
Maintaining schema versions compatibility in cloud
applications collaborative framework

Abdullah Baqasah & Eric Pardede & Wenny Rahayu

Received: 1 September 2014 /Revised: 1 December 2014 /
Accepted: 22 December 2014 /Published online: 19 March 2015
Springer Science+Business Media New York 2015

Abstract The eXtensible Markup Language (XML) is a meta language that is widely used to
provide a non-proprietary universal format for sharing hierarchical data among different software
systems and application domains. Many organizations and content providers have been publishing
and sharing their information through XML and its standard schemas. With the increased
popularity of cloud application deployment, it is a common practice to share data and its schemas,
which underpins integrated applications within the cloud environment. Cloud environment fosters
collaboration more than in the traditional distributed system, through i) a direct access and update
of shared files using a web-based collaboration packages and ii) a seamless access by new
technologies such as smartphones and tablet devices. Since the heterogeneous schemas stored in
the cloud tend to evolve across time, there is a need to handle their versions adequately. In this
paper, we propose a central framework the can be deployed in a cloud environment to aid schema
developers and standard groups to track XML Schema changes, maintain versions compatibility,
and help in the enhancement of a particular schema version. The framework is prototyped as a tool
(called XSM) to store and retrieve versioned XSDs and evaluate them based on the quality
indicators defined for this purpose. The versioning correctness and functionality of the proposed
indicators are examined through a set of XSDs.

Keywords XML schema compatibility . Versioning algorithms . Cloud collaboration . Version
control . Version retrieval . Schema quality

1 Introduction

Introduced by W3C, XML has become a very popular language for storing and dissem-
inating semi-structured information. It has been widely used to provide a non-proprietary
universal format for sharing hierarchical data among different software systems and

World Wide Web (2015) 18:1541–1577
DOI 10.1007/s11280-014-0321-1

A. Baqasah : E. Pardede (*) :W. Rahayu
Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia
e-mail: e.pardede@latrobe.edu.au

A. Baqasah
e-mail: ambaqasah@students.latrobe.edu.au

W. Rahayu
e-mail: w.rahayu@latrobe.edu.au

application domains. Specifications and standards used in these domains are described by
XML Schema Language [41]. It is natural that schema standards have undergone
different type of changes due to new requirements and business developments; indeed
each standard ends up with different versions of the same schema. For instance,
OpenTravel [26] for travel industry, OASIS’s ebXML [14] for Supply Chain, and
ACORD [1] for insurance and related industries, are examples of industry-specific
standards written in XML Schema language. Each of the previous bodies releases nearly
two public versions per year and some of them with internal revisions within one
version.

As collaboration through cloud system continues to increase in the last few years
[35], a successful strategy for XML co-authoring and collaboration must be adopted
to allow multiple users to remotely access and edit either documents or schema
versions stored in a cloud environment. In this environment, such versions need to
be uploaded to the cloud where they can then be accessed, queried, updated by
different collaborators. Several approaches has been proposed for XML authoring
and collaborative editing either by the research community such as [15, 34, 37], or
as commercial tools such as SDL LiveContent Create [32], SERNA XML Editor [33],
oXygen XML Editor [28], and ALTOVA [2]. These editors facilitate the deployment
of seamless collaborative workflows across XML publishing and documentation. As
some of the previous tools (such as oXygen XML Editor and ALTOVA) explicitly
supports XML Schema creation and identifies the schema components through a
graphical interface, there is a greater chance of developing a new approach that can
manage XML Schemas in the cloud as well.

Systems that manage large corpora of XML documents such as [9–11] are commonly
deployed on cloud infrastructure. Related to our work, the cloud environment is not used only
to offer a storage and access to the shared schema versions but should also maintain the
compatibility between different versions of one schema and provide useful information (e.g.,
evaluating the stored versions, allowing the retrieval of schema changes) to the users of the
schema.

In this paper, we focus on the methodology for schema version control, which can support
collaboration in the cloud environment. Schema versioning as a solution in this context can be
used for the following motivations:

& First, to manage the process of accommodating XML Schema Definition (XSD) versions
and maintain the compatibility of the stored versions.

& Second, to allow schema developers and working groups to track schema changes and
record them for future assessment.

& Third, to guide schema developers on making a decision about new schema version i.e.,
accepting or considering a further revision of a particular schema version. The revised
schema is altered until it reaches a reasonable level of acceptance determined by the quality
indicators.

Our major contributions in this paper are as follows:

& We propose a versioning model and an algorithm for XML Schema versions. The
algorithm takes the schema version Vi and the delta changes Δi→i+1 as inputs and
produces the next version Vi+1 as output. The internal representation of schema
documents is then constructed based on XML Schema Object Model (XSOM)
[16].

1542 World Wide Web (2015) 18:1541–1577

& We define a framework for monitoring XML Schema versions, and introduce its
main tasks Version Insertion, Versioning Comparison, Version Retrieval, and Delta
Evaluation.

& We extend our tracking tool (called XML Schema Monitor (XSM)) proposed in [4]. XSM
can be used for two purposes. First, to efficiently store and retrieve different schema
repositories each within its versions. Second, for a specific delta change, that transforms
one version into another, it applies quality indicators to measure the reusability and
extensibility of the delta.

The remainder of this paper is organized as follows. In Section 2, we consider
related works on XML version management and schema quality. We describe our
versioning representation, delta model, and delta storage techniques in Section 3.
Section 4 introduces the framework of our monitoring system XSM and explains its
main tasks. We evaluate the correctness and functionality of XSM tool in Section 5.
Finally, concluding remarks and thoughts on future research work are discussed in
Section 6.

2 Related work

2.1 Schema versioning in XML DBMS

XML schema versioning and its related issues on modification and evolution have
been supported by many commercial DBMSs. For instance, in SQL Server [25], an
XML Schema collection C is created to validate XML instances and to type XML
data as it is stored in the database. Each time a new version of an XSD is added to
the collection C, it is given a new target namespace. This allows a multiple storage of
different schema versions. Therefore, XML column of type C can store instances
conformed to different schema versions. Unlike SQL Server, an XML column in DB2
9 can store any well-formed XML documents [31]. When validation is required, DB2
9 provides an XML Schema Repository (XSR) where the schemas of XML documents
can be registered for validation purposes. DB2 9 also supports a simple form of
schema evolution i.e., the new schema version replaces the old one if a backward
compatibility is guaranteed. Schema versioning is also supported through the ability to
retain the old schema or deleting it once the old schema version has been updated.
All previous tools identify and store XML schema versions without storing the
information about differences between them.

In Oracle XML DB [27], XMLType data is implemented as schema-typed or
untyped data. For schema-typed data, XML Schema should be created and registered.
Once registered, XML Schema can be used to validate the related documents.
Although Oracle XML DB supports two kinds of schema evolution: copy-based and
in-place without requiring backward-compatibility, it does not directly support schema
versioning.

2.2 Schema versioning research approaches

In XML data processing, versioning techniques are proposed to manage multiple versions of
the dynamic documents but research of XML schema versioning is scarce. For example [12],
and [30] focus on document management. Authors of [12] proposed a temporal clustering

World Wide Web (2015) 18:1541–1577 1543

technique based on the notion of page-usefulness to optimize the versioning of XML docu-
ments. They introduce two schemes for storing and retrieving XML data: edit-based and
reference-based scheme. The main concern of [30] was the efficiency for the delta storage.
They propose a technique called consolidated delta (CΔ) that combines an initial XML
document version with a history of changes in one file. Based on the information available
in the consolidated delta, the system reconstructs the required version.

Schema versioning has been previously studied in the context of multi-temporal
databases [7]. Presents a schema versioning approach based on the XML Schema
Definition language (XSD). A set of basic change operations, which deal with element
and attribute components, is introduced as a guideline. Authors also discuss different
issues related to the propagating of changes and maintaining temporal multi-schema
queries in the versioning environment. In another work [6], proposes a set of schema
change primitives in the context of tXSchema framework [13]. In tXSchema there are
three levels to specify a schema for a time-varying data. The first level is for
conventional schema, which is a standard XML Schema describes an XML document.
The second and third levels are for logical annotations and physical annotations of
the conventional schema. Those annotations are stored together in a single XML
document called annotation document and used to identify which elements can vary
over time and where timestamps should be placed for those elements. The proposed
primitives in tXSchema context are applied to the annotation document. Authors
stated that they do not deal with changes of the conventional schema, which is the
main consideration in this paper.

2.3 XML schema quality analysis

Measuring XML schema qualities such as complexity, extensibility, reusability, and
understandability is an important issue to maintain the easiness of XML schemas.
Research developed in this area has covered designing metrics for Document Type
Definitions (DTDs) [8] and XML Schema Documents (XSDs) [41]. For example [17],
focuses on the complexity of the related XML documents by proposing five metrics
for DTD documents. They are lines of code, McCabe complexity, structure depth, fan-
in, and fan-out metrics. Since the DTD syntax is not in XML formal, its quality
metrics can’t be exploited to measure the quality of XML Schema versions.

For XML Schema, several approaches have been proposed [24]. Provides a common
approach to measure schema complexity by counting number of components. The work
extends the metrics proposed by [17] in two directions: i) it introduces new metrics to measure
XML Schema annotation components and ii) it introduces metrics that exploit XML Schema
user-defined types. An effort made in [5] is dedicated to measure the complexity due the
recursion usage in the schema. Authors of this work argue that metrics proposed for XML
Schema’s complexity by counting number of components do not give sufficient information
about the complexity value of a given schema. More recently [38], proposes three schema
metrics: Reusable Quality metric (RQ), Extensible Quality metric (EQ) and Under-
standable Quality metric (UQ). The proposed metrics are based on ‘Binary Entropy
Function and Rank Order Centroid’ method and help in facilitating the assessment of
schema-based software products. The previous schema quality metrics intentionally
designed to measure XML Schema qualities, which basically target the XSD docu-
ments. Our indicators proposed in Section 4.4 target XSD deltas. It investigates the
delta used to generate a particular version and provides enough information about the
extensibility and reusability of the expected version.

1544 World Wide Web (2015) 18:1541–1577

3 Versioning model

In this section, we first describe XSM versioning model, that is how versions are
captured in a tree-like structure, and stored along with their deltas in the relational
model (XS-Rel) described in [3]. Then, we define the delta model (XS-Rel-Delta) that
is used to store differences between schema versions. After that, we discuss different
storage policies for schema versions. That is, how successive versions are organized
in the system. Finally, SFXS storage policy which meets XML Schema versioning
requirements is defined with an illustrative example.

3.1 Versioning tree model

To store XML Schema versions we use the method of decomposing them into relational tables.
The stored versions are then compared and changes are stored in the delta tables. The process
of differencing input versions is covered in our XS-Diff algorithm in [3]. In this work, we step
further by maintaining the history of changes (set of deltas), so we are able to track changes for
each schema component through different versions. The central representations in this
versioning are repositories, versions, and deltas.

& Repositories are used to store information about versioned schemas. For example,
shiporder is a repository name of the schema in our running example in Figures 1,
2, and 3. Repositories are stored in XS-Rel table repository, which has the
following schema: repository (rid, rname, active, initVersion, currVersion,
noVersions). As clearly seen, this table is designed to store basic information such
as the initial version initVersion (e.g., Vb), current version currVersion (e.g., V3),

Figure 1 Changes between versions Vb and V1 of shiporder schema

World Wide Web (2015) 18:1541–1577 1545

and the number of versions noVersions, which counts versions for a specific
repository (e.g., 4 versions). Here, active attribute in the table is used at run time
to assign a flag to the repository that requires versioning.

& Versions are points in time that represent repository versions. They are stored in XS-Rel
table version in a way that support the linear and the branched features of the versioned
schema. The table has the following structure: version (vid, vnum, vparentnum,
vdocument, date, rid), where vid is the unique id assigned by the system to each
newly inserted version, vnum is the version number of a specific schema (e.g., 0, 1, 2,
and 3 are the numbers of Vb, V1, V2, and V3 versions in Figure 1, respectively), and
vparentnum is the version number of the immediate parent of the version. Although
vparentnum is insignificant in our running example, it is important in the branched
versioning to identify the version in the tree. vdocument stores the actual name of the
version file (e.g., shiporderVb.xsd is the name of the initial version in Figure 1). date is
used to store the date and time when the version is inserted in the system. This field
allows us to perform temporal queries such as retrieving a version at a specific time or
querying schema changes in a time slice.

