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Abstract Due to its wide applications, subgraph query has attracted lots of attentions in
database community. In this paper, we focus on subgraph query over a single large graph
G, i.e., finding all embeddings of query Q in G. Different from existing feature-based
approaches, we map all edges into a two-dimensional space �2 and propose a bitmap struc-
ture to index�2. At run time, we find a set of adjacent edge pairs (AEP) or star-style patterns
(SSP) to cover Q. We develop edge join (EJ) algorithms to address both AEP and SSP
subqueries. Based on the bitmap index, our method can optimize I/O and CPU cost. More
importantly, our index has the linear space complexity instead of exponential complexity
in feature-based approaches, which indicates that our index can scale well with respect to
large data size. Furthermore, our index has light maintenance overhead, which has not been
considered in most of existing work. Extensive experiments show that our method signifi-
cantly outperforms existing ones in both online and offline processing with respect to query
response time, index building time, index size and index maintenance overhead.
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1 Introduction

Due to the flexibility of graphs, more and more applications adopt graphs as the underlying
model, such as communication networks, biological networks and social networks. Hence,
graph databases have recently gained lots of attentions in database community [4, 13, 16,
19, 24, 26, 27, 32, 33, 36, 39, 40, 43]. Graph databases represent and store information by
nodes and connecting edges and the key feature in graph databases is that query processing
is optimized for structural queries, such as shortest-path queries [2, 5, 6, 17], reachability
queries [3, 6, 29, 31], and subgraph queries [24, 33]. In this paper, we focus on subgraph
queries. Generally speaking, there are two scenarios of graph database models in these liter-
atures. The first scenario is that graph database has a large number of small-size connected
data graphs, i.e., the graph-transaction database. Given a query Q, subgraph query retrieves
all data graphs containing Q. For example, scientists want to find all molecules having a
specified substructure (such as benzene ring) from a compound database. In the second sce-
nario, there is a single large graph (may not be connected) G, such as biological networks
and social networks. Given a query Q, subgraph query needs to locate all embeddings of
Q in G. For example, given a biological network G and a structural motif Q, we want to
locate all embeddings ofQ. Usually, in the second scenario, the size of the largest connected
component in G is very large.

In this paper, we focus on the second scenario, i.e., finding all embeddings of Q over
a single large graph G. The hardness of this problem lives in its exponential search space.
Obviously, it is impossible to employ some subgraph isomorphism algorithm, such as ULL-
MANN [30] and VF2 [7], over a very large graph to find all embeddings on the fly. In
order to speed up query processing, we need to create indices for large graphs and rely these
indices to reduce the search space. Apparently, these indices should be small and have light
maintenance cost.

A possible solution is to find some frequent substructures (such as paths, subtrees and
subgraphs) as features. Then, for each feature, we maintain a list of its embedding positions.
The feature-based approach is often used in graph-transaction database. Unfortunately, this
approach cannot work well in a single large graph G. As far as we know, mining frequent
subgraphs in a large graph is still an open question in data mining community.

Furthermore, pre-computed indices should have the light maintenance overhead. Most
exiting methods assume that graph databases are static or updated in batch. However, the
assumption cannot hold in some applications. For example, the individual relationships are
always changing in social networks. In this case, the desirable indexing structures should
have light maintenance overhead. For feature-based index approaches, when the structural
information of a vertex in a single large graph is updated, since the update operation may
involve lots of vertices and features, it is quite expensive to update the embedding lists of all
involved features. For example, GADDI [37] tries to find some discriminative discriminat-
ing substructures and uses these substructures to define a novel distance. If there are some
updates in the data graph, because the frequencies of some discriminating substructures are
changed, the distances need to recalculated.

In this paper, we propose an index that can meet the above two requirements–small index
size and light maintenance cost. Firstly, we map all edges into two-dimensional points,
namely, converting a data graph into a two-dimensional space �2. Then, according to edge
endpoint labels, we re-arrange �2 and partition it into different areas. All points in �2

corresponding to edges with the same endpoint labels will be in the same area. For each
area, we assign two bitstrings to summarize all edges in this cluster. Given a large graph G,
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the space complexity of the indexing structure is O(|E(G)|), where |E(G)| is the number
of edges in G. Furthermore, our index maintenance algorithm has linear time complexity
with respect to number of insertions or deletions.

At run time, given a query Q, we first find a set of adjacent edge pairs (AEP) or star-style
pattern (SSP) subqueries to cover Q. Then, we develop two kinds of edge join algorithms
to address AEP and SSP subqueries, respectively. Finally, we perform a series of two-way
joins to find final matches for Q. Here, for finding good subqueries to cover Q, we will
introduce a cost model.

To summarize, in this work, we have made the following contributions:

1) We propose a novel bitmap index for a large graph G, which has both linear space cost
and light maintenance overhead.

2) We find a set of AEP subqueries to cover a query Q. Based on our proposed bitmap
index, we develop an efficient Edge Join (EJ) algorithm to answer AEP subqueries.
We propose a cost model and a histogram-based cost estimation method to guide AEP
selection.

3) In order to further improve query performance, we propose to use SSP instead of AEP
subqueries. We also develop a bitmap-based method to reduce the intermediate result
size.

4) Finally, we conduct extensive experiments over both real and synthetic datasets to
evaluate our proposed approaches.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
The problem definition is given in Section 3. A bitmap index is proposed in Section 4.
Section 5 proposes an AEP-based query algorithm. In order to improve the query per-
formance, in Section 6, we propose two optimization techniques: SSP-based solution and
reducing intermediate result size by bitmap indices. The index maintenance method is dis-
cussed in Section 7. Section 8 shows how to extend our method for handling the undirected
graphs. We report the effectiveness of proposed methods through extensive experiments in
Section 9 and conclude the paper in Section 10.

2 Related work

Subgraph search is a fundamental operation in graph databases. So far, there have been lots
of proposals for subgraph search problem [4, 13, 16, 24, 26, 27, 32, 33, 36, 39, 40, 43]. As
mentioned earlier, there are two scenarios of graph databases, thus, in this section, we will
survey some related work in these two scenarios, respectively.

In the first scenario, i.e., a graph database having a large number of small-size graphs,
most existing methods adopt “filter-and-refine” framework. Specifically, first some prun-
ing rules are adopted to filter out a large number of false positives. Then, the final results
are fixed by subgraph isomorphism checking over candidates. In this way, the online per-
formance depends on the pruning power of different pruning strategies. The most popular
pruning method is “feature-based” pruning, which uses some paths, subtrees or subgraphs
as structural features [4, 19, 24, 33, 36]. Assume that query Q has a structural feature F . All
data graphs without containing F will be pruned safely. For example, all paths up to length
maxL (maxL is a specified parameter) are selected as features in GraphGrep [24]. In order
to improve pruning power, gIndex [33] and FGIndex [4] employ graph mining techniques
to find some frequent subgraphs as features. Recently, CT-index [19] have proposed a hash-
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key fingerprint technique based on trees and cycles features to filter candidates. However, it
is quite difficult to extend feature-based approaches into a single large graph (i.e., the sec-
ond scenario) due to two reasons. First, finding frequent subgraphs in a single large graph
is still an open problem in data mining community. Second, the space cost of feature-based
approaches is expensive, since all feature embedding positions need to be recorded.

Different from feature-based methods, there are some other approaches that do not
employ structural features as indexing elements, such as Closure-tree [13] and GCode [44].
In Closure-tree, authors propose pseudo subgraph isomorphism by checking the existence
of a semi-perfect matching from vertices in query graph to vertices a data graph (or graph
closure). However, when the data graph size is very large, finding semi-perfect matching is
expensive. Thus, this method cannot work well in the second scenario of graph databases.
In our earlier work GCode [44], we compute vertex signature based on the local structure of
the graph [44]. The filtering strategy is based on the interlacing theorem in spectral graph
theory.

