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Detecting anomaly in data streams by fractal model
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Abstract Detecting anomaly in data streams attracts great attention in both academic and
industry communities due to its wide range application in venture analysis, network mon-
itoring, trend analysis and so on. However, existing methods on anomaly detection suffer
three problems. 1) A large number of false positive results are generated. 2) Training data
are needed to build the detection model, and an appropriate time window size along with
corresponding threshold has to be set empirically. 3) Both time and space overhead is usu-
ally very high. To address these limitations. We propose a fractal-model-based approach
to detection of anomalies that change underlying data distribution in this paper. Both a
history-based algorithm and a parameter-free algorithm are introduced. We show that the
later method consumes only limited memory and does not involve any training process.
Theoretical analyses of the algorithm are presented. The experimental results on real life
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data sets indicate that, compared with existing anomaly detection methods, our algorithm
can achieve higher precision with less space and time complexity.

Keywords Data streams · Anomaly detection · Fractal model

1 Introduction

Real-time monitoring and online data mining over data streams attracts great research atten-
tion in research community because of its wide variety of real world applications. For
instance, it is very important to monitor the data streams for telecommunication network
performance tuning, highway traffic management, trend-related prediction analysis, web-
click streams analysis, information system intrusion detection, and sensor networking, etc.
Some of these tasks are mission critical which require fast response. Traditional techniques
initially proposed to manage static data collections cannot be applied directly to monitor or
mine dynamic data streams. Robust and efficient anomaly detection is needed to process
huge amount of information in constrained time period in order to monitor the data stream
online.

However, constrained computing resources such as limited memory availability, as
well as functional requirements including sequentially scanning and online accurate result
report pose great challenge for data stream processing. For instance, almost all of the
aforementioned monitoring tasks require monitoring data streams with multilevel window
sizes/granularities. It is also assumed in these applications that no limit on the maximal
number of monitored levels and the width of the largest monitored level is imposed. Algo-
rithms consuming limited system resources therefore are much desired, which is also the
case for anomaly detection in data stream.

In general, anomaly detection methods detect abnormality in the data stream based on a
model that is derived from a normal historical behavior of a data stream. They try to discover
the significant differences over short-term or long-term behaviors that are inconsistent with
the derived model. However, the detected results largely depend on the data distribution of
the underlying data stream. For the data stream whose distribution changes constantly, the
existing methods will result in a large volume of false positives. On the other hand, due to
the application-dependent definition of abnormal behavior, each existing method can only
detect a particular type of abnormal behaviors. In real situation, however, different types
of anomalies do co-exist and relate to each other. Therefore, it is meaningful to define
abnormal behavior in a more general sense, and is highly desirable to have an efficient,
accurate, and scalable mechanism for detecting abnormal behaviors over dynamic data
streams.

One approach for anomaly detection is via detecting the change of self-similarity. Self-
similarity is a property, which means an object is exactly or approximately similar to a
part of itself. Self-similarity is ubiquitous both in natural phenomena (e.g., blood pressure,
breathing, heart rate) and in social events (e.g., network traffic measurement, stock price
change, TCP connection occurrence). In a statistical sense, self-similarity retains similar
behavior, functionality, organization or property of a data set over a span of space and time.
For instance, self-similarity leads to natural clusters of the data set, the bursty phenomenon
in network traffic over long range of time span, etc. It represents the intrinsic nature of the
data. Abnormal behavior defined based on the change of self-similarity naturally captures
the essence of the event. Fractal, a geometric object generated by a repeating pattern recur-
sively, consists of different parts, each of which are self-similar. As a consequence, fractals
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which are built upon the statistical self-similarity, have been found with wide variety of
applications [2].

Due to its generality, fractal model is introduced into anomaly detection in this paper.
More specifically, we focus on modeling data with fractals based on recurrent iterated
function systems (RIFS) and detect the anomaly based on new fractal creation. Intuitively,
fractals defined by RIFS are descriptions of data by using data themselves. Thus, it is capa-
ble of capturing characteristics of underlying data distributions. Our data stream algorithm
show that, by maintaining fractal models online, anomalies that change the underlying data
distributions could be found, when new fractal pieces appear.

We made three major contributions.

– We propose a general-purpose and adaptable definition for abnormal behavior based on
the change of self-similarity. Self-similarity captures the intrinsic property of the data
streams, therefore a broader concept of definition of anomaly detection can be defined
than those application-dependent definitions.

– We introduce the fractal analysis based on self-similarity into anomaly detection of the
data stream. The piecewise fractal model is presented, which, to the best of our knowl-
edge, is the first time that the piecewise fractal model is introduced to process data
stream with guaranteed space cost and error. The fractal model appropriately describes
the bursty behaviors of the data streams without giving the size of window being
monitored in advance.

– We prove theoretically that the proposed parameter-free algorithm can return answers
more accurately than existing methods. Extensive experiments are performed. Both the
theoretical analyses and experimental results illustrate that the proposed method can
monitor data streams accurately and efficiently with limited resource consumption.

2 Related work

Most existing data streammanagement systems (DSMS) are motivated by monitoring appli-
cations [1, 10, 11, 27]. Algorithms are proposed for specific monitoring tasks over data
streams, such as change detection [6], deviation monitoring [23], incident alarming [9],
monitoring correlated financial streams [33] , detecting topic bursts in documents [18, 28],
querying and mining aggregation bursts over data streams [8, 25, 32, 34]. Monitoring abnor-
mal behaviors in the network traffic systems has been studied in [19] and [13]. The detection
of trends and surprise in time series database is studied in [26]. In [12], the exception of
trend is defined and detected.