& Deltas are used to store components changes in the form of XS-Rel-Delta. Differ-
ent XS-Rel delta tables are created according to XML Schema components
discussed in [3]. For example, delta representing changes of schema components
in Figure 1 are as follows:

XS-Rel-DeltaVb→V1: {Delete (21, AD), Insert (24, ED), Insert (26, ED), Delete (12, F),
Insert (25, F)}, where 21, 24, 26, 12, and 25 are node ids, which replace the actual node paths
of the changed components as follows:

Figure 2 Changes between versions V1 and V2 of shiporder schema

1546 World Wide Web (2015) 18:1541–1577

3.2 Delta model

The concept delta is used by most prior research to describe changes between two consecutive
versions of XML document [23, 29, 30, 37, 43], but the term has not been used in XML
Schema versioning. Changes between versions of XML Schema is usually denoted by
primitive changes [6] and they are attached to the schema document itself. In addition, the
change format differs from one approach to another, based on the purpose of the application
that generates the changes. For example, algorithms maintain hierarchically-structured data
store changes as edit script. Other algorithms for XML document differencing can store
changes variously as edit script, XML document, relational records, or multiple formats.

In our context, delta format is based on the change detection model proposed in our
previous work using delta operations in the format of relational tables [3]. This technique is
already examined in the context of XML document change detection using different ap-
proaches with XML trees that are ordered [18, 21] and unordered [19, 20, 36]. In what
follows, we discuss each type of delta and show the advantages of adopting the relational-
based delta in the context of XML Schema. Simplified trees (showing only affected nodes and
their neighbours) of the versions in Figure 1 are depicted in Figure 4.

3.2.1 XML delta

A simple XML delta can be defined as follows:

Figure 3 Changes between versions V2 and V3 of shiporder schema

World Wide Web (2015) 18:1541–1577 1547

Definition 1 -(XML-Delta) Let S be an XML Schema with two versions V and V’, where V ≠
V’. XML-Delta is an XML document with change operations that convert S from one state into
another. XML-Delta consists of basic operations O= {Insert, Delete, Update, Move}, which if
applied to V will produce V’.

The operations used by XML-Delta (e.g., those proposed by [23]) is also applicable to
XML Schemas and defined as follows:

Definition 2 (XML-Delta operations) Given XML Schema with two trees T1 and T2
representing two successive versions V1 and V2, respectively, the following XML-Delta
Operations can be defined on an XML node (i.e., element, attribute, or text nodes from
XML point of view) from T1 and/or T2:

& Delete (UPN): delete the node N which has unique path UPN from T1;
& Insert (UPP, po, N): insert the node N at position po under the parent node with unique path

UPP into T2;
& Update (UPN, nv): update the node N which has unique path UPN, from its old value in T1

to the new value nv in T2;
& Move (UPP, po, UPN): move the node N, which has unique path UPN, from its

old position in T1 to the new position po in T2 under the parent node with unique
path UPP.

Example Based on Definition 2, XML-Delta operations describing changes between Vb

and V1 in Figure 1 are: {Delete (50), Insert (1, 3, ‘<element name=‘comment’>’),
Insert (17, 4, ‘<element ref=‘comment’>’), and Update (27, ‘50’)} as seen in the tree
representation in Figure 4.

As observed in the previous example, the information available in the delta operations
are limited (e.g., given only a new value ‘50’ in the Update operation is not enough to
invert the operation so that it transforms V’ into V). This leads in creating different
alternatives for XML-Delta to allow it to move forward, backward, or bi-directionally
between schema versions.

Tb

schema

attribute

1

value

‘100’

2

element
6

complex

Type

9

maxExclusive
26

27

sequence
17

name

‘country’

3

name

‘pOrder’

7

...

element
28

name

‘USPrice’

29

complex

Type

35

...

name

‘orderDate’

attribute
47

48

attribute
50

name

‘orderID’

51

T1

schema

attribute

1

value

‘50’

2

element
6

complex

Type

9

maxExclusive
26

27

sequence
17

name

‘country’

3

name

‘pOrder’

7

...

element
28

name

‘USPrice’

29

complex

Type

35

...

name

‘orderDate’

attribute
47

48

element
59

name

‘comment’

60

element
62

ref

‘comment’

63
deleted inserted

insertedupdated

Figure 4 Two trees Tb and T1 representing schema versions Vb and V1 in Figure 1 (the tree model comply to [23]
for defining XML Schema as XML document tree that has element, attribute, and text nodes)

1548 World Wide Web (2015) 18:1541–1577

3.2.2 XML forward, backward, and completed delta

The operations in the forward delta can only be used to transform an old version of
XML Schema into a new one. We formally define XML forward delta as follows:

Definition 3 (XML-Forward-Delta) Let S be an XML Schema with two successive versions V1
and V2, where V1 ≠ V2, XML-Forward-Delta is defined as XML-Delta with change operations
that transform V1 into V2.

Example For the two trees Tb and T1 (shown in Figure 4) representing versions Vb and V1 of
shiporder schema, the XML-Forward-Delta which transforms Vb into V1 consists of the
following operations: {Delete (50), Insert (1, 3, ‘<element name=‘comment’>’), Insert (17,
4, ‘<element ref=‘comment’>’), Update (27, ‘50’)}.

Opposite to the previous delta, operations in the backward delta can only be used to
transform the new version of XML Schema into the old one. XML backward delta is defined
as follows:

Definition 4 (XML-Backward-Delta) Let S be an XML Schema with two successive versions
V1 and V2, where V1 ≠ V2, XML-Backward-Delta is defined as XML-Delta with change
operations that transform V2 into V1.

Example For the two trees Tb and T1 (shown in Figure 4) representing versions Vb

and V1 of shiporder schema, the XML-Backward-Delta which transforms V1 into Vb

consists of the following operations: {Delete (59), Delete (62), Insert (35, 3, ‘<attri-
bute name=‘orderID’>’), Update (27, ‘100’)}.

For the previous two types of delta, XML-Forward-Delta and XML-backward-
Delta, the major problem (as can be seen in the examples) is that using one type
of delta is not enough to move back and forth through the versions of the schema.
For example, the operation Delete (50) in XML-Forward-Delta in Figure 4 is only
useful to move forward and cannot be reversed to move backward (e.g., from new
version V1 into old version Vb). In other words, there is missing information that
disallows us to reverse the operation to move backward.

To resolve the issue of one-direction transformation, a new delta type called ‘completed
delta’ has been introduced by [23]. We define XML completed delta in the context of XML
Schema versioning as follows:

Definition 5 (XML-Completed-Delta) Let S be an XML Schema with two successive
versions V1 and V2, where V1 ≠ V2, XML-Completed-Delta is defined as XML-Delta
with change operations that transform V1 into V2 and V2 into V1.

To meet the requirements of XML-Completed-Delta in Definition 5, we modify the
operations in Definition 2 as follows:

Definition 2a (Enhanced Delta Operations). Given XML Schema with two trees T1 and T2
representing two successive versions V1 and V2, respectively, the following XML-Delta
Operations can be defined on an XML node (i.e., element, attribute, or text nodes from
XML point of view) from T1 and/or T2:

& Delete (UPP, po, N): delete the node N existing at position po under the parent node with
unique path UPP, from T1;

World Wide Web (2015) 18:1541–1577 1549

& Insert (UPP, po, N): insert the node N at position po under the parent node with unique path
UPP into T2;

& Update (UPN, ov, nv): update the node N, which has a unique pathUPN, from the old value
ov in T1 to the new value nv in T2;

& Move (UPOP, opo, UPN, UPNP, npo): move the node N, which has a unique path UPN,
from the old position opo in T1 under the parent node with unique path UPOP to the new
position npo in T2 under the parent node with unique path UPNP.

Example For the two trees Tb and T1 (shown in Figure 4) representing versions Vb and V1 of
shiporder schema, the XML-Completed-Delta contains the following operations: {Delete (35,
3, ‘<attribute name=‘orderID’>’), Insert (1, 3, ‘<element name=‘comment’>’), Insert (17, 4,
‘<element ref=‘comment’>’), Update (27, ‘100’, ‘50’)}.

3.2.3 XML Schema completed delta (XS-Rel-Delta)

We adapt XML-Completed-Delta as a change model but with some alterations to satisfy XML
Schema specific changes (e.g., migration change of element/attribute declarations and order
change of sequence model group children). The enhanced change model XS-Rel-Delta was
introduced in [3] where the relational engine was used as a medium to find changes between
successive schema versions and store delta changes. Operations that can be applied to XML
Schema components is defined as follows.

Definition 6 (XML Schema operations). Given XML Schema with two trees T1 and T2
representing two successive versions V1 and V2, respectively, the following XML
Schema operations can be defined on XML Schema nodes (i.e., AD, ED, ST, CT,
MG, F, AG, and GD, where AD is an attribute declaration, ED is element declaration,
ST is a simple type definition, CT is a complex type definition, MG is a model group,
F is a restriction facet, AG is an attribute group definition, and GD is a group
definition) from T1 and/or T2:

& Delete (UPN, N): delete the node N, which has a unique path UPN, from T1;
& Insert (UPN, N): insert the node N, which has a unique path UPN, into T2;
& Update (UPN, OV, NV): update one or more of the properties (e.g., name, type, minOccurs,

or value) of the node with unique pathUPN, from the old valuesOV in T1 to the new values
NV in T2;

& Move (UPOld, UPNew, N): move the node N from its old unique pathUPOld in T1 to the new
unique path UPNew in T2.

& Migrate (UPOld, UPNew, NOld, NNew): move the node N from its old unique path UPOld in
T1 to the new unique path UPNew in T2 and update the node properties from NOld to NNew.

Based on the Definition 6, XS-Rel-Delta is defined as follows:

Definition 7 (XS-Rel-Delta). Given any two successive versions V1 and V2 of an XML
Schema S, where V1 ≠ V2, XS-Rel-Delta is a set of relational tables that record the changes
of the schema from one version to another. XS-Rel-Delta consists of a set of operations O=

1550 World Wide Web (2015) 18:1541–1577

{Delete, Insert, Update, Move, Migrate} (listed in Definition 6) that transform V1 into V2 and
V2 into V1.

To give an example of XS-Rel-Delta, the changes between Vb and V1 in Figure 1
are transformed to their respective trees using our XSD tree model (proposed in [3])
in Figure 5.

Example For the two trees Tb and T1 (shown in Figure 5) representing Vb and V1 schema
versions (shown in Figure 1), operations that are included in the XS-Rel-Delta and cover
different schema components are: {Delete (12, ‘maxExclusive:100’), Delete (21,
‘attribute:orderID’), Insert (24, ‘element:comment’), Insert (25, ‘maxExclusive:50’), Insert
(26, ‘elementRef:comment’)}.

It is important to note that types of changes in XS-Rel-Delta are, to some extent, different
from those contained in XML-Completed-Delta. In XS-Rel-Delta, we put emphasis on
changes that are more practical to XML Schemas. We show the benefit of introducing the
new set of XML Schema changes and omitting the existing XML traditional changes (i.e.,
operations in Definition 2 and its enhanced version Definition 2a) by the following example.