Recently, subgraph search over a single large graph has began to attract researchers’
attentions, such as GADDI [37], Nova [42] and SPath [39]. GADDI, Nova [42], SPath
[39] try to construct some indices to prune the search space of each vertex, such that the
whole search space can be jointly reduced as much as possible. GADDI proposes an index
based on neighboring discriminating substructure (NDS) distances, which need to count the
number of some small discriminating substructures in the intersecting subgraph of each two
vertices. Nova proposes an index named nIndex, which is based on the label distribution and
is integrated into a vector domination model. Both GADDI and Nova are memory-based
algorithm, meaning that they cannot scale to very large graphs. For example, GADDI cannot
work when |V (G)| > 40K , as shown in Figure 13, and Nova cannot work when vertex
degree is larger than 10, as shown in Figure 14. SPath constructs an index by neighborhood
signature, which utilizes the shortest paths within the k-neighborhood subgraph of each
vertex in the data graph. Because the index is built based on the k-neighborhood subgraph of
each vertex, the index building cost is very high, especially for a large graph. Furthermore,
SPath does not address the update issues. Distance-join [43] is our earlier work, in which,
we propose a distance join algorithm for pattern match query over a single large graph.
The match definition in [43] is not subgraph isomorphism as defined in Definition 2 in this
paper. Thus, the method in [43] cannot be used to answer subgraph query problem.

Some methods study the semantics of the subgraph query in a more general model,
such as GraphQL [14] and G-SPARQL [22].They propose query languages for graph
databases that support arbitrary attributes on nodes, edges and graphs. However, none of
them discusses how to construct structural indices in the general graphs to speed up query
processing. GraphQL suggest some optimization strategies, but does not discuss them in
detail.

In [20], the authors made a thorough comparison of existing solutions, such as GraphQL,
GADDI, SPath and so on. The experiments show that there was no single winner for all
experiments, but SPath is better than others in some cases. To overcome the shortcomings of
existing methods, [12] proposes a new approach named TurboISO. TurboISO firstly rewrite
the query and divide all query vertices into some Neighborhood Equivalence Classes. Two
query vertices in the same neighborhood equivalence classes can map to the same vertex.
Then, TurboISO does BFS search over the rewritten query from a selected query vertex u

and find a tree Tg . Then, TurboISO does DFS search from u’s candidate to determine a
candidate region. The depth of DFS search is based on Tg . Finally, TurboISO finds final
matches over the candidate region based on the matching order. TurboISO employs DFS
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search from some vertices. If the data graph is dense which means the diameter of the data
graph is small, the candidate region of a vertex may be very large. Then, TurboISO still
takes much time to join many candidates of the large candidate region.

Furthermore, Sun et al. [25] use Microsoft’s distributed graph database system, Trinity
[23], to answer the subgraph query, while Gao et al. [11] use an open source distributed
graph database system, Giraph [15], to approximately answer the subgraph query. Unlike
most of methods based on multi-way join of candidates, these method utilize efficient graph
exploration for query processing.

Sometimes, the notion of exact subgraph search are too restrictive in some applications,
so many works [8–10, 18, 28, 34, 35, 38, 41] revise the notion. Fan et al. [8–10] use graph
simulation to catch sensible matches that traditional notions of subgraph search fail to iden-
tify. Ness [18] proposes a graph similarity measure in an information propagation model.
Then, Ness do subgraph similarity search under this measure. G-Ray [28] defines the sub-
graph similarity search based on the model of random walk with restart. In [35, 38, 41],
researchers utilize the minimum graph edit distance constraint to define the graph similarity
search problem. Given a query graph Q, they try to find all subgraphs whose edit distances
to Q are smaller than a threshold. In [34], the authors find matches that map vertices and
edges of a query via some transformation functions in a graph.

3 Background

In this section, we review the terminology that we will use in this paper, and formally define
our problem. In this work, we study subgraph search over a large directed vertex-labeled
graph (Definition 1). In the following, unless otherwise specified, the term “graph” refers
to a directed vertex-labeled graph. Note that, we will discuss how to extend our method to
handle a large “undirected” graph in Section 8.

Definition 1 A directed vertex-labeled graph G is denoted as G = (V (G),E(G),L, F ),
where (1) V (G) is a set of vertices, and (2) E(G) ⊆ V × V is a set of directed edges,
and (3) L is a set of vertex labels, and (4) the labeling function F defines the mapping
F : V (G) → L.

Furthermore, according to the alphabetical order, we can define the total order for all
distinct vertex labels in L.

Figure 1a shows a running example of a directed vertex-labeled graph. Note that, the
numbers inside the vertices are vertex IDs that we introduce to simplify description of the
graph; and the letters beside the vertices are vertex labels. A directed edge from v1 to v2 is
denoted as −−→v1v2.

Definition 2 A labeled graph G = (V (G),E(G),L, F ) is isomorphic to another graph
G′ = (V ′(G′), E′(G′), L′, F ′), denoted by G ≈ G′, if and only if there exists a bijection
function g : V (G) → V ′(G′) s.t .

1)∀v ∈ V (G), F (v) = F ′(g(v)); and

2)∀v1, v2 ∈ V (G),−−→v1v2 ∈ E ⇔ −−−−−−−→
g(v1)g(v2) ∈ E′

Given two graphs Q and G, Q is subgraph isomorphic to G, denoted as Q ⊆ G, if Q is
isomorphic to at least one subgraph G′ of G, and G′ is a match of Q in G.
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Figure 1 Graph G and query Q

Definition 3 (Problem Statement) Given a large data graph G and a query graph Q, where
|V (Q)| 
 |V (G)|, the problem that we conduct in this paper is defined as to find all
matches of Q in G, where matches are defined in Definition 2.

Table 1 shows some frequently-used notations in this paper.

4 Index

As mentioned in Section 1, the main idea of our method is that we classify all edges into
different groups according their endpoint labels. Then, for each group, we assign two bit-
strings (called signatures) to summary all edges in this group, and store the edges according
to the order of starting and ending vertex, respectively. Given a query graph, we can first

Table 1 Notations

G = (V (G),E(G), L, F ) Data graph

Q = (V (Q),E(Q),L′, F ′) Query graph

v, u Vertex in data graph and query graph, respectively

l Label

< l1, l2 > A label pair

F−1(l) All vertices in G with the label l

F−1(〈l1, l2〉) All edges in G with the label pair 〈l1, l2〉
F−1(〈l1, l2〉)|l1 All vertices with the label pair l1 and adjacent to an edge with

the label pair 〈l1, l2〉
SB(〈l1, l2〉), EB(< l1, l2 >) Start signature and end signature of

the label pair 〈l1, l2〉
SL(〈l1, l2〉), EL(< l1, l2 >) Start list and end list of the label pair 〈l1, l2〉
SL(〈l1, l2〉)|j Selections over the j-th elements in SL(〈l1, l2〉)|j
EL(〈l1, l2〉)k Selections over the k-th elements in EL(〈l1, l2〉)|k
M(e) Matches of query edge e

M(Q) Matches of query graph Q
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probe the candidates by signatures, to reduce the search space. In this section, we introduce
our index structures formally. Then, in Sections 5–6, we discuss the online query processing
algorithms. The index maintenance issue will be discussed in Section 7.

Definition 4 Given a vertex label l in graph G, F−1(l) is defined as F−1(l) = {v|F(v) =
l ∧ v ∈ V (G)}, where V (G) denotes the set of vertices in graph G. Furthermore, we order
all vertices in F−1(l) in the ascending order of their vertex IDs.

Definition 5 Given a directed edge −−→v1v2 in G, the vertex labels of v1 and v2 are l1 and l2,
respectively. The ID pair of edge e is defined as (v1, v2); and the label pair of edge e is
defined as 〈l1, l2〉.

Given a label pair 〈l1, l2〉, F−1(〈l1, l2〉) = {(v1, v2)|F(v1) = l1 ∧ F(v2) = l2 ∧ −−→v1v2 ∈
E(G)} and F−1(〈l1, l2〉)|l1 = {v1|(v1, v2) ∈ F−1 (〈l1, l2〉)}, where F−1(〈l1, l2〉) denotes
all directed edges with two ending points are l1 and l2, respectively.

Take graph G in Figure 1 for example. F−1(A) = {1, 6, 10} denotes all vertices whose
labels are ‘A’. Considering an edge e = −→

6, 9, its ID pair is denoted as (6, 9) and its label pair
is denoted as 〈A,B〉. F−1(〈A,B〉) = {(6, 9), (10, 5), (1, 11), (10, 4)}. F−1( 〈A, B〉)|A =
{1, 6, 10} and F−1(〈A, B〉)|B = {4, 5, 9, 11}.