The bursty behaviors are the appearance of the underlying changes of the self-similarity
in the data. For example, when a burst occurs on the aggregate result over a segment of a data
stream, it usually implies that the distribution over the segment of the data stream is under-
going a change, or the trend of the data stream segment is probably an exception. Existing
methods have some limitations to deal with bursty data. First, the application-dependent
definition of an abnormal behavior limits each method to detect only one specific type of
abnormal behaviors. Second, most existing methods are designed for querying over win-
dows with given length. Since users usually do not know what the most appropriate size of
the monitoring window is, they tend to monitor a large number of windows of various sizes
simultaneously. This choice results in unnecessary storage requirement and computation.
Third, the basic procedure for detecting anomalies over a data stream is to derive a model for
normal behaviors from the history of the data stream, then check whether there are any sig-
nificant differences in short-term or long-term behavior that are inconsistent with the model.
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However, if the distribution of a data stream changes frequently, the direct application of
the existing methods will lead to a large number of false positive results.

Fractal geometry has been known to be a powerful tool to describe complex shapes in
nature [20]. Since they are far more natural than the traditional Euclidean geometry to model
the natural phenomena, fractal techniques have been successfully applied to modeling and
compressing the data sets [2, 16, 21, 31]. However, it is difficult to apply existing fractal
techniques directly in the data stream scenario, since constructing the fractal model is in
polynomial time complexity, while multi-pass scan of the whole data is required. O’Rourke
[24] proposes to fit straight lines between data ranges, segments each arc into straight parts
in linear time and aims to solve a linear inequality system. In this paper, we propose a novel
approach to detect anomaly by applying fractal model to the data stream problem. The
change of self-similarity in the data is captured by fractal model, hence detect the anomaly
in data stream.

The remainder of this paper is organized as follows. The preliminary knowledge of fractal
and recurrent iterated function systems (RIFS) are introduced in Section 3. In Section 4, the
data stream and the related anomaly detection are discussed. The problem we aim to address
in this paper is presented. In Section 5, a novel piecewise fractal model for data streams is
proposed. The space and error bound of this model are analyzed in detail. A parameter-free
anomaly detection algorithm with the detailed theoretical analyses is described in Section 6.
We present the experimental setup and the result analyses in Section 7. Finally, Section 8
concludes the paper.

3 Preliminaries of fractals

Self-similarity is widespread in both nature phenomena and social events. Fractals, as a con-
sequence of self-similarity, have been found wide-ranging applications in numerous cases
[2]. In this paper, we will focus on modeling data with fractals based on recurrent iterated
function systems (RIFS).

The piecewise fractal model proposed in this paper, which is for describing data
streams, can be tracked back to its mathematical roots of recurrent iterated function sys-
tems. Therefore, at the very beginning of our discussion, some preliminary knowledge
about fractal techniques based on recurrent iterated function systems is introduced in this
section.

3.1 Power law scaling relationship

It is observed that the pieces of a fractal object, when enlarged, are similar to larger pieces of
the whole [20]. If these pieces are identically re-scaled replica of the others, then the fractal
is called an exact one. If, in a statistical sense, the similarity holds only on the given feature
of different granularity, then the fractal is a statistical one. Deterministic fractals such as
the real von Koch curve and Cantor set are both exact in that every part is strictly self-
similar, representing an exact (or scaled) copy of the whole; however, most natural objects
are statistical fractals.

If a quantitative property, q, is measured on a time scale s, then the value of q depends
on s according to the following scaling relationship [20]:

q = psr . (1)
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This is called power law scaling relationship of q with s. p is a factor of proportionality and
r is the scaling exponent. The value of r can be easily determined by the slope of the linear
least squares fitting to the graph of data pairs (log s log q):

log q = logp + r log s. (2)

Data points of exact fractals are located exactly on the line of the regression slope, whereas
those of statistical fractals scatter around the regression slope, for the two sides of (2) are
equal only in a distribution sense.

For discrete time series data, (1) can be transformed to

q(s, t) = srq(t), (3)

where t is the basic time unit and s(s ∈ R) is the scaling measurement [7]. r can be
determined by

r = log(q(s, t)/q(t))

log s
. (4)

The power-law scaling relationship is also retained when q is a first order aggregate
function (e.g. sum, count) or some second order statistic variables (e.g. variance).

3.2 Iterated function system (IFS)

An iterated function system [4] is a scheme for describing and manipulating complex fractal
attractors using simple mathematical models. More precisely, they are a finite collection of
contraction maps Mi for i = 1, 2, 3, ..., m which map a compact metric space onto itself.
In particular, a linear contraction map has the form

Mi

[
x

y

]
=

[
ai11 ai12
ai21 ai22

] [
x

y

]
+

[
bi1
bi2

]
(5)

The attractor of the IFS is the fixed point of x = M(x). Assume A is the attractor, then

A =
m⋃
i=1

Mi(A). (6)

By modelling the real life data with an IFS, we can use the attractor of the IFS to
approximate the real life data.

When the map parameters of IFS have been determined, the attractor can be constructed
with one of two algorithms. The first one is a deterministic algorithm. It is based on the con-
tractivity of the M mapping and begins by selecting any compact set A0 ⊂ RT , where T
is the topographical dimension of the data set. After successively computing An = Mn(A),
the sequence {Aj }∞j=1 will converge to the attractor of the IFS. The second one is a random-
ized iterative algorithm. It uses the properties of the dynamical system associated with the
Mi’s, and it proceeds with initially x0 ∈ RT . Then it chooses recursively and independently
with xn ∈ {M1(xn−1),M2(xn−1), ...,Mm(xn−1)} for n = 1, 2, 3, .... The Mi is selected
with a given probability. The sequence {xn}∞n=1 will converge to the attractor of the IFS.