Assume that we need a transformation between two versions V2 and V3 in Figure 3. The
traditional XML operations counted by XML-Completed-Delta are shown in Table 1 (a). On
the other side, the changes recorded by XS-Rel-Delta model are listed in Table 1 (b). The
traditional XML-Completed-Delta poses a number of issues, especially relating to the irrele-
vance of delta to XML Schema changes. Some of the most important are detailed as follows:

& Counting order changes in XML ordered model – if the XML ordered model (i.e., when
both parent–child relationship and right-to-left order among siblings in XML tree are
significant) is applied to compute XML-Completed-Delta, it will calculate all order

1

schema

4

Items

5

seq

6

item

7

[CT]

8

seq

11

[ST]

12

maxEx

Local order

0

0 1

Tb

9

prodN
am

e

10

quan�ty

13

USPrice

2

14

partNum

15

POType

16

seq

0 1

17

shipTo

18

billTo

19

item
s

20

orderDate

2

21

or
de

r
ID

22

SKU

23

pa�ern

3

pOrder

2

country

Legend

 migrated/moved node deleted node inserted node updated node migra�on type

1

schema

4

Items

5

seq

6

item

7

[CT]

8

seq

11

[ST]

25

maxEx

Local order

0

0 1

T1

9

prodN
am

e

10

quan�ty

13

USPrice

2

14

partNum

15

POType

16

seq

0 1

17

shipTo

18

billTo

19

item
s

20

orderDate

2

22

SKU

23

pa�ern

3

pOrder

2

country

24

com
m

ent

26

ref:com
ent

3

Figure 5 Two trees Tb and T1 representing schema versions Vb and V1 in Figure 1 (using XSD tree model
defined in [3])

World Wide Web (2015) 18:1541–1577 1551

changes in the XML tree. In other words, the order between siblings of the same parent
node in XML Schema is not always important. The order should be maintained only for
children of a sequence model group. This issue does not appear in the operations listed in
Table 1 (a), however, we can think of a switch (position change) between the two complex
type definitions Items and POType (lines 6 and 27 in Figure 3, respectively) as an order
change (from XML ordered document perspective). The XML-Completed-Delta would
contain the additional two operations Move (1, 5, 15, 1, 6), which moves Items complex
type from the fifth position under schema node to the sixth position, andMove (1, 6, 44, 1,
5), which moves POType complex type from the sixth position to the fifth.

& Missing a detailed information about XML Schema changes – as operations in XML-
Completed-Delta can be applied to both single nodes and sub-trees, one operation, such as
Insert (46, 1, S10), can be used to insert a sub-tree with a large set of elements and
attributes. Unfortunately, such an operation is not helpful in understanding the types of
changes occurring inside the sub-tree. This issue is solved in XS-Rel-Delta by
decomposing a sub-tree operation into different schema component operations (e.g., Insert
(91, S7) and its subsequent operations Insert (93, S8), Insert (94, S9), Insert (95, S10), and
Insert (98, S11) shown in Table 1 (b)).

& Unaware of an integrity between related operations – some operations in XML Schema
are related to each other (e.g., remove an element or attribute from the global definition and
update its local reference to include the full definition). These operations in XML-
Completed-Delta are maintained apart from each other, meaning that if one operation is
missing, the other one is still valid and can be used in the delta. The more robust and
accurate way to maintain XML Schema changes is to consider such operations as
associated to each other, as we see in a Migrate operation in Table 1 (b).

3.3 Storage techniques for XML Schema versions

In this section, we discuss various storage policies (or the physical organization, to be
more precise) of historical XML data. The aim is to discuss possible solutions for
storing XML Schema deltas using techniques to store XML documents. Each of the
existing storage policies is briefly discussed in order to decide the one that best fits
the requirements of XML Schema versioning process. Four techniques (extensively
studied by [30] in the context of multi-versioned XML documents) are used as a
guideline and redefined in the context of XML Schemas. These techniques are (1)
SFD (Store the First XML document and all forward Deltas), (2) SLD (Storing Last
version of the document and the Deltas), (3) SFLD (Storing First version, Last
version, and the Deltas), and (4) CΔ (the Consolidated Delta). Table 2 provides a
definition, a brief description, and the version retrieval mechanism for each pre-
existing storage policy.

As observed in policies (SFD, SLD, SFLD), it is clearly seen that there are some
drawbacks in those techniques related to redundancy of data (e.g., the duplication of
old and new values in different deltas) or operations (e.g., repeating the same
operations every time in creating intermediate versions until the required version is
retrieved). These issues is solved by proposing the fourth technique, that is a
consolidated delta CΔ, however CΔ may not be the best storage technique to be
applied for versioning XML Schemas. Applying CΔ to XML Schema versions poses
the following issues:

1552 World Wide Web (2015) 18:1541–1577

T
ab

le
1

O
pe
ra
tio
ns

co
m
pu
te
d
in

X
M
L
-C
om

pl
et
ed
-D

el
ta

(b
as
ed

on
D
ef
in
iti
on

2a
)
an
d
X
S-
R
el
-D

el
ta

(b
as
ed

on
D
ef
in
iti
on

6)
m
od
el
s
fo
r
th
e
X
M
L
Sc
he
m
a
ve
rs
io
ns

V
2
an
d
V
3
in

Fi
gu
re

3
(a
bb
re
vi
at
io
ns

E
D
,A

D
,C

T,
ST

,M
G
,F

,A
G
,G

D
in

(b
)
de
no
te
X
M
L
Sc
he
m
a
co
m
po
ne
nt
s)

(a
)
X
M
L-
C
om

pl
et
ed
-D

el
ta

(b
)
X
S-
R
el
-D

el
ta

O
pe
ra
tio
n

A
ff
ec
te
d
X
M
L
no
de

(S
x)

O
pe
ra
tio
n

A
ff
ec
te
d
X
M
L
Sc
he
m
a

co
m
po
ne
nt

no
de

(S
x)

D
el
et
e
(3
0,

1,
S 1
)

D
el
et
e
(4
6,

1,
S 2
)

D
el
et
e
(4
6,

2,
S 3
)

D
el
et
e
(6
1,

1,
S 4
)

D
el
et
e
(6
1,

2,
S 5
)

D
el
et
e
(5
9,

2,
S 6
)

D
el
et
e
(5
9,

3,
S 7
)

In
se
rt
(2
3,

1,
S 8
)

In
se
rt
(3
0,

1,
S 9
)

In
se
rt
(4
6,

1,
S 1

0)
In
se
rt
(4
4,

2,
S 1

1
)

In
se
rt
(6
1,

1,
S 1

2)
U
pd
at
e(
75
,‘
de
ci
m
al
’,‘
in
te
ge
r’
)

M
ov
e
(1
,1

,2
,5

9,
2)

M
ov
e
(1
,3

,9
,6

1,
2)

el
em

en
t
la
be
lle
d
‘m

ax
E
xc
lu
si
ve
’

el
em

en
t
na
m
ed

‘s
hi
pT

o’
el
em

en
t
na
m
ed

‘b
ill
To

’
el
em

en
t
na
m
ed

‘n
am

e’
el
em

en
t
w
ith

re
f
=
‘s
tr
ee
t’

el
em

en
t
la
be
lle
d
‘a
ttr
ib
ut
e’

an
d
na
m
ed

‘c
ou
nt
ry
’

el
em

en
t
la
be
lle
d
‘a
ttr
ib
ut
e’

an
d
na
m
ed

‘c
ou
nt
ry
C
od
e’

el
em

en
t
w
ith

re
f
=
‘p
ro
dN

am
e’

el
em

en
t
la
be
lle
d
‘m

in
In
cl
us
iv
e’

su
bt
re
e
ro
ot
ed

at
el
em

en
t
w
ith

na
m
e
=
‘d
el
iv
er
yI
nf
o’

el
em

en
t
na
m
ed

‘f
ul
ln
am

e’
el
em

en
t
la
be
lle
d
‘a
ttr
ib
ut
e’

an
d
w
ith

re
f=

‘o
rd
er
D
at
e’

at
tr
ib
ut
e
w
ith

na
m
e
=
‘t
yp
e’

an
d
va
lu
e
=
‘d
ec
im

al
’

el
em

en
t
la
be
lle
d
‘a
ttr
ib
ut
e’

an
d
na
m
ed

‘c
ou
nt
ry
’

el
em

en
t
na
m
ed

‘s
tr
ee
t’

D
el
et
e
(3
2,

S 1
)

D
el
et
e
(4
7,

S 2
)

D
el
et
e
(5
0,

S 3
)

D
el
et
e
(6
2,

S 4
)

D
el
et
e
(7
8,

S 5
)

In
se
rt
(8
9,

S 6
)

In
se
rt
(9
1,

S 7
)

In
se
rt
(9
3,

S 8
)

In
se
rt
(9
4,

S 9
)

In
se
rt
(9
5,

S 1
0)

In
se
rt
(9
8,

S 1
1
)

In
se
rt
(1
01
,S

1
2)

In
se
rt
(1
04
,S

1
3)

In
se
rt
(6
2,

S 1
4)

U
pd
at
e
(6
7,

{o
rd
er
=
3}
,{
or
de
r=

4}
)

U
pd
at
e
(7
0,

{o
rd
er
=
4}
,{
or
de
r=

3}
)

U
pd
at
e
(7
3,

{t
yp
e=

de
ci
m
al
},
{t
yp
e=

in
te
ge
r}
)

M
ig
ra
te
(2
,2

,{
ty
pe
=
Ø
,f
ix
ed
=
Ø
,r
ef
=
1}
,

{t
yp
e=

N
M
TO

K
E
N
,fi
xe
d=

U
S,

re
f=
0}
)

F
na
m
ed

‘m
ax
E
xc
lu
si
ve
’

E
D

na
m
ed

‘s
hi
pT

o’
E
D

na
m
ed

‘b
ill
To

’
E
D

na
m
ed

‘n
am

e’
A
D

na
m
ed

‘c
ou
nt
ry
C
od
e’

F
na
m
ed

‘m
in
In
cl
us
iv
e’

E
D

na
m
ed

‘d
el
iv
er
yI
nf
o’

C
T
(a
no
ny
m
ou
s)
un
de
r
‘d
el
iv
er
yI
nf
o’

E
D

M
G

(s
eq
ue
nc
e)

un
de
r
‘d
el
iv
er
yI
nf
o’

E
D

E
D

na
m
ed

‘s
hi
pT

o’
E
D

na
m
ed

‘b
ill
To

’
A
D

na
m
ed

‘o
rd
er
ID

’
A
D

na
m
ed

‘t
ra
ck
ID

’
E
D

na
m
ed

‘f
ul
ln
am

e’
E
D

na
m
ed

‘c
ity
’

E
D

na
m
ed

‘s
ta
te
’

E
D

na
m
ed

‘z
ip
’

A
D

na
m
ed

‘c
ou
nt
ry
’

M
ov
e
(2
3,

1,
24
,1

,3
)

M
ov
e
(4
4,

2,
56
,1

,1
)

M
ov
e
(6
1,

3,
67
,6

1,
4)

M
ov
e
(6
1,

4,
70
,6

1,
3)

el
em

en
t
na
m
ed

‘p
ro
dN

am
e’

el
em

en
t
la
be
lle
d
‘a
ttr
ib
ut
e’

an
d
na
m
ed

‘o
rd
er
D
at
e’

el
em

en
t
na
m
ed

‘c
ity
’

el
em

en
t
na
m
ed

‘s
ta
te
’

M
ig
ra
te
(9
,9

,{
ty
pe
=
Ø
,r
ef
=
1}
,{
ty
pe
=
st
ri
ng
,r
ef
=
0}
)

M
ig
ra
te
(5
6,

56
,{
ty
pe
=
da
te
,r
ef
=
0}
,{
ty
pe
=
Ø
,r
ef
=
1}
)

M
ig
ra
te
(2
4,

24
,{
ty
pe
=
st
ri
ng
,r
ef
=
0}
,{
ty
pe
=
Ø
,r
ef
=
1}
)

E
D

na
m
ed

‘s
tr
ee
t’

A
D

na
m
ed

‘o
rd
er
D
at
e’

E
D

na
m
ed

‘p
ro
dN

am
e’

World Wide Web (2015) 18:1541–1577 1553

& Undesirable delta presentation by stamping a large (and unnecessary) amount of nodes –
the rules of building consolidated delta from a series of XML versions state that ‘if any of
the children is either modified, deleted or inserted, the parent node is stamped as modified’.
The children in this rule refer to any XML node other than the root node schema.
Therefore, if we stamp all parents in the XML Schema starting from the changed node,
we will end up with a large set of nodes that are stamped ‘modified’ in the schema file,
which may not be the desirable method for displaying XML Schema deltas.

