
World Wide Web (2016) 19:89–109
DOI 10.1007/s11280-015-0329-1

Modeling dynamic recovery strategy for composite web
services execution

Rafael Angarita · Marta Rukoz ·Yudith Cardinale

Received: 15 April 2014 / Revised: 20 October 2014 /
Accepted: 6 January 2015 / Published online: 1
© Springer Science+Business Media New York 2015

Abstract During the execution of Composite Web Services (CWS), a component Web
Service (WS) can fail and can be repaired with strategies such WS retry, substitution, com-
pensation, roll-back, replication, or checkpointing. Each strategy behaves differently on
different scenarios, impacting the CWS QoS. We propose a non intrusive dynamic fault tol-
erant model that analyses several levels of information: environment state, execution state,
and QoS criteria, to dynamically decide the best recovery strategy when a failure occurs.
We present an experimental study to evaluate the model and determine the impact on QoS

parameters of different recovery strategies; and evaluate the intrusiveness of our strategy
during the normal execution of CWSs.

Keywords Composite web services · Fault tolerance · Dynamic recovery techniques ·
QoS monitoring · Adaptative systems · Self-healing systems

1 Introduction

Web Services (WS) and semantic technologies have emerged to create an environment
where users and applications can search, compose, and execute services in an automatic and
seamless manner. SOA is expected to be a place where many WSs compete to offer a wide

R. Angarita (�) · M. Rukoz
LAMSADE UMR 7243, Université Paris-Dauphine, Paris, France
e-mail: rafael.angarita@lamsade.dauphine.fr

M. Rukoz
e-mail: marta.rukoz@lamsade.dauphine.fr

M. Rukoz
Université Paris Ouest Nanterre la Défense, Nanterre, France

Y. Cardinale
Departamento de Computación, Universidad Simón Bolı́var, Caracas, Venezuela
e-mail: yudith@ldc.usb.ve

 February 2015

mailto:rafael.angarita@lamsade.dauphine.fr
mailto:marta.rukoz@lamsade.dauphine.fr
mailto:yudith@ldc.usb.ve

90 World Wide Web (2016) 19:89–109

range of similar functionalities. Moreover, WSs from distributed locations can be composed
to create new value-added Composite WSs (CWS) [5].

During the execution of a CWS, different situations may cause failures on its component
WSs. However, a fault tolerant CWS is one that, upon a WS failure, ends up the execu-
tion (e.g., by retrying, substituting, or replicating the faulty WS) or it aborts and leaves the
system in a safe state (e.g., by rolling back or compensating the faulty and executed WSs)
[10]. Sometimes, partial responses may have sense for user queries; hence, checkpointing
can be used as an alternative fault tolerance technique [6, 20, 22]. Because WSs can be
created and updated on-the-fly, the execution system needs to dynamically detect changes
during run-time and adapt the execution to the availability of the existing WSs. The highly
dynamic nature of Internet and the compositional nature of WSs make these static fault tol-
erance strategies unpractical in real-world environments. In this context, recovery strategies
have different behavior according to the execution state at the moment of the failure (e.g.,
how many component WSs have been successfully executed); the environment state (e.g.,
network load); and the impact of the recovery strategy in the CWS QoS.

Some questions emerge to decide which recovery strategy is the best in terms of the
impact on CWS QoS: are all recovery techniques equally practical, effective, and efficient?
When is it better to apply backward (or forward) recovery? Is it replication the best strategy?
The unpredictable characteristics of SOA environments provide a challenge for optimal fault
tolerance strategy determination. It is necessary more general and smarter fault tolerance
strategies, which are context-information aware and can be dynamically and automatically
reconfigured to meet different user requirements. It is important to define a dynamic fault
tolerant strategy which takes into account context-information to accordingly decide the
best one.

In previous work, we have presented a preliminary model to analyze execution informa-
tion when a failure occurs, selecting the best recovery strategy in terms of impact on the
CWS QoS [1]. In this paper, we extend our model to incorporate environment state infor-
mation, more execution state information, and several QoS criteria, to obtain a self-healing
model. We present an experimental study to evaluate our model and determine the impact on
QoS parameters of different recovery strategies, and to evaluate the performance of doing
the necessary computation to make it work. The experimental results show that, under dif-
ferent conditions, recovery strategies behave differently and the model always chooses the
best recovery strategy.

2 Fault tolerance for composite web services

2.1 Composite web service

A Composite Web Service (CWS) is a combination of several WSs to produce more com-
plex services that satisfy more complex user requests. It concerns which and how WSs are
combined to obtain the desired results. A CWS can be represented with structures such
as workflows, graphs, or Petri Nets, indicating, for example, the control flow, data flow,
WSs execution order, and WS behavior. The structure representing a CWS can be manually
or automatically generated. Users can manually specify how the functionality of WSs are
combined or a “composer agent” can automatically build a CWS according to a query. The
execution of a CWS is carried out by an “execution engine”.

WSs are described according to their functionalities (e.g., input and output attributes, pre-
conditions, effects) and QoS parameters. QoS parameters describe the WS execution quality

World Wide Web (2016) 19:89–109 91

in terms of response time, cost, reliability, throughput, trust, etc. In this context, users can
demand functional and non-functional requirements. Thus, WSs delivering the same func-
tionality must be managed to ensure efficient implementations of CWSs. We consider a user
query expressed as inputs given by the user, outputs desired by the user (functional require-
ments), and the importance given by the user to QoS criteria (non-functional requirements).
We define query and CWS as follows:

Definition 1 Query. A Query Q is a 3-tuple
(
IQ, OQ,WQ

)
, where IQ is the set of input

attributes, OQ is the set of output attributes whose values have to be produced by the system,
and WQ = {(wi, qi) | wi ∈ [0, 1] with

∑
iwi = 1 and qi is a QoS criterion} represents

weights over QoS criteria.

