable nodes’
discovery power should exceed threashold ητ . That means, only explore the nodes from the
paths that most probably bring in new nodes belonging to the community.

5.5 Analysis

Consider a k-clique community Cm, the time and space complexity analyses of the four
heuristic strategies are as follows:

– For Strategy 1, each time when a clique is visited, a new node of the current community
is found. Thus, the time complexity of Strategy 1 is O(|Cm|), we reduce the exponential
complexity to linear.

– For Strategy 2, suppose the number of boundary nodes which exceed the lower bound
of node degree is n, notice that n ≤ |Cm|, when the lower bound increases, n will
decrease. The time complexity of Strategy 2 is O(

(
n
k

) + |Cm|) .
– For Strategy 3, suppose the number of exterior nodes which exceed the lower bound of

node degree is n, then the time complexity is O(n).
– For Strategy 4, suppose the number of nodes whose discovery power exceeds the

threshold ητ is n, the time complexity of Strategy 4 is O(
(
n
k

)
).

– The space complexity of the four heuristic strategies is O(|Cm|), because no index is
utilized in these strategies.

Due to the NP-hardness to approximate of clique finding, it is difficult to give theoretic guar-
antee of the four heuristic strategies. We could only evaluate the quality through experiments
in Section 6.

6 Experimental study

In this section, we present experimental study and demonstrate the efficiency and quality of
our exact and heuristic solutions of OCS-G.

6.1 Experiment setup

We ran all the experiments on a PC with Intel Core2 at 2.67GHz, 4G memory running 32-
bit Windows 7. All algorithms were implemented in C++. To directly show the performance
of algorithms, we use (k − 1, 1) OCS and OCS-G models to conduct our experiments.
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We use four real-world networks as our experiment datasets, and the statistics are shown
in Table 2. Amazon is a product co-purchasing network of Amazon website. Nodes in Ama-
zon represent products and if two products are frequently co-purchased, there exists an edge
between them. DBLP is a scientific coauthor network extracted from a recent snapshot of
the DBLP database.1 Nodes in DBLP graph represent authors, and edges represent collab-
oration relationship. LiveJournal provides the LiveJournal friendship social network, it is
a free online blogging community where users declare friendship. Friendster is an online
gaming network. It used to be a social networking site where users can form friendship. We
downloaded Amazon, LiveJournal, and Friendster from Stanford Large Network Dataset
Collection.2

6.2 Performance

We first compare the performance of exact algorithms of basic OCS, optimized OCS, and
Heuristic Strategy 1. For each k, we randomly select 100 nodes (with degree not less than
k − 1) for queries, and compare the average answering time. Because exact algorithms
have exponential complexity, we terminate them when the running time exceeds 60s. The
results of the three algorithms on the four networks are shown in Figure 4. We can see that
our optimized OCS performs better than basic OCS, with about 3 to 27 times efficiency
improvement, and the heuristic strategy overwhelms the two exact algorithms on perfor-
mance by about two or three orders of magnitudes respectively. Actually, the superiority is
more significant than Figure 4 shows. Because the maximum running time of exact algo-
rithms is 60s in our setting. Especially for the biggest dataset Friendster, with millions of
nodes, tens of millions of edges, and average degree 32.1, the executing time of heuristic
strategy is around 100ms. This indicates that the heuristic strategy can support online search
on large real networks. Note that as the average degree of dataset increases from Figure 4
a to d, the efficiency improvement of the optimized OCS decays, especially on the Friend-
ster dataset. That is because as the average degree increase, a large portion of nodes in the
dataset may be in multiple communities, thus the portion of boundary nodes increase and
the portion of interior nodes decrease. So the filter mechanism of optimized OCS is limited,
and that is the reason of the efficiency improvement decay.

Then, we compare the performance of exact algorithms of basic OCS-G, optimized OCS-
G, and Heuristic Strategy 1. Note that basic OCS-G is directly iterating OCS for each node
in a group query without any optimization, and optimized OCS-G refers to our exact solu-
tion for OCS-G. We set k = 5 for Amazon, k = 7 for DBLP, k = 9 for LiveJournal, k = 11
for Friendster, and change the group query size |N |. For each |N |, we test 20 randomly
selected group queries, and compare the average time cost. Also, we terminate the exact
algorithms after 600s. The results are shown in Figure 5. We can see that optimized OCS-G
performs better than basic OCS-G, and as the query node number increases, the time cost of
optimized OCS-G increases slowly than the basic algorithm. This indicates that our exact
solution considering avoiding duplicate computations works well on OCS-G problem. Also,
the Heuristic Strategy 1 won on the performance.

Figure 6 shows the performance of four heuristic strategies of OCS-G problem. We set
the group query and k value of different datasets as in Figure 5. We set the lower bound of

1http://dblp.uni-trier.de/xml/
2http://snap.stanford.edu/data/

http://dblp.uni-trier.de/xml/
http://snap.stanford.edu/data/
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Figure 4 Performance of basic OCS, optimized OCS, and Heuristic Strategy 1

node degree restriction at 2(k−1) for Strategy 2 and Strategy 3, and set the tuning parameter
τ = 2 for Strategy 4. The results proof Proposition 1, the time cost of Strategy 1 to 3 is
Strategy 3 < Strategy 1 < Strategy 2. And Strategy 4 performs the second best, with less
than one time slower than Strategy 3.

