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Abstract Skyline operator is a useful tool in multi-criteria decision making in various
applications. Uncertainty is inherent in real applications due to various reasons. In this paper,
we consider the problem of efficiently computing probabilistic skylines against the most recent
N uncertain elements in a data stream seen so far. Specifically, we study the problem in the n-
of-N model; that is, computing the probabilistic skyline for the most recent n (∀n≤N)
elements, where an element is a probabilistic skyline element if its skyline probability is not
below a given probability threshold q. Firstly, an effective pruning technique to minimize the
number of uncertain elements to be kept is developed. It can be shown that on average storing
only O(logdN) uncertain elements from the most recent N elements is sufficient to support the
precise computation of all probabilistic n-of-N skyline queries in a d-dimension space if the
data distribution on each dimension is independent. A novel encoding scheme is then proposed
together with efficient update techniques so that computing a probabilistic n-of-N skyline
query in a d-dimension space is reduced to O(dloglogN+s) if the data distribution is indepen-
dent, where s is the number of skyline points. A trigger based technique is provided to process
continuous n-of-N skyline queries. Extensive experiments demonstrate that the new techniques



on uncertain data streams can support on-line probabilistic skyline query computation over
rapid data streams.

Keywords Skyline . Stream . Query processing . Uncertain

1 Introduction

Skyline analysis has been shown as a useful tool in multi-criterion decision making. Given a
certain data set D, an element s1∈D dominates another element s2∈D if s1 is better than s2 in at
least one aspect and not worse than s2 in all other aspects. The skyline on D comprises of
elements in D that are not dominated by any other element from D.

Uncertain data analysis is an important issue in many emerging important applications,
such as sensor networks, trend prediction, moving object management, data cleaning and
integration, economic decision making, and market surveillance. Uncertainty is inherent in
such applications due to various factors such as data randomness and incompleteness, limita-
tion of equipment, and delay or loss in data transfer. In many scenarios, uncertain data
is collected in a streaming fashion. Uncertain streaming data computation has attracted
significant research attention and the existing work mainly focuses on aggregations,
top-k queries [5, 8, 9], etc.

Skyline computation over uncertain streaming data has many applications and has been
studied in [6, 20]. For instance, in an on-line shopping system products are evaluated in
various aspects such as price, condition (e.g., brand new, excellent, good, average, etc.), and
brand. A customer may want to select a product, say laptops, based on the multiple criteria
such as low price, good condition, and brand preference. In the application, each seller is also
associated with a “trustability” value which is derived from customers’ feedback on the seller’s
product quality, delivery handling, etc.; the trustability value may be regarded as the “occur-
rence” probability of the product since it represents the probability that the product occurs
exactly as described in the advertisement in terms of delivery and quality. For simplicity, we
assume that a customer only prefers a particular brand and remove the brand dimension from
ranking. Table 1 lists four qualified results. Both L1 and L4 are skyline points regarding (price,
condition), L1 is better than (dominates) L2, and L4 is better than L3. Nevertheless, L1 is posted
long time ago, and the trustability of L4 is quite low. In such applications, customers may want
to continuously monitor on-line advertisements by selecting the candidates for the best deal -
skyline points. Clearly, we need to “discount” the dominating ability from offers with too low
trustability. Moreover, too old offers may not be quite relevant. We model such an on-line
selection problem as probabilistic skyline against sliding windows by treating on-line adver-
tisements as an uncertain data stream (see Section 2 for details) such that each data element
(advertisement) has an occurrence probability. Moreover, different users may have different
favorite thresholds of the number N of most recent elements to monitor. Therefore, it is

Table 1 Laptop advertisements

Product ID Time Price Condition Trustability

L1 107 days ago $ 550 Excellent 0.80

L2 5 days ago $ 680 Excellent 0.90

L3 2 days ago $ 530 Good 1.00

L4 Today $ 200 Good 0.48
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important for an information provider (system) to organize the most recent N elements in an
effective way, so that any “n-of-N skyline” queries (the computation of the skyline of the most
recent n (∀n≤N) elements) can be processed efficiently.

[12, 18] are the first attempts to investigate skyline computation on certain sliding windows
while [12] is the first paper to tackle such a problem in the n-of-N model. To the best of our
knowledge, this paper is the first work to study skyline queries in context of n-of-Nmodel over
uncertain data streams. Our contribution can be summarized as follows.

1. We formally define the problem of probabilistic skyline computation over uncertain data
streams regarding the n-of-N model.

2. An efficient pruning technique has been developed to minimize the number N (N ≤N )
of uncertain elements to be kept in the most recent N elements for processing all
probabilistic n-of-N queries. We showed that in a d-dimensional space N ¼ O logdN

� �
if the data distribution on each dimension is independent.

3. A novel encoding scheme with linear size O Nð Þ on the stored elements is developed,
together with the efficient update algorithms based R-tree and interval tree techniques.
This encoding scheme effectively reduces the time complexity for processing a probabi-
listic n-of-N skyline query to O logN þ sð Þ fromO(nlogn) for d=2,3 and O(nlogd−2n) for
d≥4, where s is the number of skyline points.