Definition 2 Composite Web Service Graph. A Composite Web Service Graph, denoted as
G = (V, E), is a directed acyclic graph with the following considerations:

– Nodes in V represent WSs, such that V = {wsi, i = 1..m} and wsi is a component WS.
– Arcs in E denote the execution flow among wsi ∈ V . Execution flow is defined by

data or control flow relationships between two WSs. Data flow relationship is defined in
terms of wsi input/output attributes, such that output values produced by a WS are part
of the input parameters of another WS. Control flow relationship is defined by execu-
tion order restrictions (e.g., business process order, transactional property, concurrence
control, deadlock avoidance) that dictate that a WS has to be executed after the end of
execution of another one; control flow can be designated by control signals or control
data. Thus, if wsi, wsj ∈ V and (wsi, wsj) ∈ E, and O(wsi) represents the set of
output attributes and control signals that wsi produces and I (wsj) represents the set of
input parameters and control signals needed to invoke wsj , then O(wsi) ∩ I (wsj) �= ∅.

– Entry nodes represent WSs whose input attributes are provided by the user, then
∃ wsi ∈ V : I (wsi) ∩ IQ �= ∅.

– Output nodes represent WSs that produce the final desired output attributes to the user,
then ∃ wsi ∈ V : O(wsi) ∩ OQ �= ∅.

To define the start and the end of a CWS, initial ni and final nf nodes are added to the
CWS Graph. These nodes have only control responsibilities to manage the start and the end
of CWS executions. They are defined as follows:

Definition 3 Initial node and final node of a CWS. Let G = (V,E) be a CWS; the initial
and final nodes, denoted as ni and nf , respectively, are dummy nodes added to the CWS,
such that:

– V = {ni, nf } ∪ V ;
– ∀ wsi ∈ V : I (wsi) ∩ IQ �= ∅;E = E ∪ (ni, wsi). ni is the predecessor node to all

entry nodes (Definition 2) of the CWS;
– ∀ wsi ∈ V : O(wsi) ∩ OQ �= ∅; E = E ∪ (wsi, nf). nf is the successor node to all

output nodes (Definition 2) of the CWS;
– I (ni) = ∅; | O(ni) | = | wsi ∈ V : I (wsi) ∩ IQ �= ∅ |;

| I
(
nf

) | = | wsi ∈ V : O(wsi) ∩ OQ �= ∅ | O
(
nf

) = ∅.

Workflows, bipartite graphs, and Petri Nets, the most popular structures used to repre-
sent CWSs, can be matched to our graph definition, even if the relationship among WSs is
defined by data flow and/or control flow.

92 World Wide Web (2016) 19:89–109

2.2 CWS execution control

The execution of a CWS implies the invocation of all component WSs according to the
execution flow imposed by the CWS Graph (Definition 2). Thus, there exist two basic vari-
ants of execution scenarios: sequential and parallel. In a sequential scenario, some WSs
cannot be invoked until previous WSs have finished because they work on the results
of those previous WSs, or due to restrictions control sequentially imposed. In a paral-
lel scenario, several WSs can be invoked simultaneously because they do not have flow
dependencies.

2.3 Failures in CWSs

During the execution of a CWS, failures can occur at hardware, operating system, WSs,
execution engine, and network levels. These failures result in reduced performance, and can
cause different behavior in the execution.

– Silent faults are generic to all WSs. They cause WSs to not respond, because they
are not available or a crash occurred in the platform. Some examples are communi-
cation timeout, service unavailable, bad gateway, and server error. Silent faults can be
identified by the “execution engine”.

– Logic faults are specific to different WSs, and are caused by errors in inputs attributes
(e.g., bad format, out of valid range, calculation faults) and byzantine faults (WSs
respond to invocation in a wrong way). Various exceptions thrown by WSs to users are
classified as logic-related faults. It is difficult for the “execution engine” to identify
such type of faults.

We consider: (i) WSs can suffer silent failures (logic faults are not considered); (ii)
the “execution engine”, in charge of the CWS execution, runs far from WS hosts in
reliable servers such as computer clusters, it does not fail, its data network is highly
secure, and it is not affected by WSs faults; (iii) we suppose that the information needed
to choose a recovery strategy is known by the “execution engine” at any moment for
each WS.

2.4 Fault tolerant CWS execution

The execution control of CWSs can be centralized or distributed. Centralized approaches
consider a coordinator managing the whole execution [21, 26]. In distributed approaches,
the execution process proceeds with the collaboration of several participants without a cen-
tral coordinator [4, 7]. On the other hand, the execution control could be attached to WSs
[13, 14] or independent of them [9]. Some execution engines are capable of managing fail-
ures during the execution. They can be based on exception handling [8, 19], transactional
properties [7, 11], or a combination of both approaches [13, 14]. In previous research in the
field of fault tolerant CWSs, only low level programming constructs such as exception han-
dling (for example in WSBPEL) were considered. Exception handling is normally explicitly
specified at design time, and is normally used to manage logic faults, which are specific to
each WS.

More recently, the reliability of CWSs has been handled at a higher level of abstraction,
i.e., at the execution flow structure level such as workflows or graphs. Therefore, technology
independent methods for fault tolerant CWSs have emerged, such as transactional properties
and replication.

World Wide Web (2016) 19:89–109 93

Figure 1 Recovery Techniques

Transactional properties implicitly describe behavior in case of failures, and are used to
ensure the classical Atomicity (all-or-nothing1) transactional property. When transactional
properties are not considered, the system consistence is a responsibility of users/designers.
The most used transactional properties for simple WSs are: pivot, compensable, and retri-
able [11]. A WS is pivot (p) if once the WS completes successfully, its effects remain
forever and cannot be undone, if it fails, it has no effect at all. A WS is compensable (c) if it
exists another WS which can undo its successful execution. A WS is retriable (r) if it guar-
antees a successful termination after a finite number of invocations; the retriable property
can be combined with properties p and c defining pivot retriable (pr) and compensable
retriable (cr) WSs.