For each edge e in G, according to its ID pair (Definition 5), we map it into a two-

dimensional point in �2. For example, given an edge e = −→
6, 9, its corresponding point

in �2 is (6, 9). Figure 2a shows the two-dimensional space �2 that corresponds to graph
G in Figure 1(a). The X and Y axis denote the starting and ending vertex of each edge,
respectively. The ordering in X and Y axes are both in the increasing order of vertex IDs. In
order to index �2, we re-arrange X and Y axis in Definition 6.

Definition 6 Given two vertex vi and vj (vi �= vj ) in G, we say vi < vj if and only if: 1)
F(vi) < F(vj ), where F(vi) and F(vj ) and the ordering for vertex labels are defined in
Definition 1; or 2) F(vi) = F(vj ) ∧ (i < j).

According to the total order in Definition 6, we re-organize the vertex IDs in both
X and Y axis, as shown in Figure 2b. We partition �2 into different areas, and each
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area corresponds to one label pair (Definition 5), as shown in Figure 3a. For example,
the shaded area in Figure 3a corresponds to the label pair 〈A, B〉, and F−1(〈A,B〉) =
{(6, 9), (10, 5), (1, 11), (10, 4)}. Note that, for ease of presentation, we use the terms “area”
and “label pair” interchangeably in the following discussion.

In order to index points in each area, we propose the following indexing structures. Con-
sider an area that corresponds to a label pair 〈l1, l2〉 in �2. F−1(l1) = {v1, v2, ..., vn} and
F−1(l2) = {v′

1, v
′
2, ..., v

′
m}. Assume that all vertices in F−1(l1) and F−1(l2) are in the

increasing order of vertex IDs, respectively.

Definition 7 Given a label pair 〈l1, l2〉, F−1(l1) = {v1, ..., vm} and F−1(l2) = {v′
1, ..., v′

n},
its start signature and end signature (denoted as SB(〈l1, l2〉) and EB(〈l1, l2〉)) are defined
as follows:

SB(〈l1, l2〉) is a length-m bit-string, denoted as SB(〈l1, l2〉) = [a1, ..., am], where each
bit ai (i = 1, .., m) corresponds to one vertex vi ∈ F−1(l1), and ∀i ∈ [1, m] ai = 1 ⇔ vi ∈
F−1(〈l1, l2 〉)|l1 .

EB(〈l1, l2〉) is a length-n bit-string, denoted as EB(〈l1, l2〉) = [b1, ..., bn], where each
bit bi (i = 1, .., n) corresponds to one vertex v′

i ∈ F−1(l2), and ∀i ∈ [1, n] bi = 1 ⇔ v′
i ∈

F−1(〈l1, l2 〉)|l2 .

(c)(b)

(a)

Figure 3 Two-dimensional Space �2
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Let us recall the shaded area corresponding to label pair 〈A, B〉 in Figure 3a. Since
F−1(A) = {1, 6, 10} and F−1(B) = {4, 5, 8, 9, 11}, thus, |SB(〈A,B〉)| = 3 and
|EB(〈A, B〉)| = 5. Since F−1(〈A,B 〉)|A = {1, 6, 10}, thus, SB(〈A, B〉) = [111]. Since
F−1(〈A, B 〉)|B = {4, 5, 9, 11}, thus, EB(〈A, B〉) = [11011].

Besides start and end signatures in �2, for each area, we store all edges that are ranked
by start and end vertex, respectively. Definition 8 defines the index structure.

Definition 8 Given a label pair 〈l1, l2〉, F−1(l1) = {v1, ..., vm} and F−1(l2) = {v′
1, ..., v

′
n},

its start list is defined as follows:

SL(〈l1, l2〉) = {[j, (−−→vj vk)]|−−→vj vk ∈ F−1(〈l1, l2〉)}
where [j, (−−→vj vk)] denotes one edge −−→vj vk ∈ F−1(〈l1, l2〉) and j is called start index, which
denotes the j -th bit that corresponds to vj in SB(〈l1, l2〉).

Given a label pair 〈l1, l2〉, F−1(l1) = {v1, ..., vm} and F−1(l2) = {v′
1, ..., v′

n}, its end list
is defined as follows:

EL(〈l1, l2〉) = {[k, (−−→vj vk)]|−−→vj vk ∈ F−1(〈l1, l2〉)}
where [k, (−−→vj vk)] denotes one edge −−→vj vk ∈ F−1(〈l1, l2〉) and k is called end index, which
denotes the k-th bit that corresponds to vk in EB(〈l1, l2〉).

There are four edges
−→
6, 9,

−−→
10, 5,

−−→
1, 11,

−−→
10, 4 in the shaded area in Figure 3c. Since

1, 6 and 10 correspond to the 1-st, 2-nd and 3-rd bit in SB(〈A, B〉), respectively,

thus, SL(〈A, B〉) = {[1, (−−→1, 11)], [2, (−→6, 9)], [3, (−−→10, 5)], [3, (−−→10, 4)]}. Analogously, EL

(〈A, B〉) = {[1, (−−→10, 4)], [2, (−−→10, 5)], [4, (−→6, 9)], [5, (−−→1, 11)]}.

Definition 9 Given a start list SL(〈l1, l2〉) (or an end list EL(〈l1, l2〉)), selections over the
start list (denoted as SL(〈l1, l2〉)|j ) and the end list (denoted as EL(〈l1, l2〉)|k) are defined
as follows:

SL(〈l1, l2〉)|j = {(vj , vk)|[j, −−→vj vk] ∈ SL(〈l1, l2〉)}
EL(〈l1, l2〉)|k = {(vj , vk)|[k,−−→vj vk] ∈ EL(〈l1, l2〉)}

where j (k) denotes the bit position that corresponds to vj (vk) in SB(〈l1, l2〉) (EB(〈l1, l2〉)).

For example, SL(〈A ,B〉)|3 = {−−→10, 4,
−−→
10, 5}, since vertex 10 corresponds to the 3-rd bit

in SB(〈A, B〉).
As discussed above, for each label pair 〈l1, l2〉, we assign it four associated data struc-

tures, that are start signature, end signature, start list and end list. We build a hash table as
an indexing structure (called HT index), as shown in Figure 4, in which label pairs are keys
and the associated data structures are values.

When we store all data structures on disk, we can build B+-tree over the keys (i.e., the
label pairs) rather than the signatures and lists. Therefore, a basic unit in each B+-tree page
is a “label pair”. Each leaf entry in the B+-tree has a link to the corresponding start/end
signatures and lists, as shown in Figure 5.

Furthermore, it is straightforward to extend our method to support multi-labelled graphs.
For example, in Figure 6, we assume that vertex 11 has multiple labels as {A,B} instead
of a single label B. Then, edge

−−→
1, 11 occurs in the signatures and lists of both label pair

< A, B > and < A, A >. Specifically, we have the following edge signatures/lists in
the two label pairs. The online query algorithm does not require revision to support the
multi-labelled graphs.
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Figure 4 HT index

Last, in order to save the space cost of bitmap index, we propose to use the compression
version of bitmap index, i.e., only recording the non-zero bit positions in start and end
signatures. It is straightforward to know there are 2 × |E(G)| non-zero bits in all start and
end signatures in total, and there are 2 × |E(G)| edges in all start and end lists in total.
Therefore, we have the following theorem about the space cost of HT index.

Theorem 1 The space complexity of HT index (in Figure 4) is O(|E(G)|).

Proof For each edge e ∈ F−1(〈l1, l2〉) in G, there will be a non-zero bit in SB(〈l1, l2〉) and
EB(〈l1, l2〉) and an element in SL(〈l1, l2〉) and EL(〈l1, l2〉), respectively. Because there are
|E(G)| edges, the space complexity of HT index is O(|E(G)|).

5 AEP-based query evaluation

In this section, we discuss how to evaluate a subgraph query over a large graph G. We
first propose an edge join algorithm to answer an adjacent edge pair query (AEP query,

Figure 5 Index over B+-tree
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(a)(a)

Figure 6 Graph with Multiple Labels and Its Index

Definition 11) in Section 5.1. Given a general query Q with more than two edges, we find a
set of AEP queries to cover Q, and find matches of Q by joining all AEP query results. In
order to optimize query Q, we propose a cost model to guide finding AEPs in Q. The cost
model and the general subgraph query algorithm will be discussed in Sections 5.2 and 5.3,
respectively.

