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Abstract Understanding the users’ latent intents behind the search queries is critical for
search engines. Hence, there has been an increasing attention on studying how to effec-
tively mine the intents of search queries by analyzing search engine query log. However, we
observe that the information richness of query log is not fully utilized so far and the infor-
mation underuse heavily limits the performance of the existing methods. In this paper, we
tackle the problem of query intent mining by taking full advantage of the information rich-
ness of query log from a multi-dimensional perspective. Specifically, we capture the latent
relations between search queries via three different dimensions: the URL dimension, the
session dimension and the term dimension. We first propose the Result-Oriented Frame-
work (ROF), which is easy to implement and significantly improves both the precision and
the recall of query intent mining. We further propose the Topic-Oriented Framework (TOF),
in order to significantly reduce the online time and memory consumptions for query intent
mining. TOF employs the Query Log Topic Model (QLTM) that derives the latent topics
from query log to integrate the information of the three dimensions in a principled way. The
latent topics that are considered as low-dimensional descriptions of the query relations and
serve as the basis of efficient online query intent mining. We conduct extensive experiments
on a major commercial search engine query log. Experimental results show that the two
frameworks significantly outperform the state-of-the-art methods with respect to a variety
of metrics.
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1 Introduction

In order to develop effective web search engines, it is fundamental to understand the users’
latent intents behind the short search queries. Therefore, search query intent mining, which
essentially maps the submitted queries into different intent categories, is gaining momen-
tum in data mining research [1, 11, 22, 31, 32]. Based on the search engine query log, many
supervised learning methods have been proposed for query intent mining [1, 31, 32]. How-
ever, as query log records very limited information for each query, the supervised methods
usually need to augment the training features through external knowledge bases, which are
typically costly to obtain. To avoid the undesirable feature augmentation, the recent trend
of query intent mining is to expand the training data by semi-supervised learning paradigm
[11, 22]. It is reported that, based on the feature of query terms alone, the semi-supervised
learning approach works better than those with augmented features [22]. The key idea of the
semi-supervised methods for query intent mining is to build a click graph, which is essen-
tially a bipartite built upon queries and clicked URLs, and then expand the training data by
mining the structure of the click graph. However, as a large proportion of search queries
do not raise any clickthrough and two random queries rarely share the same clicked URLs
[3], the click graph can only cover a small portion of the rich information in query log. Fur-
thermore, the clicked URLs are inherently noisy and may also be biased from some users
with malicious intents [12]. Thus, the robustness of methods based on click graph is rather
unsatisfactory. Finally, the click graph is usually huge and practical issues such as reducing
the time and memory consumption for semi-supervised intent mining are not satisfactorily
addressed so far. The aforementioned problems which plague query intent mining give rise
to the following research questions:

– Besides the click graph, how to identify extra information sources in the query log to
further enrich the information coverage and enhance the robustness of the downstream
query intent mining?

– Given multiple information sources that are derived from query log, how to effectively
utilize them to improve the performance of query intent mining?

– As query intent mining is essentially conducted online in practice, how to significantly
reduce its online time and memory consumptions?

To address the above three questions, we propose to model the relations between
search queries in a multi-dimensional fashion, which provides comprehensive information
coverage and robust information representation for the downstream query intent mining.
Specifically, we capture the relations between queries from the following three dimensions:
the URL dimension (whether they share the same URL clickthrough), the session dimen-
sion (whether they appear in the same search session) and the term dimension (whether
they share the same query terms). By collectively utilizing the three dimensions, the multi-
dimensional perspective captures much more information than the click graph. Based on
the query relations captured by the three dimensions, we propose the Result-Oriented
Framework (ROF), which is easy to be implemented in the multi-dimensional scenario and
significantly improves both the precision and recall of query intent mining. In ROF, we first
conduct query intent mining on each individual dimension and then the provisional results
of different dimensions are combined according to strategies such as Maximum Confidence
or Majority Vote to generate the final result. In order to significantly reduce the online
computational cost of query intent mining, we further propose the Topic-Oriented Frame-
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work (TOF), which utilizes the latent topics derived by Query Log Topic Model (QLTM) to
represent the relations between search queries. TOF improves the precision, recall and scal-
ability of query intent mining in term of both time and memory consumptions. Based on
a large-scale query log from a commercial search engine, both ROF and TOF outperform
several strong baselines with respect to a variety of metrics in the experiments.

The contributions of this paper are summarized as follows:

– We propose a multi-dimensional perspective to capture the latent query relations in
search engine query log. The URL, session and term dimensions are proposed to
collectively quantify the information richness in query log.

– Two new frameworks, ROF and TOF, are proposed for query intent mining. Both of the
two frameworks significantly improve the quality of query intent mining results. The
clear advantage of ROF lies in its ease of implementation while TOF is more superior
in reducing the online computational cost of query intent mining.

– Extensive experiments are conducted to analyze the sensitivity of parameter settings
and compare the proposed frameworks with the state-of-the-art methods. The results
show that our frameworks significantly outperform the state-of-the-art methods with
respect to various metrics.

The rest of the paper is organized as follows. We review the related work in Section 2.
In Section 3, we detail the three dimensions of search engine query log. In Section 4, we
formally define the problem of multi-dimensional query intent mining. In Sections 5 and 6,
we detail the Result-Oriented Framework (ROF) and the Topic-Oriented Framework (TOF).
We provide complexity analysis in Section 7. We present the experimental evaluations in
Section 8 and conclude the paper in Section 9.