WSs that provide transactional properties are useful to guarantee reliable CWS execu-
tions, ensuring the whole system consistent state even in presence of failures. An aggregated
transactional property is assigned to a CWS in terms of transactional properties and control
flow of its WSs [11]. The basic recovery techniques supported by transactional properties of
CWSs are backward and forward recovery. A transactional CWS always allows backward
recovery by compensating the effects produced by the faulty and successful WSs before
the failure (Figure 1a). A transactional CWS allows forward recovery if it is retriable, by
retrying the faulty WS (Figure 1b).

All these recovery techniques ensure the all-or-nothing property to keep the system con-
sistency; however, checkpointing techniques can be implemented to relax the all-or-nothing
property for transactional CWSs [20] or independent of transactional properties [6, 22], and
still provide fault tolerance. In both cases, when a failure occurs, snapshots that contain
advanced execution state (including partial results) are taken and returned to the user. The
checkpointed CWS can be resumed from an advanced point of execution, without affecting
its aggregated transactional property (Figure 1c) .

1Each component WS in a CWS must either complete successfully or have no effect whatsoever.

94 World Wide Web (2016) 19:89–109

In this work, we consider a distributed “execution engine” composed by independent
components taking care of each WS in a CWS. They communicate with each other, accord-
ing to the execution flow depicted by the CWS Graph, to send input parameters or control
signals. The components of the “execution engine” also manage information needed by the
fault tolerance mechanisms. The execution control is detached, independent, and transparent
to WS implementations (Figure 2).

3 Classification of context information

QoS Criteria QoS values describe non-functional WS characteristics. We consider execu-
tion time, price, reputation, and transactional propierties as QoS criteria. They have been
calculated before the execution of CWSs, and their values are known at run-time.

Figure 2 Execution System

World Wide Web (2016) 19:89–109 95

Execution state We define the execution state of a CWS in terms of what happened and
what remains to happen at a given moment. For example the elapsed time since the begin-
ning of the execution; how much estimated time remains until the end; how many WSs have
been executed; and how many user outputs (OQ) haven been generated. These parameters
are computed during the execution of a CWS as aggregated values while component WSs
are executed successfully.

Enviroment state It refers to a set of conditions the whole system has during a CWS exe-
cution. These conditions are independent of CWSs and the expected QoS values of its
component WSs. We take into consideration the network connectivity parameter as envi-
ronment state. It is obtained before the CWS execution starts simultaneously for each
component WS using a ping measure from the “execution engine” to servers hosting them.
Network connectivity is also measured at the moment of selecting a WS replacement.

4 Dynamic recovery decision model

In this Section, we formally describe our model to dynamically choose the best recovery
technique. Independently of the technique used for QoS criteria estimation, we assume that
each WS is annotated with its estimated execution time, price, reputation, and transactional
property.

Definition 4 Estimated Execution Time for a WS (WSET ime). WSET ime represents the
estimated execution time for a WS.

Definition 5 Cost for a WS (WSCOST). WSCOST represents the price that a user has to
pay to use the WS and it is fixed by the WS provider.

Definition 6 Reputation for a WS (WSREP). WSREP is an aggregation of users feedbacks
and reflects the reliability, trustworthiness and credibility of the service and its provider.

Definition 7 Transactional Property for a WS (TP(WS)). T P (WS) is the transactional
property that implicitly describes the behavior of WS in case of failures. It can be pivot (p),
compensable (c), pivot retriable (pr), or compensable retriable (cr). It depends on the WS
developer.

It is possible to calculate the aggregated QoS of a CWS for each criteria in terms of its
component WSs. The estimated total execution time is calculated in terms of the compo-
nent WSs and the execution flow depicted by the structure representing the CWS. In CWSs
exist two basic variants of execution scenarios: sequential execution, in which the estimated
execution time is the sum of estimated execution times of each WS belonging to the sequen-
tial path (1), and parallel execution, in which the estimated execution time is the maximum
estimated execution time of parallel sequential paths (2) [25].

tsp =
n∑

j=1

t
(
wsj

)
(1)

tpp = max
1≤j≤m

(
tspj

)
(2)

96 World Wide Web (2016) 19:89–109

where, tsp is the estimated time of a sequential path with n WSs, and t (wsj) is the estimated
execution time of a WS wsj . tpp is the estimated time for parallel paths with m sequential
paths, and tspj

is the execution time of the sequential path spj . Hence, the total estimated
execution time of a CWS is defined as follows:

Definition 8 Estimated Total Execution Time of a CWS (CWSET ime). CWSET ime is the
maximum value between all the sequential paths from ni to nf . It is calculated using the
Bellman-Ford algorithm, whose time complexity is O(|V ||E|).

For Cost and Reputation all WSs contribute to the total value independently of the
execution flow.

Definition 9 Total Cost of a CWS (CWST Cost). CWST Cost is the sum of all component
Web Service costs, defined as: CWST Cost = ∑

iWSiCOST
.

Definition 10 Total Reputation of a CWS (CWST REP). CWST REP is the aggregation of
all component Web Service reputations, defined as:

CWST REP = ∏
iWSiREP

.

Definition 11 Quality associated with a CWS. Let Q = (IQ,OQ, WQ) be the user
query and cws the CWS which satisfies Q; the quality of cws in terms of Q, called
Quality(cwsQ), is defined as:

Quality(cwsQ) = w1 ∗ CWSET ime + w2 ∗ CWST Cost + w3 ∗ CWST REP (3)

The quality associated to a CWS depends on the QoS criteria and on weights over
those criteria. w1, w2, and w3 are the weights for execution time, price, and reputation
respectively.

Definition 12 QoS Degree of Fault Tolerance for a CWS (ΔQoS(cws)). ΔQoS(cws) rep-
resents the maximum aggregated value of QoS allowed to exceed for the execution of a
CWS. It is expressed as a percentage of Quality

(
cwsQ

)
.