5.1 Edge join

Definition 10 Given two edges e1 and e2, e1 is adjacent to e2, if and only if e1 and e2 has
one common vertex v. There are four cases for two adjacent edges e1 and e2.

1) e1 and e2 are called EE join if they share the same end point.
2) e1 and e2 are called SS join, if they share the same start point.
3) e1 and e2 are called SE join, if v is e1’s start point and v is also e2’s end point.
4) e1 and e2 are called ES join, if v is e1’s end point and v is also e2’s start point.

Definition 11 Given a query Q having two edges e1 and e2, if e1 is adjacent to e2, Q is
called an adjacent edge pair (AEP for short) query.

For ease of presentation, we only consider ES join in the following discussion, since
other cases have the analogous query process. Let us recall an AEP query Q1 in Figure 1,
which has two adjacent edges e1 = −−→

u1u2 and e2 = −−→
u2u3 with one common vertex u2.

The label pairs of e1 and e2 are 〈A, B〉 and 〈B, C〉, respectively. Considering label pair
〈A, B〉, all edges in F−1(〈A, B〉) are matches of e1, i.e., M(e1) = F−1(〈A, B〉) (defined in
Definition 5). Due to the same reason, M(e2) = F−1(〈B,C〉), wher M(e1) and M(e2) are
both shown in Figure 7. The baseline algorithm is to perform a natural join M(e1) �� M(e2)

based on the common column u2. According to the index proposed in Section 4, we can
find the edge lists that are ordered by u2 for M(e1) and M(e2), respectively. Thus, we can
perform a merge join to answer M(e1) �� M(e2). The join cost can be evaluated as follows:

Cost = CIO × (|M(e1)| + |M(e2)|)/Pdisk + Ccpu × (Min(|M(e1)|, |M(e2)|))
= 8 × CIO/Pdisk + 4 × Ccpu

(1)

where CIO is the average I/O cost for one disk page access, and (|M(e1)| + |M(e2)|)/Pdisk

is the number of disk page accesses to loading M(e1) and M(e2) (i.e., F−1(〈A, B〉) and
F−1(〈B, C〉)) into memory, and Ccpu is the average CPU cost.
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Figure 7 Edge join processing

In order to speed up query processing, we need to reduce the cost in (1). Actually,
it is not necessary to load the whole M(e1) and M(e2) into memory, and then perform
M(e1) �� M(e2). The intuition of our method is that we can utilize bitmap index proposed
in Section 4 to reduce M(e1) and M(e2), respectively. We first illustrate the method by
Figure 7 to demonstrate the join processing for query Q1 in Figure 1. The label pairs of two
adjacent edges in Q are 〈A,B〉 and 〈B, C〉. EB(〈A, B〉) ∧ SB(〈B, C〉) = [11010] (Step 1
in Figure 7). The non-zero bit positions are I1 = 1, I2 = 2, I3 = 4. Actually, these non-zero
bit positions correspond to vertices 4, 5, 9 in G (Step 2). Then, we can find M(e1 ∪ e2) as
follows (Steps 3-6 in Figure 7):

M(e1 ∪ e2) = (EL(〈A, B〉)|1 �� SL(〈B, C〉)|1) ∪ (EL(〈A,B〉)|2 �� SL(〈B, C〉)|2)
∪(EL(〈A,B〉)|4 �� SL(〈B,C〉)|4)
= (10, 4) �� (4, 2) ∪ (10, 5) �� (5, 2) ∪ (6, 9) �� (9, 7) = {(10, 4, 2), (10, 5, 2), (6, 9, 7)}
In this case, the join cost can be evaluated as follows:

Cost (e1, e2) = δ + CIO × (
∑i=n

i=1 (|EL(e1)|Ii
| + |SL(e2)|Ii

|)/Pdisk

+Ccpu × ∑i=n
i=1 Min(|EL(e1)|Ii

|, |SL(e2)|Ii
|)

= δ + 6 × CIO + 3 × Ccpu

(2)

where δ is the average cost for bitwise AND operation (Step 1. in Figure 7), which is so
small to be neglected. Obviously, the cost in (2) is less than that in (1). The pseudo codes
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for Edge Join (EJ) algorithm are given in Algorithm 1. We can prove that the EJ algorithm
satisfies no-false-negative requirement in Lemma 1.

Lemma 1 Assume that there are two ES join edges e1 and e2, and their label pairs are
〈l1, l2〉 and 〈l2, l3〉, respectively.
1) ifEB(〈l1, l2〉)∧SB(〈l2, l3〉) is a bit-string in which each bit is 0, thenM(e1∪e2) =NULL;
2) if EB(〈l1, l2〉) ∧ SB(〈l2, l3〉) is a bit-string in which the Ii-th bit is 1, i = 1, ..., n, then
M(e1 ∪ e2) can be evaluated by the following equation:

M(e1 ∪ e2) =
⋃i=n

i=1
(EL(〈l1, l2〉)|Ii

�� SL(〈l2, l3〉)|Ii
)

where EL(〈l1, l2〉)|Ii
and SL(〈l2, l3〉)|Ii

are defined in Definition 9.

Proof For each bit bIi
in EB(〈l1, l2〉) ∧ SB(〈l2, l3〉), assume that bi corresponds to vIi

in
F−1(l2), there are two cases:

1) if bIi
= 0, then the Ii-th bit in EB(〈l1, l2〉) is 0 or the Ii-th bit in SB(〈l2, l3〉) is 0.

Therefore, there exists no−−→
uvIi

or−−→vIi
w where u ∈ F−1(l1) andw ∈ F−1(l3). Therefore,

EL(〈l1, l2〉)|Ii
�� SL(〈l2, l3〉)|Ii

= �;
2) if bIi

= 1, then the Ii-th bit in EB(〈l1, l2〉) is 1 and the Ii-th bit in SB(〈l2, l3〉) is 1.
Hence, there exist both −−→

uvIi
and −−→vIi

w where u ∈ F−1(l1) and w ∈ F−1(l3). Thus,
all edges −−→

uvIi
and −−→vIi

w satisfy e1 ∪ e2. Therefore, M(e1 ∪ e2) ⊇ EL(〈l1, l2〉)|Ii
��

SL(〈l2, l3〉)|Ii
;

On the basis of the above, we can conclude that M(e1 ∪ e2) = ⋃i=n
i=1(EL(〈l1, l2〉)|Ii

�� SL(〈l2, l3〉)|Ii
)

As discussed early, due to the clustered B+-tree in the start and end lists, we can save I/O
cost in the selections over these lists and employ the merge join in Line 10 of Algorithm 1.

5.2 Cost estimation

In this subsection, we propose a method to estimate the join cost in EJ algorithm, which
will be used in Section 5.3 to answer a subgraph query. Let us recall the cost model in (2).
It is easy to estimate δ, Pdisk and CIO and CCPU from the collected statistics of query
data. The key issue is how to estimate |EL(e1)|Ii

| and |SL(e2)|Ii
|. In order to address this
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problem, we propose a histogram-based approach. For each label pair 〈l1, l2〉, we build two
histograms, denoted as SH(〈l1, l2〉) and EH(〈l1, l2〉).

Definition 12 Given a label pair 〈l1, l2〉, the start histogram for 〈l1, l2〉 is a length-n number
array, denoted as SH(〈l1, l2〉) = [h1, ..., hn], and each number hi (i = 1, ..., n) corresponds
to one vertex vi in F−1(l1), and ∀i ∈ [1, n], hi = |SL(〈l1, l2〉)|i |.

The end histogram for 〈l1, l2〉 is a length-m number array, denoted as EH(〈l1, l2〉) =
[h1, ..., hm], and each bit hi (i = 1, ..., m) corresponds to one vertex vi in F−1(l2), and
∀i ∈ [1, m], hi = |EL(〈l1, l2〉)|i |.

In order to estimate Cost (e1 ∪ e2) for query Q1 in Figure 7, we first compute EB(e1) ∧
SB(e2) = [11010], in which there are 3 non-zero bits, that are the 1-st, 2-nd and 4-th
positions in EB(e1) and SB(e2), respectively. According to the EH(e1) and SH(e2), it is
straightforward to estimate |EL(e1)|i | and |SL(e2)|i |, where i ∈ {1, 2, 4}. Finally, we can
estimate Cost (e1 ∪ e2) by (2).

