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Abstract In this work we propose a prediction by partial matching technique to anticipate and
prefetch web pages and files accessed via browsers. The goal is to reduce the delays necessary
to load the web pages and files visited by the users. Since the number of visited web pages can
be high, tree-based and table-based implementations can be inefficient from the representation
point of view. Therefore, we present an efficient way to implement the prediction by partial
matching as simple searches in the observation sequence. Thus, we can use high number of
states in long web page access histories and higher order Markov chains at low complexity.
The time-evaluations show that the proposed PPM implementation is significantly more
efficient than previous implementations. We have enhanced the predictor with a confidence
mechanism, implemented as saturating counters, which classifies dynamically web pages as
predictable or unpredictable. Predictions are generated selectively only from web pages
classified as predictable, improving thus the accuracy. The experiments show that the predic-
tion by partial matching of order 4 with a history of 500 web pages is the optimal.

Keywords Webpage prediction . Prefetching .Markov chains . Prediction by partial matching .

Browser extension

1 Introduction

Nowadays the access to the Internet becomes more prevalent worldwide and often there are
requests for higher bandwidths. Clients are frequently confronted with delays in accessing web
pages, especially those ones that are limited by low-bandwidth modems or wireless routers.
Many latency-tolerant techniques have been developed during the last years, the most impor-
tant being caching and prefetching. Caching exploits the temporal locality principle by keeping
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the accessed pages and files in a cache structure, whereas prefetching anticipates the next
accesses and loads the corresponding web pages or files into the cache. If the user accesses a
web page or a file which is available in the cache, the browser can load it without any delays.
Thus, when the users have long browsing sessions, prediction-based prefetching can be very
effective by minimizing the access latencies.

In this paper we analyze web page prefetching through prediction by partial matching
(PPM) enhanced with a dynamic confidence mechanism. The PPM was first introduced by
Cleary and Witten in [4] for data compression and represents an important context-based
prediction method. It contains a set of simple Markov predictors. It uses the highest order
Markov predictor which can provide prediction. The predicted value is the value that followed
the context with the highest frequency. The number of states used in such models tends to rise
exponentially as the order of the model increases [6]. Therefore, we implemented the PPM
algorithm as simple searches in the observation sequence instead of using high complexity
tree-, graph- or table-based modelling. Our simple representation allows superior order
Markov chains with high number of states and long histories, at low complexity. Thus, the
proposed PPM implementation is significantly more efficient than previous implementations.
We have also enhanced the predictor with a confidence mechanism, which classifies dynam-
ically web pages as predictable or unpredictable. Predictions are generated selectively only
from web pages classified as predictable, improving thus the accuracy. The confidence
mechanism consists in dynamically adapted saturating counters attached to each web page.
We evaluate the proposed predictor in terms of prediction accuracy on the BU benchmark set,
generated by the “Ocean Group Research” from Boston University [5]. The goal is to find the
most appropriate prediction technique for anticipating and prefetching web pages and to
integrate it as an extension into browsers.

The organization of the rest of this paper is as follows. In Section 2, we are reviewing the
related work in web page prefetching. Section 3 is describing our proposed web page
predictors. In Section 4 we are presenting the experimental results. Conclusions and further
work directions are included in Section 5.

2 Related work

In our previous work [11] we compared Markov chains, Hidden Markov Models and graph
algorithms as web page prediction methods. We applied multi-page prediction by prefetching
all the pages that appeared in the history after the considered context. The best prediction
accuracy has been obtained with a hybrid predictor consisting in a HMM and a graph-based
predictor. The proposed hybrid predictor prefetched the web pages anticipated by both
component predictors. In contrast, in this work we use the prediction by partial matching
algorithm which combines different order Markov chains exploiting thus the advantage of
each one. In order to reduce the additional network traffic, in this work we prefetch only one
predicted web page from each confident state.