3.3 Recurrent iterated function system (RIFS)

Recurrent iterated function systems were first introduced in [5] as a generalization of the
original finite map IFS. Different from IFS which is defined for certain metric space, RIFS
can be generalized for arbitrary metric spaces. Therefore, RIFS is capable of encoding a
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wider range of measures. RIFS is always used to produce complicated objects with only a
few maps. RIFS theory has been successfully applied to image processing and compressing
[15, 22].

In RIFS, given the contraction maps, the attractor A ⊂ Rd is
⋃N

i=1 Ai where Ai ⊂
Rd (i = 1, ..., N) are possibly overlapping partitions. Furthermore, Mj(A) = Aj =⋃

<i,j>∈GMj(Ai). Here G is a directed graph, and A = (A1, ..., AN) ∈ (Rd)N .
Each edge < i, j >∈ G indicates that the mapping composition Mj � Mi is allowed.

The attractor can also be represented by A = M(A), in which M : (Rd)N →
(Rd)N is defined as (M1,M2, ...MN). Thus, given a set vector D = (D,D, ...,D)

with D ⊂ Rd , A = limi→∞Mi (D). Similar to IFS, attractor A can be used
to approximate the data. When the graph G is complete, the RIFS degrades to an
IFS [16].

IFS and RIFS are often used to summarize and compress fractal data. The problem lies
in the determination of the attractor. Since the attractor can be computed given the mapping,
the computation of the parameters of the mapping is usually called the inverse problem of
IFS or RIFS [16].

Given the mapping M, D′ = M(D), we consider the condition that D′ ⊂ D in this
paper. Under this condition, the open set property holds, so that the Collage Theorem can be
applied to guarantee the precision of approximating the original data using the attractor [2,
5]. This theorem provides a way to measure the goodness of fit of the attractor associated
with an RIFS and a given function.

Collage theorem Let (X, d) be a complete metric space where d is a distance measure. Let
D be a given function and ε > 0 be a given real number. Choose an RIFS, with contractility
factor s = max{si : i = 1, 2, 3, ..., N} so that d(D,

⋃N
i=1Mi(D)) ≤ ε. Then d(D, A) ≤

ε
1−s

where A is the attractor of the RIFS.
Since the contraction property of the mapping holds and D′ ⊂ D, the size of D′ must be

smaller than that of D.
RIFS is more suitable for data stream processing than IFS. Intuitively, at any time, only

a small piece of the stream can be obtained. Thus, the whole attractor may not be precisely
estimated.

4 Problem description

A data stream X is a sequence of points x1, ..., xn. Function F being monitored can be
not only the monotonic aggregates with respect to the window size, for example sum and
count , but also the non-monotonic ones such as average.

In the algorithms introduced in this paper, F can be extended to some second order
statistics, such as variance. In real world applications, with different definitions of
abnormal behavior, individual detecting methods can monitor the results of different
functions. For example, burst detection monitors the results of sum, count, average,
and outlier and deviant detecting algorithms monitor the results of variance. One
common property of the above functions is that they all retain the power-law scaling
relationship.

Following we show that there exists such a property for aggregate function F and some
second order statistics in different kinds of real life applications.

Here, the experimental results on two real life data sets D1 and D2 are chosen as exam-
ples (the details of these data sets are described in Section 6.1). The monitored quantitative
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property q on time scale s is determined as follows. For a window of size wi , we compute
the aggregates on testing data stream X. This gives another time series Y , y1, ..., yk .

yk =
k+wi−1∑
j=k

xj , k = 1, 2, ..., n− wi + 1

The average and sample variance of y1, y2..., yk are denoted by avg(y(wi)) and
var(y(wi)), respectively. Let q1 represent avg(y(wi)), q2 represent var(y(wi)), and s be
wi .

q1 = avg(y(wi)) = 1

k

k∑
j=1

yj

q2 = var(y(wi)) = 1

k

k∑
j=1

(yj − q1)
2

After plotting the data points (log s, log q) (q is either the average or the variance), with
base equals to 10, on the graph, we draw a line of the linear regression. Note that from

Figure 1 Power law scaling of aggregate function F on real life data sets
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Table 1 List of notations and
definitions xi i-th data point in stream X

m number of pieces/contraction maps

Ai distance

Bi distance

α error constraint of piecewise fractal model

Mi i-th contraction map

Di i-th partition of whole metric space D

D′
i the partition mapped from Di , D′

i ⊂ Di

Pi i-th piece of fractal model

P ′
i the piece mapped from Pi by Mi , P ′

i ⊂ Pi

Figure 1, the regression line connects all the data points, which means that the rule of power-
law scaling relationship of F is obeyed.

Monitoring anomalies in data streams is to detect the change of power-law scaling rela-
tionship, i.e., self-similarity, on the sequences with continuous incoming new value xi .
Under such a data stream model, the problem about anomaly detection can be described as
follows.

Problem statement A data stream X is a sequence of points x1, ..., xn. An anomaly is
detected if the self-similarity of F over X changes (i.e., the historic one is violated) when
new value xn comes.

In this definition, we use the change of self-similarity to describe the occurrence of
abnormal behavior in data streams. This definition is a broader concept than those spe-
cific ones defined in previous methods. Note that the definition of anomalies is highly
application-dependent. The aim of this paper is not to provide a general approach that can
detect anomalies for all applications, but a general-purpose method that detect anomalies
that change underlying data distributions which can be characterized by fractal models.
Different applications can be built based on anomaly detection results.