We list the pseudo codes for the cost estimation (CE) algorithm in Algorithm 2. Given
two ES join edges e1 = −−→

u1u2 and e2 = −−→
u2u3, their label pairs are 〈l1, l2〉 and 〈l2, l3〉. We

first compute r = EB(e1) ∧ SB(e2). For i-th bit in r (i = 1, ..., |r|), if it is a non-zero
bit, we can estimate |EL(e1)|i | and |SL(e2)|i | according to the i-th element in EH(e1) and
SH(e2), respectively. Finally, we estimate the join cost by (2).

5.3 AEP-based query algorithm

In order to answer a subgraph query Q (|E(Q)| > 2), we find a set of AEP (Definition 11)
queries to cover Q (see Definition 13). Then, for each AEP (ei ∪ ej ), we employ EJ algo-
rithm to find M(ei1 ∪ ei2). For ease of presentation, we use pi to denote an AEP (ei1 ∪ ei2).
For any two distinct adjacent edge pairs p1 and p2 in S, there are only three topological
relations, disjointed, one-vertex sharing and two-vertex sharing.

Definition 13 Given a set of AEP, denoted as AS = {pi = (ei1 ∪ ei2)} in Q, we say that
AS covers Q if and only if

⋃ {pi} = Q.
We say that AS is a minimal cover over Q, if and only if AS satisfies the following two

conditions: (1)AS covers Q; and (2)Removing any AEP from AS will lead that AS cannot
cover Q.

Considering each AEP pi , we can estimate Cost (pi) by (2). As we know, in order to
answer a subgraph query Q, we need to answer a set of AEP queries. The cost of answering
Q can be evaluated by the sum of all edge joins. Thus, we use Cost (AS) in (3) to estimate
the cost for answering Q.
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Definition 14 Given a query Q, AS is called the minimum cover over Q if and only if
Cost (AS) is the smallest over all minimal covers over Q.

Cost (AS) =
∑

Cost (pi) =
∑

Cost (ei1 ∪ ei2) (3)

where pi = (ei1 ∪ ei2) ∈ AS and Cost (ei1 ∪ ei2) is defined in (2).

Given a query Q, there may exist more than one minimal cover over Q. In order to
optimize subgraph query processing, we need to find the minimum cover (Definition 14).
Luckily, we can reduce the minimum cover to the edge cover problem. The edge cover
problem [21] is given in the following definition. Since the edge cover problem can be
solved in a polynomial time algorithm [21], thus, finding the minimum query cover in AEP
can also solved in polynomial time.

Lemma 2 Finding the minimum cover based on AEPs can be reduced to the edge cover
problem.

Proof We can reduce an AEP-based minimum query cover problem to a minimum
edge cover problem as follows. Here, we construct an weighted undirected graph G∗ =
(V ∗, E∗,W) as follows. Each edge ei in E(Q) maps to a vertex v∗

i in V ∗. If an AEP pi

consists of two edges ei and ej of E(Q), there is an edge e∗ in E∗ between v∗
i and v∗

j .
The weight of e∗ is the estimated cost of pi . It is straightforward to know each instance
of the AEP-based query cover problem can be computed by invoking the edge cover
algorithm.

Theorem 2 Finding the minimum query cover in AEP-based algorithm can be solved in
polynomial time.

Proof The edge cover problem can be solved in polynomial time [21]. According to
Lemma 2, we know the theorem holds.

According to Theorem 2, we propose a polynomial AEP-based Query algorithm as Algo-
rithm 3. First, we use the edge cover algorithm to find the minimum cover AS of Q. Then,
we employ EJ algorithm to find matches of all AEPs in AS and join these matches together.
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Let us consider an example in Figure 8. Given a query graph Q2 in Figure 1(b), it has
three candidate AEPs, i.e., S = {p1, p2, p3}, where p1 = 〈A, B〉 ∧ 〈B,A〉, p2 = 〈A, B〉 ∧
〈B, C〉, p3 = 〈B, A〉 ∧ 〈B, C〉. Since there are three edges in Q, we introduce the three
corresponding vertices in G∗. There is an edge between two vertices in G∗ if and only if
their corresponding edges (in Q) are in one AEP. Each edge in G∗ has a cost, which equals
to the cost of each AEP. We find the minimum edge cover in G∗. Based on that, we can
find the minimum query cover as {p1, p2}. Then, we can find all matches of p1 and p2
are M(p1) = {(6, 9, 10), (10, 5, 6)} and M(p2) = {(6, 9, 7), (10, 5, 2), (10, 4, 2)}. Finally,
we can join M(p1) and M(p2) based on the common vertices u1 and u2, i.e., M(Q) =
M(p1) ��u1,u2 M(p2)= {(6, 9, 10, 7), (10, 5, 6, 2)}.

Theorem 3 Our AEP algorithm can yield correct subgraph matches.

Proof Given query graph Q and data graph G, supposed that AS is the minimum cover
based on AEPs, we only need to prove that our algorithm does not lead to false positive and
negative results.

Supposed that G′ is a match that we find by using AEP algorithm, for each v ∈ V (G′)
and e ∈ E(G′), it belongs to at least one AEP in AS. Hence, for each v and e, we at least
employ EJ algorithm once, which can guarantee that v and e have corresponding matches
in G. Thus, there is no false positive results.

For each match G′′ of Q in G, it can be covered by the same edge pairs set to AS, so we
must be able to get it by joining the result of each edge pair in AS. Thus, there is no negative
results.

On the basis of the above, we can know that our algorithm is correct.

6 Optimization

In this section, we propose two optimization methods to speed up subgraph query
processing.

Figure 8 Finding the Edge Cover
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6.1 SSP-based query evaluation

In Algorithm 3, we find a set of AEP queries to cover query Q. If some vertices in Q have
high degrees, we have a large number of AEP queries. So, it will be expensive to select a
minimal cover over Q. Furthermore, if query graph size is large, the number of join steps in
Line 8 in Algorithm 3 is also large. Let us recall query Q2 in Figure 1(b). We need to join
two AEP queries to answer Q2, however, we can join all edges in Q2 in one step, since they
have one common vertex u2.

Definition 15 Given a query Q having m edges, these edges have one common vertex u

(called center), Q is called a star-style pattern (SSP) query.

We firstly illustrate SSP query process by Q2. For example, we have three edges in Q2
with center u2. For edge e1 = −−→

u2u4 and e2 = −−→
u2u3, u2 is a start point in the two edges,

respectively. For edge e3 = −−→
u1u2, u2 is an end point. Therefore, we join the correspond-

ing signatures together, i.e., SB(e1) ∧ SB(e2) ∧ EB(e3) = SB(〈B, A〉) ∧ SB(〈B, C〉) ∧
EB(〈A, B〉) = [01010]. Since the second and fourth bits are ‘1’, these bits correspond to
vertices 5 and 9, respectively. Finally, we perform the following join process in (4). Figure 9
illustrates the details about SSP query processing.

M(e1 ∪ e2 ∪ e3) = (SL(e1)|2 �� SL(e2)|2 �� EL(e3)|2)
∪(SL(e1)|4 �� SL(e2)|4 �� EL(e3)|4) (4)

In order to answer SSP queries, an extended edge join (E-EJ) algorithm is proposed in
Algorithm 4. Consider a SSP query Q having m edges ei (i = 1, .., m) with center u.
According to the center position (start or end points) in each edge ei , we join the corre-
sponding signatures (start or end signatures) together. Assume that are n non-zero bits in
the join result, denoted as Ii , i = 1, ..., n. We use (5) to find the answers for query Q.

M(Q) =
⋃i=n

i=1
(XL(e1)|Ii

�� |XL(e2)|Ii
... �� XL(em)|Ii

) (5)

where XL denotes SL or EL, which depends on the center position (start or end points) in
each edge ei .

Given a SSP query Q having m edges ej (j = 1, ..., m) with the center u, the cost of
SSP query can be modeled by (6). Obviously, we can still employ the histogram proposed
in Section 2 to estimate (6).