2 Related work

In recent years, search query intent mining has become a hot research issue and many meth-
ods have been proposed for mapping search queries into different intent categories. As a
pioneering work, Broder [6] proposed the search intent taxonomy that is composed of three
intents, namely, informational, navigational and transactional. As a further enrichment, [8]
studied a wide range of facets that may be useful for user’s intents identification. [32] used
search engine results as features, including pages, snippets and titles, and built classifiers
based on a document taxonomy. [7] transformed the problem of query classification to
document classification which was solved directly in the target taxonomy. Another way to
enhance feature representation is the use of word cluster features [2, 25]. In such approach,
semantically similar words can be grouped into clusters, either by domain knowledge or by
statistical methods, and be used as features to improve the generalization performance of
a classifier. Similarly, the query classification methods in [1, 31] are also based on super-
vised leaning and external knowledge bases are utilized to augment the training features.
Radlinski [28] presented an approach for identifying the popular meanings of queries using
user click behavior. Hu et al. [17] proposed a clustering algorithm to automatically mine the
subtopics of queries. Dang et al. [13] clustered reformulated queries generated from publicly
available resources. Sadikov et al. [30] addressed the problem of clustering the refinements
of a user search query. As an orthogonal approach to tackle query intent mining, Li et al.
[22] made the first attempt to increase the amount of training data for query intent min-
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ing. A semi-supervised learning framework is proposed to evaluate query relevancy by the
query-URL bipartite. Using the expanded training data and the unbiased training features
such as words and phrases in queries themselves, their method yielded remarkable improve-
ment in terms of both precision and recall. More recently, Celikyilmaz et al. [11] proposed a
graph summarization algorithm for categorizing a given speech utterance into one of many
semantic intent classes. Wang et al. [34] mines sequences of actions called search scripts
from search query logs. Lee et al. [21] study whether and how we can automate the goal-
identification process of web search. Yan et al. [39] proposed a keyword-based semantic
entity search mechanism in dataspaces. Qian et al. [27] proposed a method for mining new
bursty intents from search query logs.

The present work is also related to query log analysis and probabilistic topic model-
ing. Boldi et al. [5] introduced the notion of query-flow graphs to represent the knowledge
about latent querying behavior. Poblete et al. [26] introduced a graph representation of the
Web, which includes both structural and usage information. Deng and Lyu [14] proposed
the Co-HITS algorithm to incorporate the query-URL bipartite graph with content infor-
mation and establish its relation between the HITS and personalized PageRank algorithms.
Sadikov et al. [30] approximated user search behavior by a Markov graph and partitioned
the graph into a predefined number of query clusters. Craswell et al. [12] applied Markov
random walk model to a large click log, producing a probabilistic ranking of documents
for a given query. Recently, topic modeling is gaining momentum in textual data analysis.
Blei et al. [4] proposed Latent Dirichlet Allocation (LDA) which derives the latent topics to
capture the semantic relation between words in articles. Some extensions of LDA achieved
good performances on named entity recognition [24], article analysis [20] and query log
analysis [10, 19].

We notice that there are some related work about query clustering [38] and query sug-
gestion [9]. Although they are conducted based on query log as well, they solve problems
that are different from ours. The reason that our work is significantly different from query
clustering is as follows. Our methods are primarily semi-supervised, meaning that some
labeled data and predefined categories of interest are required. In contrast, query cluster-
ing is essentially unsupervised and the resultant clusters can be significantly deviated from
the categories of interest. Hence, our methods and query clustering are applied in very
different applications scenarios. The differences between our methods and query sugges-
tion are essentially twofold: (1) Query suggestion aims to find some “relevant” queries
which are similar to the input query. Hence, the primary goal of query suggestion is not
classifying queries, which, however, is the focus of our work. (2) In commercial search
engines such as Baidu and Yahoo, query classification is typically an upstream application
of query suggestion, i.e., query classification are typically conducted preceding query sug-
gestion. Therefore, our methods can be applied to enhance the existing query suggestion
methods.

The differences between our work and the previous ones are essentially twofold. First,
rather than relying on external knowledge bases, we focus on taking full advantage of the
information available in the query log itself. We propose to collectively utilize three dimen-
sions to comprehensively capture the information in query log, which is under-used in
previous work. This multi-dimensional perspective fits well in the task of query intent min-
ing. Second, our work investigates the effective ways of integrating the multi-dimensional
information for query intent mining. To the best of our knowledge, no previous work has
been done to conduct query intent mining by using such comprehensive information sources
collectively and systematically.
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3 Query log dimensions

In this section, we present the details of the three dimensions that we utilize for query intent
mining. Some examples of query log entries are presented in Table 1. Each entry contains
the query identifier, the user identifier, the search query, the timestamp at which the query
is submitted, the rank of clicked snippet (if any) and the clicked URL (if any). Based on
this information, we model the relations between search queries by the following three
dimensions.

3.1 URL dimension

The URL dimension aims at associating search queries via URL co-clicking. Search queries
that result in the clickthrough on the same URL are associated with this dimension. For
example, in Table 1, q1 and q5 can be related via the URL dimension since the two queries
both result in clicking on the URL http://www.innsofcal.com/. Similar to previous work
[22], clickthrough on the same URL are considered as a piece of explicit evidence for the
commonality of query intent. As the clicked URLs are recorded for each query, this relation
can be straightforwardly obtained from the query log.

3.2 Session dimension

A session is defined as a series of queries that are sequentially submitted by a user to satisfy
the same information need. For example, in Table 1, q2 and q3 are submitted by the same
user to search for information about a movie named “chicken run”, thus, the two queries
can be considered to be from the same session. The intuition of this dimension is that the
semantically coherent session consisting of consecutive queries serves as a bridge for query
relevance. This dimension is introduced to capture the session co-existing relation between
queries. The query reformulation taxonomy proposed in [18] consists of a series of rules that
evaluate the lexical similarity between queries and demonstrates high precision in detecting
semantically relevant ones. Thus, we utilize this taxonomy to discover the sessions from the
query log.