4. A trigger based technique for continuously processing probabilistic skyline query follow-
ing the n-of-N model is developed. Upon the arrival of a new data element, it guarantees
O(logδ) time to update the current query result where δ is the number of element changing
from the current result to the new result. It takesO(logs) time to update the triggers list per
result change.

5. Extensive experiments indicated that the new techniques can accommodate on-line
computation against very rapid data streams.

The rest of the paper is organized as follows. In Section 2, we formally define probabilistic
skyline queries over uncertain data streams regarding the n-of-N model and provide necessary
preliminaries. Section 3 presents the minimum candidate set to process probabilistic n-of-N
skyline queries and the encoding scheme. Section 4 provides the techniques for continuously
maintaining the indexing structures for the candidate set. Continuous probabilistic n-of-N
skylines queries techniques are presented in Section 5. Results of comprehensive performance
studies are discussed in Section 6. Some extensions of the problem studied in the paper are
discussed in Section 7. Related works are summarized in Section 8 and Section 9 concludes
the paper.

2 Background

We present problem definition and necessary preliminaries in this section.

2.1 Problem definition

For two exact d-dimensional elements u and v, u dominates v, denoted by u≺v, if u.i≤v.i for
every 1≤i≤d, and there exists a dimension j with u.j<v.j. Given a set of elements, the skyline
consists of all elements which are not dominated by any other elements. In many applications,
a data stream is append-only; that is, there is no deletion of data elements involved. In this
paper, we study the skyline computation problem restricted to the append-only data stream
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model. In a data stream, elements are positioned according to their relative arrival ordering and
labeled by integers. Note that the position/label κ(a) means that the element a arrives κ(a)-th in
the data stream.

In an uncertain data stream DS, each element a∈DS has a probability P(a) (0<P(a)≤1) to
occur where a.i (for 1≤i≤d) denotes the i-th dimension value. Given a sequence DS of
uncertain data elements, a possible world W is a subsequence of DS. The probability of W
to appear is P(W) =Πa∈WP að Þ �Πa∈W 1−P að Þð Þ . Let ω be the set of all possible worlds, then
∑W∈ω P(W) = 1. We use SKY(W) to denote the set of elements inW that form the skyline ofW.
The probability that an element a appears in the skylines of the possible worlds is Psky(a) = ∑
a∈SKY(W),W∈ega P(W). Psky(a) is called the skyline probability of a. Equation 1 below can be
immediately verified.

Psky að Þ ¼ P að Þ �Πa0∈DS;a0≺a 1−P a0ð Þð Þ ð1Þ
Denote N as the size of the sliding window, namely we only keep the recent N elements in

the data stream. In the rest of the paper, we abuse Psky(a) to denote the skyline probability for a
to be a skyline element within the recent N elements. Note that a is also within the most recent
N elements PN. Namely,

Psky að Þ ¼ P að Þ �Πa0∈PN ;a0≺a 1−P a0ð Þð Þ ð2Þ
In n-of-N model, skyline computation is supported for any window length n with n≤N.

Suppose an element a is within the most recent n (n≤N) elements, we denote Psky,n(a) as the
skyline probability of a computed regarding the most recent n elements only. Namely,

Psky;n að Þ ¼ P að Þ �Πκ að Þ;κ a0ð Þ≥M−nþ1;a0≺a 1−P a0ð Þð Þ ð3Þ
whereM is the totally number of elements in the data stream so far and κ(a),κ(a′)≥M−
n+1 implicates that a and a′ are within the most recent n elements. Clearly we have
Psky,n(a)≥Psky(a), which implies that even a is not a skyline element in the sliding
window with size N, it may still be a skyline element in the most recent n elements
for some n≤N. We denote Pn‐of ‐N query as the query to retrieve probabilistic
skyline elements against any most recent n (n≤N) elements in the data stream
regarding a given probability threshold.

Problem statement Given a data stream DS in which each uncertain element a∈DS is
associated with an occurrence probability P(a) (0<P(a)≤1) indicating the likelihood that a
exists in DS. We say an element a is a probabilistic skyline element within the most recent n
elements if Psky,n(a)≥q. A Pn‐of ‐N query retrieves the probabilistic skyline elements within
the most recent n (∀n≤N) data elements in the data stream DS.

2.2 Preliminaries

n-of-N model As an important method to support query processing over different
thresholds of window size, n-of-N model is firstly proposed in [11] to efficiently
maintain quantile summaries. We will investigate the problem of effectively organising
the most recent N elements in an uncertain data stream seen so far, so that the
computation of probabilistic skyline against any most recent n (n≤N) elements can be
processed efficiently. Note that a sliding window model [2] is a special case of the n-
of-N model where n=N.

