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Abstract Text classification constitutes a popular task in Web research with various appli-
cations that range from spam filtering to sentiment analysis. In this paper, we argue that
its performance depends on the quality of Web documents, which varies significantly. For
example, the curated content of news articles involves different challenges than the user-
generated content of blog posts and Social Media messages. We experimentally verify our
claim, quantifying the main factors that affect the performance of text classification. We
also argue that the established bag-of-words representation models are inadequate for han-
dling all document types, as they merely extract frequent, yet distinguishing terms from
the textual content of the training set. Thus, they suffer from low robustness in the context
of noisy or unseen content, unless they are enriched with contextual, application-specific
information. In their place, we propose the use of n-gram graphs, a model that goes beyond
the bag-of-words representation, transforming every document into a graph: its nodes cor-
respond to character or word n-grams and the co-occurring ones are connected by weighted
edges. Individual document graphs can be combined into class graphs and graph similarities
are employed to position and classify documents into the vector space. This approach offers
two advantages with respect to bag models: first, classification accuracy increases due to
the contextual information that is encapsulated in the edges of the n-gram graphs. Second,
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it reduces the search space to a limited set of robust, endogenous features that depend on the
number of classes, rather than the size of the vocabulary. Our thorough experimental study
over three large, real-world corpora confirms the superior performance of n-gram graphs
across the main types of Web documents.

Keywords Text classification · N-gram graphs · Web document types

1 Introduction

Text classification, also known as text categorization, is the task of automatically detecting
one or more predefined categories that are relevant to a specific document [36, 37]. This
process is typically carried out with the help of supervised machine learning techniques: a
classification algorithm is trained over a corpus of labelled documents and captures the most
distinguishing category patterns that can be used to classify the new, unlabelled instances.
Text classification constitutes a popular research topic, due to its applicability to most kinds
of Web documents, such as filtering spam out of e-mails [24], categorizing Web pages
hierarchically [10] and analysing the sentiment of Social Media content [31]. As a result,
its performance is critical for a wide range of tasks on the Web.

The most critical component of text classification is the representation model that con-
verts every document into features fed to classification algorithms [13, 15, 26]. The goal of
this paper is to examine the extent to which its functionality is affected by the type of doc-
ument, given that not all Web documents are of the same quality. Unlike the clean, curated
content of news articles or scientific publications, the user-generated content (UGC) that is
posted on-line through Web 2.0 tools is excessively noisy. It actually poses the following
serious challenges to the functionality of representation models:

(Ch1) Multilinguality. Representation models usually need to be fine-tuned to the lan-
guage at hand in order to ensure high performance. This is typically done through
language-specific pre-processing techniques, such as lemmatization, stemming and
word-sense disambiguation with the help of dictionaries (e.g., WordNet1) [29]. UGC,
though, can be written in any language – even in multiple languages. Typically, it lacks
any information about the underlying language(s), unless a specialized technique for
automatic language identification is used. To avoid the complexity and the overhead of
these methods, text classification over UGC requires language-neutral representation
models.

(Ch2) Syntactical and grammatical errors. UGC is particularly noisy, due to its casual,
spontaneous writing and its minimal curation. Web users frequently participate in chats,
posting their messages as fast as possible, without verifying their grammatical or spelling
correctness. The resulting noisy content degrades the performance of representation mod-
els, hampering the identification of patterns in the form of repeated occurrences of the
same characters or tokens (i.e., strings of characters that pertain to a specific term).
Hence, UGC calls for representation models that are robust to noise.

(Ch3) Sparseness. A large part of UGC comprises free-form text that is rather short
in length, due to size limitations. All messages in Twitter,2 for instance, are restricted

1http://wordnet.princeton.edu
2https://twitter.com
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to 140 characters. These messages merely consist of a handful of words, thus lacking
distinguishing information that can be used by representation models as evidence for
identifying their topic. Their sparseness calls for contextual models that are able to extract
more endogenous information under these settings.

(Ch4) Evolving, non-standard vocabulary. A large part of UGC pertains to informal com-
munication between friends, who typically employ a casual “communication protocol”
(e.g., slang words and dialects) [11]. The limited size of their messages also urges them
to shorten words into neologisms that bear little similarity to the original ones (e.g., “gr8”
instead of “great”). These phenomena restrict the applicability and degrade the perfor-
mance of language-specific, dictionary-based pre-processing techniques. Instead, they
call for language-neutral, dictionary-free representation models.

In this paper, we argue that the quality of Web documents affects the performance of
text classification to a considerable extent. To assess this effect, we analyse the endoge-
nous characteristics of Web documents, identifying four decisive criteria: (i) their length
in characters or tokens, (ii) the diversity of their vocabulary, (iii) the noise they contain,
and (iv) the frequency of special notation, such as URLs and hashtags. Based on these
characteristics, we distinguish Web documents into three types – curated, semi-curated and
raw ones – and argue that they induce significant variation in the effectiveness and the time
efficiency of the representation models that typically lie at the core of text classification
systems.

In more detail, the established approaches rely on character or token n-grams and are
collectively called bag models [22, 36]. Essentially, they associate individual documents
and topics with the frequent and discriminative characters or words that appear in them.
However, they are inadequate for dealing with the above four challenges. Due to chal-
lenges Ch2 and Ch4, they yield numerous features that correspond to a huge search space,
a phenomenon called “curse of dimensionality”. The resulting feature vectors are hard to
fine-tune and pose serious limitations to the robustness of bag models, as they exclusively
consider those features that have been extracted from the training set. This shortcoming
is typically resolved through the incorporation of contextual, exogenous information, an
approach that is application-specific [36]. Finally, the accuracy of bag models is restricted,
because they disregard the valuable information that is contained in the sequence of n-grams
in text. In the multilingual settings of UGC, this information is valuable in dealing with
sparseness (challenges Ch1 and Ch3).

To overcome these drawbacks, we propose the use of a language-neutral represen-
tation model that is inherently robust to noise and takes contextual information into
account: the n-gram graphs. It goes beyond the bag models by representing individual
documents and entire topics as graphs. Their nodes correspond to character or token n-
grams, while their weighted edges denote the frequency of co-occurrence of the adjacent
nodes. In this way, the graph models enhance the traditional bag ones with contextual infor-
mation that addresses sparseness, thus achieving higher effectiveness (i.e., classification
accuracy).

Additionally, we explain how n-gram graphs can be used for text classification in a way
that successfully addresses the curse of dimensionality, limiting the search space in order
to ensure high efficiency: each labelled document of the training set is transformed into
a graph and the graphs belonging to the same category are merged into a class graph; to
classify an unlabelled document, we compare its n-gram graph with every class graph and
estimate the numeric value of three graph similarity metrics. As a result, the dimensionality
of the feature vector representing every document depends on the number of topics, rather
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than the vocabulary size. We also introduce a discretization approach for converting the
originally numeric features into nominal ones. In combination, these two types of
feature form hybrid approaches of high robustness at the cost of a slightly larger feature
space.

The high performance of n-gram graphs is verified through a thorough experimental
study on three large-scale, real-world corpora – one for each of the main document types.
Its goal is to highlight the different challenges involved in each document type and how
they affect the performance of representation models, especially that of n-gram graphs. We
minimize language-dependency, assuming a multi-lingual setting that is important for many
contemporary applications. We do not use any external knowledge and show that, under
these conditions, the graph representation models provide better results than the traditional
bag models in a variety of settings.

In summary, the main contributions of this paper are the following:

1. We introduce four content-based criteria for assessing the quality of Web documents.
Based on them, we categorize Web documents into three main types, explaining their
differences and how they affect the performance of text classification.

2. We explain how the n-gram graphs can be employed as a representation model for
text classification and elaborate on its advantages over the bag models with respect
to effectiveness and efficiency. We also introduce a discretization process for convert-
ing the numeric features of n-gram graphs into nominal ones and demonstrate that the
combination of both feature types leads to a more robust performance.

3. We conduct a detailed experimental study over three large-scale, real-world datasets
– one for each type of Web document. Based on the outcomes of our study, we fine-
tune the internal parameters of the graph models and verify that they significantly
outperform the bag ones with respect to classification accuracy.

The rest of the paper is structured as follows: in Section 2, we formally define the prob-
lem that we are studying and in Section 3, we analyse the n-gram graph model, comparing
it with the traditional bag models. Section 4 presents our typology of Web documents, while
Section 5 presents and discusses our experimental results. We present the most important
related works in Section 6 and we conclude the paper in Section 7 along with directions for
future work.

2 Problem definition

Related literature distinguishes text classification into several sub-problems, with single-
label text classification being one of the most general and popular ones. It involves disjoint
categories (i.e., each document is assigned to a single class) and lies at the core of many
text classification applications. Prominent examples are text filtering, which distinguishes
documents into relevant and irrelevant ones, and its most popular instantiation, namely spam
detection [36]. For this reason, we exclusively consider single-label text classification in the
following.

Among its applications, we focus on topic classification (TC) and employ it as a use case
for illustrating the qualitative and quantitative differences between the various document
representation models. Topic classification is the task of categorizing a given set of docu-
ments into thematic categories and constitutes a crucial process for many Web applications,
ranging from news services to blogs and Social Media [26]. More formally, the task that we
consider in this work can be defined as follows [36]:
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Problem 1 (Single-label Topic Classification) Given a corpus of documents D, a set of
topics T , and a set of training pairs Dtr = {< di, ti >: di ∈ D∧ ti ∈ T } ⊂ D×T , we seek
a function f : D → T , that minimizes the size |E| of the set of false pairs (i.e., errors):
E = {< di, ti >: di ∈ D ∧ f (di) �= ti}.

Given that we use a subset of the full corpus as a training set, we may fail to find the
optimal function f and, thus, we are rather looking for the best approximation to it. In this
effort, we exclusively consider content-based representation models, i.e., models that rely
on the endogenous textual information of the given corpus. This means that we completely
disregard context-aware representation models, which enhance TC through the incorpora-
tion of contextual information, such as related Web resources and special-purpose metadata
(e.g., publication date). There are several reasons for this decision; contextual informa-
tion may involve high extraction cost and usually comes in the form of text, thus calling
for content-based representation models, as well. Most importantly, though, it constitutes
an application-dependent parameter [36]. Given that we do not aim at optimizing the per-
formance of a specific application, there is no need to consider such information in our
analysis.