In [14] the authors proposed a continuous-time Markov model for web page prediction.
They used Kolmogorov’s backward equations to compute the transition probabilities and to
predict which web page will be visited by a certain user and when. Their method can also
estimate the total number of visits to a web page done by all the people at a certain interval.
Link prediction based on Markov chains was presented in [25]. In [17] the author applied the
Markov model together with the k-nearest neighbor classifier algorithm to enhance the
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performance of traditional Markov chains in predicting web pages. He obtained lower
consumed memory, quite similar build time and evaluation time and higher accuracy. In [18,
19] clustering is used to group homogeneous user sessions. Low order Markov chains are built
on these clustered sessions and when Markov models cannot make clear predictions the
association rules are used. In [20] the authors presented a survey of web page ranking for
web personalization. They concluded that low order Markov models have higher accuracy and
lower coverage, whereas the higher order models have a number of limitations associated with:
higher state complexity, reduced coverage and sometimes even worse prediction accuracy.

In [24] Pitkow and Pirolli show that, compared to various Markov models, longest
repeating subsequence models can significantly reduce complexity while keeping the ability
to make accurate predictions. In [9] the authors proposed a hybrid web page prediction method
which combines support vector machines, association rule mining and Markov chains in order
to enhance the efficiency. Their experimental results showed that the proposed hybrid predictor
outperformed the individual predictors. In [26] the authors presented an n-gram based model to
utilize path profiles of users from very large web log to predict future requests. They showed
that the proposed method achieves a reasonable balance between precision and applicability.

In [16] the authors used HMMs for semantic-based web page prefetching. In [12] the
authors presented a web page prediction method based on conditional random fields, used for
labeling and segmenting sequential data. Conditional random fields have the ability to model
the dependencies among observations and they can also incorporate various features from
observation sequences to increase the prediction accuracy. They concluded that conditional
random fields outperformed Markov chains and HMMs but for a great number of labels their
training may become very expensive and even intractable.

In [6] the authors used different PPM techniques for web page prefetching. They observed that as
the order of themodel increases, the number of states used for themodel also increases dramatically.
They reduced the complexity of themodel by eliminatingmany of its states that are expected to have
low prediction accuracy. But the behaviour of a certain user can change in time and a state with low
prediction accuracy can become a state with high accuracy and vice versa. In contrast, we select
dynamically the confident states through the saturating counters attached to each web page. The
great advantage of the saturating counters is that they can adapt fast to any changes in the user’s
behaviour. We reduced the complexity of PPM modelling by keeping all the states. In [31] the
authors reduced the high state complexity of Markov chains by clustering web pages with similar
transition behaviours together to get a compressed transition matrix. However, their compression is
based on similarity metrics which accept a low level of error and thus can cause some loss of
information. In [23] the PPM is modelled as a tree whose nodes are the web pages. The model is
updated on new user requests. The prediction engine selects which page to prefetch based on the
occurrence count associated to each node. The fraction between the occurrence counts of a certain
node and its parent is used to decide to activate or not the prefetch. In contrast, in our approach we
decide to prefetch or not based on the confidence of the current web page and we use saturating
confidence counters for faster adaptation to user behaviour changes. The tree is inefficient in the case
of high Markov chain order and high number of web pages due to the resulting high state
complexity. In [1] the authors use a noncompact suffix tree to implement an online PPM which
keeps the most recent requests, being able thus to capture changing patterns and fit the memory. In
our approachwe apply the PPMon a limited slidingwindow ofweb requests as in [1] but ourmodel
representation is different. In contrast with [6, 31, 23, 1], we implemented the PPM as simple
searches for the contexts in the sequence of visited web pages and thus the complexity grows only
linearly with the order of the model.
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Graphs were also used for prediction through some specific algorithms. In [15] Huang
explored link prediction based on graph topology. In [13] Hasan addressed link prediction in
social networks by using supervised learning and classification algorithms such as decision
tree, multi-layer perceptron, support vector machines. His results were reported on BIOBASE
and DBLP, two datasets that have information about different research publications in biology
and computer science, respectively. Another approach in link prediction of social networks
was proposed in [22]. The author’s solution aims at predicting links based on weighted
proximity measures of social networks relying on the structural properties (topology) of a
given network.

In [3] the authors proposed a page rank algorithm to predict the next page that will be
visited by a web surfer. For the first set of sessions they applied the page rank algorithm which
provides the ranks for web pages. For each web page their method determines to which pages
the user can navigate and, using the page ranks, it computes the probability of visiting them by
dividing each rank to the sum of ranks, and the number of links to the total number of links,
respectively.