3.3 Term dimension

After tokenization, each search query can be segmented into one or more terms. The term
dimension is proposed to capture the term sharing relation between queries. Search queries
that share at least one term are related by this relation. For instance, in Table 1, q1 and q4

Table 1 Examples of search engine query log entries

QueryID UserID Query Time Rank URL

q1 25014 inn california 2012-03-13 11:37:28 1 http://www.innsofcal.com/

q2 45419 chicken run 2012-05-31 21:30:33

q3 45419 chicken run movie 2012-05-31 21:31:25 2 http://www.imdb.com/...

q4 51162 residence inn 2012-03-08 23:10:31 3 http://www.residenceinnsd.com/...

san diego

q5 64732 hotel santa barbara 2012-06-11 22:11:35 3 http://www.innsofcal.com/

http://www.innsofcal.com/
http://www.innsofcal.com/
http://www.imdb.com/...
http://www.residenceinnsd.com/...
http://www.innsofcal.com/
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share the same term “inn” and they can be related via the term dimension. In order to reduce
the spurious relations, we use a stopword table [23] to filter out the noninformative terms.

4 Problem definition

Based on the query relations captured by the three dimensions discussed in Section 3, we
aim to infer the intents of a set of unlabeled queries by using a small set of seed queries, i.e.,
a set of queries with manually labeled intents. We denote the query-intent matrix as F , in
which the entry fij is a real number indicating the probability that qi belongs to the intent
cj . Given F , the posterior probability that qi belongs to cj is computed by the following
formula:

P(cj |qi) = fij
∑

kfik

. (1)

The instantiation of F is denoted as F 0. If query qi is manually labeled as cj , then
the entry fij in F 0 is 1, other entries in the ith row of F 0 are zeros. The entries which
refer to the unlabeled queries are all zeros in F 0. Based on the query relations captured by
the three dimensions and F 0, the query intent mining method estimates F , which deter-
mines the final intents of the queries. The notation used in this paper is presented in
Table 2.

5 Result-oriented framework

In the face of the multi-dimensional information, Result-Oriented Framework (ROF) adopts
a prediction-combination paradigm: the intermediate results are first obtained from each
individual dimension and then they are combined to generate the final result. We first estab-
lish the three matrices BU , BS and BT for the bipartite obtained via the URL, the session
and the term dimension, respectively. The value of each entry in the three matrices is the
frequency of observations associating the nodes from the rows and the columns:

– BU : each row represents a unique query and each column represents a unique URL.
– BS : each row represents a unique query and each column represents a session.
– BT : each row represents a unique query and each column represents a unique term.

We then obtain the query affinity matrices WU , WS and WT by multiplying BU , BS and
BT and their corresponding transposes. For each query affinity matrix, we apply Algorithm
1 to find the optimal intent estimation represented by the matrix F ∗.
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Table 2 Notation
Notation Description

U the URL dimension

S the session dimension

T the term dimension

BU the query-URL matrix

BS the query-session matrix

BT the query-term matrix

WU the query affinity matrix of URL dimension

WS the query affinity matrix of session dimension

WT the query affinity matrix of term dimension

Wtopic the query affinity matrix based on latent topics

F the query-intent matrix

F 0 the instantiation of F

Fl the manually labeled part of F 0

Stopic the session-topic matrix

Z the query-topic matrix

A the topic-intent matrix

Th the threshold for query intent mining

C the number of query intents

N the number of unique queries

U# the number of unique URLs

Û# the number of URLs

S# the number of sessions

T # the number of unique terms

T̂ # the number of terms

In Algorithm 1, during each iteration of line 4, each query node receives the informa-
tion from its neighbors and also retains its initial information. The parameter μ quantifies
the effect of the original value F 0. Finally, F ∗ quantify the amount of information each
query node has received from the classes during the iteration process. The sequence of F i

asymptotically converges to the following formula:

F ∗ = ((1 + μ)I − μL)−1F 0. (2)

For the three query affinity matrices WU , WS and WT , we apply Algorithm 1 to each
of them and obtain three intermediate query-intent matrices, FU , FS and FT . If we utilize
any one of them as the final result, this framework reduces to using the information of one
dimension to determine the query intents. As our goal is to investigate whether using results
from different dimensions together can improve the performance of query intent mining, we
propose two different strategies to effectively combine the information stored in FU , FS

and FT .
The first strategy is Maximum Confidence. This strategy regards fij as the confidence

that the ith query embodies the j th intent. In the result combining procedure, the ith query
is assigned with the intent that has the highest probability across the chosen dimensional
combination. As for this strategy, there exist four different combinations, namely, DC1 =
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{U, S}, DC2 = {U, T }, DC3 = {S, T }, DC4 = {U, S, T }. Without loss of generality, for
any dimension combination DC, the query qi is labeled as cj if

max
k ∈DC

f k
ij = C

max
c=1

max
k∈DC

f k
ic (3)

and
max

k ∈DC
f k

ij > Th. (4)

Note that (3) labels a query as the intent that shows the highest probability across all the
dimensions in DC. We adopt a conservative approach by using (4) and further constrain
that the highest probability should also be higher than a probability threshold Th, otherwise,
the query remains unlabeled.