& Absence of supporting attribute changes – CΔ method assigns an ID to each new element
inserted with a new version. However, it is not clear how it handles attribute changes (e.g.,
the change of maxExclusive facet value from ‘100’ to ‘50’ in shiporder schema in
Figure 1). Unlike XML document, attributes in XML Schema language play a key role
in defining schema components (i.e., name, and type are always used to assign a name and
a data type to XML elements and attributes). If we assume that attribute changes in CΔ
method are computed as element modification, then we insert the whole element node with
the new attribute value after the original element, which causes unnecessary redundant
data.

3.4 Storage technique - SFXS (Storing First version and the XS-Rel-Deltas)

To address issues presented by the previous storage techniques we adapt the SFD technique
and modify it so that it meets XML Schema versioning requirements. In our technique (SFXS),
we use XS-Rel-Delta model (proposed in Section 3.2.3) to store changes between versions of
XML Schema. We first give an overview of how SFXS is built, followed by an explanation of
how it is used to query a specific version from a series of XML Schema versions.

As stated above, we adapt SFD technique to satisfy the build of our storage
technique. In SFD, the set of forward deltas Δ consists of basic operations defined
on general XML documents. For XML Schemas, we define different sets of opera-
tions and hence, the delta model XS-Rel-Delta used in SFXS technique is altered to
meet schema-specific changes. SFXS is defined as SFXS=Vb∪{Δi

xsc|1≤ i≤now} where
Vb is the first version and Δxsc is a set of completed deltas in the form of XS-Rel-
Delta. An XML Schema version Vj can be retrieved by applying a set of deltas Δxsc

starting from the first version Vb (e.g., Vj=Vb+Δb + 1
xsc +…+Δj − 1

xsc +Δj
xsc). This method is

Table 2 Current storage policies for XML documant versioning according to [30]

Technique Description Definition

SFD Store the initial version of the document
plus all forward deltas

SFD=Vb∪{Δi|1≤i≤now} where Vb is the initial version
and Δ is a set of forward deltas associated to Vb

SLD Stores the last version of the document
plus all backward deltas

SLD=Vnow∪{Δi
′|1≤i≤now} where Vnow is the last

version and Δ′ is a set of backward deltas associated
to Vnow

SFLD Store both the first and last version of the
document along with all completed
deltas

SFLD=Vb∪Vnow∪{Δi
c|1≤i≤now} where Vb and Vnow

are the first and last versions, respectively, and Δc is
a set of completed deltas

C Δ Store the initial version of the document
along with its deltas as stamped
versions

CΔ=Vcons where Vcons is an initial version Vb that is
incrementally updated to include information about
changes in each version Vi|1≤i≤now

1554 World Wide Web (2015) 18:1541–1577

appropriate when the number of versions is relatively small and the cost of
reconstructing a version is low. Our investigation of 40 real-world XML Schemas
with a total number of 245 XSD versions1 shows that the number of versions for each
schema varies from 2 to 27 and the average number of versions per schema is 6. The
investigation also reveals that the overall average size of a schema version is 181.27
kb.

The benefits of using SFXS technique can be shown by applying it to the example
of XML Schemas in Figures 1, 2, and 3. In this example, a shiporder schema is
developed in four consecutive versions Vb, V1, V2, and V3 (the subscript b denotes the
base or initial version). The changes between each version and the following one is
highlighted and the respective tree representations using our XSD tree model are
shown in Figures 5, 6, and 7. In SFXS technique, we only store changes to XML
Schema components based on the matching between components with the same type.
For example, a change of maxExclusive value from ‘100’ in Vb to ‘50’ in V1 in
Figure 1 is considered as facet delete and insert changes. Note that we do not
compare the label of the facet node maxExclusive (as it would be done in XML
Documents matching) because in this case we would match maxExclusive in Vb with
all facets with similar label in the second version V1, which is probably inefficient for
versioning XML Schemas. Table 3 shows a history of changes to shiporder schema
components through its different versions.

As seen in Table 3, we only store the changed components between any two
consecutive versions. For example, an element street with node id 25 is recorded in
delta V1–2 as element insertion. The same node is also migrated from the global
definition at node 4 to the local definition at node 27 in delta V2–3. Similarly, the
facet named maxExclusive with value ‘50’ is inserted at node 25 as seen in delta Vb-1

and deleted after that as seen in delta V2–3.
As illustrated by the previous examples, SFXS technique serves XML Schema versioning

tasks as follows:

& It provides a human-readable way to track XML Schema changes that is also clearly
legible - by recording deltas as relational records in one place, we can query a history of a
specific schema component (e.g., element or attribute) by issuing an SQL query. This type
of information is important as it helps a schema designer avoid repeating the operation in
the same component (e.g., inserting attribute country multiple times during the set of
versioned schema).

& It does not require extra processing to derive information from XML delta files - as SFXS
stores deltas as relational records, we can apply a SQL query to retrieve those
delta changes. This means that we do not need to parse the delta file (e.g.,
consolidated delta file in case of CΔ storage technique) to identify the changed
nodes.

& It reduces the number of operations required to transfer one version into another - since
traditional XML document change operations are based on elements, attributes, and text
nodes (as we have seen in Section 3.2.1), the number of operations required can easily
increase, especially with the deep nesting of XML Schema tags. In SFXS technique,
we incrementally only store the important changes and omit the child nodes that are
dependents of the main components. For example, although a restriction node (line 35
in V1 in Figure 2) is deleted along with the deletion of its parent simple type SKU, it is

1 Available at: https://docs.google.com/document/d/1mkJmt28f100DwPqCa8QKtrKWWhDilC1oBUI1pH9xh-M/edit?usp=sharing

World Wide Web (2015) 18:1541–1577 1555

https://docs.google.com/document/d/1mkJmt28f100DwPqCa8QKtrKWWhDilC1oBUI1pH9xh-M/edit?usp=sharing

not recorded as a deleted node in the resulting delta V1–2 in Table 3. Instead, the
deletion of restriction is embedded in the simple type operation Delete (23, ST). The
reduction feature becomes significant with a large XML Schema file containing a lot of
simple and complex type definitions. For instance, complex types can have different
descendent nodes whose changes are not counted (e.g., simpleContent,
complexContant, restriction, and extension nodes).

Legend

 migrated/moved node deleted node inserted node updated node migra�on type

1

schema

5

Items

6

seq

7

item

8

[CT]

9

seq

12

[ST]

13

maxEx

Local order

0

0 1

T1

10

prodN
am

e

11

quan�ty

14

USPrice

2

16

partN
um

17

POType

18

seq

0 1

19

shipTo

20

billTo

21

item
s

22

orderDate

2

23

SKU

24

p
a
t
t
e
r
n

3

pOrder

2

country

4

com
m

ent

15

ref:com
ent

3

1

schema

5

Items

6

seq

7

item

8

[CT]

9

seq

12

[ST]

13

maxEx

Local order

0

0 1

T2

10

prodN
am

e

11

quan�ty

14

USPrice
2

16

partN
um

17

POType

18

seq

0 1

19

shipTo

20

billTo

21

item
s

22

orderDate

2

35

Part
Num
Type

36

pa�
ern

3

pOrder

2

country

4

com
m

ent

15

ref:com
ent

3

25

street

26

USAddress

27

seq

0 1

28
nam

e
29

ref:street

30

city
33

ref:country

2 3

31

state

32

zip

4

34

countryCode

Figure 6 Two trees T1 and T2 representing schema versions V1 and V2 in Figure 2

Legend

migrated/moved node

1

schema

6

Items

7

seq

8

item

9

[CT]

10

seq

13

[ST]

14

maxEx

Local order

0

0 1

T2

11

prodN
am

e

12

quan�ty

15

U
SPrice

2

17

partN
um

18

POType

19

seq

0 1

20

s
h
i
p
T
o

21

b
i
l
l
T
o

22

item
s

23

orderD
ate

2

33

Part
Num
Type

34

pa�
ern

3

pO
rder

2

country

5

com
m

ent

16

ref:com
ent

3

4

street

24

USAddress

25

seq

0 1

26

n
a
m
e

27

ref:street

28

city

31

ref:country

2 3

29

state

30

zip

4

32

c
o
u
n
t
r
y
C
o
d
e

1

schema

6

Items

7

seq

8

item

9

[CT]

10

seq

13

[ST]

37

minIn

0

0 1

T3

11 12

quan�ty

15

U
SPrice

2

17

partN
um

18

POType

19

seq

0 1

41

shipTo

42

billTo

22

item
s

23

ref:orderD
ate

1

33

Part
Num
Type

34

pa�
ern

3

pO
rder

35

orderD
ate

5

com
m

ent

16

ref:com
ent

3

36

prodN
am

e

24

USAddress

25

seq

0 1

45

fullnam
e

27

street

29

state

31

country

2 3

28

city

30

zip

4

global-to-local
global-to-local

local-to-global
local-to-global

38
deliver
yInfo

39

[CT]

0

40

seq 43

orderID

44

trackID

deleted node inserted node updated node migra�on type

Figure 7 Two trees T2 and T3 representing schema versions V2 and V3 in Figure 3

1556 World Wide Web (2015) 18:1541–1577

Table 3 Set of deltas Δ xsc storing a history of changes to shiporder schema through versions shown in
Figures 5, 6, and 7

Component Vb-1 V1–2 V2–3

Attribute (AD) orderID Delete (21, AD) Insert (43, AD)

ref:country Insert (33, AD) Update (31, {type=Ø, fixed=Ø,
ref=1}, {type=NMTOKEN,
fixed=US, ref=0})

countryCode Insert (34, AD) Delete (32, AD)

partNum Update (16, {type=SKU},
{type=partNumType})

country Migrate (2, 31, {type=Ø,
fixed=Ø, ref=1},
{type=NMTOKEN,
fixed=US, ref=0})

orderDate Migrate (23, 35, {type=date,
ref=0}, {type=Ø, ref=1}),
Update (23, {type=date,
ref=0}, {type=Ø, ref=1})

trackID Insert (44, AD)

Element (ED) comment Insert (24, ED)

ref:comment Insert (26, ED)

Street Insert (25, ED) Migrate (4, 27, {type=Ø,
ref=1}, {type=string, ref=0})

Name Insert (28, ED) Delete (26, ED)

ref:street Insert (29, ED) Update (27, {type=Ø, ref=1},
{type=string, ref=0})

City Insert (30, ED) Update (28, {order=2},
{order=3})

state Insert (31, ED) Update (29, {order=3},
{order=2})

zip Insert (32, ED) Update (30, {type=decimal},
{type=integer})

item Update (7, {maxOccurs=
unbounded},
{maxOccurs=100})

shipTo Update (19, {type=string},
{type=USAddress})

Delete (20, ED),
Insert (41, ED)

billTo Update (20, {type=string},
{type=USAddress})

Delete (21, ED),
Insert (42, ED)

productName Migrate (11, 36, {type=string,
ref=0}, {type=Ø, ref=1}),
Update (11, {type=string,
ref=0}, {type=Ø, ref=1})

deliveryInfo Insert (38, ED)

fullname Insert (45, ED)

Facet (F) maxExclusive, ‘100’ Delete (12, F)

maxExclusive, ‘50’ Insert (25, F) Delete (14, F)

pattern, ‘\d{3}-[A-Z]{2}’ Delete (24, F)

pattern, ‘\d{3}-[A-Z]{2}’ Insert (36, F)

minInclusive, ‘1’ Insert (37, F)

Simple Type
(ST)

SKU Delete (23, ST)

partNumType Insert (35, ST)

World Wide Web (2015) 18:1541–1577 1557

4 XSM – high-level architecture

The main objective of XML Schema Monitor (XSM) system is to allow schema
designers to monitor XSD versions. In XSM, different tasks can be performed not
only to version XML Schemas but also to monitor the development process of those
schemas. The main tasks are (1) Version Insertion, (2) Versioning Comparison, (3)
Version Retrieval, and (4) Delta Evaluation shown in shaded boxes 1, 3, 4, and 5 in
Figure 8, respectively.