In the next section, we describe how to measure the change of the self-similarity for
current data stream (Table 1).

5 Piecewise fractal model for data streams

The recurrent iterated function system (RIFS) can be used to generate deterministic fractals
to approximate real world data. The inverse problem deals with how to set the parameters
of an RIFS when modeling a given application. Constructing a piecewise fractal model
for a data stream is equivalent to solving an inverse problem in data stream scenario. In
this section, we investigate two approaches to solve the problem. One is L2 error optimal
method, whose complexity isO(n2) in time andO(n) in space. The other is an approximate
method with at most (1+ ε) times the error for the optimal solution. It uses O(n) time and
O(m) space, m is the number of required pieces, m < log n.

5.1 Inverse problem

Since both iterated function system (IFS) and recurrent iterated function system (RIFS) can
produce complicated objects with only a few maps, the associated inverse problem has been
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Figure 2 Contraction mapping on stream X in our piecewise fractal model

attracting much attention [14, 15, 22, 29]. The inverse problem is to determine the map
parameters needed by an IFS or RIFS to model a given data set.

The RIFS is a general form of the IFS, which is capable of modeling a wide range of
objects. If the inverse problem can be addressed, then RIFS theory can be applied to model
arbitrary functions while achieving large-scale data compression. Hence we focus on the
inverse problem of RIFS to model the data stream in this paper.

From the preliminary introduction on RIFS, we known that an RIFS is a finite collection
of contraction mapsMi (i = 1, 2, 3, ..., m). Each linear contraction map has the form:

Mi

[
x

y

]
=

[
ai11 0
ai21 ai22

] [
x

y

]
+

[
bi1
bi2

]
. (7)

The mapping (7) is often called shear transformation [2]: vertical lines are mapped to
vertical lines by the factor ai22. In (7), the parameter is called the contraction factor for map
Mi . ai22 is constrained to be a real number with |ai22| < 1. In general, it is not required
that the contraction mapping fractal model have any zero entries in the maps. However, the
zero entry in the coefficient matrix of (7) ensures that the resulting linear mapping is single
valued [3]. The RIFS discussed in this paper consists of such contraction maps.

RIFS can map a partition Di of whole metric space D to another partition D′
j of D

under two constraints. Each Mi maps an interval [x(i,0)..x(i,1)] of X, denoted by Di , to a
subinterval [x′(i,0)..x

′
(i,1)] of Di itself, denoted by D′

i . x(i,0) and x(i,1) are the begin time
stamp and end time stamp of interval Di , respectively. Correspondingly, x′(i,0) and x′(i,1)
are the begin time stamp and end time stamp of interval D′

i , respectively. Then the first
constraint follows

D′
i = Mi(Di),D

′
i ⊂ Di. (8)

The second constraint which needs to be maintained in RIFS is that every contraction
mapping maps the two endpoints (x(i,0), y(i,0)) and (x(i,1), y(i,1)) of Di to two endpoints
(x′(i,0), y

′
(i,0)) and (x′(i,1), y

′
(i,1)) of D

′
i . It is illustrated in Figure 2. Mi transforms a larger

interval Di of stream X to a smaller interval D′
i of the same stream.

Thus, the endpoints of D′
i are also the endpoints of the attractor of Mi , that is,

Mi

[
x′(i,0)
y′(i,0)

]
=

[
x(i,0)
y(i,0)

]
,Mi

[
x′(i,1)
y′(i,1)

]
=

[
x(i,1)
y(i,1)

]
. (9)
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Once the contraction factor ai22 for each mapping is determined, the remaining parame-
ters can be obtained using the endpoint constraint (9). These parameters are computed by
the following equations.

ai11 =
x′(i,1) − x′(i,0)
x(i,1) − x(i,0)

(10)

bi1 =
x(i,1)x

′
(i,0) − x(i,0)x

′
(i,1)

x(i,1) − x(i,0)
(11)

ai21 =
y′(i,1) − y′(i,0)
x(i,1) − x(i,0)

− ai22
y(i,1) − y(i,0)

x(i,1) − x(i,0)
(12)

bi2 =
x(i,1)y

′
(i,0) − x(i,0)y

′
(i,1)

x(i,1) − x(i,0)
− ai22

x(i,1)y(i,0) − x(i,0)y(i,1)

x(i,1) − x(i,0)
(13)

Now the problem of constructing the piecewise fractal model for data streams is reduced
to determining the appropriate value of contraction factor ai22.

5.2 Piecewise fractal model

In a piecewise fractal model, the goal of the global optimal solution is to minimize the
sum of error of each piece. It also requires that the model to be maintained incrementally
for evolving data streams with small overhead on time and space. This global optimiza-
tion problem is NP-hard [17]. To ease the problem, we first construct the piecewise fractal
model to solve a local optimization problem. This approach intends to minimize the error of
individual pieces. Then an approximate local optimal algorithm for building the piecewise
fractal model is suggested, which needs only one-pass sequential scan of the data stream
and O(m) memory consumption. m is the number of contraction mapsMi , i.e., the number
of pieces we try to model on a stream. The error of the approximate method is two times
smaller than that of the local optimal method, which we will prove later.

Below we first introduce the optimal fractal model, then the approximate model is
presented.