Cost (Q) = δ + CIO × (
∑i=n

i=1 (
∑j=m

j=1 (|XL(ej )|Ii
|)))/Pdisk+

Ccpu × (
∑i=n

i=1 (Min
j=m

j=1 (|XL(ej )|Ii
|))) (6)

Then, we need to find the the minimum query cover with SSPs. Here, we propose a
heuristic solution to address this problem. Initially, we set Q′ = φ. We firstly find a star-
style pattern s1 (in Q) with the minimal estimated cost. Then, we can employ Algorithm 4
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Figure 9 Extended edge join processing

to find matches for s1, i.e., M(s1). We insert s1 into Q′ and remove it from Q. Then, we try
to find some edges e(

−−→
uiuj ) in Q, where ui and uj are already in s1. In this case, we refer

these edges as backward edges. In order to find matches for s1 ∪ e, denoted as M(S1 ∪ e),
we can scan M(s1) to filter some matches that are against the edge condition e(

−−→
uiuj ). Then,

we insert all backward edges in s1. Next, we find another SSP query si that is adjacent to
Q′ and has the minimal estimation cost. Then, we iterate the above process until Q′ = Q.
Finally, we report M(Q). Algorithm 5 shows our SSP-based Query Algorithm.

Theorem 4 Our SSP algorithm can yield correct subgraph matches.

Proof Its proof is similar as the proof of Theorem 3.
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Figure 10 Reducing Intermediate Result Size

6.2 Reducing intermediate results

In both AEP and SSP, we need to perform a series of two-way natural joins to find matches
of queryQ. If the intermediate result size is large, it will affect the query performance. In our
experiments, we find that some queries have a few matches over graph G, but, intermediate
result sizes are very large. In order to address this issue, we propose to utilize “signature” to
reduce intermediate result size. Note that, the following method can work for both AEP and
SSP-based solution. For ease of presentation, we only use SSP as an example to illustrate
how the optimization method works.

Given a query graph Q in Figure 10a, we can find three SSP queries (p1, p2 and p3) to
cover Q. We first find matches for these SSP queries by Algorithm 4, respectively. Instead
of performing natural joins directly, we can first perform “semi-join” by signatures. For
each pi , according to M(pi), we can get a signature for each vertex in pi , as shown in
Figure 10b. Take vertex u1 in M(p1) for example. u1’s label is ‘A’ and there are two vertices
6 and 10 that corresponds to u1. Thus, we can get a signature [0 1 1] for u1 in p1. Similarly,
vertex u1 is also in M(p3). According to M(p3), u1’s signature is [0 0 1].

For each vertex u in query Q, if u occur in different SSP queries pi , we perform bitwise
ADD operations over signatures associated with u in different pi , as shown in Figure 10c.
According to the signatures, we can remove some matches from M(pi). For example, u1
appears in both p1 and p2. Thus, according to their corresponding signatures, [0 1 1] ∩ [0 0
1] = [0 0 1]. Since u1’s signature is [0 0 1], we can remove (6, 9, 7, 10) fromM(p1) directly.
In this way, we can get “shrunk” listsM(pi). Finally, we perform a series of two-way natural
joins over these shrunk lists, which leads to less intermediate results.
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Because of the signature-based pruning techniques, the intermediate result size is so
small that we can maintain the intermediate results in memory in our experiments. If the
intermediate result size is too large to be cached in memory, we have to flush some of them
to disk. Then, we perform disk-based natural join algorithms over these intermediate results.
This is a well-studied problem in RDBMS, such as hash join and merge join algorithms. We
omit discussion about this tangential issue in this paper.

7 Maintenance

In some real applications, the underlying data graph is not static. In this section, we address
index maintenance issues to support online updates over graph databases.

7.1 Insertion

Assume that we insert an edge −−→v1v2 into graph G and its label pair is 〈l1, l2〉. There are five
different cases to be considered.

7.1.1 v1 ∈ V (G) ∧ v2 ∈ V (G)

When we insert e = −−→v1v2 (its label pair is 〈l1, l2〉) into G, if v1 ∈ V (G) ∧ v2 ∈ V (G),
it means that we do not introduce any new vertex ID. Therefore, we only need to update
start (end) signatures and start (end) lists for label pair 〈l1, l2〉. As discussed early, each
bit in SB(〈l1, l2〉) (and EB(〈l1, l2〉)) corresponds to one vertex in F−1(l1) (and F−1(l2),
Definition 4). Assume that v1 corresponds to the i-th bit in SB(〈l1, l2〉) and v2 corresponds
to the j -th bit in EB(〈l1, l2〉). We set the i-th bit in SB(〈l1, l2〉) to be ‘1’ and set j -th bit
in EB(〈l1, l2〉) to be ‘1’. We also insert edge [i, −−→vivj ] into SL(〈l1, l2〉) and EL(〈l1, l2〉),
respectively.

Cost Analysis. As discussed above, we first need to update two signatures SB(〈l1, l2〉) and
EB(〈l1, l2〉). Since the length of a signature is equal to the number of vertices with the
same label, the complexity of updating the signatures is O(|V |/|L|). We also need to insert
two edges into two lists SL(〈l1, l2〉) and EL(〈l1, l2〉), respectively. Due to the B+-trees in
these lists, the time complexity for insertion is O(log|F−1(〈l1, l2〉)|), where F−1(〈l1, l2〉)
is defined in Definition 5. Therefore, the total time complexity is O(log|F−1(〈l1, l2〉)|).

7.1.2 v1 /∈ V (G) ∧ l1 ∈ LV

When we insert e = −−→v1v2 (its label pair is 〈l1, l2〉) into G, v1 /∈ V (G) ∧ l1 ∈ LV means
that we introduce a new vertex ID but not a new vertex label. Firstly, we need to update
start and end signatures for all label pairs 〈l1, X〉 and 〈X, l1〉, where X ∈ LV . Considering
a label pair 〈l1, X〉 (and 〈X, l1〉), we need to enlarge SB(〈l1, X〉) (and EB(〈X, l1〉)) by one
bit (initializing to be ‘0’) that corresponds to vertex ID v1. Then, we employ the method in
Section 7.1.1, i.e., updating SB(〈l1, l2〉) and SB(〈l1, l2〉), and inserting −−→v1v2 into
SL(〈l1, l2〉) and SL(〈l1, l2〉), respectively.

Cost Analysis. Since there are 2 × |LV | label pairs to be considered in the first step, thus,
the time complexity is O(|LV |). We employ the method in Section 7.1.1 in the second
step, thus, the time complexity is O(log|F−1(l1, l2)|). Therefore, the total complexity is
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O(|LV | + log|F−1(l1, l2)|). Actually, if we adopt the compression version of bitmap index
(i.e, only recoding the positions for bit ‘1’), the first step can be ignored.

7.1.3 v2 /∈ V (G) ∧ l2 ∈ LV

It is analogous to Section 7.1.2.

7.1.4 v1 /∈ V (G) ∧ l1 /∈ LV

When we insert e = −−→v1v2 (its label pair is 〈l1, l2〉) into G, v1 /∈ V (G) and l1 /∈ LV

means that we introduce a new vertex ID having a new vertex label l1. Firstly, we introduce
2 × |LV | new label pairs 〈l1, X〉 and 〈X, l1〉, where X ∈ LV . For each label pair, we assign
it start (and end) signatures and start (and end) lists. Initially, all elements in start (and
end) signatures are ‘0’ and all start (and end) lists are empty. Then, we employ the method
in Section 7.1.1 to update SB(l1, l2) and EB(l1, l2), and insert −−→v1v2 into SL(l1, l2) and
EL(l1, l2), respectively. If we adopt the compression version of the bitmap index, we only
need to introduce one new label pair 〈l1, l2〉, and then employ the method in Section 7.1.1.

Cost Analysis. We need to introduce 2×|LV | new label pairs in the first step, thus, the time
complexity is O(|LV |). We employ the method in Section 7.1.1 in the second step, thus,
the time complexity is O(log|F−1(l1, l2)|). Therefore, the total complexity is O(|LV | +
|F−1(l1, l2)|).

7.1.5 v2 /∈ V (G) ∧ l2 /∈ LV

It is analogous to Section 7.1.4.