The second strategy is Majority Vote, which only has one dimensional combination
DC = {U, S, T }. The query qi is labeled as cj if

∑

k ∈DC

Δk
ij = C

max
c=1

∑

k ∈DC

Δk
ic, (5)

where

Δk
ij =

{
1, if f k

ij = C
max
c=1

f k
ic

0, otherwise
(6)

(7)

In this strategy, we first associate qi with an intermediate class label that shows the
highest probability based on each dimension. In total, qi receives three intermediate labels
from the URL dimension, the session dimension and the term dimension, respectively. We
then regard each intermediate result as a vote for a certain intent and then assign qi the intent
that receives the most votes. As there are three votes in total, we label a query as the intent
that receives at least two votes. If no intent receives at least two votes, the query remains
unlabeled.

Although the aforementioned two strategies seems simple and intuitive, to the best of our
knowledge, they are the first to be proposed for the task of query intent mining. As we will
show later in Section 8, a little surprisingly, these two strategies can significantly improve
the accuracy of query intent mining.

6 Topic-oriented framework

ROF utilizes the “raw” information from the three dimensions and represent query rela-
tions in high-dimensional matrices such as WU , WS and WT . In order to reduce the
computational cost that is induced by the three high-dimensional matrices, we propose the
Topic-Oriented Framework (TOF) in this section. In Section 6.1, we discuss the Query Log
Topic Model (QLTM), which derives latent topics by integrating the information of the three
dimensions in query log. In Sections 6.2 and 6.3, we discuss how to derive query-topic
relations and the method of topic-based query intent mining.

6.1 Query log topic model

Query Log data has its unique characteristic and the general-purpose models can only work
suboptimally for modeling query log data (as we will show in Section 8.3.1). Thus, we
propose the Query Log Topic Model (QLTM), which is calibred for query log data, in order
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to integrate the information of the three dimensions and derive the semantically coherent
topics to capture the latent relations between search queries in lower dimensions. In order
to apply topic modeling on query log, we first group each user’s log entries as a document
and then organize each document by sessions. Intuitively, query terms and the clicked URLs
of the same session are utilized to satisfy the same information need and thus we constrain
that the terms and URLs in the same session share the same topic. An important feature of
web search is that it is essentially dynamic and thus we associate each topic with a Beta
distribution to model its temporal prominence. The generative process of QLTM is described
as follows:

– for each topic k ∈ 1, ..., K

– draw a term distribution φk ∼ Dirichlet(β);
– draw a URL distribution Ωk ∼ Dirichlet(δ);

– for each document m ∈ 1, ..., M

– draw topic distribution θm ∼ Dirichlet(α);
– for each session in m

• choose a topic z ∼ Multinomial(θm);
• generate terms t ∼ Multinomial(φz);
• if the URL existence indicator Xs = 1, generate URLs u ∼

Multinomial(Ωz);
• draw timestamps s ∼ Beta(	z);

The graphical model of QLTM is presented in Figure 1, which helps the reader to quickly
capture the essence of QLTM. In Figure 1, α, β and δ are the hyperparameters. t , u and s are

Figure 1 Graphical model of
QLTM



484 World Wide Web (2016) 19:475–497

the observed variable. θ , φ and Ω are the latent parameters of interest. The graphical model
illustrate a process as follows. We assume that each user has a topic distribution. When
submitting the search queries in a session to the search engine, the user first decides the
topic and then selects some query terms according to the chosen topic. For each session, the
user needs to decide whether to click some URLs or not and any clicked URL is generated
according to the chosen topic as well. Finally, the timestamps are generated according to the
chosen topic’s temporal prominence. Hence, the topic assignment of a session is sensitive
to the query terms, URLs and timestamps. Therefore, our model seamlessly integrate the
information in query log and the latent topic space can be considered as an effective low-
dimensional representation of the information in query log.

Now we discuss the parameter inference based on Gibbs sampling. The joint probability
of the query terms, the URLs and the timestamps is given as follows:

P(t, u, s, z|α, β, δ,X) = P(t|z, β)P (u|z, δ,X)P (s|z, 	)P (z|α). (8)

After combining the factorized formula terms, applying Bayes rule and folding the terms
into the proportionality constant, the conditional probability of assigning the kth topic for
the ith session is defined as follows:

P(zi = k|z−i, t, u, s, 	) ∝
CMK

mk + αk
∑K

k′ = 1
(
CMK

mk′ + αk′
)

T∏

j=1

(
1 − sj

)ψk1−1
s
ψk2−1
j

B (ψk1, ψk2)

Γ
(∑T

t=1

(
CKT

kt + βt

))

Γ
(∑T

t=1

(
CKT

kt + βt + Nit

))
T∏

t=1

Γ
(
CKT

kt + βt + Nit

)

Γ
(
CKT

kt + βt

)

⎧
⎨

⎩

Γ
(∑U

u=1

(
CKU

ku + δu

))

Γ
(∑U

u=1

(
CKU

ku + δu + Niu

))
U∏

u=1

Γ
(
CKU

ku + δu + Niu

)

Γ
(
CKU

ku + δu

)

⎫
⎬

⎭

I (Xi=1)

, (9)

where CMK
mk is the number of sessions that are assigned topic k in document m, CKT

kt is the
number of times that the term t is assigned topic k, CKU

ku is the number of times that the
URL u is assigned topic k, Nit is the number of t in session i and Niu is the number of u

in session i. After each iteration of the sampling procedure, we update the parameters ψk1
and ψk2 for the kth topic as follows:

ψk1 = s̄k

(
s̄k(1 − s̄k)

v2
k

− 1

)

, (10)

ψk2 = (1 − s̄k)

(
s̄k(1 − s̄k)

v2
k

− 1

)

, (11)

where s̄k and v2
k denote the sample mean and biased sample variance of topic k’s

timestamps.
So far, we consider the session as the basic unit for topic assignment. However, the infor-

mation about each search query has not been fully utilized. We now discuss an approach to
capture the query information. It is well recognized that the query terms which frequently
appear together in a query bear very coherent semantic meanings [35]. However, capturing
the relations of query terms usually requires to breaks the bag-of-words assumption, which
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assumes that the words in a document are exchangeable. Although there exists work such as
the bigram topic model [36] that breaks the bag-of-words assumption, it is not suitable for
query log data for two reasons: (1) search queries are short and are usually not grammatical.
Thus, query terms do not demonstrate strong bigram relation as those in the conventional
articles; (2) The computational cost of the bigram topic model is too high for the query log,
which is usually in massive size.