5.2.1 Optimal model

Assume the data point in a data stream X is a (timestamp : i, value : yi) pair. Let the
start point of a piece P of stream X be (s, ys), and the end point of P be (e, ye), e > s.
Since the data points in a stream are discrete, a contraction mapping M can be defined as
M(i, yi) = (int (i · a11 + b1), i · a21 + yia22 + b2). The data points in a larger piece of a
data stream are mapped byM from P {(s, ys), (e, ye)} to a smaller piece of the same stream
P ′{(s′, ys′), (e′, ye′)}, where P ′ ⊂ P and e− s > e′ − s′. Every two adjacent P ′s meet only
at the endpoints and do not overlap. For all the pieces of the whole data stream, however,
there might be some overlaps, that is,

⋃
Pi = ⋃

P ′
i = X. Suppose the L2 error between the

data points in mappingM(P) and those in the original piece P ′ is E(M) = (M(P )−P ′)2,
then the error of a mappingM is

E(M) =
e∑

i=s

((i · a21 + yia22 + b2)− yj )
2,

where j = int (i · a11 + b1). Given P and P ′, the optimal mapping Mopt is the one such
that the minimum value of E(M) is reached.
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On data stream X, it is ensured that each contraction mapping M maps the start point
and end point of piece P to corresponding ones of piece P ′, namely, (s′, ys′) = M(s, ys)

and (e′, ye′) = M(e, ye). a21 and b2 can be obtained by (12,13). Therefore, we have

E(M) =
e∑

i=s

(Aia22 − Bi)
2, (14)

Ai = yi −
(
e − i

e − s
ys + i − s

e − s
ye

)

Bi = yj −
(
e − i

e − s
ys′ + i − s

e − s
ye′

)
.

Ai and Bi have their own geometric interpretations. The term Ai denotes vertical distance
between the point yi belonging to piece P and the straight line connecting end points of
piece P . The term Bi denotes vertical distance between the point yj belonging to piece P ′
and the straight line connecting end points of piece P ′, where j = int (i · a11 + b1).

The coefficient a22 of the optimal mapping Mopt can be computed using the following
equation.

∂E(M)

∂a22
= 2

e∑
i=s

(Aia22 − Bi)Ai = 0

Then

a22 =
e∑

i=s

AiBi/

e∑
i=s

A2
i .

Consequently, the optimal contraction mapping Mopt can be obtained by maintaining
�e

i=sAiBi and �e
i=sA

2
i over the data streams. Algorithm 1 illustrates the method for

constructing the optimal piecewise fractal model for a data stream.

Algorithm 1 OptimalModel( xn )

1: compute �e
i=sAiBi ;

2: compute �e
i=sA

2
i incrementally;

3: if �e
i=sAiBi/�

e
i=sA

2
i < 1 then

4: add xn to current piece;
5: else
6: create a new piece for xn;
7: pieceNumber ++;
8: if pieceNumber > m then
9: delete the oldest piece;
10: end if
11: end if
12: add xn to all pieces;

Algorithm 1 takes xn as the input. The only parameterm sets the maximal number of the
maintained pieces. Computing �e

i=sAiBi in Line 1 take O(n) time and O(n) space. Line 2
computes �e

i=sA
2
i incrementally. If the contraction factor is less than 1, then xn will be put
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into the current piece, otherwise it will be put into a new piece. If the number of pieces is
more than the pre-defined threshold m, then Line 9 deletes the oldest piece.

Assume the length of a data stream is n. Algorithm 1 maintains optimal piecewise fractal
model on a data stream with O(n + m) space in O(n2) time with m as the number of
contraction maps.

5.2.2 Approximate model

For data stream processing, it is required that we do one-pass sequential scan on the data
stream only, for it is impossible to store the whole stream in memory. Therefore, the value
of �e

i=sAiBi cannot be maintained in the data stream scenario, as Algorithm 1 requires.
To address this problem, we construct an approximate optimal piecewise fractal model to
compute the approximate value of �e

i=sAiBi .
Denote the approximate value of a22 to be a′22. Similarly we have

Ci = yi −
(
e′ − i

e′ − s′
y′s +

i − s′

e′ − s′
y′e

)

e∑
i=s

B2
i = e − s

e′ − s′
e′∑

i=s′
C2
i

(a′22)2 =
∑e

i=s B
2
i∑e

i=s A
2
i

Hence we only need to maintain �e′
i=s′C

2
i and �e

i=sA
2
i incrementally for current pair of

P and P ′ on the data stream. In this way, the a′22 and corresponding approximate optimal
results Mapp can be computed.

The approximate piecewise fractal model consists of m pieces which can be used to
reconstruct the original data stream. The error of reconstruction is bounded by Collage
Theorem [2, 5].

Each piece Pi corresponds to a contraction mappingMi and a pair of partition P and P ′.
One value needed to be stored for Pi is the suffix sum F(n − si′) starting from (si′, ysi′),
where a suffix sum of data stream is defined as F(wi) = �n

j=n−wi+1xj . The other value
needs to be stored for Pi is the number of points included in this suffix sum. We first try to
add each data point of the evolving stream into the current piece. If failed, then a new piece
is created for this point. Because the end point of piece P ′

i is the start point of piece P
′
i+1,

it is not necessary to store the end point. We do not consider the reconstruction of original
data stream in this paper, so the contraction factor does not need to be stored either. If the
model is used to detect anomalies only, one piece is enough.

The method of constructing an approximate optimal piecewise fractal model for a data
stream is described in Algorithm 2.