7.2 Deletion

Assume that we delete an edge −−→v1v2 from graph G and its label pair is 〈l1, l2〉. Firstly, we
delete edge −−→v1v2 from SL(〈l1, l2〉) and EL(〈l1, l2〉), respectively. Assume that v1 corre-
sponds to the i-th bit in SB(〈l1, l2〉), and v2 corresponds to the j -th bit in EB(〈l1, l2〉). After
deletion, if SL(〈l1, l2〉)|i = φ, we update the i-th bit in SB(〈l1, l2〉) to be ‘0’. Similarly, if
EL(〈l1, l2〉)|j = φ, we update the j -th bit in EB(〈l1, l2〉) to be ‘0’.

Cost Analysis. Due to B+-trees in SL(〈l1, l2〉) and EL(〈l1, l2〉), the time complexity of
deletion is O(log|F−1(〈l1, l2〉)|).

8 Handling undirected graphs

Note that, all the techniques mentioned above are designed for directed graphs. Actually, our
method can also be extended to support subgraph query over a large undirected graph. The
intuition behind the extension is that we can convert an undirected graphG and queryQ into
the corresponding directed graph G∗ and query Q∗ without introducing false negative and
positive results. Specifically, for any graph G(or Q) V (G∗) = V (G), LV (G∗) = LV (G)

and the labeling function of G∗ is equal to the labeling function of G. Besides, for each
edge in G(or Q), if F(v1) < F(v2) (or F(v2) < F(v1), according to the alphabetical
order), where F is the labeling function of G(or Q), then the directed edge −−→v1v2 (−−→v2v1) is
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introduced into G∗(or Q∗); if F(v1) = F(v2), then we introduce both directed edges −−→v1v2
and −−→v2v1 into G∗(or Q∗). There is an example in the following.

Given an undirected graph G, V (G∗), LV (G∗) and labeling function F ∗ of G∗ are the
same with V (G), LV (G) and the labeling function F of G. For example, because F(v1) =
A < F(v7) = C, we introduce a directed edge −−→v1v7 into G∗, as shown in Figure 11. If
F(v1) = F(v2), then we introduce both directed edges −−→v1v2 and

−−→v2v1 into G∗(or Q∗). For
example, because F(v6) = A = F(v10) = A, we introduce directed edges −−−→v6v10 and

−−−→v10v6
into G∗. Figure 11b shows an directed graph G∗ that corresponds to G. Given an undirected
query graph Q, we can also get its directed version Q∗, shown in Figure 12.

Considering undirected graphG andQ, we can find the match ofQ inG (denoted asG′),
shown in Figure 12a. According to our method, we can also find the match of Q∗ (denoted
as G′′) in G∗. Note that G′ and G′′ have the exactly same vertex IDs. Thus, our extension
method does not lead to any false negative or false positive result, as proved in Theorem 5.

Theorem 5 The extension method does not lead to false positive and negative results.

Proof Obviously, for each undirected graph G, there is one and only one corresponding
directed graph G∗ and different undirected graphs are mapped to different directed graphs.
This means that the function according to our extension method is an injective function.
Moreover, the function from Q to its match in G is a bijection function

Hence, according to the properties of relations, we know that for each match of Q in G,
there exist a corresponding match of Q∗ in G∗ and for each match of Q∗ in G∗, there exist
a corresponding match of Q in G.

On the basis of the above, we can conclude that our extension method does not lead to
false positive and negative results.

9 Experiments

In this section, we evaluate our methods AEP (adjacent edge pair query) and SSP (star-style
pattern query) over both synthetic and real data sets, and compare them with some state-
of-the-art algorithms, such as GADDI [37], Nova [42], SPath [39] and TurboISO [12]. Our
methods have been implemented using standard C++. The experiments are conducted on a
P4 2.0GHz machine with 2Gbytes RAM running Linux. Furthermore, GADDI and Nova’s

Figure 11 Example of extending undirected graph to directed graph
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Figure 12 Converting
undirected query graph to
directed query graph

(b)

(a)

softwares are provided by authors. So far, the softwares of SPath and TurboISO have not
been publicly-available, thus we use best-effort re-implementation according to [12, 39].
Since all competitors are designed for undirected graphs, thus, we use the extension method
in Section 8 in the following experiments.

9.1 Data sets

We prove the practicability of our approaches on the following datasets:

a) Erdos Renyi Model: This is a classical random graph model. It defines a random graph as
N vertices connected by M edges, chosen randomly from the N(N − 1)/2 possible edges.
In experiments, we vary N from 10K to 100K. The default average degree is set to be 5.
This dataset is denoted ER data.

b) Scale-Free Model: A scale-free network is a network whose degree distribution follows
a power law distribution. It means that the fraction P(k) of vertices having k neighbors
in the network, where P(k) ∼ k−γ . Usually, 2 < γ < 3 [1]. Thus, in our experiments,
we set γ = 2.5. We use the graph generator gengraphwin (www.cs.sunysb.edu/ algorith/
implement/viger/distrib/) to generate a scale-free network. This dataset is denoted SF data.
Here, the numbers of vertices are also set to be from 10K to 100K.

In the above two datasets, the default number of vertex labels (denoted as |L|) is 250. We
evaluate the numbers of vertex labels from 100 to 500 in Experiment 7.

c) HPRD (http://www.hprd.org/download) is a human protein interaction network consist-
ing of 9,460 vertices and 37,000 edges. We used the GO term description as vertex labels.
There are 307 vertex labels in HPRD.

d) Yago dataset (http://www.mpi-inf.mpg.de/yago-naga/yago/) is a RDF dataset. We build
a RDF graph, in which vertices corresponds to subjects and objects, and edges correspond
to properties. For each subject or object, we use its corresponding class as its vertex label.
We ignore the edge labels in our experiments. There are 368,587 vertices, 543,815 edges
and 45,450 vertex labels in Yago graph.

e) DBPedia dataset (http://dbpedia.org/About) is also a knowledge base. We build a
resource graph, in which vertices corresponds to resources, and edges correspond to rela-
tions between two resources. For each resource in DBPedia, it is annotated by a Wikipedia
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document. We use the article category of the document annotated the resource as its vertex
label. We ignore the edge labels in our experiments. There are 1,117,572 vertices, 4,572,916
edges and 127,841 vertex labels in DBPedia graph.

Note that, in the GADDI algorithm, there are two important parameters, Length (upper
bound of the distance between a pair of indexed vertices) and k (radius) mentioned above.
We set Length and k to 2 and 4, respectively. The only parameter of SPath, i.e., the
neighborhood scope k0, is set 4.

9.2 Results

In this section, we do seven experiments to compare our methods to some competitors from
different perspectives.

Experiment 1 (Performance VS. |V (G)|) This experiment is to study the scalability of our
methods with increasing of |V (G)|. In this experiment, we use ER datasets and fix |V (Q)|
(i.e., the number of vertices in query Q) to be 10 and |L| to be 250. Note that, TurboISO
does not build up any indices, so TurboISO takes no time for the offline.

Figure 13a shows that our methods (AEP and SSP) have linear index building time,
which outperforms Nova, GADDI and SPath by orders of magnitude. Figure 13c shows that
our methods (AEP and SSP) have much smaller index sizes than those in Nova and SPath.
Note that, GADDI cannot finish index building in reasonable time (within 24 hours) when
|V (G)| ≥ 60K . In addition, the GADDI software provided by authors cannot report index
size, thus, we ignore the comparison with GADDI in index sizes. Here, AEP and SSP have
the same index building process. Thus, they have the exact same index building time and
index size, as shown in Figures 13a and c.

We also report the average query response times in Figure 13e over ER graphs, which
show that both SSP and AEP do not increase greatly when varying |V (G)| from 10K to
100K, which confirms the good scalability of our methods. Note that, our methods are faster
than other methods by at least one order of magnitude in query processing. Furthermore,
SSP is better than AEP in large data graphs, such as |V (G)| = 100K. The reason is that:
SSP uses “star” instead of “edge” in AEP as building blocks in join processing, thus SSP has
less intermediate results than that in AEP. When |L| is fixed, there are more vertices having
the same vertex label with the increasing of |V (G)|. Therefore, the performance differences
of SSP and AEP are more clear when |V (G)| is large. We also evaluate our method over SF
graph in Figure 13.

Experiment 2 (Performance VS. Graph Degree) In this experiment, we use ER graphs, and
fix |V (G)| =100K and vary d = |E(G)|/|V (G)| from 5 to 20. Since GADDI cannot work
when |V (G)| =100K, thus, we ignore the comparison with GADDI. Figure 13a shows that
Nova cannot work when d > 10, and our method is much faster than Nova when d = 5 and
10.