ΔQoS(cws) can be given by the user. In this way, the maximum QoS allowed for a CWS
execution is given by its aggregated QoS plus its ΔQoS(cws):

Definition 13 Tolerated Extra QoS of a CWS (CWSExtraQoS). Let cws be a CWS,
Quality(cwsQ) its aggregated QoS, and ΔQoS(cws) its maximum QoS degree supported;
CWSExtraQoS(cws) is defined as:

CWSExtraQoS(cws) = QualityQ(cws) + ΔQoS(cws) (4)

Definition 14 Real Executed Time for a WS (WSRET). WSiRET
refers to the real invested

time since wsi was invoked unti it finishes. If it finishes successfully, it is the time between
the moment when it received all its inputs until it sends its produced outputs. In case of
failure, it is the time between the moment when it received all its inputs until a failure is
detected.

Definition 15 Passed Real Execution Time for a WS (WSPT). Let wsi be a component WS
in a CWS; WSiPT

refers to the real invested time since the CWS starts its execution, from
ni , until wsi is invoked.

World Wide Web (2016) 19:89–109 97

With WSiPT
, it is possible to compute the variation between the estimated execution time

and the real execution time taken from the beginning of the execution of a CWS until the
actual invocation of each component WS.

Definition 16 Estimated Remaining Time from a WS (WSRemainT). Let wsi be a compo-
nent WS in a CWS; WSiRemainT

is the maximum value between all the sequential paths from
wsi to nf . It is calculated as in Definition 8.

WSiRemainT
allows to look ahead and calculate how far in terms of execution time is the

end of a CWS execution respect to each component WS.

Definition 17 Time Degree of Fault Tolerance for a WS (�T ime(wsi)). Let cws be a CWS
with CWSExtraQoS(cws). Let wsi be a component WS of cws with: WSiPT

; WSiRemainT
;

WSiRET
; and WSiET ime

. ΔT ime(wsi) represents the maximum time allowed to exceed for
the wsi execution to satisfy CWSExtraQoS(cws); it is expressed as:

ΔT ime(wsi) = CWSExtraQoST ime
(cws) − w1 ∗ (WSiPT +

WSiRemainT
+ WSiRET

+ WSiET ime

) (5)

We can calculate ΔCost(wsi) and ΔRep(wsi) in the same way as we do for
ΔT ime(wsi).

We analyze the network connectivity of each WS to tune up CWSET ime:

Definition 18 Current network connectivity to a WS (WScomm). Let I (wsi) and O(wsi) be
the inputs and outputs of a WS wsi ; the current network connectivity of wsi (WSicomm) is
the estimated transfer time of I (wsi) and O (wsi) between the “execution engine” and wsi .

Hence, we update the estimated execution time for a component WS as:

WSET ime = WSET ime + WScomm (6)

All the calculations that depend on WSET ime are then also tuned up, such as CWSET ime,
ΔT ime(wsi), and WSRemainT .

Finally, we calculate the output dependency of each WS:

Definition 19 Degree of Output Dependency of a WS (WSOD). WSiOD
is the number CWS

outputs that depend on a successful execution of wsi . This degree reflects the importance of
a WS in terms of the number of user outputs that depends on its successful execution.

4.1 Description of the fault tolerance strategy

Figure 2 shows the steps concerning CWS analysis, which is done before starting the exe-
cution. The input is composed by: (i) the CWS to execute, represented as a CWS Graph
(Definition 2); (ii) the aggregated QoS of the CWS; (iii) the WS registry containing WS
descriptions, their advertised QoS, and their transactional properties; (iv) the query indi-
cating inputs, outputs, and weights over QoS criteria; and (v) the allowed fault tolerance
percentage ΔQoS(cws).

The CWS Initial Analysis module is composed by three sub-modules:

98 World Wide Web (2016) 19:89–109

(1) Static Analysis is responsible for calculating and setting all the CWS properties that
can be obtained in a static way, independently of the CWS execution and its envi-
ronment; these properties are: (i) the aggregated CWS QoS, such as the estimated
execution time, price, and reputation; and (ii) the properties regarding each component
WS, such as the percentage of user outputs that would not be produced if a WS fails,
the remaining estimated execution time, and failure probability from each WS; they
are obtained by analyzing the CWS Graph;

(2) Dynamic Analysis is in charge of performing the network connectivity verification to
each WS in the CWS; it performs the verification by simultaneously sending a ping to
each server hosting a WS; and

(3) Aggregated Analysis takes the information gathered by the previous analyses and
generates a tuned up CWS execution estimation.

Once the CWS initial analysis finishes, we can start the CWS execution. The whole exe-
cution is managed by an “execution engine”, which deploys one Engine Thread responsible
for each WS (as shown in Figure 2). Figure 3 depicts the architecture of an Engine Thread,
comprised of the WS Execution, Compliance Monitor, and Engine Thread Fault-tolerance
modules.

The Compliance Monitor verifies the QoS constraints before and after a WS execution,
determining which one is the best fault-tolerance strategy to perform if a WS fails or if it
not possible to continue due to QoS constraint violations.

– Forward recovery by retrying: retrying can be immediately executed without consid-
ering price and reputation because it is the same wsi that is re-executed. Execution time
is the only QoS criterion considered.

– Forward recovery with replication or substitution: it is necessary to consider all
QoS criteria of WS substitutes to verify if they satisfy the tolerated extra QoS,
CWSExtraQoS . In this case, the aggregated CWS QoS is recalculated considering the
replica or substitute of wsi . It means recalculate (3), let us call NewQuality(CWSQ),
and checking if it does not violate the QoS constraint: NewQuality(CWSQ) ≤
CWSExtraQoS .

– Backward recovery or checkpointing: if the QoS constrain can not be satisfied
(NewQuality(CWSQ) > CWSExtraQoS), performing forward recovery is not pos-
sible. Thus, we have to determine which one is the best recovery strategy to select
between backward recovery and checkpointing. We propose the following weighted
sum considering the execution state in terms of elapsed time (WSiPT

, Definition 15)
and the number of outputs obtained (WSiOD

, Definition 19) despite the failure of wsi .