Instead, our goal is to examine the effect of challenges Ch1 to Ch4 on the performance of
document representation models and to identify the model that adds more value to the basic
textual patterns formed in the documents. In our analysis, we consider two types of content-
based model: the bag and the graph ones. We place more emphasis on the latter category,
examining the models that it generates with respect to the following aspects of TC: How
can we use the graph representation models in conjunction with existing machine learning
techniques? Which configuration offers the best trade-off between the efficiency and the
effectiveness of TC over Web documents? Is the accuracy and the speed of classification the
same across different types of document (e.g., the curated content of news articles and the
noisy content of Social Media)? The conclusions of our study are expected to be directly
applicable to other applications of text classification, as well.

3 Document representation models

In this section, we delve into the main content-based representation models, placing partic-
ular emphasis on their parameters. We begin with the presentation of the simple bag models
in Section 3.1 and continue with the introduction of the more complex graph models in
Section 3.2. We conclude their description in Section 3.3 with an analysis of their
advantages and disadvantages when applied to Web documents.

3.1 Bag models

These models represent each document as a collection of features that correspond to the
dimensions of a vector space. These features typically come in two forms:

– character n-grams, which are sequences of letters of length n, and
– token n-grams, which are sequences of words (i.e., tokens) of length n.

For both types of feature, we call n the core size of the corresponding bag model.
For character-based bag models, n is usually set to 2, 3 or 4, and the resulting mod-
els are called character bigrams (C2G), character trigrams (C3G) and character four-
grams (C4G), respectively. For token-based bag models, n is usually set equal to 1, 2
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or 3, and the resulting models are called token unigrams (T1G), token bigrams (T2G)
and token trigrams (T3G), respectively. To illustrate the functionality of bag models,
consider the phrase “home phone”; T1G represents it as {home, phone} and C4G as
{home, ome ,me p, pho, phon, hone}.

The values of the features can be calculated in several different ways. The most common
are [29]:

– a binary value that indicates the existence or absence of the corresponding n-gram in
the text,

– a numeric value that corresponds to the (normalized) Term Frequency (TF) of the n-
gram (i.e., how many times it appears in a given document), and

– a numeric value that corresponds to the Term Frequency-Inverse Document Frequency
(TF-IDF) of the n-gram. This weighting scheme improves on the previous one by incor-
porating the reciprocal frequency of a word over the entire corpus (IDF) in order to
reduce the impact of particularly common features (e.g., stop words).

To transform a document collection D into a bag model, we first need to identify the set
of features F that define the vector space, i.e., the distinct character or token n-grams that
appear in the documents of D. Each document di ∈ D is then represented as a document
vector vdi

= (v1, v2, . . . , v|F |), whose j th dimension vj corresponds to the value of the
j th feature for di [35]. Similarly, a topic Tj is modelled as a class vector (vTj

), whose
dimensions comprise the aggregate values of the individual document vectors [29].3

3.2 Graph models

The n-gram graph model was introduced in [17] as a summary evaluation method. The
motivation for it is to take into account the order of appearance of token and character n-
grams in the original text. For example,4 the phrases China sues France and France sues
China have identical T1G representations, despite their inverse meaning; inevitably, both
documents would be considered relevant to the class c = legal actions brought by France,
yielding a false positive for the first phrase. To overcome this problem, the n-gram graph
models extend the bag ones by associating neighbouring pairs of n-grams with edges that
denote their frequency of co-occurrence.

The structure of n-gram graphs is formally defined as follows [17]:

Definition 1 An n-gram graph is an undirected graph G = {V,E,W }, where V is the set
of its vertices, with each vertex corresponding to a distinct n-gram, E is the set of edges
between co-occurring n-grams, and W is a function that determines the weight of each edge
according to the co-occurrence frequency of its adjacent vertices. Each vertex is labelled by
the corresponding n-gram and each edge by the labels of its adjacent vertices – concatenated
in alphabetic order.

Similar to the bag models, the graph ones consider either n consecutive letters
(i.e., character n-gram graphs) or n consecutive words (i.e., token n-gram graphs).
To illustrate their functionality, consider the character trigram graph (i.e., n = 3)

3An alternative approach to forming a class vector is to extract the centroid from the vectors of the individual
documents it comprises [29].
4Example borrowed from [29].
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of Figure 1, which models the phrase “home phone”. Due to the association of n-
grams, it captures more information than the corresponding bag representation of C3G:
{hom, ome, me , e p, ph, pho, hon, one}.

To represent a document di , we create a document graph Gdi
by running a window

of n characters or tokens over its textual content, breaking it into overlapping n-grams.
Any two n-grams that are found within a certain distance are connected with an edge e ∈
Edi

, whose weight denotes their frequency of co-occurrence in the entire document (two n-
grams are considered neighbouring if their distance is lower than n steps [17]). In this way,
each document is transformed into a graph that captures the contextual information of its
co-occurring n-grams.

The same representation applies to a collection of documents that belong to the same
topic. In this case, however, the graph is formed by merging the individual document graphs
into a single class graph through the update operator [18]. This procedure operates as
follows: given a collection of documents belonging to topic Tj , an initially empty graph
GTj

is built; the i-th document di ∈ Tj is then transformed into the document graph Gdi

that is merged with GTj
to form a new graph Gu = (Vu,Eu, Wu), where Vu = VTj

∪ Vdi
,

Eu = ETj
∪Edi

and Wu(e) = WTj
(e)+(Wdi

(e)−WTj
(e))×1/i. Hence, the nodes and the

edges of a class graph comprise the union of the nodes and edges of the individual document
graph, while the weights of its edges incrementally converge to their overall average value,
due to the division with i in the formula of Wu(e). In this way, class graphs capture patterns
common in the content of the entire topic.

3.2.1 Graph similarity metrics

To estimate the similarity between a document graph Gdi
and a class graph GTj

, we employ
the following graph similarity metrics [17]:

(i) The Containment Similarity (CSim) expresses the proportion of edges shared among
Gdi

and GTj
and is formally defined as follows:

CSim(Gdi
,GTj

) = |Edi
∩ ETj

|
min(|Edi

|, |ETj
|) ,

where |Ex | denotes the number of edges in Ex (i.e., the size of the corresponding
n-gram graph, Gx).

(ii) The Value Similarity (V Sim) extends CSim to take edge weights into account, as
well. In this measure, each matching edge e with a weight W(e,Gdi

) in graph Gdi

Figure 1 Character trigram
graph (C3GG) for “home phone”
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and a weight W(e,GTj
) in graph GTj

contributes VR(e)/max(|Gdi
|, |GTj

|), where
VR(e) stands for the value ratio, i.e., a symmetric, scaling factor that takes values in

the interval [0, 1] and is defined as VR(e) = min(W(e,Gdi
),W(e,GTj

))

max(W(e,Gdi
),W(e,GTj

))
. Note that VR(e)

amounts to 0 for the non-matching edges, i.e., for e /∈ (Edi
∩ ETj

). Putting all these
together, we have:

V Sim(Gdi
,GTj

) =
∑

e∈Edi

min(W(e,Gdi
),W(e,GTj

))

max(W(e,Gdi
),W(e,GTj

))

max(|Edi
|, |ETj

|) .

V Sim converges to its maximum value V Simmax = 1 for graphs that share both
the edges and the corresponding weights (i.e., V Simmax indicates a perfect match
between the compared graphs).

(iii) The Normalized Value Similarity (NV Sim) is a variant of V Sim that factors out the
relative size of the two graphs. Formally, it is defined as follows:

NV Sim(Gdi
,GTj

) =
∑

e∈Edi

min(W(e,Gdi
),W(e,GTj

))

max(W(e,Gdi
),W(e,GTj

))

min(|Edi
|, |ETj

|) .

This normalization is particularly important, since V Sim takes values very close to
0, when the class graph is much larger than the document graph.

From a different viewpoint, CSim quantifies the co-occurrence of identical substrings in
the compared documents. In this respect, it is related to the cosine similarity between bag
n-gram models with binary weights. The main difference, though, is that CSim considers
the co-occurrence of pairs of n-grams (i.e., edges) instead of the occurrence of individual
n-grams. Similarly, V Sim and NV Sim take into account the frequency of co-occurring n-
grams and, thus, are analogous to the cosine similarity between frequency-based vectors of
the bag n-gram models. Again, V Sim and NV Sim operate on pairs of n-grams, instead of
considering the occurrence of individual n-grams.

3.2.2 Classification with n-gram graphs

The following procedure is used to train a classification algorithm on a collection of labelled
documents Dl using the n-gram graphs model.5 First, we build the class graphs GT1 ,
GT2 ,. . . ,GTN

, where N is the number of distinct topics contained in Dl . Note that only a part
of documents, specified by the “merge portion” parameter (see below, Section 3.2.3), par-
ticipates in the creation of each class graph. Second, we transform each labelled document
di ∈ Dl into a feature vector as follows:

1. We build the corresponding document graph Gdi
.

2. We compare Gdi
with the N class graphs, extracting the values of the aforementioned

graph similarity metrics (i.e., CSim, NV Sim and V Sim).
3. We put together all the derived similarities into a feature vector with 3 × N dimensions

that can be used as input to any classification algorithm.

5The implementation of this procedure in Java is provided publicly through the “Text Representation Models”
project of Sourceforge.net at: http://sourceforge.net/projects/textmodels.

http://sourceforge.net/projects/textmodels
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These three steps, which are illustrated in Figure 2, apply to all documents in Dl , even
those that have been included in the class graphs. The resulting feature vectors along with
the ground-truth are used to train the algorithm.

To classify a collection of unlabelled documents Du with the learned model, we sim-
ply apply steps 1 to 3 to all documents di ∈ Du using the same class graphs (GT1 ,
GT2 ,. . . ,GTN

). The resulting feature vectors are then fed to the trained algorithm to drive its
decision.

3.2.3 Configuration parameters

The n-gram graph model is quite versatile and adaptable to a variety of classification
settings. This is ensured through four internal parameters that configure its performance:

1. The feature type specifies whether the classification features take numeric or nominal
values or both of them.

2. The model granularity specifies whether the n-grams represent consecutive characters
or tokens.

3. The core size determines the length of n-grams.
4. The merge portion determines the part of labelled documents that are involved in the

creation of each class graph.

We elaborate on these parameters in the following and we experimentally investigate
their effect on classification accuracy and time in Section 5. Note that the parameters “fea-
ture type” and “merge portion” are intrinsic to the graph models, while the parameters
“model granularity” and “core size” apply to bag models, as well.