More interestingly, with the increasing of d, the index building time is growing very
slowly, as shown in Figure 14a. Figure 14b shows that our methods (AEP and SSP) are
faster than Nova and TurboISO in query response time. Furthermore, SSP is better than
AEP, especially when d increases to 20, which confirms the superiority of SSP method in
dense graphs.

Experiment 3 (Performance versus |E(Q)|) In this experiment, we evaluate the perfor-
mance of our methods with the increasing of query size, i.e.|E(Q)|. We first use ER graphs.
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Figure 13 Performance VS. |V (G)|

In this experiment, we first fix |V (G)| to be 100K. Figure 15 shows that query response
time are increasing in all methods when varying |E(Q)| from 10 to 80. Our methods (AEP
and SSP) have the best performance. Furthermore, SSP is much better than AEP in ER
graphs, especially when |E(Q)| is large. The reason is very clear: we need to perform more
join steps when increasing |E(Q)|. However, the differences between AEP and SSP are not
very clear in SF graphs. Furthermore, SSP is not as good as AEP in many queries in SF
graphs, as shown in Figure 15b. The reason behind that is that a large fraction of vertices in
SF graphs have very small degrees, which favor AEP algorithm. Actually, we find that SSP
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Figure 14 Performance VS. graph degree d in ER graphs

is much better than AEP in dense graphs, but the advantage is not clear in sparse graphs, as
evaluated in Experiment 2.

Experiment 4 (Performance over Real Datasets) We also test our methods in two real
datasets HPRD, Yago and DBPedia. Note that Nova and GADDI cannot work on Yago
dataset due to running out of memory. Moreover, our own implementation of SPath can
not work on DBPedia dataset. Therefore, we only compare our method with SPath and
TurboISO in Yago dataset, and compare our method with TurboISO in DBPedia dataset.

In HPRD dataset, out methods can finish the offline processing in less than 1 sec-
ond, while Nova and GADDI need about 20 seconds and 600 seconds, respectively. The
online processing in our methods are also faster than that in other methods, as shown in
Figures 17a and b. In Yago dataset, we can finish index building in less than 3 minutes,
which is much faster than that in SPath. Furthermore, SSP and AEP are both faster in query
response time than that in SPath and TurboISO.

In DBPeida dataset, we can finish the offline processing in about 20 second. As shown
in Figure 17c, when the query size is no larger than 6, both AEP and SSP are faster than
TurboISO. When the query size is larger than 6, AEP becomes slower than TurboISO due to
large number of join operations. However, SSP is still faster than TurboISO for the queries
whose size is larger than 6.
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Figure 16 Online performance over real datasets

Experiment 5 (Reducing Intermediate Result Size) In this experiment, we show perfor-
mance gains by reducing intermediate result size. We use five query graphs and fix |V (Q)|
to be 20. The data graph we use is HPRD. Figure 17a shows that our method reduces inter-
mediate result size greatly, which means less join cost. Thus, the query performance (i.e.
query response time) is improved significantly, as shown in Figure 17b.

Experiment 6 (Index Maintenance) As discussed early, our method can support online
index maintenance efficiently. In this subsection, we evaluate the performance of our index
maintenance method. Table 2 shows the average insertion time (for one edge) when varying
the sizes of ER and SF graphs (i.e.|V (G)|) to be updated from 10K to 100K, respectively.
For example, when |V (G)| = 10K , the average insertion time is 0.15 ms. An interesting
finding is that the average insertion time in SF graph is larger than that in ER graphs, as
shown in Table 2a. We also report the average insertion time over Yago dataset in Table 2b.

Table 2c shows that the average deletion time (for one edge) when varying the sizes of ER
and SF graphs (i.e.|V (G)|) to be updated from 10K to 100K, respectively. Table 2c shows
that ER and SF graphs have the similar deletion times. Table 2d reports the performance
over Yago dataset.

Experiment 7 (Performance VS. |L|) Now, we study the performance of our methods with
the increasing of |L|, i.e., the number of distinct vertex labels. In this experiment, we fix
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Figure 17 Performance improvement by reducing intermediate results

|V (G)| to be 100K, and vary |L| from 100 to 500 in this experiment. Since GADDI cannot
run when |V (G)| > 60K , thus, we ignore the comparison with GADDI in this experiment.
We first use ER graphs in our testing. Figure 18a shows that the index building time in our
method is much faster than that in Nova and SPath. Also, we have smaller index sizes than
others, as shown in Figure 18c. We also evaluate the online performance. Figure 18e shows
that our method outperforms Nova, SPath and TurboISO by orders of magnitude. Further-
more, SSP is better than ASP when |L| is small. When |L| is small, there are more vertices
having the same label. In this case, SSP has much smaller intermediate result size than that
in AEP. We have the similar performance results in SF graphs, as shown in Figure 18b, d
and f.

Table 2 Maintenance performance

(ms) ER SF (ms) Yago

(a) Insertion On Synthetic Data (b) Insertion On Yago

10K 0.15 0.235 100K 4.37

20K 0.15 0.315 200K 6.56

40K 0.15 0.39 300K 7.42

60K 0.16 0.47 400K 12.54

80K 0.16 0.625 500K 13.48

100K 0.16 0.625

(c) Deletion On Synthetic Data (d) Deletion On Yago

10K 0.15 0.15 100K 5.1

20K 0.16 0.16 200K 7.19

40K 0.16 0.16 300K 11.72

60K 0.16 0.16 400K 11.77

80K 0.31 0.16 500K 15.47

100K 0.32 0.31
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Figure 18 Performance VS. |L|

9.3 Analysis

In this section, we discuss why our method can work better than existing approaches as our
experiments show.

All traditional subgraph match algorithms [12, 37, 39, 42] adopt the vertex-oriented
approach. Specifically, these methods build the indices to find candidates of each query
vertex ui , i = 1, ..., |V (Q)|, denoted as C(ui). The whole search space is

∏|V (Q)|
i=1 |C(ui)|.
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Different from existing approaches, our method employs the edge-oriented approach.
For each query edge ej in Q, j = 1, ..., |E(Q)|, the candidate edges are denoted as C(ej ).

Thus, the total join search space is
∏|E(Q)|

j=1 |C(ej )|.
In the worst case, both our methods and previous works may fail to prune any candidates.

Therefore, the candidates’ number for a query vertex is equal to the number of vertices with
the same label in data graph. Similarly, the candidates’ number of each query edge is equal
to the number of edges with the same label in data graph.

We suppose that all the labels are distributed evenly on vertices in data graph. Thus, the
average candidates’ number of each query vertex is |V (G)|

|L| . On the contrary, the average

candidates’ number of each query edge is |E(G)|
|L|2 . Hence, the average search spaces of the

previous solutions and our approaches are (
|V (G)|

|L| )|V (Q)| and (
|E(G)|
|L|2 )|E(Q)|.

In real datasets, for one thing, the graphs are very sparse, whether data graph or query
graph. Usually, if the degree of a real graph is larger than 10, we can say that this graph
is dense in real use. For instance, the degrees of HPRD and Yago are about 3.9 and 1.48,
respectively. For another, the number of labels is much larger than the degree of a graph. A
real graph often has hundreds of labels or more. For example, the labels’ numbers of HPRD
and Yago are about 307 and 45,450, which is much larger than their degrees.

Therefore, we can know that |E(G)|
|V (G)| 
 |L|. Then, we can know that |V (G)|

|L| 
 |E(G)|
|L|2 .

Moreover, in practice, the size and degree of query graph are very small, so |E(Q)|
is approximately equal to |V (Q)|. Hence, in real application, (

|V (G)|
|L| )|V (Q)| is larger than

(
|E(G)|
|L|2 )|E(Q)|.
As a result, our methods is more efficient than the previous methods as our experiments

show.

10 Conclusions

In order to address subgraph query over a single large data graph G, in this paper, we first
map G into two-dimensional space �2, and then propose a novel bitmap structure to index
�2. At run time, we propose two kinds of subgraph query algorithm in this paper. Aimed
by the bitmap index, we can reduce the search space and improve the query performance
significantly. Extensive experiments over both real and synthetic data sets confirm that our
methods outperforms existing ones in both offline and online performances by orders of
magnitude.
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