1334 World Wide Web (2015) 18:1331–1350



Stabbing queries Given a set ofm intervals and a stabbing point p in the 1-dimensional space, the
stabbing query is to find all intervals which contain p. By the interval tree techniques in [14], a
stabbing query can be processed in O(logm+l) where l is the number of intervals in the result. By
storing an interval only in the tree node that is the lowest common ancestor (LCA) of the two end
points of the interval, the space complexity of the interval tree isO(m). It has been also shown that
the time complexity of an update (insertion or deletion) to an interval tree is amortized to O(logm)
per deletion or insertion. Note that the intervals here can be closed, half closed, or open at both ends.

n-of-N skyline query over exact data streams [12] studies skyline computation over exact sliding
windows following the n-of-Nmodel. It is observed that over exact data streams, if an element a is
dominated by a newer element a′, then a will never be a skyline for any recent n (n∈N) elements
since a′ expires later than a. It is also proved that in such a case removing a from the data stream
will not affect computation of n-of-N skyline queries processing. Thus, minimum candidate set RN
comprises of elements in the data stream which are not dominated by newer elements.

Example 1 As shown Figure 1(a), assume the elements a, b, …, h arrive at time 1, 2, …, 7,
respectively. Since a and b are both dominated by elements newer than them, the candidate set
is {c,e,f,g,h}.

In Figure 1(a), g is dominated by c and e. It is noticed that if the dominance relation e→g is
released due to the expiration of e then the dominance c→g has already been released since c
expires earlier than e. Therefore, it is only necessary to keep e→g to hold a “lock” on g. In RN,
a dominance relation e′→e is critical if and only if e′ is the youngest one (but older than e) in
RN, which dominates e; that is, κ(e′) is maximized among all the elements (other than e), in RN,
dominating e. A dominance graphGRN is constructed where the edge set consists of all critical
dominance relations. Figure 1(b) depicts the dominance graph of Figure 1(a). The encoding
scheme is as follows: 1) every edge e′tarrowe inGRN is represented by the interval (κ(e′),κ(e)],
and 2) each root e inGRN is represented by the interval (0,κ(e)]. Thus, an element e∈RN is in the
answer of an n-of-N query (n≤N) if and only if κ(e) is the right end of an interval (a,κ(e)] that
contains M−n+1. Based on such a scheme, the problem of computing an n-of-N query is
converted to the protect stabbing query problem with the stabbing pointM−n+1. Namely, stab
the intervals byM−n+1, and then return the data elements e such that each κ(e) is the right end
of a stabbed interval.

b

c

(b) Dominance Graph(a) Stream S

c

h h

e

g

e

g

a

f f

Figure 1 Dominance graph
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Example 2 Regarding the example in Figure 1, the dominant graph can be encoded by the
following intervals: (0,3], (0,4], (3,7], (4,5], and (4,6]. When n=6, M−n+1=2 as M=7.
Clearly, the intervals (0,3] and (0,4] are the results of stabbing query; consequently, c and e are
the skyline elements for the most recent 6 elements among the 7 already arrived elements.

Various dominating probabilities in uncertain data streams For each element a in the sliding
window DS, we use Pnew(a) to denote the probability that none of the elements in the sliding
window which are newer than a (i.e., arrives later than a) dominates a; that is,

Pnew að Þ ¼ Πa0∈DS;a0≺a;κ a0ð Þ>κ að Þ 1−P a0ð Þð Þ ð4Þ

Note that κ(a′)>κ(a) means that a′ arrives after a. We use Pold(a) to denote the probability
that none of the elements which are older than a (i.e., arrives earlier than a)
dominates a; that is,

Pold að Þ ¼ Πa0∈PN ;a0≺a;κ a0ð Þ<κ að Þ 1−P a0ð Þð Þ ð5Þ

The following Eq. (6) can be immediately verified.

Psky að Þ ¼ P að Þ � Pold að Þ � Pnew að Þ: ð6Þ
Example3 Regarding the example in Figure 2(a) where the occurrence probability of each
element is as depicted, assume that N=5, and elements arrive according to the element
subindex order; that is, a1 arrives first, a2 arrives second, …, and a5 arrives last.
Pnew(a4)=1−P(a5)=0.9 and Pold(a4)= (1−P(a2))(1−P(a3))(1−P(a1))=0.042, and
Psky(a4)=P(a4)Pnew(a4)Pold(a4)=0.034. If N=4, a1 expires once a5 arrives as shown
in Figure 2(b). Then Pold(a4) = (1−P(a2))(1−P(a3)) = 0.42 and Psky(a4) = 0.34.