Under the condition of �e
i=sB

2
i /�

e
i=sA

2
i < 1, the incoming xn is put into the partitions

P and P ′ corresponding to the current piece Pi . The newly added xn serves as the end point
of current piece. When �e

i=sB
2
i /�

e
i=sA

2
i ≥ 1, in Line 6, a new piece Pi+1 is created. The

piece P ′
i serves as the new Pi+1 and a new P ′

i+1 is created. xn−1 becomes the start point of
P ′
i+1. xn becomes the end point for both P ′

i+1 and Pi+1. Therefore, it always follows that

Pi+1 = P ′
i

⋃
P ′
i+1
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Algorithm 2 ApproximateModel( xn )

1: compute �e
i=sB

2
i incrementally;

2: compute �e
i=sA

2
i incrementally;

3: if �e
i=sB

2
i /�

e
i=sA

2
i < 1 then

4: add xn to current piece;
5: else
6: create a new piece for xn;
7: pieceNumber ++;
8: if pieceNumber > m then
9: delete the oldest piece;
10: end if
11: end if
12: add xn to all pieces;

When the existing number of pieces exceeds the threshold m, the oldest piece is deleted.
Only the latestm pieces for the data stream are kept. Figure 2 illustrates the piecewise fractal
model for data stream X with mapsMi andMj .

The upper bound of the time and space complexity to maintain the approximate optimal
piecewise fractal model for a data stream is O(n) and O(m) respectively.

5.3 Error bound

Algorithm 2 is designed to approximate the local optimal solution. The error bound of the
resulting approximate solution is shown in Theorem 1.

Theorem 1 Assume Algorithm 2 produces an approximate optimal solution Mapp which
maps the partition P to P ′ with error E(Mapp), and the optimal method maps the partition
P to P ′ with error E(Mopt ) then E(Mapp) ≤ 2E(Mopt ) always holds.

Proof Expand E(Mopt ) and E(Mapp) by (14) and

E(Mopt ) =
e∑

i=s

(Aia22 − Bi)
2

= a222

e∑
i=s

A2
i − 2a22

e∑
i=s

AiBi +
e∑

i=s

B2
i

and

E(Mapp) =
e∑

i=s

(Aia
′
22 − Bi)

2

= (a′22)2
e∑

i=s

A2
i − 2a′22

e∑
i=s

AiBi +
e∑

i=s

B2
i .

divide E(Mapp) by E(Mopt ), we get

E(Mapp)

E(Mopt )
= (a′22)2

∑e
i=s A

2
i − 2a′22

∑e
i=s AiBi + ∑e

i=s B
2
i

a222�
e
i=sA

2
i − 2a22�e

i=sAiBi +�e
i=sB

2
i

. (15)
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Recall that:

a22 =
e∑

i=s

AiBi/

e∑
i=s

A2
i

and

(a′22)2 =
e∑

i=s

B2
i /

e∑
i=s

A2
i ,

divided by �e
i=sA

2
i , (15) can be transformed to

E(Mapp)

E(Mopt )
= 2(a′22)2 − 2a22a′22

(a′22)2 − (a22)2
.

Let δ = a22/a
′
22. Divide both sides of the above equation by (a′22)2, we get

E(Mapp)

E(Mopt )
= 2(1− δ)

1− δ2
= 2

1+ δ
≤ 2,

where we use the fact that δ ≥ 0.

δ = a22

a′22
=

√
(
∑e

i=s AiBi)2∑e
i=s A

2
i

∑e
i=s B

2
i

≤ 1

Then δ = a22/a
′
22 ≤ 1. Therefore,

E(Mapp)

E(Mopt )
≤ 2.

This finishes the proof of E(Mapp) ≤ 2E(Mopt ).

From Theorem 1, the relative error of approximate solution is bounded above. For some
applications in which the bounded absolute error is wanted, we provide a parameter α to
control the error. Then the error of mappingMapp on partitions P and P ′ can be guaranteed
as follows.

E(Mapp) ≤ α · E(P ′
LSF ),

where E(P ′
LSF ) is the Least Linear Fitting error on partition P ′. Therefore, the error pro-

duced by approximate piecewise fractal model on partition P ′ is less than the smaller value
of αE(P ′

LSF ) and 2E(Mopt ), which is

E(Mapp) ≤ min{αE(P ′
LSF ), 2E(Mopt )}

To control the parameter α, we only need to check whether E(Mapp) ≤ αE(P ′
LSF )

holds or not when a new xn comes. If E(Mapp) ≤ αE(P ′
LSF ) holds, xn is put into the

current partition; otherwise, a new partition is created for xn. The rest is the same as that of
Algorithm 2.

6 Anomaly detection algorithms

In this section, we first introduce a history-based method, which takes an approach similar to
existing burst detection methods. Then, a parameter free mechanism for anomaly detection
is presented. Compared with the history-based method, it is more adaptable to real world
applications since it frees users from tedious parameter selection procedure.
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Figure 3 The distribution is changing constantly on D2

6.1 History-based method

Existing methods detect data stream based on the model derived from a normal behavior in
the data stream history. For instance, the threshold of bursty behaviors of aggregate function
F on the i-th window is set as follows. At first, the moving F(wi) is computed over some
training data which could be the foremost 1 % of the data set. The training data forms
another time series data set, called Y . Then the threshold of anomaly is set to be

T (wi) = μy + λσy

where, μy and σy are the mean and standard deviation, respectively. The threshold can be
tuned by varying the coefficient λ of standard deviation.

These methods then look for the significant differences in short-term or long-term behav-
iors which are inconsistent with the model. This ultimately depends on the distribution of
the data over the streams. For those real-life data streams whose distribution change con-
stantly, existing methods will result in a large volume of false positives. This is illustrated
in Figures 3 and 4.