(i) Feature type. In the above section, we explained how we can extract feature vectors
from the graph models. Their dimensions are exclusively numeric, as they correspond
to graph similarity values. This approach ensures high time efficiency, due to its low
dimensionality: in total, it involves 3×N features, where N is the number of topics.
However, it is prone to overfitting, since the learned models depend on the absolute
similarity value with the class graphs. For example, a decision tree that was trained
to assign a document di to topic Tj if CSim(Gdi

, GTj
) > 0.8, will fail to correctly

classify a document dk ∈ Tj for which CSim(Gdk
,GTj

) = 0.79.
To overcome this shortcoming, we now introduce an alternative type of features,

the nominal ones. Given N distinct topics and the numeric feature vector of an
individual document, we compare the similarities of the same type in a pairwise man-
ner. Each pair of numeric features simTi

and simTj
is replaced with a nominal value

dsim that corresponds to the class with the highest similarity value. More formally:

dsim(simTi
, simTj

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ti , if simTi
> simTj

equal, if simTi
= simTj

Tj , if simTi
< simTj

,

(1)

where sim denotes either CSim, NV Sim or V Sim. In this way, we convert the
original feature space of 3×N numeric features into a new one consisting of
3×N×(N -1)/2 nominal ones. Despite the higher dimensionality, the search space is
reduced from 3×N dimensions defined in the interval [0, 1] to 3 × N × (N − 1)/2
distinct labels. Regarding accuracy, the learned model is more robust to noise and to
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Gdi
GT1 GT2 GT3

Graphs
Comparison

Graphs
Comparison

Graphs
Comparison

(CSim1,i, NVSim 1,i, VSim 1,i, CSim2,i, NVSim 2,i, VSim 2,i, CSim3,i, NVSim 3,i, VSim 3,i, …)

Figure 2 Extracting the feature vector from the n-gram graph model

overfitting, since the learned model is decoupled from the actual similarity values;
instead, it depends exclusively on the document’s relative similarity with all pairs of
class graphs.

Note that the numeric and the nominal features are complementary and can be
combined into hybrid classification schemes. We investigate the relative performance
of the feature types in Section 5.4.

(ii) Model granularity. This term captures the type of substrings that is used to build
the n-gram graphs. Similar to bag models, two are the valid options: character n-
grams and token n-grams. The former are more robust to spelling mistakes and, thus,
achieve higher accuracy in the context of noisy corpora. The advantage of the token
n-grams is that they result in graphs of smaller size and order (i.e., fewer nodes and
edges), thus involving a more efficient feature extraction process. We experimentally
compare these two granularities in Section 5.5.

(iii) Core size (n). The higher the value of n, the more informative and distinctive the
patterns captured by the n-gram graphs. This yields higher classification accuracy at
the cost of lower time efficiency. In the following, we consider relatively small core
sizes. For character n-grams, n is usually set to 2, 3 or 4, with the corresponding
models called character bigram graphs (C2GG), character trigram graphs (C3GG)
and character four-gram graphs (C4GG). For token n-grams, n is usually set to 1, 2
or 3 and the resulting models are called token unigram graphs (T1GG), token bigram
graphs (T2GG) and token trigram graphs (T3GG), respectively. These core sizes
correspond to those considered for bag models and lie within previously studied lim-
its, which were theoretically and experimentally verified to involve a good balance
between classification accuracy and time [17]. We empirically examine their relative
performance in Section 5.5.

(iv) Merge portion (mp). This parameter expresses the portion of labelled documents that
are merged into the class graph of each topic. The higher its value, the more diverse
the patterns captured by the corresponding class graphs and the higher the resulting
classification accuracy. However, high values lead to large class graphs that involve
a high computational cost (i.e., low time efficiency) when estimating their similarity
with document graphs for the extraction of feature vectors. In addition, the maximum
value of the parameter results in including all training samples to the class graph, thus
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overfitting the data: all samples of a given class will be expected to have very high
similarity to the corresponding class graph. In Section 5.3, we experimentally esti-
mate the merge portion that yields the best balance between classification accuracy
and time for each graph model and document type.

3.3 Qualitative analysis

Having outlined the bag and graph representation models, we now elaborate on their qualita-
tive aspects, explaining how their performance is affected by the settings we are considering
(i.e., the four challenges of Section 1).

For token n-grams, the most critical step is usually the identification of the distinct words
in a collection of documents. The challenge is actually to detect and cluster together the
different appearances of the same word; otherwise the resulting model suffers from low
efficiency (due to an excessively large feature space) and low effectiveness (due to missed
patterns) [14]. Three are the main obstacles to this effort:

– Noise in the form of spelling mistakes (i.e., challenge Ch2).
– Synonymy, i.e., the phenomenon where different words that have identical meanings.

For instance, the words “buy” and “purchase”.
– Polysemy, i.e., the phenomenon where identical words that have different meanings.

For instance, the word “left” can refer either to the past tense of leave or to the opposite
of right.

To tackle these issues, pre-processing methods are usually employed with the aim of
grouping together different manifestations of the same word or meaning [29]. Stemming
reduces the inflected or derived words to their root form, usually by removing their suffix
(e.g., it removes the plural “s” from the nouns in English). Lemmatization improves on
this process by taking into account the context of a word – or even grammar information
– in order to match it to a lemma. Part-of-speech tagging infers the lexical or grammatical
category of a specific word inside a phrase or sentence. The drawback of these techniques
is that they require language-dependent knowledge, thus having limited effectiveness in
multilingual settings (i.e., challenge Ch1).

In contrast, the character n-gram models convey a language-neutral functionality that is
inherently robust to noise, especially with respect to spelling mistakes. Thus, they help to
deal with challenges Ch1 and Ch2, respectively. They also allow for fuzzy and substring
matching, which constitute functionalities of high importance in open domains, like the
content of Social Media (i.e., challenge Ch4). Similar to token n-grams, though, they suf-
fer from the curse of dimensionality: the number of features that they entail is usually very
high – depending, of course, on the size and the vocabulary of the given corpus. For the
same corpus, the feature space of character n-grams is typically larger than that of the token
ones, increasing its dimensionality with the increase of n. The reason is that larger core sizes
result in a higher number of possible character combinations. This situation is particularly
aggravated in the context of a highly diverse vocabulary: the more heterogeneous a docu-
ment collection – either with respect to the languages it comprises (i.e., challenge Ch1) or
the vocabulary variations introduced by its authors (i.e., challenge Ch4) – the higher is the
number of features that the bag models take into account. A common, language-agnostic
practice for restricting the impact of dimensionality is to set a threshold on the minimum
document frequency of the n-grams that are considered as features. This practice, however,
is a mere application-dependent heuristic that may have a negative impact on accuracy.
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Regarding the graph models, the token n-gram graphs have the same limitations as the
token n-grams, while the character n-gram graphs have the same advantages as the charac-
ter n-grams. That is, they involve a noise-tolerant functionality for dealing with challenge
Ch2 and a language-agnostic functionality for dealing with challenge Ch1. The main dif-
ference between bag and graph models is that the former disregard the order of n-grams
appearance in the original text, thus losing valuable information. As a result, documents or
topics with common n-grams that appear in completely different sequences, end up hav-
ing highly similar bag representations. The graph models overcome this problem through
their weighted edges, which capture contextual information in the form of co-occurring n-
grams. Their edges actually enable them to detect more accurate and more reliable patterns
even in the context of sparse documents, thus increasing the performance over challenge
Ch3. Therefore, each graph model is expected to yield higher effectiveness than its bag
counterpart.

Another advantage of graph models is that they do not suffer from the curse of dimen-
sionality; they involve a limited feature space, the size of which depends exclusively on
the number of considered classes. Thus, their search space is independent of the challenges
Ch2 and Ch4, involving a significantly lower computational cost than bag models for the
training of classification algorithms as well as the use of trained models. Their only draw-
back with respect to efficiency is the time required for the construction of class graphs
and the computation of graph similarities. The time complexity of these processes depends
on the size and the type of the input document collection as well as on the internal con-
figuration of graph models. In Section 5.3, we experimentally fine-tune them with respect
to merge portion in order to enhance their time efficiency at a limited cost in classification
accuracy.

4 Web document types

In this section, we focus on the traits of Web documents that affect the classification accu-
racy and time of document representation models. We identify the most critical parameters
for the performance of TC and use them to distinguish Web documents into three main
types.6 In this effort, we exclusively consider endogenous parameters, which can be directly
derived from the textual content of Web documents (as mentioned above, exogenous meta-
data are beyond the scope of this work). We propose the following criteria as the most
influential for the performance of topic classifiers:

(i) The document size (DS) expresses the average length of documents in terms of the
number of characters they comprise. Given a document collection D, it is formally
defined as:

DS(D) =
∑

di∈D |di |
|D| ,

where |di | stands for the individual length of document di ∈ D and |D| denotes the
size of the corpus. DS is directly related to challenge Ch3, since the shorter a docu-
ment, the more sparse the information it contains. It also pertains to the computational
cost of the classification process: the larger a document, the higher the computational

6It is worth stressing that these three types do not correspond to document genres; instead, the aim is to
explain the difference in the quality of Web documents and the resulting impact on TC.
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cost, due to the higher number of possible n-grams that can be used as features and
nodes by the bag and graph models, respectively.

(ii) The vocabulary size (VS) denotes the diversity of the words and phrases that are
employed in a document collection. Higher diversity (i.e., higher VS) corresponds to
a higher number of n-grams that can be possibly used as features and nodes by the
bag and graph models, respectively. Given a document collection D, VS is defined as
the ratio of distinct tokens over their total number of occurrences:

V S(D) = |⋃di∈D tokens(di)|
∑

di∈D tokensNumber(di)
,

where tokens(di) stands for the set of tokens appearing in document di ∈ D, and
tokensNumber(di) denotes the total number of tokens in di . VS increases with mul-
tilinguality (i.e., challenge Ch1) and with the evolving, non-standard expressions used
in Social Media content (i.e., challenge Ch4). In curated Web documents, though, the
vocabulary exhibits lower levels of diversity (e.g., news articles).