Figure 3 Engine Thread
Fault-tolerance

World Wide Web (2016) 19:89–109 99

Each recovery strategy has an importance, represented as weights wback1 and

wback2, with
2∑

j=1
wbackj = 1, that can be provided by the user query to express pref-

erence between backward recovery and checkpointing. We define in (7) a measure to
represent the total work done by a CWS at the moment of a failure in terms of elapsed
time, produced user outputs, and user preferences.

Si = wback1WSiPT
+ wback2WSiOD

(7)

Thus, while more time is invested since the beginning of a CWS execution and the
number of user outputs depending on wsi is lower, the greater the value of Si will be.
A variable ρ is also defined to specify a threshold of Si . If Si ≥ ρ, the checkpointing
strategy is selected to save the work already done; else, backward recovery is executed
and all the work is undone.

4.2 Fault tolerant strategy with transactional properties

Let cws be a CWS and TP(wsi) the transactional property of wsi where: (i) wspred.wsi

represents a ws predecessor of wsi ; (ii) wssucc.wsi represents a ws successor of wsi ; and (iii)
wsparall.wsi a WS executed in parallel with wsi . The restrictions are:

– cws has at most one TP(wsi) = p. If there is a pivot WS, ∀wsj | wsjpred.wsi
, TP

(
wsj

) =
c or TP

(
wsj

) = cr to enable backward recovery, i.e., if wsi fails, all WS predecessors
have to be compensated;

– if there exists TP(wsi) = p or TP(wsi) = pr in cws, ∀wsj | wsjsucc.wsi
, TP

(
wsj

) = pr

or TP
(
wsj

) = cr to ensure that everything after wsi will be executed successfully;
– if there is TP(wsi) = p, ∀wsj | wsjparall.wsi

TP
(
wsj

) = cr , because if wsi is executed
successfully, all its parallel WSs must be also executed successfully because wsi cannot
be compensated, and if wsi fails, all its parallel WSs must allow compensation;

– if there is TP(wsi) = pr , ∀wsj | wsjparall.wsi
, TP

(
wsj

) = cr or TP
(
wsj

) = pr , because
if wsi is executed successfully, all its parallel WSs must be also executed successfully;
however, the compensable (c) property is not required for its parallel WSs because wsi
will always finish successfully due to its retriable (r) property.

The allowed fault tolerance strategies according to the transactional property of a faulty
WS are summarized in Table 1. For instance, line 1 shows that regardless the transactional
property of the faulty WS, if it has a predecessor or parallel WS with transactional property
p, only forward recovery or checkpointing can be selected. If replication or substitution
are applied, replicas or substitutes of the faulty wsi have to satisfy QoS constraints and
transactional restrictions. It means that transactional properties of replicas or substitute WS
have to be the same of TP(wsi) or one that does not violate the CWS transactional property.

5 Algorithms for fault tolerant CWS execution

Algorithm 1 shows CWS Initial Analysis. Lines 1 and 2 calculate CWS static values; that is,
values that do not change with environment conditions. Network connectivity is evaluated
for each WS in the CWS, and their WSET ime is updated (lines 4 to 5). Note that the instruc-
tion of line 4 represents the process to check WSs connectivity. If the WS is not responding,
then a WS substitution should be done. If there is no substitute, a CWS reconfiguration

100 World Wide Web (2016) 19:89–109

Table 1 Recovery techniques when transactional properties are considered in a CWS

Failed TP(wsi) TP(wspred.wsi) TP(wsparall.wsi) Decision

Any p p fr or ckp

p, pr c, cr cr any

pr pr pr fr or ckp

c pr any fr or ckp

c, cr c, cr c, cr any

cr p, pr p, pr fr or ckp

should be tried, or else abort the CWS execution. Finally, nodes are annotated with their
information (line 6), and CWSET ime is updated (line 7).

Algorithm 2 shows the execution control for a WS invocation. As a preventive strategy,
we propose a CWS analysis to identify critical WSs which can exceed the time constraints
if they fail; hence, WSs can be replicated at the moment of their first invocation to improve
their probability of success. A WS can also be replicated if during the CWS execution, it has
become a critical WS (e.g., due to previous failures). When a WS is going to be executed,
the Engine Thread checks the strategy to be performed by calling Algorithm 4 (line 1). If
the strategy is replicate, retry, or none, it calls Algorithm 3 to do the WS execution (line 2).
Algorithm 3 is responsible for WS executions. It can perform replication (line 1) or single
WS execution (line 2).

World Wide Web (2016) 19:89–109 101

Algorithm 4 is responsible for selecting the best recovery strategy. It receives as input
the global parameters of the CWS execution (line 1), and the parameter concerning the
analyzed WS (2). It first checks for the possibility of performing forward recovery (line 3).
If there is enough time to perform forward recovery, it checks if the WS must be replicated
as prevention, retried, or substituted (line 4). If there is no need of replication, then it checks
if the WS can be retried (line 5) or substituted (line 6). If forward recovery is not possible,
it checks the amount of work done by the CWS to decide between backward recovery and
checkpointing (line 8).

6 Related work

Several techniques have been proposed to implement reliable CWS execution. Some works
consider WS transactional properties to ensure the all-or-nothing property of CWSs [7, 9,
11, 13, 24]. In this context, failures during CWS executions can be repaired by backward or
forward recovery processes. Other works consider WS replication, instead of transactional
properties, to provide forward recovery [4, 18, 29]. For some queries, partial responses may

102 World Wide Web (2016) 19:89–109

have sense; then, checkpointing techniques can be implemented to relax the all-or-nothing
property and still provide fault tolerance [6, 20, 22]. The faulty CWS can be resumed from
an advanced execution point to complete the desired result. None of these works consider the
dynamism of the execution environment to adapt the decision regarding to which recovery
strategy is the most appropriate.