4.1 Version insertion

In this task (box 1 in Figure 8), we explain how a new version should be added to the system.
To simplify the process, Let R be an XML Schema repository where a collection of versions
belong to one schema (i.e., shiporder in our running example), Vb is the initial version, and Vc
is the current (last) version. The user adds a version Vc+1 to R by performing the following
steps:

& Step 1 - Load version Vc+1 of the schema and store it in R as a current version.
& Step 2 - If Vc+1 is the initial version (i.e., Vb = Ø), set Vc+1 as both initial and current

version of R (the inserted version are tagged in the repository relational table) and assign
version id to Vc+1.

& Step 3 - If Vc+1 is not the initial version, set Vc+1 as current version and create a tree
representation of both Vc+1 and its previous version Vc. This step includes parsing each
version (using XSOM parser2), generating the corresponding XML Schema Internal
Representation (box 2 in Figure 8), and storing nodes information to the corresponding
relational tables. The internal representation of XSDs is constructed on the basis of XML
Schema Components Model.3

At this point, a new version has been inserted and it is ready to be compared with its
preceding version. The Version Comparison task is explained next.

4.2 Version comparison

By adding any two successive XSD versions to the system, the Version Comparison
task (box 3 in Figure 8) then uses the parsed versions to match nodes of the same

2 Available at: https://xsom.java.net/
3 Available at: http://www.w3.org/TR/xmlschema-1/

Table 3 (continued)

Component Vb-1 V1–2 V2–3

Complex Type
(CT)

USAddress Insert (26, CT)

CT (Anonymous) Insert (39, CT)

Model Group
(MG)

sequence Insert (27, MG)

sequence Insert (40, MG)

1558 World Wide Web (2015) 18:1541–1577

https://xsom.java.net/
http://www.w3.org/TR/xmlschema-1/

type (i.e., element, attribute, or simpleType) and generates delta changes in the form
of XS-Rel-Delta explained earlier. This task is further explained in our previous work
[3] where the change detection algorithm XS-Diff is developed. At the versioning
stage, we use our proposed storage technique (SFXS) to accommodate delta changes
between the compared versions. This process is repeated with each new version added
to the system. At the end, we only keep the first version Vb, and a set of deltas
storing the history of changes to Vb. We will see how a version can be retrieved in
the following section.

4.3 Version retrieval

In the Version Retrieval task (box 4 in Figure 8), we show how a specific version Vj can be
generated from a set of n versions by using SFXS storage method. The process of querying an
earlier version of an XML Schema is shown in Figure 9. It is a recursive procedure of
retrieving the required version Vj by deriving a number of j intermediate versions starting
from the available original one (Vb). In each turn, we read the input version (e.g., V1) and apply
XS-Rel-Delta (e.g., V1→2) to create the next one (e.g., V2). The process continues until we
reconstruct the required version Vj. We propose an algorithm that is responsible for creating a
specific version from the previous one. The pseudo-code of generate_schema_version algo-
rithm is depicted in Table 4.

The steps in Version Retrieval task are as follows:

Version Inser�on

XML Schema Internal Representa�on

Version
Comparison

Rela�onal
Engine

Delta
Evalua�on

read parsed version
read delta

Repository

read two versions

1

2

store ini�al versionstore version
informa�on

3 5Version
Retrieval

4

Retrieved
Version

store delta

Delta
Quality

Delta
Informa�on

Figure 8 XSM high-level archeticture

Figure 9 Versioning using SFXS storage technique, an intermediate version (Vj) can be reconstructed by starting
from Vb

World Wide Web (2015) 18:1541–1577 1559

Table 4 generate_schema_version algorithm (Δ denotes XS-Rel-Delta)

1560 World Wide Web (2015) 18:1541–1577

& Step 1 - Load the initial version Vb of the schema.
& Step 2 - From the database, query versions that are needed to get the required version Vj.

This step returns a list of versions information (e.g., data from version table).
& Step 3 - Loop the versions falling between Vb and Vj and inspect Vi in each turn.
& Step 4 - If version Vi is the initial version (Vb), call generate_schema_version algorithm and

pass the initial version (Vb) and the delta to the next version (Vb→1). The result of this step
is an on-fly generated version (Vtemp), which is used in the following steps.

& Step 5 - If version Vi is not the initial version (Vb), call generate_schema_version algorithm
and pass version Vtemp and the delta to its next version (Vtemp → temp+1). The result of this
step is also an on-fly generated version (Vtemp).

& Step 6 - Continue the reconstruction until the required version (Vj) is reached.

Before starting, the original version is parsed and the corresponding XML Schema Internal
Representation is generated, similar to Step 3 in Version Insertion task. The idea behind the
algorithm is that we traverse each node of the generated object model and examine whether it is
migrated,moved, or deleted from their positions in the original version. At certain positions during
the schema traversing, we check the possible insertions of the schema tree nodes. The delta
information for performing the previous checks can be gathered by issuing a set of SQL queries on
the delta tables. We rely on XSDL syntax [40] to examine possible occurrences of XML Schema
components. The algorithm consists of six phases partitioned according to the type of the schema
component. These phases are: (1) iterate attribute groups, (2) iterate attribute declarations, (3)
iterate groups, (4) iterate element declarations, (5) iterate complex type definitions, and (6) iterate
simple type definitions. In what follows, we look at each phase in more detail.

4.3.1 Phase 1 - Iterate attribute groups

This phase (lines 6–11 in Table 4) deals with attribute group definition (ag) components,
tagged <attributeGroup> in XML Schema document. Since attribute groups can only be
defined globally, there is one possible deletion of its node. Thus, deletion check is made based
on this observation. The iterate_attribute_group_child_nodes procedure is then called to check
possible occurrences of the attribute group child nodes, namely attributes (ad) and attribute
groups (ag). Manipulated attributes in this procedure are called attribute uses. The attribute use
can be an attribute with a local definition if it migrates from global to local or it can be as same
as in its original situation, i.e., a reference to global attribute. At the end of this Phase, we
append possible inserted components by calling append_inserted_attributeGroup procedure.

4.3.2 Phase 2 - Iterate attributes

In this phase (lines 13–26 in Table 4), we iterate global attribute declarations (ad) tagged
<attribute>. In this case, the attribute may be migrated from global to local definition.
Therefore, we perform a migration test along with deletion and update tests as seen in lines
14 and 15. We also check if there is a local simple type defined for the attribute. The
visit_stype procedure is called at line 23 to perform the check. This procedure is explained
in Phase 4 (iterate simple types) where we inspect each individual simple type. Finally, two
procedures append_ltg_attibute and append_inserted_attribute are called, as seen in lines 25
and 26 respectively. The first procedure queries the XS-Rel-Delta tables and checks if there are
any attributes that have migrated from local to global. Following this, migrated attributes are
added to the global definition. In the second procedure (line 26), we check possible inserted
attributes as global declarations.

World Wide Web (2015) 18:1541–1577 1561

4.3.3 Phase 3 - Iterate groups

Group definitions (gd) in this phase (lines 28–33 in Table 4) is treated similar to attribute
groups in Phase 1. The only difference is that instead of attributes and attribute groups as child
nodes, there is only one possible model group (represented by <sequence>, <choice>, or <all>
tags) exists as a child node of the group <group>. The procedure modelGroup is used for this
purpose and it is shown in Table 5. Since the model group can possibly consist of one or more
particles (i.e., elements, model groups, and/or group definitions) with changing orders, we will
explain modelGroup procedure in the next paragraph. Similar to the previous phases, we check
the inserted groups at the end of this phase at line 33 in Table 4.

Maintaining model group sequence and its children (particles) order changes One of the most
important issues in the version retrieval task is how to handle model groups and their children
order changes correctly. In XML Schema the node only considers the order of its children in
the model group <sequence>, so we handle the ordering issue in modelGroup procedure and
its related adjustOrder (Table 6 (a)) and indexOfSmallest (Table 6 (b)) procedures.

Table 5 modelGroup procedure

1562 World Wide Web (2015) 18:1541–1577

Initially, we prepare the order number of the model group itself (since it can be a
child of another model group) in Step 1 of the procedure (lines 4–11 in Table 5). The
model group’s parent is tested so that we can get the last order of its children using a
built-in function getChildCount. Then, we check the model group itself. If it is a
sequence, then we insert a new record to the temporary table num_ins_mov_del used
in the order change manipulation. The num_ins_mov_del table has the following
relational schema: num_ins_mov_del (id, path, num_ins_mov, num_mov_del), where
path is a unique path of each inspected sequence model group, num_ins_mov records
the number of inserted or moved-to operations of the sequence node siblings, and
num_mov_del records the number of moved-from or deleted operations of the se-
quence node siblings. This table is updated each time we insert, delete, or move one
of the child nodes of any sequence node during the version generation. At the end of
this step, we call adjustOrder procedure passing the old order so that we can return
the model group to its original position (i.e., before performing any insertion, dele-
tion, or move operations on its siblings). The idea behind this procedure is that we
query num_ins_mov_del table using the path of the parsed model group. Then
numInsMov is subtracted from the old model group order oldO and numMovDel is
added to oldO as seen in line 5 in Table 6 (a).

In Step 2 (lines 13–24 in Table 5) we check if the model group is moved, deleted, or
updated and, based on that, we decide whether a tree node for the model group should be
created or not. Next, as we did with the previous components, we append the inserted child
nodes. In this case, they might be groups, model groups, or elements as seen in lines 19–21.
We then run a loop to visit each child of the model group node. Again, the model group
sequence children called particles, consisting of the three types mentioned above, are parsed
by calling a built-in function visit_particle.

After parsing (and possibly adding) all model group child nodes, we rearrange them based
on the new orders achieved by calling adjustOrder procedure in line 11. Step 3 of the
procedure (lines 26–34) is dedicated to sort the model group child nodes. We use a selection
sort, which is an easy and straightforward algorithm to sort a list of values (usually an array)
and efficient for small lists. The idea is to divide the list (an array of model group children in
our case) into two parts: 1) a sublist of nodes that are already sorted, which starts from left to
right, and 2) a sublist of nodes to be sorted, which occupies the rest of the array. The idea of the
selection sort is to find the node with the smallest order indexOfNextSmallest (line 29 in
Table 5) during the loop by invoking indexOfSmallest procedure (shown in Table 6 (b)). Then,
we move the node with the indexOfNextSmallest to the sublist of sorted nodes by swapping
the inserted nodes index and indexOfNextSmallest as seen in lines 32 and 33 in Table 5.

Table 6 Procedures for maintaning model group order changes

World Wide Web (2015) 18:1541–1577 1563

Finally in Step 4, since the checked model group (as child of another model group)
is found deleted or moved from its position (line 37 in Table 5), its record in
num_ins_mov_del table (introduced in Step 1) is updated so that it can be used to
fix the order of the next siblings. The update is done using the following SQL query:
UPDATE num_ins_mov_del SET numMovDel = numMovDel + 1 WHERE path =
<currPath>, where currPath is a current path of the parsed particle (e.g., model group
in this case).

4.3.4 Phase 4 - Iterate elements

The process of treating element declarations (ed) (lines 35–48 in generate_schema_version
algorithm in Table 4) is similar to that for treating attribute declarations. If an element is child
of a sequence model group, then it is given an order and the order is adjusted as we did with
the modelGroup procedure Step 1 in Table 5. All global elements (tagged as <element>) are
visited, and migrated, deleted, or moved elements are ignored, so that they do not appear in the
resulting version. If the element is moved or deleted, then the value of num_mov_del in
num_ins_mov_del table is increased by 1. The parsed element is then checked for an
update operation as seen in line 37. If the element is updated (i.e., one or more of its
attributes has changed), then the algorithm adds the element node to the generated
tree based on the information available from the delta. Since elements can have
simple or complex type, we apply a special function visit_type, which reads the type
definition from the schema object model and visits it properly. Complex and simple
type visiting are explained in Phase 5 and 6, respectively.

After visiting the element node, the algorithm performs an append task by querying the
delta and checks for elements inserted at a global position either by a local-to-global migration
or by a normal insert. This check is done by the two procedures append_ltg_element and
append_inserted_element at lines 47 and 48, respectively.