(iii) Noise is directly related to challenge Ch2, reflecting the portion of spelling mistakes
and of grammatically, syntactically and semantically incorrect phrases in a document
collection. Such errors distort the actual meaning of a phrase or sentence and hinder
the detection of token and character n-gram patterns. They are rather difficult to be
directly measured. Instead, we assess them indirectly, through the frequency distribu-
tion f of the tokens appearing in the given document collection: noisy corpora abound
in erroneous tokens with a single or few occurrences (due to unrepeated errors), while
clean corpora are dominated by tokens that occur multiple times. This frequency dis-
tribution is summarized through three statistical metrics: the 1st quartile (Q1(f)), the
median or 2nd quartile (Q2(f)) and the 3rd quartile (Q3(f)). High levels of noise cor-
respond to similar, low values across all metrics; for instance, Q3(f) = 1 means that
at least 75 % of all tokens appear only once. In contrast, low levels of noise yield a
large discrepancy in the values of these metrics; the higher the difference between the
median and the other two quartiles, the lower the levels of noise and the higher the
reliability of the content-based features.

(iv) Special Notation denotes the extent to which a document contains non-verbal expres-
sions. These include HTML code, links to Web pages and multimedia content (URLs)
as well as pointers to other users (e.g., the @username notation used in Twitter). This
kind of special notation is typically exploited by contextual representation models,
which try to enhance the effectiveness of TC by incorporating exogenous meta-data
(e.g., [26]). As a content-based feature, though, special notation adds noise and, thus,
it is relevant to challenge Ch2. To measure its effect, we simply estimate the portion
of tokens that correspond to non-verbal expressions.

We argue that these four criteria capture the main characteristics of the major types of
contemporary Web documents: static Web documents, discussion fora and blogs as well
as Social Media messages. In more detail, we distinguish the following three categories of
Web documents:

– Curated documents are large and contain almost exclusively pure text (i.e., absence
of special notation), written in a specific language. They also use a standard, formal
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vocabulary that typically lacks grammatical and syntactic errors.
– Semi-curated documents are shorter in size and contain special notation usually in the

form of hyperlinks. They have higher levels of noise, a more diverse vocabulary and
their content may be multilingual.

– Raw documents are rather telegraphic, noisy and rich in various types of special
notation.

We elaborate on each Web document type in the following, analysing its implications to
the process of topic classification.

4.1 Curated documents

This type comprises such documents as news articles, scientific publications, books and
literary works. The text is adequately long to pose well-described questions, to pro-
vide argumentation or to cover a topic. Therefore, challenge Ch3 (i.e., sparseness) is
not an issue. The same applies to challenge Ch2, as well: the content has been edited
or peer-reviewed and the writing is mostly correct. Its language is eloquent and the
text itself is focused and clear, without any neologisms and non-standard vocabulary.
Thus, it does not suffer from challenge Ch4, involving controllable levels of diversity. In
addition, the content is rarely multilingual, but even when multiple languages are used
(i.e., challenge Ch1), they are usually known a priori. As a result, their tokens can be
easily transformed into reliable features through lemmatization and stemming.

In this context, token n-grams are expected to offer a better balance between classifica-
tion accuracy and time than character n-grams: their lower dimensionality ensures higher
efficiency, while the negligible levels of noise make them equally accurate. Similarly, token
n-gram graphs involve smaller and, thus, more efficient graphs than character n-gram
graphs. The lower dimensionality of graph models allows for a more efficient learning pro-
cedure, but the large size of the curated documents increases the computational cost for the
creation of document and class graphs and the execution of the graph comparisons for the
extraction of feature vectors.

4.2 Semi-curated documents

Documents of this type come in the form of forum posts, text in wikis, e-mails and personal
blog posts. They are not necessarily written in a single, known language (i.e., challenge
Ch1) and their content is minimally edited by the author, with spelling mistakes and wrong
sentences being relatively common (i.e., challenge Ch2). Usually, they comprise few para-
graphs (i.e., challenge Ch3), which are, however, long enough to analyse personal thoughts
or to act as written dialogue parts. Neologisms, informal language and special notation are
frequently used (i.e., challenge Ch4). On the whole, the semi-curated documents involve to
some degree all challenges of Section 1.

For token n-grams, the medium document and vocabulary size is expected to lead to a
middle-sized feature space. Similarly, token n-gram graphs yield medium-sized document
and class graphs that require affordable computational cost. Most importantly, though, the
presence of noise is expected to have a significant impact on the accuracy of token-based
models. Instead, the character-based ones are able to achieve higher accuracy, due to their
inherent robustness to noise. They suffer, though, from lower efficiency than the corre-
sponding token models, due to the larger feature space and the more complex graphs they
entail.
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4.3 Raw documents

This type refers to such documents as Facebook7 status updates, YouTube8 comments, mes-
sages in Twitter (also termed tweets) and short posts in any Web 2.0 platform. A basic trait
of these documents is that they are meant to be self-contained, conveying their message
through a text of minimal size (i.e., challenge Ch3). For instance, the messages are often
meant to be the answer to questions like “What is new?”, “What are you thinking?”, “What
is happening?”. They can also comprise brief comments that simply convey an opinion or
sentiment. Their authors typically use the full range of internet neologisms, abbreviations,
emoticons and similar language constructs (i.e., challenge Ch4). The quality of the text is
usually of minimal interest, since an erroneous or even incomprehensible part can be sim-
ply explained with a new message (i.e., challenge Ch2). In addition, it is not rare for users
to employ a mixture of languages, even in a single message (i.e., challenge Ch1). They also
make frequent use of high levels of geographic lexical variations (i.e., challenge Ch4). For
instance, Twitter users from northern California write “koo” instead of cool, while the same
word in southern California is mentioned as “coo” [11]. In summary, raw documents contain
short, unedited, and noisy texts and are abundant in special notations that may be essential
to understand their meaning.

The high levels of noise in combination with sparseness pose a significant barrier to the
accuracy of token n-grams. Token n-gram graphs overcome sparseness to some extent, thus
outperforming their bag counterparts. Their classification accuracy, though, is also limited
by noise. In contrast, character-based models are expected to perform significantly bet-
ter, due to their inherent robustness to noise. Among them, character n-gram graphs offer
higher accuracy than character n-grams, since they are better equipped to deal with sparse-
ness. In addition, the limited size of raw documents favours the efficiency of the more
expressive (character) graph models, minimizing the computational cost for the creation and
comparison of graphs.

4.4 Discussion

The characterization of the three document types with respect to the above-mentioned cri-
teria is summarized in Table 1. We can argue that the curated and the raw documents define
the two extremes of Web document quality with respect to morphology. The former involves
large texts, where spelling mistakes and non-standard expressions are the exception, while
the latter entails short, noisy texts with non-standard, slang expressions and a consider-
able proportion of special notation. Semi-curated documents lie in the middle of these
two extremes, involving medium-sized texts and medium levels of noise, of non-standard
expressions and of special notation. We provide experimental evidence for these patterns in
Section 5.2.

5 Experimental evaluation

The goal of this section is threefold: (i) To provide quantitative evidence for our charac-
terization of Web documents. (ii) To fine-tune the “merge portion” and the “feature type”

7http://www.facebook.com
8http://www.youtube.com

http://www.facebook.com
http://www.youtube.com
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Table 1 Content-based,
qualitative taxonomy of
Web documents

Document Vocabulary Special Noise

size size notation

Curated documents High Low Negligible Negligible

Semi-curated Medium Medium Low Low

documents

Raw documents Low High High High

of graph models so as to achieve the best balance between effectiveness and efficiency for
each document type. (iii) To thoroughly compare the established bag models with the graph
ones across all document types with respect to the common parameters of “core size” and
“model granularity”.

We begin our experimental analysis with the presentation of the datasets and the eval-
uation metrics in Section 5.1. We then perform a statistical analysis that provides grounds
for our document types in Section 5.2. We continue by configuring the merge portion and
the feature type of graph models in Sections 5.3 and 5.4, respectively. We analytically com-
pare bag and graph models in Section 5.5 and we conclude our experimental study with a
summarization of its main outcomes in Section 5.6.

5.1 Setup

All experiments were fully implemented in Java, version 1.6, and were performed on a
server with Intel i7-3820 (3.60GHz) and 32GB of RAM memory, running Debian 7.0. The
functionality of n-gram graphs was provided by the open source library of JInsect.9

To derive the performance of the representation models, we applied them to two estab-
lished classification algorithms that are typically used for TC in conjunction with the bag
models: Naive Bayes Multinomial (NBM) and Support Vector Machines (SVM) [29, 44].
The former classifies instances based on the conditional probabilities of their feature val-
ues, while the latter uses optimization techniques to identify the maximum margin decision
hyperplane. For their implementation, we used the open source library of Weka,10 version
3.6 [19]. For NBM, this library provides a parameter-free implementation, whereas for SVM,
we employed the default configuration of Weka, without fine-tuning any of its parameters:
the complexity constant was set to 1 and a linear polynomial was used as the kernel function.

5.1.1 Datasets

To evaluate all representation models in real settings, we considered three large-scale, real-
world datasets – one for each type of Web document. Their technical characteristics are
presented in Table 2. We briefly describe them in the following paragraphs.

Curated documents As representative for this type of document, we selected the Reuters
RCV2 corpus,11 which has been widely used in the literature [1, 7]. It comprises a multi-
lingual collection of news articles, published in the time period between August 1996 and

9http://sourceforge.net/projects/jinsect
10http://www.cs.waikato.ac.nz/ml/weka
11http://trec.nist.gov/data/reuters/reuters.html

http://sourceforge.net/projects/jinsect
http://www.cs.waikato.ac.nz/ml/weka
http://trec.nist.gov/data/reuters/reuters.html
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Table 2 Class distributions of the datasets employed in our experimental study

Dreuters Dblogs Dtwitter

Class Distribution Class Distribution Class Distribution

ECAT 13,768 (08.00 %) Current affairs 3,288 (04.51 %) #quote 8,215 (02.50 %)

MCAT 41,523 (24.13 %) Entertainment 3,751 (05.15 %) #fact 13,144 (04.00 %)

CCAT 45,382 (26.37 %) Blog 3,825 (05.25 %) #followfriday 18,322 (05.57 %)

GCAT 71,442 (41.50 %) Work 4,095 (05.62 %) #news 21,236 (06.46 %)

Life 4,631 (06.35 %) #musicmonday 25,520 (07.76 %)

Personal 5,003 (06.86 %) #iranelection 26,406 (08.03 %)

Politics 6,738 (09.24 %) #tcot 30,012 (09.13 %)

Music 8,295 (11.38 %) #ff 35,458 (10.78 %)

News 12,970 (17.79 %) #jobs 71,584 (21.77 %)

Votes 20,320 (27.87 %) #fb 78,898 (24.00 %)

Total 172,115 (100.0 %) Total 72,916 (100.0 %) Total 328,795 (100.0 %)

August 1997. In total, it contains over 480,000 articles that are written in 13 different lan-
guages. For our analysis, we considered a subset of this collection, comprising 172,115
articles that are written in four languages: German, Spanish, Italian, and French. The news
articles of RCV2 are categorized along a class hierarchy of 104 overlapping topics. In our
experiments, we considered only the top four categories, because they are non-overlapping
and, thus, are compatible with single-label TC. The selected topics along with the class dis-
tributions are depicted in Table 2. This data collection is denoted by Dreuters in the rest of
the paper.