Regarding selfhealing approaches, some works build on top of BPEL [3, 15, 17, 23],
while others propose new engines [12, 16, 27]. Modafferi and Conforti [15] present an
approach where developers define a Ws-BPEL process annotated with recovery informa-
tion. This Ws-BPEL process is then transformed in a standard Ws-BPEL process. The
supported recovery mechanisms are: external variable setting; timeout; redo; future alter-
nate behaviour; and rollback and re-execution. Moser et al. [17] present a system to
monitor BPEL processes regarding QoS constraints. It allows: the adaptation of existing
processes by providing alternative services for a given service; and the transformation of
SOAP messages to handle service interface mismatches. It is implemented using AOP,
decoupling it from the BPEL engine. Baresi et al. [3] augment the BPEL technology
with supervision rules to set what to check at runtime, and to define how to act when
anomalies are found. Subramanian [23] et al. propose an extension to BPEL regarding
self-healing policies. It allows definition of pre- and post-conditions of BPEL activities;
monitoring; diagnosis; and recovery strategy suggestion. Halima et al. [12] propose a
self-healing framework based on QoS. It enhances the messages between WSs with QoS
metadata. This QoS metada is used to detect QoS degradation, and react accordingly (e.g.,
WS substitution). Moo-Mena et al. [16] propose a QoS approach to duplicate or substi-
tute WSs in case of QoS degradation. Reponses between WSs are intercepted to check if
there is a SLA degradation. Zheng et al. [27] define an adaptive and dynamic fault tol-
erance strategy based on execution time, failures probability, and resource consumption
parameters. Users specify weights over those parameters to help choosing the recovery strat-
egy that complies with its needs. This last approach is meant for single WS executions,
not CWSs.

Our work proposes a non intrusive self-healing CWS execution framework, which is
transparent to users and developers. We introduce a novel approach to measure the work
done by a CWS execution and its compliance with QoS requirements. The CWS work is
expressed in terms of expected, current, and remaining QoS, and expected and produced
user outputs. This measure supports the selection of the most appropiate recovery or preven-
tive strategy. As far as we know, existing work lack this kind of work measure for CWSs,
as well as the dynamism regarding fault tolerance and preventive strategies. The main dis-
advantage of our approach is that it is a new engine that does not build on top of accepted
standards, such as BPEL; however, it is conceived as an automatic CWS execution engine
expected to work with the least amount of human intervention possible. Nonetheless, the
main concepts of our solution can be implemented as a complement of any other self-healing
solution for CWSs.

7 Experimental study

7.1 Implementation and general setup

We developed an execution engine using Java 6 and the MPJ Express 0.38 library. We
deployed it in a cluster of PCs, where the execution control of each WS is executed in a
different node of the cluster. All PCs have the same configuration: Intel Pentium 3.4GHz

World Wide Web (2016) 19:89–109 103

Figure 4 CWS Initial Analysis

CPU, 1GB RAM, Debian 6.0. They are connected through a 100Mbps Ethernet. We gener-
ate 1000 CWSs consisting of 1 to 1000 WSs using the Barabási-Albert model [2]. All WSs,
including replicas, have different QoS values. We consider the following QoS parameters:
estimated execution time; availability; cost; and reputation. We took real QoS values from
WS-DREAM [28]. All used artifacts are available2.

7.2 Efficiency evaluation

We evaluate the efficiency of our approach in terms of the performance of the CWS Initial
Analysis, since it is the most time consuming operation in our system. The CWS Initial
Analysis module depends on the CWS Graph analysis to obtain values such as CWSET ime,
CWST Cost , CWST REP , WSRemainT , and WSOD ; hence, its running time depends on the
size and complexity of the CWS Graph. Individual WS monitoring does not depend on the
size of the graph, so it does not have relevant impact on the performance of our system.

We measure the efficiency of the CWS Initial Analysis as as a percentage of the
CWSET ime of the CWS in evaluation. Figure 4 shows that the time consumed to analyse
CWSs with less than 400 WSs is relatively low: below 5 % of CWSET ime. The analysis
time for larger CWSs is higher in relation to CWSET ime: around 60 % of the CWSET ime

for CWSs containing 1000 WSs.
Regarding network connectivity in the Dynamic Analysis, if we suppose that we have

the capacity of performing the parallel verification of all WSs in a CWS, it takes an average
of 88.18 ms to get a reponse from WSs servers. The maximum value for a reponse we got
from evaluating all the 1,000,000 servers of the dataset was 483.23 ms, while 0.29 % were
not available.

2http://www.lamsade.dauphine.fr/∼angarita/des.html

http://www.lamsade.dauphine.fr/~angarita/des.html

104 World Wide Web (2016) 19:89–109

Figure 5 Tuned up CWSET ime

7.3 Effectiveness evaluation

We start the effectiveness evaluation by performing the CWS Initial Analysis, wich pro-
duces a tuned up CWSET ime. Figure 5 shows the original CWSET ime (CWS ETime) and
the new tuned up CWSET ime (New CWS ETime), taking into accout the network connec-
tivity at the moment of CWS executions. Some servers were unavailable; therefore, a CWS
reconfiguration (e.g., WS replacement) would have to be done before executing the CWS.

We have choosen a CWS (Figure 6) among the generated ones to illustrate our approach.
Arcs between WSs represent the data flow or control flow relations; arc numbers between
WSs and nf indicate the number of user outputs produced by its corresponding WS. Table 2

Figure 6 Ilustrative CWS

World Wide Web (2016) 19:89–109 105

Table 2 WSs QoS and output degree

component WS WSET ime (secs) WSCOST WSREP WSOD (#)

ws1 8080 80 0.9 10

ws2 8020 85 0.8 10

ws3 34980 0 0.9 6

ws4 7570 0 0.7 6

ws5 12990 75 0.8 6

ws6 836 90 0.9 8

ws7 1388 73 0.9 6

ws8 13330 0 0.7 5

ws9 24720 0 0.8 4

ws10 29650 81 0.9 3

shows the WSET ime (in seconds), WSCOST , WSREP , and the WSOD for each component
WS of our example CWS. Thus, we have the following values for the CWS:

CWSET time = WSET timews3
+ WSET timews9

+ WSET timews10
= 89350secs

CWST Cost =
10∑

i=1
WSiCOST

= 484; CWST REP =
10∏

i=1
wsiREP

= 0.14

Supposethat w1 ≡ w2 ≡ w3,ΔQoS(cws) = 30%, and ρ = 50%.