In [2] Canali et al. proposed adaptive algorithms that combine predictive and social
information and dynamically adjust their parameters according to the continuously changing
workload characteristics. Their experimental results showed that such adaptive algorithms can
achieve performance close to theoretical ideal algorithms. In [28] Wan et al. proposed an
approach based on a vector space model, called random indexing, for the discovery of the
intrinsic characteristics of web user activities. The underlying factors are then used for
clustering individual user navigational patterns. The clustering results are used to predict and
prefetch web requests for grouped users.

In [27] Temgire et al. presented a review on web prefetching techniques. The variety of
prefetching algorithms hinder to a certain extent the performance evaluation of new techniques
and their correct comparison with existing methods. Therefore, in [7] the authors proposed a
free environment for implementation and efficient evaluation of prefetching techniques. Their
framework combines real and simulated behaviour of web users and servers. A proxy-based
framework for prefetching web pages has been proposed in [29]. Some of the algorithms
proposed in the literature consider a training period before making predictions. The training
period can improve or even decrease performance, since, if it is too long, it can involve a high
amount of resources. In [8] the authors analyzed how this training affects the prediction
accuracy. Instead of pre-training we applied run-time training.

User behaviour prediction has been applied also in online advertisement industry [21] and
financial service industry [30].

3 Web page prediction

Our goal is to integrate the most efficient PPM configuration as an extension into browsers, as in
[11]. The browser extension, presented in Figure 1, collects and pre-processes the links accessed by
the user: each link is codified with a unique number, ports and relative parts are eliminated from
links, if there are two consecutive accesses of the same link only one is considered, links having the
extension .gif and .xbm, which are usually small images, are also eliminated. The browser extension
keeps a certain history of the accessed links. When the current link is accessed, the next link is
anticipated using the PPM algorithm on the basis of the history of the previously visited links. The
predicted web page or file is prefetched in the cache in order to be available if the user accesses it.
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In order to improve the prediction accuracy, the predictor is enhanced with a confidence
mechanism as in [11], which consists in saturating counters, attached to all the links kept in the
history. The associated saturating counters are incremented on correct prediction and
decremented on misprediction. A prediction is generated only if the confidence counter of
the current link is in a predictable state. By using such a confidence mechanism, the number of
predictions is lower but the prediction accuracy is significantly higher. For a low traffic level,
the proposed predictors are providing only one predicted web page, instead of a multi-page
prediction presented in [11].

3.1 Markov predictors

In a first order Markov chain with N states, the current state depends only on the previous state:

P qt qt−1;…; q1j½ � ¼ P qt qt−1j½ � ð1Þ
where qt is the state at time t. In a Markov chain of order R, the current state depends on R
previous states [11]:

P qt qt−1;…; q1j½ � ¼ P qt qt−1;…; qt−Rj½ � ð2Þ
In our application the states are represented by the web pages. The Markov chains can be

used to predict the next web page by searching for the current context within the history of
visited web pages. The web page that followed the context with the highest frequency is the
predicted one. Figure 2 presents an example of prediction with a first order Markov chain: the
context is the link 1 and the prediction is 5 since it occurred the most frequently after 1.

In a Markov chain of order R, the context consists in the last R web pages. The Markov
predictor used for web page prefetching is presented in the following pseudocode:

MARKOV (SEQ, R)
for k := 0 to R-1 do

C[k] := SEQ[H-R + k]
for i := R to H-1 do

IS_CONTEXT := TRUE
for k := 0 to R-1 do

if SEQ[i-R + k] ! = C[k] then
IS_CONTEXT := false
break

Data Collector &

Preprocessor
PPM Prefetcher

Browser Extension

Client

Figure 1 The structure of the application

1 5 2 4 1 3 1 5 4 1 5

Figure 2 Prediction with a first order Markov chain
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if(IS_CONTEXT)
P[SEQ[i]] := P[SEQ[i]] + 1

PRED := 0
MAX := P[0]
for k := 1 to N-1 do
if P[k] > MAX then

MAX := P[k]
PRED := k

if MAX > 0 then return PRED
return −1

where R is the order of the Markov chain, SEQ is the observation sequence, C is the context
(the last R web pages from SEQ), H is the length of SEQ, P keeps the probability distribution
for N distinct web pages, PRED is the predicted web page, and MAX is the number of
occurrences of the predicted web page after the context C. If the context C is not found in
SEQ, expressed by returning −1, we do not predict any web page. We have also presented the
Java implementation of such a Markov predictor in [10].