3 Minimizing the number of uncertain elements and the encoding scheme

In this section, we first minimize the number of uncertain elements to be kept for processing all
Pn‐of ‐N queries. Then, we present an effective encoding scheme on the stored elements to
support efficient Pn‐of ‐N query processing.

y

x

a 2

a 3

a 1 a 4

a 5

q   =   0 . 5 

p ( a 1) = 0 . 9 

p ( a 2) = 0 . 4 

p ( a 3) = 0 . 3 

p ( a 4) = 0 . 9 

p ( a 5) = 0 . 1 

y

x

a 2

a 3

a 1 a 4

a 5

( a ) ( b ) 

Figure 2 A sequence of data elements

1336 World Wide Web (2015) 18:1331–1350



3.1 Minimizing the number of elements

As introduced in Section 2, in an exact data stream, an element e is “redundant” if it is
dominated by a newer element e′. In an uncertain data stream DS, if an uncertain element e is
dominated by a newer uncertain element e′, e could still be a probabilistic skyline point
regarding a given probability threshold q.

Example 4 In Figure 3, there are 7 uncertain elements a, b, c, d, f, g, and h. The order of the
elements in the stream is the alphabetic order. The occurrence probability of each element and
the probability threshold q are as illustrated in the figure. As shown, element c is dominated by
a newer element h, however, as Pnew(c) = 1 - P(h) = 0.9, Pold(c) = 1, Psky(c) = 0.63 >q. Thus, g
is a probabilistic skyline in the sliding window within the most recent 7 elements.

Example 4 shows that modeling redundant elements in an uncertain data stream requires
further analysis on the probabilities associated with each element. Remind that Pnew(e) refers to
the probability that uncertain element e is not dominated by any elements newer than it. Let PN
denote the most recent N elements, and RN,q denote the set of elements in the most recent N
elements with Pnew values not smaller than q; that is,

RN ;q ¼ e
���e∈PN ;Pnew eð Þ≥q

n o
ð7Þ

In [20], RN,q is proved to be the minimum set of elements to be maintained to correctly
answer probabilistic skyline queries over the most recent N elements in the data stream.

Theorem 1 RN,q is the minimum set of elements to be maintained to correctly compute
probabilistic skyline queries for sliding window size of N regarding probability threshold q.

The proofs of Theorem 8 can be found in [20] based on the following properties of RN,q.

– Processing skyline query based on RN,q only will not miss any skyline points.
– For a skyline point, its skyline probability computed based on RN,q only is equal to that

computed based on all most recent N elements.
– RN,q is the minimum set of points to guarantee correct retrieval of skylines within the most

recent N elements.

The following theorem states that RN,q is also the minimum set of elements to be maintained
to correctly compute skyline queries for any recent n elements where n≤N, namely, to
correctly retrieve results for Pn‐of ‐N queries.

b
f

d

g

c
h

q = 0 . 5 

p (b )  =   0 . 9 
p (c)  =   0 . 7 
p (d )  =   0 . 3 
p (f)  =   0 . 1 

p (g )  =   0 . 9 
p (h )  =   0 . 1 b c d f g h

a p (a )  =   0 . 4 

a

Figure 3 Uncertain data stream
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Theorem 2 RN,q is the minimum set of elements to be maintained to correctly compute
Pn‐of ‐N queries regarding probability threshold q.

Proof When n = N, the n-of-N skyline query equals to skylines over the entire sliding window,
namely the case in [20]. Since Pn‐of ‐N queries also support the case when n = N, RN,q is the
minimum set of elements to maintain for Pn‐of ‐N queries. Furthermore, for ∀n<N, let Rn
denote the most recent n elements and Rn,q denote element sets in Rn with Pnew values not
smaller than the probability threshold q, namely, Rn,q = {e|e∈Pn,Pnew,n(e)≥q}. Based on
Theorem 8, Rn,q is the minimum set of elements for correct computation of skylines elements
within the most recent n elements. Noticing that Rn,q is equal to retrieve elements from RN,q
which are the within most recent n elements, Rn,q⊆RN,q. Thus using RN,q we can correctly
retrieve results for Pn‐of ‐N queries. Thus the theorem holds.

Size of RN,q Elements in the candidate set RN,q can be regarded as the skyline points in the d+1
dimensional space by including time as an additional dimension. This is because Pnew can be
regarded as the non-dominance probability in such a d+1 space. Thus, with the assumption
that all points follow uniform distribution, the expected size of RN,q is ln

d(N)/(d+1)!.

3.2 Encoding RN,q for Pn‐of ‐N queries

As introduced in Section 2, in the candidate set RN of an exact data stream, we say an element e′
dominates e is a critical dominance relation if e′ is the youngest element (yet older than tite) that
dominates e. For a value n (n≤N), if e′ is not within the most recent n elements (i.e., κ(e′)<M−n+
1 where M is the total number of element seen so far), e is a skyline element.

Similar to the philosophy in encoding the candidate set RN for n-of-N queries over exact
data streams, we aim to identify the most critical dominance relationship for elements inside
the candidate set RN,q for uncertain sliding windows. Remind that the skyline probability of an
element e within the most recent N elements consists of two parts besides its own occurrence
probability, Pold(e) representing the probability that e is not dominated by any element older
than e and Pnew(e) representing the probability that e is not dominated by any elements newer
than it. Furthermore, similar to Psky,n(a) which refers to the skyline probability of an element a
computed regarding the most recent n elements in Eq. 3, Pold value of an element could also be
defined for the most recent n (n≤N) elements as follows, given that κ(a)≥M−n+1, namely a is
also within the most recent n elements.