4.3.5 Phase 5 - Iterate complex types

In this phase, we iterate global complex types (lines 50–55 in Table 4). In each turn,
if the complex type is not found in the group of migrated or deleted complex types,
then visit_ctype procedure is called. The procedure (shown in Table 7) simply
investigates the four possible content types of the complex type component: simple
content, empty content, particle, and complex content. Based on the investigation, it
performs a proper visit to complex type descendent nodes.

In the first content type case, i.e., simple content (lines 5–22 in Table 7), we examine a two
derivation types of the simple content restriction and extension. If the derivation is by
restriction, then we iterate a set of facets defined under the complex type (see lines 13–15).
The procedure visit_facet is called in this situation, which will visit and inspect facet nodes
(e.g., pattern or enumeration). Complex type nodes are created and added to the generated
schema tree as seen in lines 11 and 22. In the second case (lines 24 and 25), we investigate the
empty content type. In this case, we just add a complex type node and leave the child attributes
to the end of the procedure. In the third case (lines 28 and 29), we consider a complex type
with a particle, i.e., exactly one model group of type sequence, choice, or all. Thus, a complex
type is created and inserted as in the previous case. Finally (Case 4 in lines 31–43), a complex
content is treated similar to the simple content case. At the end, we invoke a visit_particle
procedure (line 44) as we did in the modelGroup procedure above. Also, we append possible
inserted groups and model groups.

1564 World Wide Web (2015) 18:1541–1577

In all four complex type cases, we visit complex type attributes and attribute groups since
they occur in all types of the complex type.

4.3.6 Phase 6 - Iterate simple types

The same process is repeated for simple type global definitions (lines 57–62 in
Table 4), but in this case, the derivation method of the simple type, i.e., restriction,
list, or union, is inspected. The pseudocode for the inspected simple type is listed in
Table 8.

Table 7 visit_ctype procedure

World Wide Web (2015) 18:1541–1577 1565

4.4 Delta evaluation

In the schema evolution process, the main concern is with build new schema versions
from previously developed schemas and ensuring that schemas are easy to extend for
adapting them to new circumstances. Schema developer may not only be interested in
knowing the history of changes for a particular element or type in the schema
repository, but also in ascertaining the efficacy of a particular delta in generating
the new version. In this task, we define two indicators to measure the proportion of
reusability and extensibility of the delta. We will explain each indicator in the
following subsections.

4.4.1 Reusability indicator (RI)

One of the most important goals in the design of XML Schema is reusability. Reusing
schema components is not only easier for developers to maintain but also saves time.
In the Reusability indicator, denoted by (RI), if delta contains elements or attributes
that migrate (by changing its scope) from local to global (LTG) declarations, the level
of reusability in the generated version becomes higher. Moreover, the same type of

Table 8 visit_stype procedure

1566 World Wide Web (2015) 18:1541–1577

migration is applicable to the definition of simple or complex types. The other way
round is also possible for all the previous components, but the reusability level will
decrease when shifting them from global to local (GTL). The scope of newly inserted
components also affects the reusability, meaning that a locally inserted (anonymous)
component cannot be leveraged by other schema components which reduce the
reusability.

We calculate RI based on the parameters listed in Table 9 (a). Note that the information on
parameters is collected from delta Δj, its preceding schema version Vj-1, and its resulting
version Vj. To define the reusability for complex and simple types (Rt), the average of
reusability for both migrated and inserted types is calculated as follows.

Rt ¼ 1

2

Mgt

At
−
Mlt

Gt

� �
þ Igt

T t
−
I lt
T t

� �� �
ð1Þ

Similarly, to calculate the reusability for elements and attributes (Rc), the following function
is defined.

Rc ¼ 1

2

Mgc

Lc
−
Mlc

Gc

� �
þ Igc

Tc
−
I lc
Tc

� �� �
ð2Þ

Named groups and attribute groups also affect the reusability of the generated schema
version. A function for group and attribute group reusability (Rg) is defined as follows.

Rg ¼ Ig
Tg

� �
ð3Þ

Generally, to measure RI, the equation is formulated by taking the average of the reusability
results from Eqs. (1), (2), and (3):

RI ¼ 1

3
Rt þ Rc þ Rg

� �� 100 ð4Þ
4.4.2 Extensibility indicator (EI)

Extensibility is another important schema design consideration. For example, a schema developer
may design a message for a product description. If the description expands by adding more
features, the schema needs to be redesigned to satisfy the new settings. For this reason, the new
versions of the schema should allow a certain level of extensibility to handle feature type variations.

The Extensibility Indicator, denoted by (EI), of the delta can be calculated by measuring
inheritance types (i.e., complex and simple type derivations). It is also possible to combine one
or more types by using union simple type, or to restrict another type by using restriction simple
type. To measure EI, we use the parameters listed in Table 9 (b).

We formulate the EI function by counting the average number of simple type and complex
type components that derive or combine other types.

EI ¼ 1

2

Sr þ Su
Tst

� �
þ Cr þ Ce

Tct

� �� �
� 100 ð5Þ

Values for both RI and EI are ranging from −100 to 100. The proposed indicators
give a designer a measure of how well the developed version is. If the indicator value
is closer to 100 then the delta quality is high, but if it is near −100 then the delta

World Wide Web (2015) 18:1541–1577 1567

T
ab

le
9

R
eu
sa
bi
lit
y
an
d
ex
te
ns
ib
ili
ty

in
di
ca
to
rs
pa
ra
m
et
er
s

(a
)
R
eu
sa
bi
lit
y
(R
I)

(b
)
E
xt
en
si
bi
lit
y
(E
I)

Pa
ra
m
et
er

C
od
e

av
*

Pa
ra
m
et
er

C
od
e

av

N
um

be
r
of

LT
G

m
ig
ra
te
d
el
em

en
ts
an
d
at
tr
ib
ut
es

N
um

be
r
of

G
T
L
m
ig
ra
te
d
el
em

en
ts
an
d
at
tr
ib
ut
es

N
um

be
r
of

LT
G

m
ig
ra
te
d
co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

N
um

be
r
of

G
T
L
m
ig
ra
te
d
co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

N
um

be
r
of

gl
ob
al
ly

in
se
rt
ed

el
em

en
ts
an
d
at
tr
ib
ut
es

N
um

be
r
of

lo
ca
lly

in
se
rt
ed

el
em

en
ts
an
d
at
tr
iu
te
s

N
um

be
r
of

gl
ob
al
ly

in
se
rt
ed

co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

N
um

be
r
of

lo
ca
lly

in
se
rt
ed

co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

N
um

be
r
of

gl
ob
al
ly

in
se
rt
ed

re
us
ab
le
gr
ou
ps

M
gc

M
lc

M
gt

M
lt

I g
c

I lc I g
t

I lt I g

Δ
j

N
um

be
r
of

in
se
rt
ed

si
m
pl
e
ty
pe
s
w
ith

re
st
ri
ct
io
n

N
um

be
r
of

in
se
rt
ed

si
m
pl
e
ty
pe
s
w
ith

un
io
n

N
um

be
r
of

in
se
rt
ed

co
m
pl
ex

ty
pe
s
w
ith

re
st
ri
ct
io
n

N
um

be
r
of

in
se
rt
ed

co
m
pl
ex

ty
pe
s
w
ith

ex
te
ns
io
n

S r S u C
r

C
e

Δ
j

N
um

be
r
of

lo
ca
l
el
em

en
ts
an
d
at
tr
ib
ut
es

N
um

be
r
of

gl
ob
al
el
em

en
ts
an
d
at
tr
ib
ut
es

N
um

be
r
of

an
on
ym

ou
s
co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

N
um

be
r
of

gl
ob
al
co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

L c G
c

A
t

G
t

V
j−
1

To
ta
l
nu
m
be
r
of

el
em

en
ts
an
d
at
tr
ib
ut
es

To
ta
l
nu
m
be
r
of

co
m
pl
ex

an
d
si
m
pl
e
ty
pe
s

To
ta
l
nu
m
be
r
of

re
us
ab
le
gr
ou
ps

T c T t T g

V
j

To
ta
l
nu
m
be
r
of

si
m
pl
e
ty
pe
s

To
ta
l
nu
m
be
r
of

co
m
pl
ex

ty
pe
s

T s
t

T c
t

V
j

*
A
va
ila
bi
lit
y

1568 World Wide Web (2015) 18:1541–1577

used to generate the new version is of a lesser quality. If the indicator value is around
or equal to zero, this implies that there is no change of quality between the schema
versions. We will see how these indicators are calculated in the next example.

productOrder1.xsd and productOrder2.xsd shown in Figure 10a and b are two
versions of the same schema. First, we calculate RI for the delta changes between
the two versions as follows. Note that the last section that calculates Rg is omitted
because neither groups nor attribute groups does exist in this example.

RI ¼ 1

2

1

2

0

2
−
2

4

� �
þ 0

7
−
1

7

� �� �
þ 1

2

2

17
−
2

4

� �
þ 0

22
−

3

22

� �� �� �
� 100

¼ 1

2

1

2
−0:5−0:1429ð Þ þ 1

2
−0:3824−0:1364ð Þ

� �
� 100 ¼ −29:04%

As seen in this example, the subtracted parts of the equation (2
�
4
, 1
�
7
, 2
�
4
, and 3

�
22
) are

always larger than the values of parts that are subtracted from. Therefore, RI is given a negative

Figure 10 Two successive versions of productOrder schema (changes are highlighted)

World Wide Web (2015) 18:1541–1577 1569

number (−29.04%). It is clear that the large number of components migrated to the local definition
or inserted locally, with respect to the total number of schema components, will negatively affect
the value of RI. Because of the negative number given in this example, a possible suggestion to the
designer is to redesign the second version to avoid a low level of reusability.

Now, we apply the EI in our running example.

EI ¼ 1

2

0þ 0

2

� �
þ 0þ 1

5

� �� �
� 100 ¼ 1

2
0þ 1

5

� �
� 100 ¼ 0:1%

EI for the delta in this example is affecting the generated schema version with a positive
value of 0.1 %. This can be explained by the insertion of a complex type with extension to
orderInfo element to give it a type as seen in Figure 10b. The new insertion allows inheriting
from another built-in type positiveInteger, thus, increasing the extensibility feature. Although
the value of EI is positive, it is still very low and it is recommended that the designer consider
enhancing the extensibility in the new schema version.

5 Experimental evaluation

In this section, we first evaluate the correctness of the versioning system. The correctness can
be measured by comparing deltas produced by the system with the optimal deltas manually
calculated for XML Schema. Then, we measure the functionality and the correctness of the
delta quality indicators proposed in the previous sections. This is done by applying RI and EI
indicators to datasets with several versions and checking how the indicator values can affect
the design of new versions.

5.1 Experimental settings and datasets

To prove the correctness of the proposed versioning method, the optimality of the produced
delta and the usability of delta quality indicators, we develop a tracking tool called XML
Schema Monitor (XSM) using JAVA programming and XSOM parser. The prototyped tool
uses SQL queries on MySQL 5.5.24-log RDBMS to store and retrieve XS-Rel-Deltas. We
conduct all experiments on a computer running an Intel Core i7 2.30 GHz processor with 8 GB
of memory and Windows 7 Home Premium as the operating system.

At this time, we are not aware of any available tools for XML Schema versioning or change
control that can be compared with our tool. We do not compare our method to XML document
versioning methods for the following reasons:

1. The space used to store XML Schema changes is not significant unlike XML documents.
Our exploration of 40 real-world XML Schemas and standards4 reveals that 85 % of those
schemas are below 200 kb in size, 5 % are between 200 and 800 kb, and only 10 % are
above 800 kb. Obvious, the complexity of space and memory used in the versioning
process is not a real concern in the case of XML Schemas.