Figure 4 The distribution is changing constantly on D3
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Algorithm 3 AnomalyDetection( xn )

1: read xn;
2: ApproximateModel(xn);
3: if createNewPiece() then
4: alarm anomaly;
5: end if

In these two experiments, for every fixed length of interval, say, 1000 data points, we
compute the mean and standard deviation. The values of this interval and the time stamp of
right side end point are plotted on the graphs.

It can be seen from Figures 3 and 4 that the mean and standard deviation fluctuate dra-
matically. In this case, the performance of history-based model will degenerate rapidly due
to the large variation between consecutive windows. The result is that a large volume of
false positives are returned by the existing methods. We will show the detailed experimental
results later.

Another drawback of the history-based model is that it cannot be trained online to adapt
to the evolving data streams. It is because we do not know exactly how long the data segment
from a distribution will be, therefore difficult to set an appropriate interval size for the
training data. It is not a trivial job to determine the threshold of change, even if we can
measure the change of distribution [6].

6.2 Parameter-free method

Above discussion prompts us to investigate the parameter-free mechanism for detecting
abnormal behaviors in the data streams. We use the following equation to represent the data
derived from the data stream.

Y = X + e,

where Y is either an aggregate function (e.g., sum, count, average), measurement of trend
and deviant (say, variance), or distance of two kinds of distribution on the data stream. X
is the result of Y in normal condition. e, the effect caused by abnormal behaviors on Y , can
be seen as a noise. We assume thatX and e have individual distributions and the uncertainty
noise e is white Gaussian.

In the scenario of discrete data points, Gaussian white noise can only be modelled
and processed in time series data. The constraints imposed on the data stream processing
include limited memory consumption, sequentially linear scanning, and on-line accurate
result reporting over evolving data streams. Therefore, we build piecewise fractal model on
the data streams to model the change of self-similarity induced by Gaussian white noise.

The occurrence of abnormal behaviors is rooted in the change of self-similarity in the
data stream. The piecewise fractal model can find the pieces with self-similarity in a data
stream. That a new piece is created means there is a change on current self-similarity.

Algorithm 3 is a parameter-free algorithm to detect anomaly based on the change of
self-similarity. It alarms at the occurrence of an anomaly when a new piece is created for
incoming xn.

Note that the parameter m in Algorithm 1 is in essence a parameter on limitation of
memory consumption. Considering the compactness for storing a contraction map, m could
be set sufficiently large in the environment with commodity servers. Thus, our method is a
parameter-free one from this point-of-view.
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With this model, we can evaluate both the signal and noise in the data stream. Since
the anomaly detection only focuses on the prominent noise which causes the change of
self-similarity, the evaluation of anomaly on e is not affected by the evolving of normal
signal X.

7 Performance evaluation

We present the empirical studies in this section. It shows that the fractal-based method can
efficiently generate accurate alarms to abnormal behaviors with small cost in space and
time.

7.1 Experimental setup

The algorithms are implemented under Microsoft Visual C++ version 6.0. The experiments
are conducted on a platform with a 2.4GHz CPU, 512MB main memory, and the operating
system is Windows 2000. We applied our algorithms to a variety of data sets. Due to the
space limitation, only the testing results of three real data sets are reported here.

– Stocks Exchange: This data set contains one year tick-by-tick trading records in 1998.
These records are from tens of corporations on Hongkong main board. We randomly
pick up the records of a corporation to form a data stream. It has 485,984 unique
records, each of which contains trading time (precise to the second) and trading price.
It is called data set D1.

– Network Traffic: This data set BC-Oct89Ext4 is a network traffic tracing data set
obtained from the Internet Traffic Archive [13, 30]. It contains a million packet arrivals
seen on an ethernet at the Bellcore Morristown Research and Engineering facility. It is
called data set D2 here.

– Web Site Requests: This data set is also obtained from the Internet Traffic Archive
[13, 30]. It consists of all the requests made to the 1998 World Cup Web site
between April 26, 1998 and July 26, 1998. During this 92-day period, the site received
1,352,804,107 requests. The basic window, i.e., an item xi , is the number of requests
issued in one second. So the stream length is n = 92 ∗ 24 ∗ 3600 = 7, 948, 800s. It is
data set D3.

7.2 Accuracy metrics

In this subsection, we present the results of burst detection [8, 25, 34]. The comparison tests
will be presented later. Note that our methods can also be applied to re-construct data and
detect anomaly defined by existing methods.

Burst detection is defined as follows. Assume that F is an aggregate function, and wi is
the latest sliding window of a stream with length li (1 ≤ li ≤ n). T (wi) is the threshold on
F(wi) specified by users. When xn comes, a burst is reported on window wi if F(wi) ≥
T (wi).

In our burst detection test setting, sum aggregate is chosen as F . Two accuracy metrics ,
recall and precision, are considered. Recall is the ratio of true alarms raised to the total true
alarms which should be raised; precision is the ratio of true alarms raised to the total alarms
raised.

To set the threshold for F(wi) on the i-th window, we compute moving F(wi) over some
training data. The training data is the foremost 1 % of each data set. It forms another time
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Figure 5 The accuracy when varying burst threshold λ. (a) accuracy when varying λ on D1, (b) accuracy
when varying λ on D3

series data set, called Y . The absolute thresholds are set to be T (wi) = μy + λσy . The
length of windows are 4, 8, ..., 4 ∗ NW time units, where NW is the number of windows.
NW varies from 50 to 1100.