Pold;n að Þ ¼ Πa0∈DS;κ að Þ≥M−nþ1;κ a0ð Þ≥M−nþ1;κ að Þ>κ a0ð Þ;a0≺a 1−P a
0

� �� �
ð8Þ

The following equation is immediate since all elements newer than a are within the most
recent n elements if a is within the most recent n elements. Hereafter, if discussing Psky,n or
Pold,n values for an element a it is assumed that a is within the most recent n elements

Psky;n að Þ ¼ P að Þ � Pold;n að Þ � Pnew að Þ: ð9Þ
Example 5 Continue with the example in Figure 2, assume N=5 and n=3, namely we are
interested in only the most recent three elements a3,a4 and a5. Pold,3(a4) = 1−P(a3) = 0.7,
Pnew(a4) = 1−P(a5) = 0.9, so Psky,3 = 0.567. Consider an increase in the value n (n≤N).
Pold,n(e) is non-increasing with the increase of value n since more elements older than emay be
included in the most recent n elements and contribute to the Pold value. On the other hand,
Pnew(e) does not change with the value of n because elements which contribute to Pnew(e) are
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all newer than e. Thus, to determine the critical dominance relation for e in an uncertain data
stream is to locate the element ec with κ(ec)=M−nc+1 making Psky;nc eð Þ≥q invalid, where nc
is minimized (or κ(ec) is maximized). We use ec →q

c e to denote that ec probabilistically

critically dominates e regarding the probability threshold q. Namely,

nc ¼ arg min
n

Psky;n eð Þ < q

Clearly, for any value n<nc, e is a probabilistic skyline element within the most recent n
elements.

Example 6 In Figure 3, for element g, Pnew( g) = 1 - P(h) = 0.9. When n=5, namely, within the
most recent 5 elements, Pold,5(g) = (1−P( f ))×(1−P(d)) = 0.63, and Psky,5( f ) = 0.5103 >q;
When n=6, Pold,6(g) = (1−P( f ))×(1−P(d))×(1−P(b)) = 0.063 <q. Thus, nc = 6 is the
minimum number of elements in the sliding window to make f unqualified to be a probabilistic
skyline element. Equally speaking, b is the youngest element in the sliding window which
dominates g and after the expiration of which g is a probabilistic skyline element. Element b

probabilistically critically dominates g, namely b→q
c
g , as κ(b) = M−nc+1 = 2.

Once the critical dominance relation is determined for an uncertain element e, we can have
the dominance graph GRN ;q which is an edge set consisting all probabilistic critical dominance
relations. Note that for an element e in the candidate set RN,q, if P(e)×Pnew(e)<q, e does not
have a critical dominance relation available since e is not a skyline element for any value of n
(n≤N). However, we still need to keep e in RN,q as shown in Theorem 8 because deleting e will
affect the skyline probability calculation for other elements in RN,q. Based on GRN ;q , given a
value of n (n≤N), e is a skyline element for n if either of the following two conditions hold.

– e is a root in the dominance graph GRN ;q , or

– there is an edge ec →q
c
e in GRN ;q , such that ec arrives earlier than the n-th most recent

element (i.e., κ(ec)<M−n+1≤κ(e)).

The encoding scheme for GRN ;q is as follows. 1) Every edge ec →q
c
e in GRN ;q is represented

by an interval (κ(ec),κ(e)]. 2) Each root e in GRN ;q is represented by the interval (0,κ(e)]. Let
IRN ;q denote the interval tree on the intervals obtained by the encoding scheme on GRN ;q . So,
an element e in GRN ;q is the answer of a Pn‐of ‐N query (n≤N) if and only if κ(e) is the right
end of an interval that contains M−n+1. The problem of computing Pn‐of ‐N query is thus
converted to the stabbing query problem with stabbing point M−n+1 as discussed in
Section 2. Namely, stab the intervals in IRN ;q by M−n+1, and then return the data elements
e such that κ(e) is the right end of a stabbed interval.

Example 7 In Figure 3, M=7 since there are 7 elements in the stream so far. Suppose N=6.
The candidate set RN,q consists of all recent 6 elements b,c,d,f,g and h since the Pnew value of
each element is not below the threshold q. Only the elements with occurrence probabilities not
smaller than q are considered when computing probabilistic dominance relations, i.e., b, c, g.
Element b is dominated by two newer elements d and f, and Psky(b) = P(b)×(1−P(d))×(1−
P(f)) = 0.567, so b is a root in the dominance graph GRN ;q . c is dominated by newer element h
with Psky(c) = P(c)×(1−P(h)) = 0.63, so c is a root in GRN ;q . g is dominated by newer element
h and older elements b,d, f. From Example 10, b probabilistically critically dominates

(g b→gq
c

� �
). So the interval tree IRN ;q consists the following intervals by encoding the
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dominance relations in the dominance graph GRN ;q : (0,2], (0,3] and (2,6]. If n=5 (to retrieve
probabilistic skylines within the recent 6 elements), we stab the interval tree IRN ;q withM−n+
1 = 3 and c,g will be returned as the final results.