4 Available at: https://docs.google.com/document/d/1mkJmt28f100DwPqCa8QKtrKWWhDilC1oBUI1pH9xh-
M/edit?usp=sharing

1570 World Wide Web (2015) 18:1541–1577

https://docs.google.com/document/d/1mkJmt28f100DwPqCa8QKtrKWWhDilC1oBUI1pH9xh-M/edit?usp=sharing
https://docs.google.com/document/d/1mkJmt28f100DwPqCa8QKtrKWWhDilC1oBUI1pH9xh-M/edit?usp=sharing

2. The speed to perform the versioning is not important too because XML Schemas, in
general, have few versions unlike XML documents. For example, a papinet standard5 for
the paper and forest supply chain releases two versions of their schemas every year
starting from 2009. Similarly, the total number of schema versions published by
OpenTravel standards6 starting from 2001 is estimated to be 26. As seen in the previous
examples, the demand of better management and understanding of schema changes is
more important than the speed and storage in XML Schema versioning.

On considering the other methods that manipulate XML schemas, we only found
the change detection method for the DTD schema language called DTD-Diff [22].
This approach is designed for a different purpose that aims to find changes between
DTD files and use them to revalidate related XML documents. This means that the
versioning aspect is absent in the approach, i.e., this method does not address how a
set of deltas is stored and how a version is retrieved. Moreover, the generated DTD
changes are different to those in XML Schema.

In order to evaluate the correctness and optimality of our versioning approach, a group of
XSD datasets have been used. The original versions of these datasets are taken from the
examples in [39] and [42]. These examples are considered complete since they reflect a high
level of practicing of XML Schema recommendation. For each dataset we focus on specific
component changes and manually generate five versions representing all changes to that
component. A summary and characteristics of this group is shown in Table 10.

5.2 Versioning evaluation

5.2.1 Versioning correctness

The concept of correctness is critical in the design of XSM tool. The correctness in our context
of versioning means that the versioning tool can retrieve the complete version using just the
first version and a set of deltas to the required version. For that purpose, we first accommodate
the six versions for all datasets (listed in Table 10) by running the change detector algorithm
XS-Diff. Then, for each dataset we query the stored versions by running the version retrieval
algorithm. For all datasets, XSM is able to reconstruct versions with no missing information.
That is, in each particular retrieve, we compare the resulting version with the original one.
Regardless of some differences in the appearance of schema global components, the compared
schemas will still have the same meaning for describing XML documents.

5.2.2 Delta optimality

In this test, we move step further by evaluating the optimality of the delta used for the
versioning. Using the same XSD datasets listed in Table 10, we investigate how deltas
generated by XSM are close to optimal deltas. The optimal deltas for XML Schema are
calculated manually by adopting the traditional operations insert, delete, update, and move that
are supported by the majority of the previous works on XML change detection. The results of
this comparison are depicted in Figure 11.

The results show that in the majority of datasets, XSM tool produces deltas that are optimal
or near optimal. The equality between XSM operations and the optimal operations gives a

5 Available at http://www.papinet.org/#the-standard/previous-versions/ajax.html
6 Available at http://www.opentravel.org/Specifications/PastSpecs.aspx

World Wide Web (2015) 18:1541–1577 1571

http://www.papinet.org/%23the-standard/previous-versions/ajax.html
http://www.opentravel.org/Specifications/PastSpecs.aspx

T
ab

le
10

X
SD

da
ta
se
ts

D
at
as
et

N
um

be
r
of

co
m
po
ne
nt
s
du
ri
ng

6
ve
rs
io
ns

(V
b
-V

1
-V

2
-V

3
-V

4
-V

5
)

Fo
cu
s
ar
ea

E
D

A
D

C
T

F
ST

M
G

G
D

A
G

lib
ra
ry

14
-2
3-
15
-1
4-
14
-1
4

3-
8-
4-
2-
2-
2

4-
5-
5-
5-
5-
5

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

4-
4-
4-
4-
4-
4

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

E
le
m
en
t
an
d
at
tr
ib
ut
e
ch
an
ge
s

na
m
ed
G
ro
up

9-
9-
11
-9
-1
0-
10

6-
5-
7-
5-
4-
4

3-
2-
2-
2-
2-
2

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

6-
6-
7-
6-
6-
6

7-
7-
9-
7-
7-
7

5-
5-
8-
6-
6-
6

G
ro
up

an
d
at
tr
ib
ut
e
gr
ou
p
ch
an
ge
s

co
m
pl
ex
Ty
pe

13
-1
4-
16
-1
6-
14
-1
4

9-
9-
10
-1
0-
9-
9

9-
9-
11
-1
1-
9-
9

2-
2-
4-
4-
2-
2

0-
0-
0-
0-
0-
0

5-
5-
6-
6-
5-
5

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

C
om

pl
ex

ty
pe

ch
an
ge
s

si
m
pl
eT
yp
e

6-
8-
6-
7-
6-
6

1-
1-
1-
1-
1-
1

0-
1-
1-
1-
1-
1

9-
9-
9-
11
-1
1-
11

6-
6-
6-
7-
6-
6

0-
1-
1-
1-
1-
1

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

Si
m
pl
e
ty
pe

an
d
fa
ce
t
ch
an
ge
s

m
od
el
G
ro
up

5-
5-
9-
5-
5-
5

0-
0-
0-
0-
0-
0

1-
1-
2-
1-
1-
1

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

1-
1-
3-
2-
2-
2

0-
0-
0-
0-
0-
0

0-
0-
0-
0-
0-
0

M
od
el
gr
ou
p
ch
an
ge
s

sh
ip
or
de
r

8-
10
-1
6-
17
-1
7-
17

4-
3-
5-
6-
6-
6

3-
3-
4-
5-
5-
5

2-
2-
2-
2-
2-
2

2-
2-
2-
2-
2-
2

3-
3-
4-
5-
6-
6

0-
0-
0-
0-
2-
2

0-
0-
0-
0-
2-
2

M
ix
ed

ch
an
ge
s
fo
r
al
l
co
m
po
ne
nt
s

1572 World Wide Web (2015) 18:1541–1577

positive indication that our tool can effectively be used to version XML Schemas, though
XSM has some deficiencies. For example, deltas produced in datasets namedGroup and
modelGroup (Figure 11b and e, respectively) in some situations exceed the optimal deltas
by few operations (i.e., V2–3, V3–4, and V4–5 in namedGroup dataset and V1–2 and V4–5 in
modelGroup dataset). In these datasets we focus on named groups (group and attributeGroup
components) and model groups (sequence, choice, and all), which implicitly contain a
sequence model group compositor in the component structure. Recall that in XML Schema
context, we maintain order changes only for sequence child nodes. Consequently, the opera-
tions produced by XSM in both (b) and (e) cases include extra update operations to maintain
those order changes.

On the other hand, XSM generates optimal deltas in case of complex and simple types as
seen in datasets complexType and simpleType (Figure 11c and d). This is because in both
datasets, child components, such as facets for simpleType and model group for complexType,
always move in case a migration of simple/complex type is encountered. In other words, there
is no need for extra insertions or deletions to complete the transformation. In the case of
element and attribute operations including migration (as seen in Figure 11a and f), the delta
generated by XSM moves above and below the optimal delta. Extra operations in most deltas
relate to an order update and are caused by the insert/delete of the neighbour preceding the
components. In contrast, XSM deltas are less than optimal delta as seen in delta V2–3 in
Figure 11a, where move and update operations are summed up in one operation migrate.

5.3 Delta indicators correctness

Two datasets are used in this set of experimentationsmails7 and lib.8 We apply RI and EI delta
quality indicators using Eqs. (4) and (5), respectively, on both datasets to see how the delta
affects the versioning process. In the first dataset mails, we generate a set of eight versions
manually since we are not aware of any publicly available XML Schema version generator

7 Available at https://svn.osgeo.org/geotools/branches/2.2.x_js15/module/sample-data/src/org/geotools/test-data/
xml/mails.xsd
8 The base schema is available at http://docstore.mik.ua/orelly/xml/schema/ch03_01.htm

Figure 11 Results of the quality for five datasets listed in Table 10

World Wide Web (2015) 18:1541–1577 1573

https://svn.osgeo.org/geotools/branches/2.2.x_js15/module/sample-data/src/org/geotools/test-data/xml/mails.xsd
https://svn.osgeo.org/geotools/branches/2.2.x_js15/module/sample-data/src/org/geotools/test-data/xml/mails.xsd
http://docstore.mik.ua/orelly/xml/schema/ch03_01.htm

tool. Values of delta parameters in this test are shown in Figure 12a. The aim of this test is to
see how RI and EI are influenced by the percentage and type of changes in the schema version.
Results are plotted in Figure 13a. As clearly seen in this figure, RI and EI have positive values
and are almost similar at the beginning of the test (5.48 % of change). As the schema evolved,
more changes are incorporated which increase EI and decrease RI. The reusability of delta
used to create the version at 44.23 % of change becomes slightly higher as shown by the rise in
the RI indicator at that point. After 58.96 % of changes, RI moves into the negative direction
while EI moves the opposite way. That means, while the extensibility of the schema enhances
during its lifespan, a careful attention must be paid to the reusability of the schema as it tends
to diminish.

We also consider the transformation between different schema design patterns: Garden of
Eden, Venetian Blind, Salami Slice, and Russian Doll discussed by [42]. We want to examine
the impact of pattern switch on RI and EI indicator values. The lib dataset is used in this test.
The values of the delta parameters are listed in Figure 12b. The lowest value of RI (as seen in
Figure 13) is −35 % at lib1-4 where a lot of schema components are either migrating from
global to local or are inserted as local definitions (see underlined values in Figure 12b). On the
other hand, RI has a positive value with 17 % at lib2-1, lib3-1, lib4-1, and lib4-3. This is
because the transformation between any pattern to theGarden of Edenwill result in moving all
schema components from the local to global definitions (values shaded in Figure 12b), which
means that reusability will increase. We notice that EI is equal to ZERO in all switches except
lib1-4, lib2-3, lib2-4, and lib4-2. EI indicator, in particular, shows a maximum value at lib2-3

(a) RI and EI values vs percentage of changes (b) RI and EI values vs pattern switch

Figure 13 RI and EI results

%sretemaraPsDSX
Of

changea

M
g
c

M
lc

M
g
t

M
lt

I
g
c

I
lc

I
g
t

I
lt

I
g

S
r

S
u

C
r

C
e

mails1-
2

0 2 1 0 0 2 1 0 1 1 0 0 0
5.48

mails1-
3

1 3 1 1 0 11 4 0 2 2 1 0 0
17

mails1-
4

2 8 1 4 0 12 6 0 2 2 2 0 1
30.65

mails1-
5

2 6 1 5 0 15 6 0 3 2 0 2 1
44.23

mails1-
6

2 6 1 6 0 25 13 2 3 7 4 2 1
58.96

mails1-
7

2 10 1 15 0 40 17 6 3 10 4 3 3
80.67

mails1-
8

2 10 1 15 4 125 20 22 10 13 4 6 7
92.52

a.
Percentage of change from the original version “mails1”

XSDs
Parameters

SwitchbM
g
c

M
lc

M
g
t

M
lt

I
g
c

I
lc

I
g
t

I
lt

I
g

S
r

S
u

C
r

C
e

lib1-2 0 92 0 0 0 0 0 0 0 0 0 0 0 GE-VB

lib1-3 0 0 0 37 0 0 0 0 0 0 0 0 0 GE-SS

lib1-4 0 92 0 1 0 0 0 34 0 12 0 0 3 GE-RD

lib2-1 92 0 0 0 0 0 0 0 0 0 0 0 0 VB-GE

lib2-3 92 0 0 1 0 34 0 33 0 12 0 0 4 VB-SS

lib2-4 0 0 0 1 0 38 0 34 0 11 0 0 4 VB-RD

lib3-1 0 0 37 0 0 0 0 0 0 0 0 0 0 SS-GE

lib3-2 0 92 1 0 0 0 0 0 0 0 0 0 0 SS-VB

lib3-4 0 92 0 0 0 0 0 0 0 0 0 0 0 SS-RD

lib4-1 92 0 1 0 0 0 0 0 0 0 0 0 0 RD-GE

lib4-2 0 0 1 0 0 22 26 0 0 12 0 0 2 RD-VB

lib4-3 92 0 0 0 0 0 0 0 0 0 0 0 0 RD-SS

b. Switch between design patterns: Garden of Eden (GE), Venetian Blind (VB), Salami

Slice (SS), and Russian Doll (RD)

Figure 12 Delta parameter values

1574 World Wide Web (2015) 18:1541–1577

switch, where the largest number of type restrictions and extensions are performed, thus,
increasing the extensibility of the schema.