To solve this problem, we now discuss an approach to embed the query information into
QLTM by mining frequent patterns from query log. Due to the semantic coherency of the
search query, we assume that the query terms that frequently appear together in a query are
likely to be from the same topic. By considering each query as a transaction and mining
the frequent closed patterns [16] of query terms, we can build a term-term relevance matrix
RT , the entries in which is calculated as follows:

RT
ij = sup(ti , tj ),

where ti and tj are the terms and sup is the support of the pattern. Similarly, the URLs that
are frequently clicked for the same query are also semantically coherent and we also build
an URL-URL relevance matrix RU based on counting the frequency of URL co-occurrence.
After obtaining the constraint matrix RT and RU , we utilize them as the priors of φk and
Ωk as follows:

p
(
φk|RT

)
∝

(
φk

�RT φk

)
. (12)

p
(
Ωk|RU

)
∝

(
Ωk

�RUΩk

)
. (13)

The log posteriors for MAP estimation are given by:

LT
MAP =

T∑

t=1

CKT
kt log φt |k + log

(
φ�

k RT φk

)
. (14)

LU
MAP =

U∑

u=1

CKU
ku log Ωu|k + log

(
Ω�

k RUΩk

)
. (15)

Optimizing (14) with respect φw|k subject to the constraints
∑T

t=1φt |k = 1, we can obtain
the following fixed point update:

φt |k ← 1

CKT
k· + 2

(

CKT
kt + 2

φt |k
∑T

i=1 RT
it φi|k

φ�
k RT φk

)

. (16)

Similarly, we can get the update for φu|k as follows:

Ωu|k ← 1

CKU
k· + 2

(

CKU
ku + 2

Ωu|k
∑W

i=1 RU
iuΩi|k

Ω�
k RUΩk

)

. (17)

We no longer have neat conjugate priors for φt |k and Ωu|k . Thus, at the end of each major
cycle of Gibbs sampling, φt |k and Ωu|k are re-estimated according to (16) and (17). Then,
in the next iteration, the CKT

kt and CKU
ku in (9) are replaced as follows:

CKT
kt = φt |k · CKT

k· ; CKU
ku = Ωu|k · CKU

k· . (18)
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6.2 Offline query-topic relation derivation

We proceed to discuss the method of deriving the relations between search queries and the
topics. After the burn-in period of the Gibbs sampling discussed in Section 6.1, we record
the topic assignments of each session. When the sampling procedure is completed, the ith
session is associated with a search topic vector S

topic
i in which each entry is the times that

the ith session has been assigned to the corresponding topic. Through the normalization
on each row vector of S

topic
i , each entry in S

topic
i represents the probability that the ith

session belongs to the corresponding topic. Then we can obtain the query-topic matrix Z

by multiplying the query-session matrix BS with Stopic. The procedure of deriving query-
topic relation is summarized in Algorithm 2. This process can be done offline for the whole
query log. Once the query-topic relations are obtained, they can be stored for efficient online
query intent mining, which will be discussed in the next subsection.

6.3 Online query intent mining

Based on the query-topic matrix Z obtained from Algorithm 2, we construct the topic-based
query affinity matrix Wtopic as follows:

Wtopic = ZΛ−1Z�, (19)

where Λkk = ∑
iZik . Then, the un-normalized graph Laplacian is computed as follows:

Lt = I − Wtopic. (20)

We define A ∈ R
T×C as the topic-intent matrix, where T is the number of topics and C

is the number of query intents. In A, each row represents a topic and each column represents
an intent. Then we obtain Zl by only keeping the entries corresponding to manually labeled
queries in Z. Similarly, we obtain Fl by truncating F 0 in the same way. The regularization
framework for the topic-based intent mining is formalized as follows:

min
A

1

2
‖ZlA − Fl‖2

F + μ

2

c∑

j=1

(Zaj )
�Lt(Zaj ). (21)
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The notation ‖.‖F in (21) is the Frobenius norm.1 In (21), the first term and the second
term define the fitting constraint and the smoothness constraint respectively. This regu-
larization framework is different from that discussed in Section 5 in that its optimization
objective is to obtain the optimal topic-intent matrix A∗ rather than the query-topic matrix
F ∗. With simple algebra, we obtain the optimal solution given by:

A∗ =
(
Z�

l Zl + μZ�Z − μ
(
Z�Z

)
Λ−1

(
Z�Z

))−1
Z�

l Fl . (22)

Once the estimated topic-intent matrix A∗ is obtained, we can straightforwardly get the
class label for each query by:

F ∗ = ZA∗. (23)
Finally, we assign each query the intent of the highest probability and further constrain that
the highest probability should be higher than a threshold Th.