Semi-curated documents For this type of document, we selected the collection of blog
posts that was published in the context of the 3rd workshop on the Weblogging Ecosys-
tem in 2006.12 It contains around 10 million documents, stemming from approximately 1
million different weblogs. They were posted on-line in the time period between July 7,
2005 and July 24, 2005. For our analysis, we considered the 10 largest categories, remov-
ing those documents that belong to more than one of them, since we examine single-label
TC. This procedure yielded 72,916 blog posts, the class distribution of which is presented
in Table 2. Unfortunately, there is no information about the languages they are written in. In
the following, this dataset is indicated as Dblogs.

Raw documents This type of document is represented in our analysis by Twitter posts. We
extracted our dataset from that of [45], which comprises 467 million tweets that have been
posted by around 20 million users in the time interval between June, 2009 and December,
2009. To derive the topic categorization of the tweets, we relied on their hashtags.13 Around
49 million of the tweets are marked with at least one hashtag. As with Dblogs, we considered
only those documents that exclusively belong to one of the 10 largest topics (i.e., hashtags).
We also excluded all the retweets, because they lack any original information, being mere

12http://www.blogpulse.com/www2006-workshop/datashare-instructions.txt
13A hashtag in Twitter consists of the symbol #, followed by a series of concatenated words and/or
alphanumerics (e.g., #worldcup2014).

http://www.blogpulse.com/www2006-workshop/datashare-instructions.txt
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reproductions of other tweets. This procedure yielded around 3.5 million tweets. To restrict
the dataset to a manageable size, we randomly selected 1/10 of these documents such that
the relative sizes of the topics were maintained. Finally, we removed all hashtags from
the remaining documents, since they contain category information [15, 26]. The resulting
collection – represented by Dtwitter in the following – comprises more than 300 thousand
tweets. Their class distribution is presented in Table 2. Again, there is no information about
the languages the documents are written in.

5.1.2 Metrics

Our experimental evaluation emphasizes the trade-off between effectiveness and efficiency
for each representation model. To measure the former aspect, we employ the metric of
classification accuracy (α). Given a corpus of documents D, the accuracy of single-label
TC is defined as:

α = |D| − |E|
|D| · 100 %,

where |E| is the number of classification errors (i.e., documents that were assigned to a
false class – cf. Problem 1) and |D| denotes the number of documents in the given corpus.
To get a robust estimate of this metric in each experiment, we applied the 10-fold cross-
validation scheme to all classification settings we consider in the following. We use the
accuracy of these 10 folds in order to examine whether the performance of two models
differs significantly for a specific dataset and classification algorithm. In more detail, we
apply the two-tailed Wilcoxon signed-ranks test to the accuracy of the 10 folds and consider
the difference between two models to be statistically significant only if p < 0.05.

To measure the time efficiency of a representation model, we use the metric of classi-
fication time (tc). It estimates the time required for extracting the feature vector from an
individual unlabelled document and for applying the trained classification model to it. In
our experimental study, the classification time values correspond to the average value over
the 10 folds (i.e., iterations). Note that we disregard the temporal requirement of the train-
ing procedure, because it is executed only once and off-line. Instead, the classification time
denotes the cost of repeatedly using the learned model on-line.

Before elaborating on the experimental classification performance, we delve deeper in
the different document types and how these manifest on quantifiable criteria.

5.2 Analysis of document types

In this section, we assess the four content-based criteria that were used for our characteri-
zation of Web documents. Quantitative evidence for the first three is provided in Table 3,
while special notation is examined separately in Table 4.

Starting with document size (DS), we can see that it exhibits a large variation across
the three datasets: on average, the news articles of Dreuters contain 1,200 characters or 180
tokens, while the raw documents of Dtwitter are very sparse, consisting of just 130 characters
or 21 tokens. Dblogs lies closer to Dreuters, comprising documents with 1,100 characters or
160 tokens, on average.

Regarding vocabulary size (VS), we observe that it is limited for the curated documents
of Dreuters and varies the most for the raw documents of Dtwitter. The diversity of the latter
is actually triple than that of the former: on average, every 100 tokens in Dtwitter contain 11
distinct terms, compared to less than 4 in Dreuters. Dblogs lies right in the middle of these two
extremes, with 7 unique terms for every 100 tokens, on average.
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Table 3 Quantifying the content-based criteria that determine the type of Web documents. DS and VS denote
the document and the vocabulary size, respectively, whereas Qx(f), x ∈ {1, 2, 3}, represents the quartiles of
the frequency distribution of tokens

Dreuters Dblogs Dtwitter

DS Total characters 2.07×108 8.02×107 4.29×107

Document size 1,206 1,100 130

Tokens per document 180 160 21

VS Total tokens 3.09×107 1.17×107 6.97×106

Distinct Tokens 1.14×106 8.23×105 7.69×105

Vocabulary size 3.70×10−2 7.04×10−2 11.02×10−2

Noise Q1(f) 1 1 1

Q2(f) 1 1 1

Q3(f) 3 2 1

Considerable variation is also observed with respect to noise, as denoted by the 3rd quar-
tile of document frequency. Q3(f) takes the largest value for Dreuters, suggesting that its
individual tokens appear more frequently and, thus, are less likely to contain errors, such as
spelling mistakes. In contrast, the lowest value (i.e., 1) corresponds to Dtwitter, implying that
at least 75 % of all of its tokens appear just once. In fact, 76 % of all tokens in Dtwitter corre-
spond to a single occurrence, compared to just 55 % in Dreuters. Dblogs lies in between these
two extremes (Q3(f)=2), but closer to Dtwitter, with 70 % of its tokens appearing just once.

Regarding special notation, we can see in Table 4 that it is totally absent from the curated
documents of Dreuters. For Dblogs, it is restricted to URLs, which merely account for 0.01 %
of all tokens. In the case of Dtwitter, the relative amount of special notations is significantly
higher, with more than 10 % of all words corresponding to “non-verbal tokens”: 3.6 % of
all tokens refer to some Twitter user (i.e., mentions), 2.3 % are URLs and 4.8 % designate
the topic(s) of the tweet (i.e., hashtags). It is also interesting to note that its regular words
have an average length of 4.8 characters, thus being smaller than those of Dreuters by a
whole character. This should be expected, because raw documents contain abbreviations
and neologisms, which are typically shorter than the original words (e.g., “gr8” instead of
“great”). This phenomenon does not appear in Dblogs, as the length of its regular tokens
coincides with that of Dreuters.

On the whole, these traits validate quantitatively our content-based criteria as well as the
types of Web document that we defined in Section 4.

Table 4 Analysis of special notation for all document types

Dreuters Dblogs Dtwitter

Length Occurrences Length Occurrences Length Occurrences

Mention – – – – 11.5 2.54×105 (03.64 %)

HashTag – – – – 5.9 3.31×105 (04.75 %)

URL – – 60.7 1.21×103 (00.01 %) 22.5 1.59×105 (02.28 %)

Regular Word 5.7 3.09×107 5.7 1.17×107 (99.99 %) 4.8 6.23×106 (89.33 %)
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5.3 Merge portion configuration

This section investigates how fast the n-gram graphs converge to an accurate model, an
aspect that is principally determined by the merge portion. Remember that mp specifies
what portion of each topic’s labelled instances participate in the creation of the correspond-
ing class graph. As explained in Section 3.2, there is a fundamental trade-off regarding mp:
the higher its value, the higher the classification accuracy and the lower the efficiency of
the representation model. Therefore, our analysis aims at estimating the merge portion that
yields the best balance between classification accuracy and time for each representation
model and document type.

We exclusively consider numerical features in this analysis, since the nominal and the
hybrid ones yield similar patterns. We applied all graph models to the three datasets of our
study and trained NBM over the resulting numeric features (SVM exhibited similar behav-
ior and is omitted for brevity). For each combination of graph model and feature type, we
derived its performance by incrementing the merge portion from 0.1 to 1.0 with a step of
0.1. Note that instead of Dreuters, we employed a random selection of half its documents that
retains the relative size of the classes. This sample, which is denoted by D′

reuters, was pre-
ferred over the entire Dreuters in order to reduce the originally massive dataset to a moderate
size that facilitates our thorough experimental analysis.

The resulting performances are presented in Figure 3a to f. The diagrams on the left
column indicate the learning curves of the representation models, depicting the evolution of
their accuracy α with respect to mp. The diagrams on the right column indicate the evolution
of their efficiency in terms of the classification time, tc. The first row of figures corresponds
to Dreuters′ , the second to Dblogs and the third to Dtwitter.

Starting with accuracy, we observe that α increases modestly with the increase of the
merge portion across all datasets and graph models, regardless of their core size and gran-
ularity. The increase is steeper for smaller merge portions, but becomes rather insignificant
after mp = 0.5 in most of the cases. The only exception to this pattern is C2GG: its effec-
tiveness remains practically stable over Dblogs and Dtwitter and drops steadily for higher
merge portions over Dreuters′ .

Regarding the classification time, we observe that tc increases monotonically (almost
linearly) with merge portion. The reason is that it is insensitive to the construction of the
document graph and the use of the trained model, which together account for less than
1 % of the overall classification time. Instead, tc is dominated by the time required for
the comparison between document and class graphs, with the size of the latter increasing
linearly with mp, i.e., the number of documents merged into them [17]. The maximum value
of classification time is higher than the lowest one by 2 to 20 times across all datasets and
representation models, with larger core sizes yielding higher differences.