The benefit from the usage of RI and EI indicators is twofold. First, they provide an
overview of the quality of the delta used to generate the version. Second, RI and EI indicators
help the schema designer to understand the factors that impact the decrease or increase of
schema quality. For example, in our previous dataset mails, the first drop of RI is at 30.65 % of
change; at that point, Ilc (with 12) is the parameter that most affects RI followed by Mlc (with
8), as seen in mails1-4 in Figure 12a. As a guideline, it is recommended that the designer alter
the version until it reaches a reasonable positive value.

6 Conclusion and future work

In recent years, the maturity of cloud technology had influenced more collaborative works.
Many providers of cloud collaboration tools have created solutions to solve collaboration
needs, such as real-time editing, synchronisation, and retrieval of shared files. Documents
written in XML Schema language require manipulation and consistency check during its
development lifecycle. In this work, we take the cloud collaboration a level up by developing
an approach to analyse XML Schema versions in the cloud, maintain their compatibility, and
provide a useful information about version changes to the development team. We propose a
versioning model and an algorithm for XML Schema versions. The developed algorithm is
based on the schema object model that understands the unique structure of XML Schemas. To
proof its feasibility, we design XSM, a tool capable of storing and monitoring XML Schema
versions. It is also capable of detecting changes between successive versions, and measuring
the quality of delta generated. Our target scope in this work is schema designers and groups
who work on developing XML Schema standards through cloud environment. The main tasks
of XSM include essential functions to any versioning system, such as adding, comparing, and
retrieving a version from the repository. The versioning tasks also include a method for
measuring the quality of the generated delta. We defined the two indicators of RI for
reusability and EI for extensibility for that purpose. These indicators were shown to be useful
for enhancing the version i.e., they were able to show when the processed delta needs to be
further enhanced to generate a good quality schema.

We experimentally evaluated the system with a group of XSDs. The results showed
the success of the proposed framework in generating the correct version from the
initial version and a set of deltas. In addition, the deltas stored by XSM framework
were found to be optimal or near optimal, which is important for recognizing and
easily maintaining XML Schema changes. As future work, we plan to add more
functions to the system such as providing suggestions on how to alter the schema
to produce a better version. We will also consider more parameters for measuring the
delta quality and readability.

References

1. acord.org: ACORD Standards, https://www.acord.org/standards/Downloads/Pages/default.aspx
2. Altova: Authentic – XML authoring tool, http://www.altova.com/authentic/xml-authoring-tool.html
3. Baqasah, A., Pardede, E., Holubova, I., Rahayu, W.: On change detection of XML Schemas. In: Proceedings

of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom’13). pp. 974–982. IEEE Computer Society (2013)

World Wide Web (2015) 18:1541–1577 1575

https://www.acord.org/standards/Downloads/Pages/default.aspx
http://www.altova.com/authentic/xml-authoring-tool.html

4. Baqasah, A., Pardede, E., Rahayu, W.: XSM - A tracking system for XML Schema versions. In: 2014 I.E.
28th International Conference on Advanced Information Networking and Applications (AINA’14). pp.
1081–1088. IEEE (2014)

5. Basci, D., Misra, S.: Measuring and evaluating a design complexity metric for XML schema documents. J.
Inf. Sci. Eng. 25, 1405–1425 (2009)

6. Brahmia, Z., Bouaziz, R., Grandi, F., Oliboni, B.: Schema versioning in tXSchema-based multitemporal
XML repositories. In: Proceedings of fifth International Conference on Research Challenges in Information
Science (RCIS 2011). pp. 1–12, Gosier, Guadeloupe, France (2011)

7. Brahmia, Z., Bouaziz, R.: Schema versioning in multi-temporal XML databases. In: Proceedings of the
Seventh IEEE/ACIS International Conference on Computer and Information Science (ICIS 2008). pp. 158–
164. IEEE Computer Society (2008)

8. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. cois: Extensible Markup Language
(XML) 1.0 (Third Edition), W3C Recommendation. W3C, http://www.w3.org/TR/2004/REC-xml-
20040204 (2004)

9. Camacho-Rodriguez, J., Colazzo, D., Manolescu, I.: Building large XML stores in the Amazon cloud. In:
IEEE 28th International Conference on Data Engineering Workshops (ICDEW’12). pp. 151–158. IEEE
(2012)

10. Camacho-Rodríguez, J., Colazzo, D., Manolescu, I.: Web data indexing in the cloud: efficiency and cost
reductions. In: Proceedings of the 16th International Conference on Extending Database Technology
(EDBT’13), pp. 41–52. ACM Press, New York (2013)

11. Chang, Y.-S., Yang, C.-T., Luo, Y.-C.: An ontology based agent generation for information retrieval on cloud
environment. J Univers Comput Sci 17, 1135–1160 (2011)

12. Chien, S.-Y., Tsotras, V.J., Zaniolo, C.: Efficient schemes for managing multiversion XML documents.
VLDB J.—Int. J. Very Large Data Bases 11, 332–353 (2002)

13. Currim, F., Currim, S., Dyreson, C., Snodgrass, R.T.: A tale of two schemas: creating a temporal XML
schema from a snapshot schema with tXSchema. Advances in Database Technology-EDBT 2004. pp. 348–
365. Springer (2004)

14. ebxml.org: ebXML Specifications, http://www.ebxml.org/specs/index.htm
15. Ignat, C.-L., Norrie, M.: Flexible collaboration over XML documents. In: Luo, Y. (ed.) Cooperative Design,

Visualization, and Engineering, pp. 267–274. Springer, Berlin (2006)
16. JAVA: XML Schema Object Model (XSOM), http://xsom.java.net/
17. Klettke, M., Schneider, L., Heuer, A.: Metrics for XML document collections. XML-Based Data

Management and Multimedia Engineering—EDBT 2002 Workshops. pp. 15–28. Springer (2002)
18. Leonardi, E., Bhowmick, S.S.: Xandy: a scalable change detection technique for ordered XML documents

using relational databases. Data Knowl Eng 59, 476–507 (2006)
19. Leonardi, E., Bhowmick, S.S., Madria, S.: Xandy: detecting changes on large unordered XML documents

using relational databases. Database Systems for Advanced Applications. pp. 711–723 (2005)
20. Leonardi, E., Bhowmick, S.S.: Detecting changes on unordered XML documents using relational databases:

a schema-conscious approach. In: Proceedings of the 14th ACM International Conference on Information
and Knowledge Management (CIKM’05). pp. 509–516 (2005)

21. Leonardi, E., Bhowmick, S.S.: Oxone: a scalable solution for detecting superior quality deltas on ordered
large XML documents. In: Proceedings of the 25th International Conference on Conceptual Modeling. pp.
196–211 (2006)

22. Leonardi, E., Hoai, T.T., Bhowmick, S.S., Madria, S.: DTD-Diff: a change detection algorithm for DTDs.
Data Knowl Eng 61, 384–402 (2007)

23. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-centric management of versions in an XML
warehouse. In: Proceedings of the 27th International Conference on Very Large Data Bases (VLDB’01). pp.
581–590. Morgan Kaufmann Publishers Inc. (2001)

24. McDowell, A., Schmidt, C., Yue, K.: Analysis and metrics of XML Schema. In: Proceedings of the
International Conference on Software Engineering Research and Practice (SERP’04). pp. 538–544.
CSREA Press (2004)

25. Microsoft: XML Data (SQL Server), http://technet.microsoft.com/en-us/library/bb522446.aspx
26. OpenTravel: OpenTravel Specifications, http://www.opentravel.org/Specifications/Default.aspx
27. Oracle.com: Using Oracle XML DB, http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb03usg.

htm
28. oxygenxml.com: oXygen XML editor: collaborative authoring using subversion, http://www.oxygenxml.

com/demo/Collaborative_Authoring_Using_Subversion.html
29. Rönnau, S., Borghoff, U.M.: XCC: change control of XML documents. Comput Sci Dev 27, 95–111 (2012)

1576 World Wide Web (2015) 18:1541–1577

http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.ebxml.org/specs/index.htm
http://xsom.java.net/
http://technet.microsoft.com/en-us/library/bb522446.aspx
http://www.opentravel.org/Specifications/Default.aspx
http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb03usg.htm
http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb03usg.htm
http://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
http://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html

30. Rusu, L.I., Rahayu, W., Taniar, D.: Maintaining versions of dynamic XML documents. Web Inf. Syst. Eng. –
WISE 3806, 536–543 (2005)

31. Saracco, C.M., Chamberlin, D., Ahuja, R.: DB2 9 pureXML overview and fast start. IBM Redbooks (2006)
32. sdl.com: SDL LiveContent create: all the power of XML, http://www.sdl.com/products/livecontent/create.

html
33. serna-xmleditor.com: SERNA XML editor: improve collaboration, http://www.serna-xmleditor.com/

benefits/improve-collaboration/
34. Skaf-Molli, H., Molli, P., Rahhal, C., Naja-Jazzar, H.: Collaborative writing of XML documents. In: 3rd

International Conference on Information and Communication Technologies: From Theory to Applications
(ICTTA’08). pp. 1–6. IEEE (2008)

35. Sun, Y., Lambert, D., Uchida, M., Remy, N.: Collaboration in the cloud at Google. In: Proceedings of the
2014 ACM conference on Web science (WebSci’14), pp. 239–240. ACM Press, New York (2014)

36. Sundaram, S., Madria, S.K.: A change detection system for unordered XML data using a relational model.
Data Knowl Eng 72, 257–284 (2012)

37. Thao, C., Munson, E.V.: Using versioned tree data structure, change detection and node identity for three-
way XML merging. In: Proceedings of the 10th ACM Symposium on Document Engineering (DocEng’10),
pp. 77–86. ACM Press, New York (2010)

38. Thaw, T.Z., Khin, M.M.: Measuring qualities of XML Schema documents. J Softw Eng Appl 6, 458–469
(2013)

39. Vlist, E.: XML Schema: The W3C’s Object-Oriented Descriptions for XML. O’Reilly Media, Inc.,
Cambridge (2002)

40. W3C: W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures, http://www.w3.org/TR/
xmlschema11–1/

41. W3C: XML Schema Part 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0/
42. Walmsley, P.: Definitive XML Schema. Prentice Hall (2012)
43. Wong, R.K., Lam, N.: Managing and querying multi-version XML data with update logging. In: Proceedings

of the 2002 ACM Symposium on Document Engineering, pp. 74–81. ACM, McLean (2002)

World Wide Web (2015) 18:1541–1577 1577

http://www.sdl.com/products/livecontent/create.html
http://www.sdl.com/products/livecontent/create.html
http://www.serna-xmleditor.com/benefits/improve-collaboration/
http://www.serna-xmleditor.com/benefits/improve-collaboration/
http://www.w3.org/TR/xmlschema11%E2%80%931/
http://www.w3.org/TR/xmlschema11%E2%80%931/
http://www.w3.org/TR/xmlschema-0/

	Maintaining schema versions compatibility in cloud applications collaborative framework
	Abstract
	Introduction
	Related work
	Schema versioning in XML DBMS
	Schema versioning research approaches
	XML schema quality analysis

	Versioning model
	Versioning tree model
	Delta model
	XML delta
	XML forward, backward, and completed delta
	XML Schema completed delta (XS-Rel-Delta)

	Storage techniques for XML Schema versions
	Storage technique - SFXS (Storing First version and the XS-Rel-Deltas)

	XSM – high-level architecture
	Version insertion
	Version comparison
	Version retrieval
	Phase 1 - Iterate attribute groups
	Phase 2 - Iterate attributes
	Phase 3 - Iterate groups
	Phase 4 - Iterate elements
	Phase 5 - Iterate complex types
	Phase 6 - Iterate simple types

	Delta evaluation
	Reusability indicator (RI)
	Extensibility indicator (EI)

	Experimental evaluation
	Experimental settings and datasets
	Versioning evaluation
	Versioning correctness
	Delta optimality

	Delta indicators correctness

	Conclusion and future work
	References