7 Complexity analysis

In this section, we analyze the time and space complexity of the proposed frameworks.
For ROF, we need to compute the inverse of an N × N matrix to obtain F ∗. The time
complexity is usually O(N3), since exactly solving the equivalent large linear systems is
still challenging. The space complexity of Result-Oriented Framework is O(N2) because
the inverse matrix is usually dense. For TOF, the time complexity of the Gibbs sampling
is O(GK(T̂ # + Û#)), where G is the number of Gibbs iterations. The space complexity is
O(K(M +U# +S# +T #)). As a session usually contains few queries and a query typically
contains one or two terms and raises limited URL clickthrough, Û#, S# and T̂ # are nearly
linear in N̂ . The long-tail phenomenon [33] in web search shows that ”popular” search
queries actually make up less than 30% of the overall searches performed on the web, the
remaining are millions of queries that might be only searched a few times or even only
once. Since N̂ is roughly linear in N and K 
 N , the time and space complexities of the
sampling procedure are roughly linear in the number of unique queries N . As for the online
computing, the time complexity of TOF is O(K3+K2Nl+KNC) and the space complexity
is O(KN + NlC). As K 
 N and C 
 N , the online time and space complexities of TOF
are nearly linear in N (Figure 2).

8 Experiments

In this section, we gauge the performance of the proposed frameworks and compare them
with the state-of-the-art methods. In Section 8.1, we describe the experimental setup. Then
we study the sensitivity of the parameters of ROF and TOF in Sections 8.2 and 8.3. Finally,
we make a systematical comparison of different query intent mining methods in Sections 8.4
and 8.5.

8.1 Experiment setup

We utilize the query log from Yahoo search engine for the experiments. 2 The query log
contains 506,515 search queries of 2,158 search engine users during a period of four months.

1http://mathworld.wolfram.com/FrobeniusNorm.html
2The work was done when the first author visiting Yahoo Labs

http://mathworld.wolfram.com/FrobeniusNorm.html
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Figure 2 Parameter sensitivity of single dimensions and Result-Oriented Framework (ROF)

The intents of the search queries are manually labeled by five human judges according to
546 ODP3 categories and conflicts of the labeled results are resolved by majority voting. A
subset containing 5,000 users are utilized as the validation data, a subset containing 5,000
users are heldout as the testing data and the remaining are considered as the training data. In
order to clarify the evaluation procedure, we present an overview of the evaluation workflow
in Figure 3. Each training set T Si contains a random number (say 100) of positive queries
(QPT Si

) which are randomly chosen from the queries that have a particular intent τ , and
a random number (say 100) of negative queries (QNT Si

) which are randomly chosen from
the queries with intents other than τ (i.e., τ ). To test whether a particular intent mining
method, denoted by IM , can successfully distinguish queries with the desirable intent τ

from the other queries, we first run IM using a particular training set T Si to obtain a set of
possible queries with intent τ (i.e., QP IM

T Si
). Then, we compare the results QP IM

T Si
against

the ground truth, which is the manually labeled query intents, using standard precision and
recall measures. Finally, we repeat the mining phase for T S1, T S2, T S3, . . . , T S10,000 and

3http://www.dmoz.org/

http://www.dmoz.org/
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Figure 3 Overview of evaluation workflow

obtain the average precision and recall measures over all the training sets on all methods for
the purpose of evaluation and comparison.

8.2 Parameter sensitivity analysis of ROF

We now study the sensitivity of the parameters in ROF on the validation datset. Previous
work [22] shows that (2) demonstrates similarly good performance when μ varies between
1 and 9. Thus, we choose μ = 5 as the default μ value for (2). When ROF is applied
to each dimension, it reduces to applying Algorithm 1 to a single dimension and uses the
intermediate result from a single dimension as the final result. As the result obtained from
each individual dimension serves as the basis of ROF, we first evaluate Th’s effect on the
intent mining performance of the URL, the session and the term dimensions. From the
results shown in Figure 2a and b, we observe that the URL and the session dimensions are
not sensitive to Th. Their precision and recall stay roughly the same value when Th varies
from 0.5 to 1.0. On the contrary, the precision and recall of the term dimension change
dramatically when Th varies from 0.9 to 1.0. The result is consistent with our intuition that
terms are usually ambiguous and the commonality of search intent can only be guaranteed
by using a high threshold. Therefore, the term dimension needs high Th to achieve high
precision. Furthermore, when Th is low the term dimension usually results in high recall.
We also observe that the performance of the session dimension dominates that of the URL
dimension while the precision or recall of the term dimension can also outperform those
of the URL dimension by tuning Th. The reason is that the session usually contains very
coherent information and the search queries in the same session typically share the same
query intent.

We then evaluate the performance of the Maximum Confidence strategy against different
Th. The results of the four different dimensional combinations (U+S), (U+T), (S+T) and
(U+S+T) are shown in Figure 2c and d. We observe that the precision and recall of (U+S)
are very stable when Th varies from 0.5 to 0.9. However, When Th increases from 0.9 to
1.0, there is a significant increase in precision but a slight decrease in recall. The other three
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combinations are sensitive to Th and demonstrate similar trends: when Th increases, their
precisions steadily become higher while their recalls steadily become lower. When Th is
1.0, the (S+T) combination yields the highest precision and recall over all combinations. We
also observe that by combining the information of different dimensions, some combinations
achieve higher precision and some combinations achieve higher recall comparing to using a
single dimension. The result verifies our assumption that the extra query relations obtained
from different dimensions have the potential to improve the performance of query intent
mining.

The Majority Vote strategy does not need the tuning of Th. The only parameter used in
this strategy is the number of votes. As we have three dimensions in total, the vote threshold
is straightforwardly set to be 2, meaning that a query is labeled as the intent class that
receives at least two votes. This strategy obtains a high precision with a fairly good recall.
Both the results of the Maximum Confidence and Majority Vote validate our assumption
that integrating more information has the potential to boost the performance of query intent
mining. Therefore, our approach paves the way for designing far better methods for query
intent mining than the existing approaches.