On the whole, we can conclude that larger mp values lead to a significantly higher com-
putational cost as expressed through tc, while yielding a moderate increase in classification
accuracy, α. Therefore, lower values of merge portion achieve a better balance between
effectiveness and efficiency in most of the cases. We can quantify this balance for each
value of mp through its utility ratio, u(mp), which expresses the ratio between the gain in
efficiency and the cost in effectiveness that mp conveys. More formally, this ratio is defined
as:

u(mp) = gain(mp)

cost (mp)
=

tmax
c −tc(mp)

tmax
c

αmax−α(mp)
αmax + 1

,
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Figure 3 The effect of merge portion on the evolution of accuracy α in (a), (c) and (e) and of classification
time tc in (b), (d) and (f) over Dreuters′ , Dblogs and Dtwitter, respectively

where αmax and tmax
c correspond to the highest classification accuracy and time, respec-

tively, across all the merge portions that we consider for a specific representation model and
dataset. In other words, the numerator denotes the relative gain in classification time, while
the denominator stands for the relative cost in classification accuracy with respect to the
maximum values of these metrics. Note that the denominator is incremented by 1 so as to
avoid infinite utility values for the merge portions with the maximum accuracy.

Based on this measure, we can specify as optimal merge portion for a specific graph
model and dataset the one maximizing its utility ratio. The configurations resulting from
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this rule are depicted in Table 5. We observe that in 12 out of 18 cases, mp is lower than
0.5. This means that less than half the training instances of each topic are typically needed
for building a comprehensive class graph. This is particularly true for the character graph
models, which consistently yield the lowest merge portions across all corpora. Note, though,
that for both character and token models, the larger the core size, the larger the optimal mp –
regardless of the document type. This practically means that the smaller the core size n, the
fewer the possible combinations of n-grams and the less documents suffice for constructing
representative class graphs that capture most distinguishing patterns. The best example for
this is C2GG, whose optimal mp takes the smallest possible value across all document types.

In all the following analyses, we employ the mp configuration of Table 5, regardless
of the underlying classification algorithm and feature type, considering that it will provide
near-optimal performance in any similar setting.

5.4 Feature type configuration

The goal of this section is to identify the type of features that yields the best performance for
every graph model and document type. To this end, we applied NBM and SVM to all feature
types and models across all datasets using the merge portion configuration of Table 5. The
outcomes indicate that there is no practical difference in the classification time required
by the three feature types for a specific model and dataset. As explained above, the reason
is that tc is dominated by the comparisons between the document and the class graphs, a
procedure that is involved in the extraction of any type of feature. Thus, we exclusively
consider the classification accuracy in this analysis and report the temporal requirements of
the graph models in the next section.

The actual accuracy α across all datasets and models is presented in Figure 4a to f. The
first row corresponds to Dreuters (the entire dataset), the second to Dblogs and the third to
Dtwitter. The figures on the right column present the performance of SVM, while those on
the left correspond to NBM (the nominal features were applied to Naive Bayes instead of
NBM, because it leverages them to a greater extent). Note that we use a different scale for
every dataset, which is consistent for both classification algorithms.

Starting with Figure 4a and b, we observe that all feature types achieve an accuracy
between 92 % and 96 % in most cases – regardless of the representation model and the
classification algorithm. This indicates that the comprehensive, noise-free content of curated
documents is equally well represented by any feature type. It also explains why the simple
learned models of NBM achieve equivalent performance with the more complicated ones
of SVM. Yet, we can identify the following pattern: the numerical and the hybrid features
exhibit a practically identical accuracy and take a minor, but statistically significant lead
over the nominal ones. There are two exceptions to this pattern. First, the nominal features
outperform the numerical and the hybrid ones by more than 25 % and 1.5 %, respectively,

Table 5 The merge portions that
yield the best balance between
classification accuracy and time
for each dataset and graph model

C2GG C3GG C4GG T1GG T2GG T3GG

Dreuters′ 0.1 0.2 0.3 0.3 0.4 0.4

Dblogs 0.1 0.6 0.4 0.4 0.5 0.7

Dtwitter 0.1 0.3 0.3 0.5 0.5 0.5
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Figure 4 The effect of feature type on the classification accuracy α with respect to NBM in (a), (c) and (e)
and to SVM in (b), (d) and (f) over Dreuters, Dblogs and Dtwitter, respectively

for C2GG in combination with NBM. Second, the differences between the three feature types
are insignificant in the case of T3GG.

Figure 4c and d demonstrate the performance of the feature types over the semi-curated
content of Dblogs in combination with NBM and SVM, respectively. Again, we observe the
predominance of numerical and hybrid features, which coincide and surpass the nominal
ones for both algorithms across most representation models. For this dataset, though, there
are more exceptions to the prevalent pattern. In fact, the nominal features outperform the
numerical ones for C2GG and C3GG in conjunction with NBM and for T3GG in conjunction
with SVM. In all these cases, the difference in accuracy is statistically significant, while the
hybrid features are very close to the nominal ones. Note also that for C4GG, all feature types
achieve practically identical accuracy when applied to NBM.

Regarding the raw content of Dtwitter, Figure 4e and f present the performance of all
feature types in combination with NBM and SVM, respectively. Again, the numerical and the
hybrid features coincide in most cases, but now their prevalence is more intense, increasing
their distance from the nominal ones. Similar to Dblogs, this pattern is reversed for C2GG and
C3GG in conjunction with NBM. Different from Dreuters and Dblogs, there is a setting where
the hybrid features outperform the other types to a statistically significant extent (p < 0.005
for two-tailed Wilcoxon signed-ranks test), namely the combination of T3GG with SVM.
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On the whole, we can argue that the nominal features make a difference only for weak
representation models that are applied to noisy documents (i.e., semi-curated or raw).14

In all other cases, the numerical features outperform them to a significant extent. Most
importantly, though, the hybrid features are consistent in coinciding with the most accurate
feature type under any settings. They actually exhibit the most robust behaviour with respect
to α, while having identical classification times, as explained below. For this reason, we can
conclude that they constitute the best feature type for all graph models – regardless of the
document type and the classification algorithm.

5.5 Bag vs. graph models

We now compare the performance of bag and graph models with respect to their relative
effectiveness and efficiency. In this analysis, we pay special attention to the effect of the two
parameters that are shared by both model types: the core size, n, and the model granularity
(i.e., character- or token-based models).

As before, we applied all models to NBM and SVM. For the graph models, we exclusively
consider the hybrid features. For the bag ones, we use term frequency and TF-IDF as feature
weights for the character- and the token-based models, respectively. To restrict their feature
space to manageable sizes, we disregard the features that appear in a limited portion of the
training set. We actually set the limit on minimum document frequency to 1 % of all labelled
instances for Dreuters and Dblogs and to 0.2 % for Dtwitter. In this way, each model has a
similar number of features across all datasets. The actual dimensionalities per model and
dataset are presented in Table 6. Apparently, the bag models involve one or two orders of
magnitude more features than their graph counterparts. To scale SVM to their large feature
spaces, we employed the LibLinear optimization technique [12] through its Weka API. Given
that LibLinear uses linear kernels for training the SVM, it is directly comparable with the
default configuration of SVM in Weka (i.e., SMO), which was applied to graph models and
incorporates linear kernels, too.

The outcomes with respect to classification accuracy over NBM and SVM are presented
in Figures 5 to 7. The corresponding classification times are reported in Table 7. Similar to
the graph models, the time efficiency of the bag ones is dominated by the extraction cost of
the feature vector, as the use of the trained model merely accounts for a tiny portion of tc
(less than 1 %); for this reason, we present a single estimation for the classification time of
each model and dataset, which amounts to the average across all folds of the two classifiers.
In all cases, Cn collectively denotes the bag and graph character-based models with core
size n, while T n stands for the bag and graph token-based models with core size n.

In the following, we examine the relative performance of bag and graph models
independently for each document type.

Curated documents Figure 5a and b present the accuracy of all models over Dreuters in
conjunction with NBM and SVM, respectively. We observe that the classification accuracy
of character-based bag models increases in proportion to the core size and vice versa for the
token-based ones. For both granularities, larger core sizes convey higher classification time.
As a result, T1G consistently outperforms the other token-based models with respect to both

14The nominal features are also useful for powerful classification algorithms that are inherently crafted for
this kind of evidence, such as C4.5. However, preliminary experiments demonstrated that such algorithms do
not scale well to the large search space of bag models. Hence, we do not consider them in our analysis.
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Table 6 Dimensionality of the feature space of every model over each dataset

C2 C3 C4 T1 T2 T3

Dreuters Bag models 1,989 8,336 15,454 1,771 1,105 976

Graph models 31 31 31 31 31 31

Dblogs Bag models 1,822 6,203 12,051 1,495 1,122 950

Graph models 166 166 166 166 166 166

Dtwitter Bag models 1,965 6,128 9,907 1,108 931 786

Graph models 166 166 166 166 166 166

metrics. T1G actually excels in effectiveness and in efficiency across all bag models, when
using NBM. This pattern stems from the absence of errors and non-standard vocabulary in
the content of curated documents (challenges Ch2 and Ch4) and can be extended to the
average performance of character- and token-based models over NBM: the latter outperform
the former in both evaluation metrics. Yet, SVM leverages character bag models to such
an extent that they significantly exceed the accuracy of the token-based ones in almost all
cases.

Similar patterns are exhibited by the graph models. In general, higher core sizes increase
the accuracy and the classification time for the character-based models and decrease them
for the token-based ones; tc is actually reduced by a whole order of magnitude when moving
from T1GG to T3GG. In the case of NBM, though, T2GG achieves the highest accuracy
among token-based models, leaving T3GG and T1GG in the second and the third place,
respectively. On average, the token-based models consistently outperform the character-
based ones with respect to both effectiveness and efficiency. Again, this should be attributed
to the comprehensive, noise-free content of curated documents. Nevertheless, the accuracy
of C4GG over SVM is practically equivalent to T1GG, the most accurate token-based model
for this learner.