Note that in exact data streams, any non-redundant element in RN is a skyline point for some
n≤N. However, in uncertain streams, this statement no longer holds. For instance, an element e
may have an occurrence probability lower than q, disabling it from being a skyline point for any n
values. However, we still need to keep e in RN,q if its Pnew(e) value is above q. This is because as
proved in [20], removing such elements may incur incorrect probabilistic skyline results.

Time complexity The number of intervals kept in GRN ;q is O(|RN,q|) since GRN ;q is a forest.
Thus, the stabbing query which retrieves the results for Pn‐of ‐N queries runs inO(log|RN,q|)+
s where s is the number of probabilistic skyline points within the most recent n elements.

4 Maintaining RN,q and the encoding scheme

In the sliding window model, when a new element enew arrives, the window slides to
accommodate enew, and the oldest element eold moves out of the window range and should
be removed. These may also trigger updates in the non-redundant element set RN,q and the
dominance interval tree IRN ;q . Algorithm 1 describes the overall framework to handle the key
issues while the window slides for the uncertain stream.

As shown in Algorithm 1, when the sliding window is not yet full (i.e., enew is the i-th element
and i≤N), we only need to handle the updates introduced by enew and insertion of enew, where
insertion of enew identifies the qualification of enew regarding the candidate set RN,q and IRN ;q . After
the window is full, we need to further address the deletion of the oldest element eold (i.e., the
element which arrives (M−N+1)-th in the stream) from the sliding window as well as the updates
introduced by the deletion of eold. In the following subsections we discuss the three major steps,
insertion of enew, updates introduced by enew, and updates introduced by eold, respectively. Deletion
of eold is trivial since we only need to delete eold from the candidate setRN,q and interval tree IRN ;q if
necessary. Naively processing these steps requires a sequential scan of elements in RN,q.

4.1 Insertion of enew

Since the most recent element enew is not dominated by any element newer than it, Pnew(enew) =
1 and we insert enew into the aggregate R-tree indexing the candidate set RN,q. Next, if P(enew)≥
q the skyline probability of enew should be explored to determine its probabilistic dominance
relation. Otherwise (i.e., P(enew)<q), the identification of probabilistic dominance relation is
not necessary since enew has no chance to be a probabilistic skyline element for any n≤N.
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Remind that to determine the critical dominance relation for enew is to locate the element ecwith
κ(ec)=M−nc+1makingPsky;nc enewð Þ≥q invalid, where nc is minimized (or κ(ec) is maximized). A
naive way to do so is to firstly sort all elements in RN,q decreasingly according to timestamps of
elements; then scan the sorted elements and updatePsky(enew) bymultiplying 1−P(e) if an element e
≺enew. Each element dominating enew in the processwill be kept in a list called critical dominance list
of enew, denoted as Lc(enew) which is decreasingly sorted based on timestamps. The scan stops when
the first element ec with timestamp a(ec)=M−nc+1 making Psky;nc enewð Þ < q is encountered.

Considering that elements in RN,q are indexed by an R-tree. We propose to use the best first
search paradigm on R-tree to determine the critical dominance relation for enew. For a node v in
the R-tree indexing RN,q, we record the maximum timestamp κ(v) of all descendent elements of
v. A max heap H based on κ(v) is built to keep the nodes to be expanded. We denote the lower
left corner of the minimal bounding box (MBB) of v as vlower. The criteria to expand a node is
vlower≺enew. Otherwise (i.e., vlower⊀enew), no elements from v dominates enew and v will not be
expanded. We terminate if the heap is empty, or the current element under investigation ec with
timestamp κ(ec)=M−nc+1 makes Psky;nc enewð Þ < q . If such an element is not found, enew is a
probabilistic skyline element for the time interval (0,κ(enew].

Algorithm 2 depicts above steps. Remind that Algorithm 2 is invoked only when P(enew)≥q.
Starting from the root node of RN,q, child entries of an intermediate entry v are inserted into the
max heap if vlower≺enew (Line 6). If v is a data element and the updated skyline probability of enew
remains above q after considering the dominance of v, v is inserted into the critical dominance list
of enew (Line 10); Psky(enew) is also updated accordingly (Line 11). Otherwise (i.e., Psky(enew)
below q), the algorithm terminates with the critical dominance relation identified.

4.2 Updates introduced by enew

Next we handle the updates introduced by enew. If an element e is dominated by enew, we need
to update its Pnew and Psky probability which may render them invalid as a citizen in the non-
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redundant set RN,q or in the dominance graph GRN ;q . First of all we retrieve the set of elements
dominated by enew, denoted as Denew . The following algorithm describes the key update issues
related to enew. We maintain a priority query Q initialized to the root node of R-tree R. Q is
prioritized according to the levels of nodes, i.e., nodes of higher levels are accessed first.