Tree-, graph-, or transition table-based implementations are also possible, but such
methods are inefficient for a high number of web pages and superior order Markov
models. The temporal complexity of our Markov model implementation is Θ(HxR). The
memory request is even lower: it needs to keep the web page sequence of size T in SEQ,
the context of size R in C, the probability distribution of size N in P and other few
variables (IS_CONTEXT, PRED, MAX), which is remarkable especially for systems with
memory constraints.

3.2 Prediction by partial matching

The PPM of order R first tries to predict with the Markov model of order R based on the
web page sequence SEQ. If the Markov model of order R cannot predict, then the
Markov model of order R-1 is used, and so on, the last trial being the Markov model
of order 1. In other words, if the Markov model of a certain order cannot provide
prediction, it triggers the next lower order Markov chain. Figure 3 presents an example
of prediction with a PPM of order 3: the Markov chain of order 3 cannot predict because
it could not find the context of 3 links, thus the prediction 3 is generated by the Markov
chain of order 2 because it followed once the context within the link sequence.

1 5 2 4 1 3 1 5 4 1

1 5 2 4 1 3 1 5 3

1 5 2 4 1 3 1 X5 4 1

14

Figure 3 Prediction with PPM of order 3
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We have not included the Markov model of order 0 because it is not using any contextual
information. The prediction mechanism is presented in Figure 4. The PPM algorithm is given
in the following pseudocode:

PPM (SEQ, R)
for r := R downto 1 do

PRED := MARKOV(SEQ, r)
if PRED ! = −1 then return PRED

return −1
Since, in the most unfavourable case, the MARKOV function is called R times, the

complexity of the PPM algorithm is Θ(HxR2). The memory request of the proposed PPM is
similar with that of the above presented Markov model, which is remarkable, and significantly
better than that of the other existing PPM implementations.

3.3 Graph-based prediction

The graphs are data structures used in many types of applications to model different processes.
A graph consists in vertices which can be connected by edges. Figure 5 depicts a directed
weighted graph whose vertices represent the accessed links. An edge between two vertices
means at least one transition from a link to another in the direction shown by the arrow,
whereas the weights are keeping the transition numbers.

The graph-based predictor anticipates the next link as being the vertex whose edge with the
current vertex has the highest weight. In fact, it is a first order Markov predictor implemented
using a directed graph. The algorithm is presented in the following pseudocode:

DGRAPH()
A := C.GET_PAIRS()
MAX := A[0]
foreach Edge E from A
if E > MAX then MAX := E

if MAX > 0 then return E.GET_PAIR(C)
return −1

Markov ord. 1 Markov ord. R-1 Markov ord. R

Predicted web page

MUX

2:1

0 1

MUX

2:1

0 1

MUX

2:1

0 1

-1

Context of

length 1

found
Context of

length R-1

found

Context of

length R 

found

Figure 4 Prediction by partial matching
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where C is the vertex corresponding to the current link, GET_PAIRS returns a list with all
the adjacent vertices and GET_PAIR gives the pair vertex of a certain vertex from a given edge
E. We assume that when the function is called, the directed graph is already constructed based
on the sequence of visited web pages.

4 Experimental results

The first step of our research is to analyze the proposed algorithms from the prediction
accuracy point of view, by varying their input parameters. Such a study can be better
highlighted on a set of log files. Therefore, the above presented algorithms have been
implemented in Java and evaluated on the BU benchmarks.

The BU dataset was generated by the “Ocean Group Research” from Boston Univer-
sity [5] and consists in log files collected during 7 months on 37 workstations, spanning
the timeframe from 21 November 1994 to 8 May 1995. Each log file name contains a
user ID number, the machine on which the session took place and the Unix timestamp
when the session started. Each line in a log corresponds to a single URL requested by the
user; it contains the machine name, the timestamp when the request was made, the URL,
the size of the document (including the overhead of the protocol) and the object retrieval
time in seconds. The average number of links in the BU benchmarks is 1905. After we
have pre-processed the original log files, as we described in Section 3, we named them
conX where X is the user ID.

First, we have evaluated a 3rd order PPM by varying the size of the web page sequence,
also called history (H). We used 4-state confidence counters, identified in [11] as being optimal
for web page prediction. The results are presented in Figure 6.