Comparing bag with graph models, we infer from Table 7 that the former are more effi-
cient by two orders of magnitude across all models, despite the disproportionate difference
in their dimensionality (cf. Table 6). The reason is the higher computational cost of feature
extraction: the bag models are efficiently implemented with the help of inverted indices,
while the graph ones involve comparisons with large graphs. Yet, the few extracted graph
similarities convey more information than the numerous features of bag models. To this
attests their relative performance over NBM, where the former are more accurate than the
latter by at least 15 %. The advanced learning of SVM, though, leverages the character-based
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Figure 5 The relative classification accuracy of bag and graph models with respect to (a) NBM and (b) SVM
over Dreuters
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Table 7 The classification time tc in milliseconds (ms) for each dataset and model

C2 C3 C4 T1 T2 T3

Dreuters Bag models 0.5 1.0 1.4 0.3 0.4 0.6

Graph models 92.3 407.6 649.0 145.0 54.8 7.4

Dblogs Bag models 0.2 0.4 0.5 0.1 0.1 0.1

Graph models 106.3 660.6 715.8 119.6 60.9 47.4

Dtwitter Bag models 0.2 0.3 0.4 0.1 0.1 0.1

Graph models 46.4 98.4 96.6 30.2 9.2 7.9

bag models to a significantly higher accuracy than their graph counterparts (the token-
based graph models maintain their superiority over the bag ones even with SVM). This
phenomenon should be attributed to the lack of sparseness and noise in curated documents
(challenges Ch2 and Ch3).

On the whole, we can conclude that applications emphasizing effectiveness should com-
bine SVM with either type of model, since the maximum accuracy of bag and graph models
is identical in practice (it amounts to 95.46 % and 95.35 % for C4G and T1GG, respectively).
When a weak learner is employed, T2GG significantly outperforms all other models. The
best balance between effectiveness and efficiency is offered by T1G in conjunction with
SVM.

Semi-curated documents Figure 6a and b depict the accuracy of all models over Dblogs
when coupled with NBM and SVM, respectively. We notice that the bag models exhibit
similar patterns as in the case of Dreuters: higher core sizes increase the accuracy and the
classification time of the character-based models, while having the opposite effect on the
accuracy of the token-based ones (their tc remains intact). In general, the average accu-
racy of character-based models is higher than the token-based ones for both classification
algorithms, with the difference increasing over SVM. This is a direct consequence of the
noisy, non-standard vocabulary in semi-curated documents (challenges Ch2 and Ch4). How-
ever, the higher effectiveness of character-based models comes at the cost of lower time
efficiency: a double tc in the best case.

For graph models, we observe again a disparity between the two model granularities.
Larger core sizes increase the accuracy and the classification time of character-based mod-
els, while decreasing tc for the token-based ones. The accuracy of the latter exhibits an
inconsistent behavior across the two classifiers: T2GG and T1GG are the most and the
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Figure 6 The relative classification accuracy of bag and graph models with respect to (a) NBM and (b) SVM
over Dblogs
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least accurate models over NBM, respectively, but they coincide to the maximum accuracy,
when coupled with SVM. On average, the token-based models are considerably more effi-
cient than the character-based ones, while being more accurate, as well, when combined
with NBM. This should be attributed to the lack of sparseness in semi-curated documents
(challenge Ch3). However, the character-based models hold a statistically significant lead in
accuracy over SVM. With α = 75.9 %, C4GG actually achieves the overall maximum accu-
racy, surpassing its bag counterpart by almost 10 % – at the cost of a substantially lower
efficiency.

Similarly, most graph models outperform their bag counterparts across both classifica-
tion algorithms, with the differences being more intense for token-based models. Only in
two cases is this difference insignificant: T1 over NBM and Ch2 over SVM. The superiority
of graph models should be attributed to the noisy and non-standard vocabulary of the semi-
curated documents (challenges Ch2 and Ch4). Therefore, the combination of SVM with
graph models, especially C4GG, should be preferred by applications emphasizing effective-
ness. On the flip side, the classification time of graph models is higher by two to three orders
of magnitude.

Raw documents Figure 7a and b present the accuracy of all models over Dtwitter in com-
bination with NBM and SVM, respectively. We observe that the accuracy of bag models
exhibits a different behavior from the other datasets: larger core sizes significantly decrease
α in all cases, except for character-based models in conjunction with NBM. The difference
between C2G and C4G over NBM is actually the smallest one across all datasets (<7 %),
while the situation is reversed for SVM, with the former significantly outperforming the lat-
ter by 3 %. We also observe that the average accuracy of character-based models is much
larger than the token-based ones across both learners. These patterns highlight the advan-
tages of character n-grams in the context of sparseness and of noisy terms, which stem from
the abbreviations and neologisms that abound in raw documents (challenges Ch2, Ch3 and
Ch4).

New patterns are also observed in the accuracy of graph models: Dtwitter is the only
dataset for which higher core sizes significantly decrease the accuracy of token-based mod-
els. Apparently, this condition should be attributed to the noisy, short neologisms and the
sparseness of raw documents (challenges Ch2, Ch3 and Ch4). In contrast, the character-
based models are inherently crafted for these settings and increase their accuracy with
higher core sizes. They actually outperform the token-based ones across both classifiers, on
average. Their most accurate model is C4GG, regardless of the classification algorithm (its
difference from C3GG over SVM is just 0.4 %, but it is statistically significant). This is a
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consistent pattern across all datasets, but this is the only document type, where the relative
performance of character-based graph models differs from their bag counterparts: C2G and
C2GG are the most and the least accurate character-based models in conjunction with SVM,
respectively.

This pattern actually suggests that the graph similarities of bigram graphs are less dis-
criminative than the TF weights of character bigrams. In other words, the co-occurrence
frequency of pairs of bigrams is less discriminative than the frequency of their individual
occurrence. This should be attributed to the low number of bigrams, which restricts their
pairwise combinations. In contrast, the character trigrams and four-grams have a higher
dimensionality by 2 and 7 times, respectively (see Table 6). This leads to a quadratically
higher number of pairwise combinations and, thus, more distinctive edges, which increase
the discriminativeness of C3GG and C4GG. Note that this restriction does not apply to
token-based graph models, since there is no limit to the number of tokens n-grams they
consider. The limited dimensionality of the corresponding bag models in Table 6 emanates
from the scarceness of token n-grams and not from the limited number of their combinations.

Comparing bag with graph models, we notice that the former are significantly more
accurate than the latter in just four cases: C2 across both algorithms, a situation that was
explained above, and C3 and T1 over NBM. For the last two cases, the correlations are
reversed over SVM, thus indicating that the graph similarities produced by C3GG and T1GG
suffer from so low discriminativeness that NBM cannot exploit them. In all other cases, the
graph models significantly outperform their bag counterparts. With respect to efficiency,
we observe that the classification time of character-based models increases with higher core
sizes; for the token-based models, tc is either insensitive to n (bag models) or decreases with
its increase (graph models). Again, the higher accuracy of graph models comes at the cost
of significantly lower efficiency.

On the whole, we can conclude that the token-based models are inadequate for handling
raw documents, due to the high levels of noise and sparseness. Instead, applications empha-
sizing effectiveness should combine SVM with character-based graph models and C4GG,
in particular. The best balance between effectiveness and efficiency is offered by C2G in
conjunction with SVM.

5.6 Discussion

We now summarize the main findings of our experimental study. Starting with the graph
models, we verified that the merge portion has a decisive role in their balance between
effectiveness and efficiency – regardless of the document type. In most cases, their classi-
fication time is significantly enhanced by constructing the class graphs with less than half
the labelled documents of the corresponding topic (mp < 0.5). Given that tc is dominated
by comparisons with class graphs, the smaller they are, the lower tc gets. At the same time,
the impact on classification accuracy is limited, thus implying that the class graphs are able
to extract distinguishing topic patterns from a portion of the training set.

Another important factor for the efficiency of graph models is their granularity. In fact,
the token-based models are substantially more efficient than the character-based ones, due
to the smaller size and order of their class graphs. Higher core sizes yield more nodes (token
n-grams), but less edges, thus improving their classification time. For this reason, T3GG is
the most efficient graph model by far across all document types. For the character-based
models, higher core sizes increase both the size and the order of class graphs. As a result,
C4GG consistently ranks as the most time-consuming graph model.
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The effectiveness of graph models is mainly determined by the type of their fea-
tures as well as their core size. With respect to the first factor, we verified that the
hybrid features combine the strengths of numerical and nominal ones, exhibiting high
robustness at no cost in efficiency. The second factor, the core size, is more decisive in
the case of character-based graph models. C2GG consistently achieves the lowest accu-
racy among them, as it involves a limited number of nodes (character bigrams) that are
densely connected across all topics. Combined with NBM, C2GG is actually the least
effective across all graph models – the only exception being T3GG for Dtwitter. In con-
trast, C4GG achieves the maximum accuracy across all document types, when combined
with SVM. Among the token-based models, T1GG and T2GG take turns at the max-
imum accuracy, while T3GG is the least effective, due to the sparseness of its class
graphs.

The document type constitutes an external factor that affects both the efficiency and the
effectiveness of graph models. The most important factors for efficiency are the average
document size and the number of topics it involves. We can assess their impact on classifi-
cation time judging from the behavior of C2GG, the only model that uses the same merge
portion across all datasets. Comparing Dblogs with Dtwitter, we observe that its tc drops by
57 % as the document size decreases by 88 %, from 1,100 characters to just 130. Compar-
ing Dreuters with Dblogs, we notice that its tc increases by 13 % even though the document
size decreases by 8 %. The reason is that the number of classes rises from 4 to 10 and the
number of features from 31 to 166. This behavior suggests that the effect of document size
on the efficiency of class graphs is larger than the effect of the number of topics and the
dimensionality of the feature space. Note, though, that the document type does not affect
the relative efficiency of graph models: higher core sizes increase tc for the character-based
models across all datasets (the only exception is C3GG and C4GG over Dtwitter) and vice
versa for the token-based ones.

In contrast, the document type plays a decisive role for the relative effectiveness of
character- and token-based graph models. This is illustrated by their average accuracy in
conjunction with NBM, which is more sensitive to the quality of the input features than SVM.
The curated documents of Dreuters promote the accuracy of token-based models, which out-
perform the character-based ones by 3 %, on average. The smaller document sizes and the
higher levels of noise in Dblogs decrease the average distance of the two granularities to
less than 1 %. This situation is totally reversed for the raw documents of Dtwitter, with the
character-based models taking an average lead of 7.5 %. Similar but more intense patterns
are exhibited by the bag models in combination with NBM: the lead of token-based ones
starts from 13 % for Dreuters, it is reduced to 1.5 % for Dblogs and turns negative (−13 %)
for Dtwitter. We can conclude, therefore, that the token-based models provide a better bal-
ance between effectiveness and efficiency than the character-based ones only for curated
documents.