8.3 Parameter sensitivity analysis of TOF

8.3.1 Evaluation of QLTM

We compare QLTM with some counterparts. In LDA, the default hyperparameter settings
suggested by Griffiths and Steyvers [15] demonstrate very good performance. Therefore,
we also choose 50/K as the default value of α in our experiments. Since we have no prior
knowledge of the topical distributions of terms and URLs, we set both β and δ to 0.01.
Empirically, we find that the QLTM demonstrates very good performance with the parame-
ter settings discussed above. Parameter tuning of the topic model is well studied in the field
of probabilistic topic modeling and is beyond the scope of this paper, interested readers
may refer to [37] to find out a detailed discussion on this subject. After an extensive survey,
we select five models as the baselines: LDA [4], PTM1 [10], PTM2 [10], DSTM [19] and
RSTM [19] (Figure 4).

We utilize a held-out dataset that contains 10,000 search queries to evaluate the models’
capability of predicting unseen data. Perplexity is a standard measure of evaluating the gen-
eralization performance of a probabilistic model [29]. It is monotonically decreasing in the
likelihood of the held-out data. Therefore, a lower perplexity indicates better generaliza-
tion performance. The result of perplexity comparison is presented in Figure 5, from which
we observe that the QLTM demonstrates much better capability in predicting unseen data
comparing to the baselines. For example, when the number of search topics is set to 1000,
the perplexity of LDA, PTM1, PTM2, DSTM and RSTM are 18945, 21220, 20251, 12768
and 13575. QLTM significantly reduces the perplexity to 7594. Different from DSTM and
RSTM which only utilize the URL information partially, QLTM takes full advantage of
query terms, URLs as well as the frequent patterns in web search and thus provides bet-
ter fit for the latent structure of query log data. Therefore, the resultant topic space can be
considered as an effective representation of the information in query log.

8.3.2 Evaluation of query intent mining

We now analyze the parameter sensitivity of the TOF on the validation dataset. We first
evaluate the effect of μ on this framework by fixing Th at a relatively high value of 0.7. The
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Figure 4 Parameter sensitivity of Topic-Oriented Framework (TOF)

sensitivity study of μ is presented in Figure 4a and b. Due to the variation of the optimization
objective, the settings of μ are quite different from that in (2). As μ becomes higher, the
precision steadily increases while the recall dramatically decreases. When μ = 1.0, the
recall is close to zero. Therefore, we choose 0.5 as the default value for μ. By using this
parameter setting, the framework demonstrates high precision and reasonable recall. We
then study the sensitivity of Th of the regularization framework and the results are shown in
Figure 4c and d. The precision increases steadily as Th increases while the recall decreases
when Th increases. When Th is set to 0.7, the framework strikes a good balance between
precision and recall. The result shows that using the latent topic space is effective to enhance
both the precision and recall of query intent mining.

8.4 Result comparison

After determining the parameter settings of ROF and T OF in Sections 8.2 and 8.3, we
now compare the performance of the following methods on the test dataset:

– CG: The click graph based method proposed in [22]. Essentially, the method equals to
applying Result-Oriented Framework to the URL dimension.

– GS: The graph summarization based method in [11].
– ROF-S: Result-Oriented Framework on the session dimension.
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Figure 5 Perplexity comparison

– ROF-T: Result-Oriented Framework on the term dimension.
– ROF-MC: Result-Oriented Framework with Maximum Confidence strategy. In this

method, the (S+T) combination demonstrates the best performance and thus it is used
in the comparison.

– ROF-MV: Result-Oriented Framework with Majority Vote strategy.
– TOF: Topic-Oriented Framework.

The results are presented in Figure 6a, b and c. We observe that these methods can be
divided into two categories in term of whether they are sensitive to Th. CG, GS, ROF-
S and ROF-MV demonstrate relatively stable precisions and recalls when Th varies. On
the contrary, the performance of ROF-T, ROF-MC, and TOF is sensitive to Th and their
performance can be tuned by Th.

Among the methods that are not sensitive to Th, ROF-MV yields similar recall as CG
and GS. However, the precision of ROF-MV is much higher than that of CG and GS. The
precision improvement demonstrates the effectiveness of the voting phase of Majority Vote
strategy, which successfully filters out some false-positive results by combining the voting
results from the three dimensions. Another observation is that the performance of ROF-S
dominates those of CG, GS and ROF-MV in terms of both precision and recall. Methods that
are not sensitive to Th have stable precision/recall performance. Thus they are not preferred
when a set of results with a particular precision/recall setting (e.g., less results with high
accuracy, more results with lower accuracy, etc) is needed. ROF-T, ROF-MC and TOF are
more flexible and their performance can be flexibly tuned with Th. Notably, ROF-MC yields
the highest precision when Th is high and the recall of ROF-MC is always the best across
all the methods. These results verify the effectiveness of Maximum Confidence Strategy in
ROF. On the other hand, the performance of ROF-T is, in general, worse than that of CG
and GS due to the inherent ambiguity in query terms. TOF yields very good precision when
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Figure 6 Comparison of different query intent mining methods

Th varies from 0.5 to 1.0. Although the performance of TOF does not dominate that of CG
and GS, it achieves higher precision than CG and GS when Th is set to be larger than 0.8.
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Meanwhile, the recall of TOF is significantly higher than that of CG and GS when Th varies.
Furthermore, we will show in Section 8.5 that TOF is better than the other methods in terms
of scalability. In terms of F-measure, ROF-T, ROF-MC and TOF constantly outperform the
other method when Th varies, showing that they strike a good balance between precision
and recall. This result again verify the superiority of the proposed methods in query intent
mining. Moreover, in terms of F-measure, ROF demonstrates superior performance over
TOF. However, we shall see that the strength of TOF lies in its efficiency and scalability.