Case 1 forward recovery by retrying: a retriable WS already satisfies cost and reputation.
We have to verify if there is time for retrying. Suppose that T P (ws9) = r , and that ws9

fails after 24700 secs; thus, we have that:

– WSPT ws9
= 34980 secs;

– WSRemainT ws9
= 54370 secs

(
WSET imews9

+ WSET imews10

)
;

– WSET imews9
= 24700 secs.

We have that the new CWSET ime = 114050 secs, the original CWSET ime was 89350
secs; representing an increment of the 27.64 %. The user allows a 30 % extra for the
execution time, ΔT ime(ws9) > 0, so ws9 can be reexecuted.

Case 2 forward recovery with replication or substitution: now, suppose that we are in the
same situation of case 1; however, T P (ws9) �= r . What can we do? We look at the possible
WS substitutes that satisfy:

NewQuality(CWSQ) ≤ CWSExtraQos

If there is not much time for a WS substitute execution, we can replicate a set of substitute
WSs such that their parallel execution satisfy the above equation, taking the results of the
first one ending successfully (Figure 7). Note that for substitute WSs we have to consider
all QoS criteria.

Case 3 backward recovery or checkpointing: suppose that T P (ws9) �= r , and it has no sub-
stitutes; so ΔT ime(wsi) < 0 or NewQuality(CWSQ) > CWSExtraQoS . In this case,

106 World Wide Web (2016) 19:89–109

Figure 7 Substitution of ws9 with replication

new CWSET ime = 114050 (see case 1) and ΔT ime(ws9) < 0; therefore, forward recov-
ery cannot be selected. We know the number of user outputs depending on the successful
execution of ws9 (Table 6), therefore the value of WSOD can be calculated, representing
80.95% of the total user outputs (see Definition 19).

Sws9 = w1WSPT ws9
+ w2WSODws9

= 0.5(66.79) + 0.5(80.95) = 73.87

Then, since Sws9 ≥ ρ, the selected strategy is checkpointing. We suppose the rest of
WSs until ws7 were executed successfully. ws10 received a correct output from ws7 and
a checkpointing message from sws9 , so it cannot be executed but skipped. At the end of
the execution, the CWS would have generated all the user outputs except the ones gen-
erated by ws9 and ws10. The partial outputs delivered to the user represent 80.95 % of
the total outputs. The total executed time would be WSPT ws9

+ 24700 seconds = 59680
seconds and the remaining time in case of execution restart would be the execution times
of ws9 and ws10 (Figure 8), which is 54370 seconds. Those amounts of time represent
66.79 % and 60.85 % of the total estimated execution time, respectively. The new QoS
criteria are: newCWSET ime = 114050, newCWST Cost = CWST Cost + WSCOSTw9

,
newCWSREP = CWSREP · WSREPWS9

.

7.4 CWS executions effectiveness evaluation

We propose two environments with low WS availability: availability = 0.6, and availability
= 0.8 per WS of Figure 6, producing low availability CWS. We also set 0 as a tolerance
for CWS extra execution time, but we let the CWS cost and reputation open to any extra
value. Figure 7 shows results of performing 100 executions of the CWS of Figure 6 with
0,1,2,3,4,5, and 6 replicas. Regarding time constraint violation, it can be observed how it
decreases using availability = 0.6 (Time Violation 0.6), and availability = 0.8 (Time Viola-
tion 0.8). For the worst availability (0.6), we have that, without using replication, the time
constraint is violated in 100 % of the cases, due to the need of performing constant WSs
retries, or substitutions. The same behaviour can be observed using WSs availability of 0.8,

World Wide Web (2016) 19:89–109 107

Figure 8 Checkpointing/resume

but with a lower rate of time constraint violation. Figure 9 shows how the global cost of the
CWS increases when using replication for all WSs to improve the success rate as much as
possible (Cost All WSs), and using replication only for WSs in the critical path (Cost critical
path) : ws3, ws9, and ws10. We represent cost as the additional WSs that were successfully
executed due to of replication.

8 Conclusions

We have extended our approach proposed in [1] to enable the selection of the most appro-
priate recovery strategy in a dynamic way, according to QoS constraints, context and
environment information, such as the execution state and progress of a CWS and the net-
work connectivity at the exact moment of the CWS execution of each WS in the CWS. The
considered recovery strategies backward and forward recovery based on transactional prop-
erties. Forward recovery can be performed by retrying, replication, and substitution. We use

Figure 9 Constraint violations and cost

108 World Wide Web (2016) 19:89–109

replication also as a preventive strategy, and checkpointing as an alternative strategy. We
have showed the performance of our approach using large CWSs, and the impact on the
CWS QoS of using replication to decrease the time constraint violation rate. Regarding our
future work, the next task will be to make available a user friendly implementation of our
system.

References

1. Angarita, R., Cardinale, Y., Rukoz, M.: Dynamic recovery decision during composite web services exe-
cution. In: Proceedings of the Fifth Int. Conf. on Mngmt. of Emergent Digital EcoSystems, pp. 187–194.
ACM (2013)

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512
(1999)

3. Baresi, L., Guinea, S.: Dynamo and self-healing bpel compositions. In: 29th International Conference
on Software Engineering - Companion, 2007 ICSE, 2007 Companion, pp. 69–70 (2007)

4. Behl, J., Distler, T., Heisig, F., et al.: Providing Fault-tolerant Execution of Web-service based Workflows
within Clouds. In: Proceedings of the 2nd Int. Workshop on Cloud Computing Platforms (CloudCP)
(2012)

5. Benjamins, R., Dorner, J.D.E., Domingue, J., Fensel, D., López, O., Volz, R., Wahler, A., Zaremba, M.:
Service web 3.0. Technical report, Semantic Technology Institutes International (2007)

6. Brzezinski, J., Danilecki, A., Holenko, M., Kobusinska, A., Kobusinski, J., Zierhoffer, P.: D-reserve:
Distributed reliable service environment. In: ADBIS, pp. 71–84 (2012)