The document type is also decisive for the relative effectiveness of bag and graph mod-
els. In conjunction with NBM, the latter are more accurate than their bag counterparts by
23 %, 6 % and 1 %, on average, over Dreuters, Dblogs and Dtwitter, respectively. This indi-
cates that the superiority of edge weights over the weights of individual n-grams decreases
proportionally with the level of noise. In other words, the more noisy the content of a doc-
ument type, the closer the similarities of an unlabelled document with graphs of different
classes and the less distinctive the graph similarities from the individual n-grams. However,
the advanced learning of SVM exploits the graph similarities to a larger extent, giving them
the lead over bag models in most cases. The best graph model is actually more accurate than
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the best bag one over Dblogs and Dtwitter by 9.5 % and 5.5 %, respectively (in the case of
Dreuters, there is no practical difference).

Regarding efficiency, the document type does not affect the relative performance of bag
and graph models. The former achieve a consistently lower classification time by at least
two orders of magnitude across all datasets – despite the significantly lower dimensionality
of graph models, as indicated in Table 6. Note, though, that the classification time of graph
models can be significantly reduced through a simple parallelization scheme that assigns
each class graph to an independent node.

On the whole, the graph models are particularly effective for semi-curated and raw doc-
uments, while their lower dimensionality conveys two additional, qualitative benefits over
bag models. First, they yield simple classification models that are interpretable, provided
that the corpus involves a limited number of topics. In contrast, many classification algo-
rithms like decision trees are hard to train with bag models. Second, the graph models
implicitly apply dimensionality reduction and, thus, no further reduction or transformation
of the feature space is required. In this way, the n-gram graphs facilitate the configuration
of relevant applications and reduce their complexity.

Finally, it is worth noting that, so far, we have implicitly assumed that every corpus is
homogeneous, containing documents that exclusively belong to a single document type. In
practice, though, it is possible to come across a heterogeneous corpus, which involves a
mixture of curated, semi-curated and raw documents. In such cases, the optimal represen-
tation model can be selected based on the extent of type heterogeneity and the application
requirements. If the corpus is dominated by a specific type (i.e., it accounts for more than
80 %–90 % of all documents), our experimental results can be used as guidelines for select-
ing the best model for this type with respect to time efficiency or classification accuracy.
In both cases, a small penalty in accuracy should be expected, due to the documents of dif-
ferent types. For corpora that cover two or three document types to a significant extent, the
overall best model should be applied. This is the character four-grams graph model (C4GG)
in conjunction with the hybrid features and SVM for applications emphasizing classifica-
tion accuracy; for all document types, it consistently achieves either the highest or one of
the top accuracies against all other models, both graph and bag ones. In case time effi-
ciency is more important than effectiveness, the character four-grams bag model (C4G) in
combination with SVM seems to be a reliable solution.

6 Related work

Text classification has been extensively studied for several years either as a stand-alone
domain [36] or as part of text mining research [3]. Its domain has evolved to cover a variety
of different classification settings, ranging from topic classification [22] and spam detection
(e.g., [24]) to genre and author detection [42].

In every setting, the document representation model plays a crucial role and, thus, it
should be carefully selected. As we have already stressed in Section 3, the usual choice
are the bag models [22, 36]. However, they are not the most common representation, when
moving from topic classification to other sub-domains of text classification. In fields like
author identification [40] and genre classification, a whole new set of features has been
devised and used. Such features may rely on syntactic, grammatical and morphological
information [40, 42], but also on sub-word character sequences [39] (possibly in con-
junction with string kernel functions [28]) as well as higher-order token-based models [23,
32].
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Another graph-based representation model that has been proposed in the literature is
the Universal Networking Language (UNL) [5, 6]. It transforms a document into a graph,
where the nodes correspond to words and the edges denote a semantic relation between
the adjacent words. A UNL graph is then transformed into a feature vector by converting
every node into a dimension that is weighted according to the corresponding node degree.
This approach, however, is fundamentally different from the n-gram graphs. Unlike UNL,
their representation acts on the morphology of the language. It is dependent on symbols
(characters) and no preprocessing steps are required to form the n-gram graphs. This is
because the edges indicate a single relation that is not semantic and, thus, it can be asserted
without any language-specific knowledge, simply based on the neighborhood of two n-
grams.

Some works have focused on the relative performance of the established representation
models. None of them, though, considers n-gram graphs, while their scope is limited, com-
pared to our analysis, focusing on a specific application of text classification. In [41], the
author compares character n-grams and token unigrams in the context of author attribution
(i.e., the task of identifying the author of a document). The experimental outcomes sug-
gest that character n-grams yield larger feature spaces, but provide more robust features,
when the training and the testing sets are heterogeneous in terms of author distributions and
thematic areas.

In [9], the authors examine four content-based representation models: lemmatized token
unigrams, lemmatized token bigrams and lemmatized “dependency triples”15 that were
obtained from the Stanford and the AEGIR parsers. The comparative analysis was per-
formed over a set of curated documents that contained patent abstracts in English. The
outcomes suggest that the combination of all four representations achieves the best improve-
ment over the baseline (the lemmatized token unigrams) and that the lemmatized token
bigrams account for the most important contribution to this improvement. However, the
authors stress that their outcomes are language-dependent, since similar experiments over
French and German abstracts yielded different results. They actually conclude that there is
no benefit in using token bigrams for compounding languages like German, which express
complex concepts with a single word.

Another issue of text classification that has been widely examined in the literature is
sparseness. Most techniques for dealing with it incorporate contextual knowledge into the
content-based representation models. For instance, the authors in [43] enrich the represen-
tation of text snippets (from advertisements or tweets) using “explicit semantic analysis” to
map them to Wikipedia concepts. The metadata of linked objects appearing in forum posts
are an alternative source of external data; they can improve the topic classification of short
texts even if they are used without the original features [25]. Another approach advocates
the use of search engines: the content of a raw document di is submitted as a query to a
search engine and the resulting Web pages are crawled to build a bag representation model
for di from their terms [30]. In other lines of research, the classification of short messages
was improved by augmenting their features with author-related information [38] and by
performing topic modelling after aggregating them [20]. However, all these approaches are
typically application-dependent and, thus, lie out of the scope of this work.

15A “dependency triple” is a language-dependent feature comprising two words that are semantically con-
nected with one of the syntactic relators that are supported by the corresponding parser. For example,
subj (Y,X) denotes a feature consisting of a noun Y that is connected with a verb X through the relator
“subject”.



918 World Wide Web (2016) 19:887–920

An alternative solution to sparseness is the representation of documents in a vector space
of “latent topics”. These can be derived from dimensionality reduction methods, such as
Latent Semantic Indexing (LSI) [8] and Latent Dirichlet Allocation (LDA) [4]. For exam-
ple, the authors in [33] represent short texts by a combination of terms and hidden topics
that were extracted from an external “universal dataset” using LDA. Given a good univer-
sal dataset and the right number of hidden topics, the expanded vector space was found to
significantly improve classification performance. In [47], the authors improve the classifi-
cation of short texts using the Transductive LSI, which extracts information from the test
instances. We do not elaborate on such dimensionality reduction methods within this work,
because we focus on the base representation itself. Besides, LSI and LDA differ substan-
tially from the n-gram graphs in that they are applied on a token-based basis, while our
approach is applied to the graph world (taking into account token or character proximity).
Additionally, LDA differs from our approach in that it uses exogenous information (i.e., the
number of hidden topics) and incorporates probabilistic methods in the representation. In
contrast, the extraction of the class n-grams is deterministic and straightforward, with no
need to converge.

On another line of research, many works on text classification examine the particular
challenges of individual domains, especially those posed by the user-generated content of
Social media, like Twitter. UGC actually offers new research grounds, where many of the
intricacies of the classification task are present: multi-lingual, voluminous content, very
short texts, fully evolving, non-standard vocabulary, noise and lack of labelled resources.
In [46], the authors describe a large-scale system that aligns a stream of tweets to a prede-
fined ontology in real-time and with high precision. It uses a topic modelling approach that
combines token unigrams and character four-grams with exogenous features, such as the
content of Web pages that correspond to embedded URLs. [34] addresses Topic Detection16

in the context of Twitter using fuzzy fingerprints: every topic (i.e., hashtag) is represented
by the set of its top-k most frequent token unigrams, which are used to estimate its similar-
ity with every new, unclassified tweet. A system for “trend stuffing” is proposed in [21]; it
employs a binary classification scheme to decide whether a tweet is related to a highly active
topic (“trend”) so as to facilitate the detection of spam tweets. In [27], the authors use text
classification for keyword extraction from “social snippets”, such as status updates, inter-
esting events or recent news. In [2], tweets are classified into positive, negative and neutral
ones according to their sentiment. Finally, in [16], the authors measure the semantic related-
ness between pairs of tweets using external knowledge: they map each tweet to Wikipedia
and then exploit the links between Wikipedia pages. All these tasks offer promising, future
applications for the n-gram graphs approach we examined in this work.

7 Conclusions

In this work, we demonstrated that the n-gram graphs offer a noise-tolerant, language-
neutral representation model for Topic Classification that is inherently capable of addressing
sparseness. We elaborated on the parameters of this approach and fine-tuned them through
a thorough experimental study. The most important one is the “merge portion”, which spec-
ifies what part of the labelled documents participates in the construction of class graphs.

16Topic Detection is similar to Topic Classification, but differs in that it involves many more classes, which
are also so rare that an unlabelled document is likely to belong to none of them [34].
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In most cases, small values (< 50 %) sacrifice effectiveness to a negligible extent for sig-
nificantly higher efficiency. Another crucial parameter is the type of features, which can
be numeric, nominal or hybrid. Among them, hybrid features were found to offer the most
robust performance. The other two parameters are the “model granularity” (i.e., character-
or token-based) and the “core size” (n), which apply to bag models, as well. The optimal
configuration of both parameters depends on the type of Web documents. To identify the
type of a corpus, we introduced four metrics for quantifying its main characteristics. We
also proved that this external parameter affects the relative performance of graph and bag
models. In general, though, the graph models were found to achieve significantly higher
classification accuracy than their bag counterparts, at the cost of lower efficiency.

In the future, we intend to examine parallelization techniques for enhancing the time
efficiency of n-gram graphs. We actually plan to adapt the functionality of two procedures
to the MapReduce framework: the creation of class graphs and the comparisons between
class and document graphs. Given that the class n-gram graphs may be viewed as an inter-
mediate dimensionality reduction step, we also plan to examine their relation to LSI and
LDA.
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