As Figure 6 presents, the highest average prediction accuracy has been obtained with a
history length of 600. We can observe an increase in accuracy until H=600 and a fall after that,
meaning that a rich history can lead to higher accuracy, but starting with a certain length it can
behave as noise and the accuracy decreases. In fact, the accuracies obtained with history
lengths of 500, 600 and 700 are very close – 70.14, 70.42 and 70.40 %, respectively –,
therefore, we consider that the optimal history length is 500.

1

2

3

4www.ulbsibiu.ro

www.csac.ro

webmail.ulbsibiu.ro

acaps.ulbsibiu.ro

23

4

242

5

inginerie.ulbsibiu.ro

109

12

31

87

46

Figure 5 Modeling web page accesses using graphs
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We have continued our study by varying the order of the confidence-based PPM, consid-
ering the optimal history length of 500 web pages. The results are presented in Figure 7 which
shows that the prediction accuracy increases with the order of the PPM, but there is marginal
benefit of increasing the order beyond 4. On some benchmarks we can observe inflexion
points followed by accuracy decrease. For those benchmarks, the Markov chains of higher
orders than the inflexion point have more mispredictions at higher complexity. The average
prediction accuracies show that the PPM of order 4 is the optimal.

We have compared the optimal PPM (H=500, R=4) with a PPM having the same
configuration but without the 4-state confidence mechanism. As Figure 8 depicts, the 4-state
confidence counters have a very high benefit. With this confidence mechanism we are able to
selectively predict only from confident web pages, increasing thus the average prediction
accuracy from 31.54 to 71.11 %. Figure 9 shows how the prediction rate (the number of
predicted web pages divided to the total number of web pages) is influenced by the selectivity
of the 4-state confidence mechanisms in the case of the optimal PPM (H=500, R=4).

It can be observed that the attached 4-state confidence counters reduce the number of
predictions from 62 to 10 % but improve the accuracy from 31.54 to 71.11 %. In order to not
increase too much the network traffic, we prefer to predict fewer times but accurately.
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Finally, Figure 10 depicts the efficiency of our PPM implementation opposite to a graph-
based implementation, as simulation time. The implementations which are implying transition
tables, trees or graphs, as in [6, 23, 25, 31], become very inefficient or even intractable for high
number of distinct web pages and superior order models, because of the high state complexity.
In Figure 10, Graph 1 is a first order Markov predictor implemented using a directed weighted
graph, whereas Markov 1 and PPM 4 are our first order Markov and 4th order PPM
implementations. We reported the time necessary to process and eventually predict all the
links from each benchmarks. As the evaluations show, our proposed Markov model imple-
mentation is more efficient than the graph-based one, and more important, our proposed PPM
implementation has almost the same time-efficiency even for higher orders. The average
execution time with the first order graph based Markov predictor is 29.77 s, while with our
first order Markov predictor and our 4th order PPM it was only 10.18 and 11.27 s, respectively.

5 Conclusions and further work

In this study we proposed prediction based web prefetching methods in order to reduce the
delays necessary to load the web pages and files visited by the users. We have presented an
efficient way to implement the prediction by partial matching as simple searches in the
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observation sequence. By avoiding tree-, table- and graph-based implementations, the memory
necessity of the proposed PPM is similar with that of the Markov model. This low complexity
is remarkable, especially for the superior order models with high number of states, and
significantly better than in the other existing PPM implementations. Our time-evaluations
show that the prediction latency of the proposed model is just slightly affected by the order of
the model, opposite to the implementations using the above mentioned data structures with
which the order of the model affects exponentially the complexity.

The confidence mechanism has a high benefit because it allows to predict selectively from
high-confidence contexts, decreasing thus the prediction rate from 62 to 10 %, but increasing
in the same time the accuracy from 31.54 to 71.11 %. The optimal prediction accuracy of
71.11 % was obtained with the PPM of order 4 using a history of 500 web pages and 4-state
confidence counters.

A further work direction is the analysis of using neural networks for web page prediction as
a first prediction level in a two-stage predictor. Another further work direction consists in
developing and evaluating different hybrid predictors. The PPM is a hybrid predictor with
prioritization-based static component selection and we intend to evaluate also dynamic
selection in order to use the best predictor at a certain moment, for possible prediction accuracy
improvements. Finding and exploiting similarity among users is a research challenge in itself.
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