7.3 Experimental results

We first evaluate the relationship between accuracy and threshold of detecting bursts. In this
experiment, we set the number of monitored windowsNW = 70 and the maximum number
of pieces m = 8 in piecewise fractal model. Note that the number of windows NW is for
comparison purpose only. It’s not used in our algorithm. The error parameter α of piecewise
fractal model is set to 7 on D1 and 9 on D3. It can be seen from Figure 5 that under any
setting of λ the precision and recall of our method are always above 97 %. The accuracy
are even above 99 % when λ = 7, as shown in Figures 5a and b. We conclude that, with the
increasing value of λ, our method can guarantee better accuracy for detecting bursts.

To study the relationship between accuracy of burst detection and error bound of piece-
wise fractal model, we set number of monitored windows NW = 70 and the maximal
number of piecesm = 8 in piecewise fractal model. The threshold parameter λ of piecewise
fractal model is set to 7 on D1 and 5 on D3. It can be seen from Figure 6 that when the value

Figure 6 The accuracy when varying error bound parameter α. (a) accuracy when varying α on D1, (b)
accuracy when varying α on D3
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of α increases, the precision and recall also increase in certain domain. When α exceeds cer-
tain value, both the precision and recall decrease. α cannot be too small, because smaller α
means a piece can only store less data points, hence the length of the overlapping pieces for
the piecewise fractal models becomes shorter when the number of pieces m is fixed. Thus
the estimated aggregate value of larger windows is more error prone, and the error of burst
detection increases. On the other hand, it is easy to understand that larger α result in longer
pieces, therefore larger reconstruction error.

To investigate the relationships between accuracy and number of monitored windows,
and the relationship between space cost and number of monitored windows, we set λ = 5
and α = 9. Due to the space limitation, we only show the results on D3. With the increase of
number of monitored windows, the number of used pieces also increases. But the number of
consumed pieces can still be guaranteed by m < log2 4 ∗NW . It can be seen from Figure 7
that with only a few pieces the precision and recall are still high. The accuracy is getting
better and better when NW increases. This is because the average size of monitored win-
dows becomes larger with the increase of NW . The fractal approximation is more accurate
over large time scales. So the error decreases with the increasing of NW . This illustrate our
algorithm’s ability to monitor large amounts of windows with high accuracy over streaming
data.

In the experiment, we also compare our method with existing burst detection methods
[8, 25, 34]. Since these methods have the same definition on burst, we choose [34] to repre-
sent the rest. We implement the SWT based algorithm of [34]. When detecting anomaly on
data streams, existing methods will return large number of false positive results. Because
it is difficult to set the appropriate window size, they have to monitor multiple windows
of different sizes. In the experiment, we set NW = 100. Since we do not consider the re-
construction of original data stream in this paper, we setm = 1 and α = +∞, which means
we do not use α to control the error bound of piecewise fractal model. It can be seen from
Figure 8 that SWT returns large number of false positive results in every case. For example,
in Figure 8b, 108 alarms are returned, which is definitely not informative to the users. More-
over, it is difficult to set the threshold of bursts. A slightly smaller or larger λ can either
boost false alarms or false positive, respectively. Therefore, our parameter-free method is
more adaptable for providing accurate alarms in anomaly detection.

Figure 7 The efficiency of burst detection on D3 when varying number of windows. (a) space cost when
varying NW (b) accuracy when varying NW
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Figure 8 Comparing of number of results, with NW = 100, λ = 7

In Figure 8c and d, solid points are the anomalies identified by our algorithm on two
pieces of data streams of data set D1 and D3. It is shown that the result is consistent with
the intuition. It is worth noting that the anomalies identified is insensitive to the setting of
λ, as it is indicated in Figure 8. Furthermore, the number of anomalies found by the method
introduced in [34] is too large (Figure 8a and b), so that those data items cannot be illustrated
in Figure 8c and d.

Figure 9 Time complexity comparison on different data sets by varying the number of monitored windows
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Figure 10 Space complexity comparison on different data sets by varying the number of monitored windows

There are two data items denoted by hollow points in Figure 8d that having relative high
variance but are not identified by our algorithm. This is because the result illustrated is only
a small piece in the whole stream. The un-illustrated data items before and after them have
similar values to those two items.

To demonstrate the time and space efficiency of our algorithm, we compare with Stardust
[8] and the query-based method [25]. It can be observed from Figures 9 and 10 that our
method uses much smaller memory, runs more than tens of times faster than other methods.
We use the code provided by the author of [8] and [25] to do the comparing test. The rest
of setting is the same as before, except for the special setting for Stardust with box capacity
c = 2.

Our method is also space efficient. This is confirmed in Figure 10. The space cost of the
method in this paper is the space cost of piecewise fractal model which is only affected by
the maintained pieces. In this test, m is set to 1. However, Stardust has to maintain all the
monitored data points and the index structure at the same time. And the query-based method
has to maintain a inverted histogram (IH) in memory. It can be seen that the space saved
by piecewise fractal model is getting larger and larger as the increasing of NW and stream
length. Thus, our method is more suitable to detect anomalies over streaming data.

8 Concluding remarks

In this paper, we propose a general-purpose and flexible definition for abnormal behavior.
The definition is based on the change of self-similarity of the data streams. We incorpo-
rate the fractal analysis technique into anomaly detection. Based on the piecewise fractal
model, we propose a novel method for detecting anomalies over a data stream. Fractal anal-
ysis is employed to model the self-similar pieces in the original data stream. Piecewise
fractal model is proved to provide accurate monitoring results, while consuming only lim-
ited storage space and computation time. Fractal techniques focus on the most appropriate
window size, not the past data stream history. It frees the users from monitoring a number
of windows of different sizes. Both theoretical and empirical results show the high accu-
racy and efficiency of the proposed method. Furthermore, this approach can also be used to
reconstruct the original data stream with the error guaranteed.
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