Lines 2–5 in Algorithm 3 handle the first case when Pnew value of e degrades to be smaller
than q with the contribution of 1−P(enew). In this case we remove e from RN,q and if it has a
critical dominance relation captured in GRN ;q , it is also deleted. Lines 6–8 deal with the case
where e survives the citizenship test in RN,q but Psky(e) becomes below q after multiplying 1−
P(enew). In this case the probabilistic critical dominance relationship will be re-calculated by
visiting the critical dominance list Lc(e) sequentially,

Note that if an element e is deleted from RN,q in the first case (Pnew(e)×(1−P(enew))<q), we
do not need to update the information of elements dominated by e. We formally prove this in
the following lemma.

Lemma 1 If enew≺e and Pnew(e)×(1−P(enew))<q after the arrival of the new element enew, e
could be removed from RN,q without updating the dominating probabilities of elements
dominated by e.

Proof For an element e′ and e≺e′, first suppose κ(e′)<κ(e), namely, e′ is older than e. Since e≺
e′, all elements dominating e also dominates e′, so Pnew(e′)×(1−P(enew)<q. e′ should also be
removed from RN,q; if κ(e′)>κ(e), since e≺e′, the skyline probability of e′ computed within the
most recent M−κ(e)+1 elements, Psky,M−κ(e)+1(e′), after multiplying 1−P(enew), must be

smaller than q. Thus, the critical dominance relationship of e′, ec →q
c
e
0
, will be re-computed

in Algorithm 3 and κ(ec)>κ(e), which means deleting e does not affect the critical dominance
relationship and dominating probabilities of e′.

4.3 Updates introduced by eold

For the expired element eold, we first remove it from the candidate set RN,q and the dominance
graph if necessary. Next, for each element e dominated by eold, the Pold and Psky values of e
change and the critical dominance relation might also change. Algorithm 4 illustrates the
process. Line 1 deletes eold from RN,q and Line 3 removes the critical dominance relation from
GRN ;q . Note that we do not need to check every element dominated by eold to remove the effect
of Pold. Instead, only those which are critically dominated by eold will be actually affected by
eold. This is because eold is the oldest element in RN,q and may not contribute to the critical
dominance relation of all elements.
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5 Continuous Pn‐of ‐N queries

A continuous query is issued once and run continuously to generate results along with the
updates of underlying streaming datasets. Arrival of a new element in the data stream may
invoke update in Pn‐of ‐N results. A simple way is to re-run the query processing algorithm
(stabbing query in Section 3.2) per arrival of a new element. This takes O logN þ sð Þ time
whereN is the number of intervals in GRN ;q and s is the number of elements in the Pn‐of ‐N
result set Sn. In this section, we present a trigger based algorithm which continuously and
incrementally updates the Pn‐of ‐N results. Correctness of our algorithm is based on the
following observation.

Proposition 1 Once a new element enew arrives, the current result Sn of a Pn‐of ‐N query
may have the following changes after we apply Algorithm 3 to reflect the updates introduced
by enew.

Deletion An element e∈Sn is removed from Sn, if either e expires, or the updated critical

dominance relation for e is: e
0
→q

c

enew , where κ(e′)≥ ℳ−n+1.

Insertion An element e∈RN is added to Sn in the following two cases. (1) e is enew and either

enew is a root node in GRN ;q or for the critical dominance relation of enew e
0
→q

c

enew;κ e
0� �

< ℳ−nþ 1 ; (2) e is critically dominated by the element e′ which just expired from the most
recent n elements; namely, κ(e′) = ℳ−n.

Algorithm 5 below describes the process for continuous Pn‐of ‐N queries. Note that
Algorithm 3 for handling updates incurred by arrival of enew is invoked prior to Algorithm
5. On the other hand, Algorithm 4 may not be necessary unless n=N. Suppose elements in the
result set Sn are maintained by a min-heap according to arrival order of elements and etop is the
top element of the min-heap.

In the algorithm, we handle unqualified results in Sn in Lines 3 to 5 and Line 9 with two
different cases, 1) after updating the probabilistic critical dominance relation, an element e is
critically dominated by an element e′ within the most recent n element, namely, e is no longer a
probabilistic skyline point after enew arrives, or, 2)etop is no longer within the most recent n
elements after enew arrives The new results are added to Sn in Lines 6 to 7 and Lines 10 to 11.
There are also two cases to add new results, 1) if enew is a probabilistic skyline within the most
recent n element or 2) an element e is critically dominated by etop which just slides out of the
most recent n elements.
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Time complexity Let δ be the number of elements changing from the current result to the new
result. It takes O(δ) time to change the result set. Considering the min-heap keeping the result
set Sn. The update cost per element change is O(logs).