Astute reader may find that the recall of the methods under study are all relatively low.
To the best of our knowledge, previous work usually only considers the precision and the
present work is the first one to present evaluation results of the recall of different query
intent mining methods. In the scenario of semi-supervised query intent mining, a large
amount of training examples can still be derived even the recall is low since the number
of queries in query log is huge. Hence, low recall does not necessarily affect the practical
use of these methods. However, as we have shown, the recall of our methods is higher than
the state-of-the-art methods, indicating that our methods can utilizes a smaller query log to
derive roughly the same amount of training examples as the other methods using a larger
query log. The advantage of utilizing a smaller query log potentially enables our methods
even better performance in terms of efficiency.

One challenging issue in query intent mining is how to tackle with the tail search queries,
which only appear very few times in query log. In order to gauge the performance of our
proposed approaches, we evaluate them on a dataset containing 500 tail search queries.
The experimental results are shown in Figure 7. We observe that all the methods demon-
strate relatively worse performance on the dataset only containing tail queries, because these
methods usually have fewer information to mine the latent intent of the tail queries. How-
ever, as shown in Figure 7a, the ROF and TOF still show superior performance in terms
of precision of query intent mining. Notably, in Figure 7b, TOF keeps very high recall on
tail queries, showing that utilizing probabilistic topic model can effectively tackle the prob-
lems of tail queries. The F-measure is shown in Figure 7c, we can see that TOF and ROF-T
significantly outperforms the baselines. This result shows that the proposed methods are
well-suited to the scenario of query intent mining of tail search queries. Hence, they achieve
the state-of-the-art performance.

8.5 Scalability comparison

Section 7 theoretically analyzes the complexity of the proposed frameworks. We now empir-
ically evaluate the scalability of them on a 2.8GHz CPU with 4GB memory. We first
evaluate the consumed time against the number of queries and the experimental result is
shown in Figure 6d. TOF always takes the least time to get the results. For example, when
the size of the dataset is about 1,000 queries, CG takes 4738ms to get the result and the
time consumed by TOF is 3998ms. ROF-MV and ROF-MC typically consume more time
than CG because of the multi-dimensional computations and GS is also slower than CG.
More importantly, the time consumption of TOF increases modestly with the increase of
the number of queries. The result verifies the efficiency of the topic-based intent mining in
TOF. The low-dimensional topic representation effectively reduces the online computation
time and thus TOF demonstrates superior scalability over the other approaches. In order to
evaluate the space consumption of the proposed frameworks, we allocate different amounts
of memory to the methods under study and estimate how many queries each method is able
to process. The result is shown in Figure 6e. The ROF-MC and ROF-MV consume more
memory than other methods, due to the storage of the provisional results of the three query
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Figure 7 Comparison of different query intent mining methods on tail search queries

log dimensions. Among all the methods under study, TOF demonstrates the lowest mem-
ory consumption. For example, when 1.0 GB memory is allocated, CG, GS, ROF-MV, and
ROF-MC run out of memory quickly when processing a dataset containing 9,000 queries
and only TOF can successfully process this dataset. The results verify that TOF methods
have much better scalability in terms of both time and space compared to the other methods.

We have already shown that TOF achieves the best performance in terms of both online
time and memory consumption, which is usually the focus of web applications. In fact,
QLTM also demonstrates very good offline performance. Figure 8a presents the perplexity
value after each major Gibbs iteration of QLTM. It shows that, for a fixed number of topics
(e.g., K varies from 200 to 1000), the convergence can be quickly achieved less than 500
iterations. Similar results can also be observed when varying the number of topics K to
other values. Page limitations preclude a full description of all these results in this paper.
As we discussed in Section 7, the time of each Gibbs sampling depends on the value of K

and the statistics of the query log. In our experiments, each iteration is every efficient and
usually only takes several seconds. It is worth emphasizing that, the offline computation of
QLTM only needs to be done for one time and the obtained results can be stored for future
use of mining different query intents of different queries. Another advantage of the offline
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Figure 8 Offline scalability analysis of QLTM

phase of QLTM lies in its low requirement for memory. As shown in Figure 8b, as K varies
from 200 to 1000, the offline phase of QLTM can consistently process much more queries
than the baselines when a fixed memory is allocated. The good scalability of the offline
phase of QLTM again verifies that TOF is a good candidate when scalability is the priority
in query intent mining.

9 Conclusion

In this paper, we propose two new frameworks to mine the intents of web search queries
by exploiting the multi-dimensional information in the search engine query log. We utilize
the URL dimension, the session dimension and the term dimension to collective capture
the latent query relations in query log. Based on the three dimensions, we first propose the
Result-Oriented Framework (ROF) that infers query intents by combining the provisional
results from different dimensions. ROF is easy to implement in the multi-dimensional sce-
nario and significantly improves the quality of the mining results. In order to reduce the
computational cost, we further propose the Topic-Oriented Framework (TOF) that uses a
generative model that derives a small set of topics to represent query relations. Then query
intents are inferred based on the query affinity matrices reconstructed by the topics. We
conduct a wide spectrum of experiments to study the parameter sensitivity and effectiveness
of the two frameworks. Experimental results demonstrate that the proposed frameworks
significantly outperform the state-of-the-art methods with respect to different metrics.
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