7. Bushehrian, O., Zare, S., Rad, N.K.: A Workflow-Based Failure Recovery in Web Services Composition.
J. Softw. Eng. Appl. 5, 89–95 (2012)

8. Business Process Execution Language for Web Services (bpel4ws), 2001. http://www.ibm.com/
developerworks/library/specification/ws-bpel/ - Extracted on April 2012

9. Cardinale, Y., Rukoz, M.: A framework for reliable execution of transactional composite web services.
In: Proceedings of The Int. ACM Conf. on Mngmt. of Emergent Digital EcoSystems (MEDES), pp. 129–
136 (2011)

10. Chan, K., Bishop, J., Steyn, J., Baresi, L., Guinea, S.: A fault taxonomy for web service composition.
In: Service-Oriented Computing - ICSOC 2007 Workshops, vol. 4907 of Lecture Notes in Computer
Science, pp. 363–375. Springer, Berlin Heidelberg (2009)

11. Haddad, J.E., Manouvrier, M., Rukoz, M.: TQoS: Transactional and QoS-aware selection algorithm for
automatic Web service composition. IEEE Trans. Serv. Comput. 3(1), 73–85 (2010)

12. Halima, R.B., Drira, K., Jmaiel, M.: A qos-oriented reconfigurable middleware for self-healing web
services. In: Proceedings of the 2008 IEEE International Conference on Web Services, ICWS ’08, pp.
104–111, Washington DC, USA, 2008. IEEE Computer Society

13. Lakhal, N.B., Kobayashi, T., Yokota, H.: FENECIA: failure endurable nested-transaction based execu-
tion of composite Web services with incorporated state analysis. VLDB J. 18(1), 1–56 (2009)

14. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A framework for fault tolerant composition of transactional
web services. IEEE Trans. Serv. Comput. 3(1), 46–59 (2010)

15. Modafferi, S., Conforti, E.: Methods for enabling recovery actions in ws-bpel. In: Proceedings of the
2006 Confederated Int. Conf. on On the Move to Meaningful Internet Systems: CoopIS, DOA, GADA,
and ODBASE - Volume Part I, pp. 219–236. Springer, Berlin, Heidelberg (2006)

16. Moo-Mena, F., Garcilazo-Ortiz, J., Basto-Dı́az, L., et al.: Defining a self-healing qos-based infrastructure
for web services applications. In: Proceedings of the 2008 11th IEEE Int. Conf. on Comp. Sci. and Eng.
- Workshops, pp. 215–220. IEEE Computer Society, Washington (2008)

17. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for ws-bpel. In:
Proceedings of the 17th International Conference on World Wide Web, WWW ’08, pp. 815–824. ACM,
New York (2008)

18. Nascimento, A.S., Rubira, C.M.F., Burrows, R., et al.: A systematic review of design diversity-based
solutions for fault-tolerant soas. In: Proceedings of Int. Conf. on Eval. and Assessment in Software Eng.,
pp. 107–118 (2013)

19. OASIS: Web Services Businnes Process Execution Language (WS-BPEL), Version 2.0. OASIS Standard
(2007). http://docs.oasis-open.org/wsbepel/2.0/wsbpel-v2.0.html,2007.OASISStandard

20. Rukoz, M., Cardinale, Y., Angarita, R.: Faceta∗: Checkpointing for transactional composite web service
execution based on petri-nets. Procedia Comput. Sci. 10, 874–879 (2012)

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://docs.oasis-open.org/wsbepel/2.0/wsbpel-v2.0.html, 2007. OASIS Standard

World Wide Web (2016) 19:89–109 109

21. Schafer, M., Dolog, P., Nejdl, W.: An environment for flexible advanced compensations of web service
transactions. ACM Trans. Web, 2 (2008)

22. Sindrilaru, E., Costan, A., Cristea, V.: Fault tolerance and recovery in grid workflow management
systems. In: Interl Conf. on Complex, Intelligent and Software Intensive Systems, pp. 475–480 (2010)

23. Subramanian, S., Thiran, P., Narendra, N.C., et al.: On the enhancement of bpel engines for self-healing
composite web services. In: Proceedings of the 2008 Int. Symposium on Applications and the Internet,
SAINT ’08, pp. 33–39. IEEE Computer Society, Washington (2008)

24. Wu, Q., Zhu, Q.: Transactional and qos-aware dynamic service composition based on ant colony
optimization. Future Gener. Comput. Syst. 29(5), 1112–1119 (2013)

25. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware
for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

26. Zhao, Z., Wei, J., Lin, L., et al.: A Concurrency Control Mechanism for Composite Service Supporting
User-Defined Relaxed Atomicity. In: The 32nd IEEE Int. Computer Soft. and App. Conf., pp. 275–278
(2008)

27. Zheng, Z., Lyu, M.R.: An adaptive qos-aware fault tolerance strategy for web services. Empirical Softw.
Engg. 15(4), 323–345 (2010)

28. Zheng, Z., Lyu, M.: Collaborative reliability prediction of service-oriented systems. In: Conf. on
Software Engineering, 2010 ACM/IEEE 32nd Int., vol. 1, pp. 35–44 (2010)

29. Zhou, W., Wang, L.: A byzantine fault tolerant protocol for composite web services. In: International
Conference on Computational Intelligence and Software Engineering (CiSE), pp. 1–4 (2010)

	Modeling dynamic recovery strategy for composite web services execution
	Abstract
	Introduction
	Fault tolerance for composite web services
	Composite web service
	CWS execution control
	Failures in CWSs
	Fault tolerant CWS execution

	Classification of context information
	QoS Criteria
	Execution state
	Enviroment state

	Dynamic recovery decision model
	Description of the fault tolerance strategy
	Fault tolerant strategy with transactional properties

	Algorithms for fault tolerant CWS execution
	Related work
	Experimental study
	Implementation and general setup
	Efficiency evaluation
	Effectiveness evaluation
	CWS executions effectiveness evaluation

	Conclusions
	References