6.3 Quality

We compare the result quality of four heuristic strategies of OCS-G problem, and set the
parameters and queries the same as in Figure 6. Clearly, each community in the approximate
result is smaller than its corresponding community in the exact result. Let R′={C′

1, . . . ,C
′
m}

be the approximate result, and Ci be the exact community containing C′
i, thus the accuracy

of the approximate result R′ is defined as

Accuracy(R′) = 1

m

∑

1≤i≤m

C′
i

Ci
(6)

The average and variance accuracy of the four heuristic strategies are shown in Figure 7. It is
clear that the accuracy of each strategy is over 50 %, and as our discussion in Proposition 1,
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Figure 5 Performance of basic OCS-G, optimized OCS-G, and Heuristic Strategy 1

the accuracy of Strategy 1 to 3 is Strategy 2 > Strategy 1 > Strategy 3. Strategy 4 is the most
accurate with about 90 % accuracy, and as the size of group query increases, the accuracy of
Strategy 4 does not decay as much as the other three strategies, this proofs the effectiveness
of discovery power parameter. Consider both efficiency and quality of the four heuristic
strategies, Strategy 4 overwhelms the other three strategies.

6.4 Influence of node degree restriction

Now we investigate the influence of node degree restriction on Heuristic Strategy 2 and
Strategy 3. For space limitation, we conduct experiments of OCS-G problem on DBLP
dataset. We set k = 7, and the size of group query |N | = 6, we test 20 randomly selected
group queries for different lower bounds of node degree, and compare the efficiency and
quality of the strategies, the results are shown in Table 3. We can see that for both the two
strategies, as the lower bound increases, the running time decreases sharply and the accuracy
also decreases. However, the accuracy of Strategy 2 stays above 80 %, and the accuracy of
Strategy 3 stays above 50 % with the efficiency highly improved. The results indicate that if
the efficiency requirement is more important than the quality requirement, we could select
Strategy 3, whose accuracy is acceptable.
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Figure 6 Performance of Heuristic Strategy 1, 2, 3, 4 of OCS-G

6.5 Influence of discovery power parameter

For the Heuristic Strategy 4, the discovery power parameter plays an important role on
adjusting the efficiency and quality of the algorithm. We still conduct experiments of
OCS-G problem on DBLP dataset. We set k = 7, and the size of group query |N | = 6, we
test 20 randomly selected group queries for different τ , and the results are shown in Table 4.
The upper part shows the results using ητ as the threshold of discovery power, and the lower
part shows the results using just τ as the threshold.

Comparing the two tables, we can see that the self-adapting parameter η works well, as
time costs are greatly improved with only small accuracy loss, and this proofs the effective-
ness of our self-adapting mechanism. Besides, Table 4 shows that as τ increases, the time
cost and accuracy decrease, and the adjusting effect of τ is remarkable. We could compare
Table 4(upper part) with Table 3, to get the same accuracy 87 % for example, Strategy 4
takes 14.7ms, however Strategy 2 takes 46.5ms, which is over three times of Strategy 4; and
at the same time cost about 14.7ms, Strategy 4 can get 87 % accuracy, while Strategy 3 can
only get 61 % accuracy. This proofs that the tuning parameter τ of Strategy 4 is effective,
it can better trade off the efficiency and quality of the heuristic strategy than node degree
parameter. The result could also show that, to some extend, Strategy 4 is the most ideal
heuristic strategy of the four strategies.
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Figure 7 Accuracy of Heuristic Strategy 1, 2, 3, 4 of OCS-G

Table 2 Real-world networks for experiments

Dataset # Nodes # Edges Average degree

Amazon 334,863 925,872 5.53

DBLP 968,956 4,826,365 9.96

LiveJournal 3,997,962 34,681,189 17.4

Friendster 4,856,981 78,051,642 32.1

Table 3 Performance and quality of Strategy 2 and Strategy 3 for OCS-G on DBLP

Lower bound 8 11 14 17

Time(ms) 64.4 46.5 34.4 31.6

Accuracy 0.91 0.87 0.84 0.81

Time(ms) 20.9 14.6 6.1 3.4

Accuracy 0.72 0.61 0.57 0.53
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Table 4 Performance and quality of Strategy 4 with and without self-adapting parameter η

τ 1 2 3 4 5

Time(ms) 28.9 14.7 6.3 5.2 4.3

Accuracy 0.93 0.87 0.79 0.73 0.63

Time(ms) 35.3 22.5 15.3 8.7 6.5

Accuracy 0.94 0.91 0.85 0.80 0.75

7 Conclusion

In this paper we studied a framework of overlapping community search for group query,
including both exact and heuristic solutions. The performance of exact solution was highly
improved by boundary node limitation and avoiding repeated computations. Besides, we
proposed four heuristic strategies, some of which are adjustable by utilizing node degree
and discovery power parameters, thus they could satisfy different efficiency and quality
requirements. Comprehensive experiments were conducted to evaluate the efficiency of the
optimized exact algorithms, and the efficiency and quality differences of the four heuris-
tic strategies, and the influence of the adjusting parameters. Through the experiments we
demonstrated that our solutions were effective and efficient to discover overlapping commu-
nities for group query in real networks, and the heuristic strategies are flexible for different
requirements.
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