6 Performance evaluation

In this section, we present the results of a comprehensive performance evaluation of our
techniques. As mentioned earlier, there is no existing technique specifically designed to
support efficient computation of n-of-N skyline queries over uncertain sliding windows. In
our performance study, we implement the most efficient main-memory algorithm for skyline
queries over uncertain data streams [20] and use it as a benchmark algorithm to evaluate our
techniques.

All algorithms proposed in the paper are implemented in standard C++ with STL library
support and compiled with GNU GCC. Experiments are conducted on a PC with Intel Xeon
2.4 GHz dual CPU and 4G memory under Debian Linux. In our implementation, MBBs of the
uncertain objects are indexed by an R-tree with page size 4096 bytes.

Real dataset The real dataset is extracted from the stock statistics from NYSE (New
York Stock Exchange). We choose 2 million stock transaction records of Dell Inc.
from December 1st 2000 to May 22nd 2001. For each transaction, the average price
per volume and total volume are recorded. This 2-dimensional dataset is referred to as
stock in the following. To evaluate the techniques over uncertain sliding windows, we
randomly assign a probability value between 0 and 1 to each transaction; that is,
probability values follows uniform distribution. Elements arrival order is based on
their transaction time.

Synthetic dataset We evaluate our techniques against the 3 most popular synthetic
benchmark data, correlated, independent, and anti-correlated [3]. We evaluate our
techniques against the space dimensions from 2 to 5. To evaluate the techniques over
uncertain sliding windows, we use two models uniform and normal to assign occur-
rence probability to each element. In uniform distribution, the occurrence probability
of each element takes a random value between 0 and 1, while in the normal
distribution, the mean value of occurrence probabilities Pμ varies from 0.1 to 0.9
and standard deviation Sd is set to 0.3. The occurrence probability distribution follows
uniform distribution by default unless otherwise specified. We assign a random order
for elements arrival in a data stream.

The following algorithms are evaluated in this subsection for Pn‐of ‐N queries.

q-sky: The query processing algorithm for probabilistic skyline queries over uncertain
sliding windows in [20].
pnN: Our query processing algorithm (Section 3.2) for Pn‐of ‐N ; that is, the stabbing
query processing algorithm.
pmnN: Our algorithms (Section 4) for continuously maintaining the data structures for
supporting Pn‐of ‐N queries.
pcnN: The continuous query processing algorithm in Section 5 for continuously output-
ting Pn‐of ‐N results.
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6.1 Evaluating query algorithm: pnN

In this set of experiments, we fix N = 106 and randomly choose 1000 different n values varying
from 1000 to 106. Each n is thus mapped to a Pn‐of ‐N query with N=106 to evaluate the
query processing algorithm pnN. The processing time reported in Figure 4 is the average of the
bucket of 1000 queries. As there is no existing work supporting skyline query processing over
uncertain sliding windows with variable length, we naively search each candidate kept in the
q-sky algorithm [20] and test if it is a probabilistic element over the recent n elements; pnN
utilizes the stabbing query processing algorithm over the interval set IRN ;q . In Figure 4, we
vary dimensionality from 2 to 5, and evaluate both q-sky and pnN over the three synthetic
datasets anti-correlated, independent, and correlated. As shown, both q-sky and pnN have a
better performance over corr dataset and pnN is up to 2 orders of magnitude faster than q-sky.
In the more challenging anti dataset, pnN is up to 5 orders of magnitude faster. In the
remaining of this subsection, we no longer evaluate the performance of q-sky in our perfor-
mance study since pnN significantly outperforms q-sky.

Figure 5 reports the impact of different n values on query processing time. The space
dimensionality is fixed to 2 and 5 respectively. We also record the average query processing
time of 1000 queries. The results in Figure 5 show that the query techniques for Pn‐of ‐N
queries are not very sensitive to the value of n. On the other hand, dimensionality and data
distribution have a greater impact over the efficiency.

6.2 Efficiency of maintenance techniques: pmnN

In this subsection, we report the efficiency of the maintenance techniques for Pn‐of ‐N queries
over uncertain sliding windows. The dimensionality is fixed to 2 and 5, and N varies from
100k to 1 M. For each of the space dimensions, we generate three data streams where the
spatial distribution follows correlated, independent, and anti-correlated, respectively. The real
data stream stock is also studied along with the anti-correlated data stream. In Figure 6, we
report the maximum and average cost of processing one element against different N values. As
shown, when dimensionality is high the maintenance time per element is also high as the size
of candidate set RN,q is larger. As illustrated, the correlated data has the best performance and
the anti-correlated data is the most challenging. This is because correlated data leads to the
smallest size of RN,q on average while the anti-correlated data set generates the largest RN,q on
average. The results demonstrate that our continuous maintenance techniques are very efficient
and can support on-line update against a very rapid data stream. For the most challenging case
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of 5d anti-correlated data set, in average pmnN can handle the stream speed of about 500
elements per second.

6.3 Scalability evaluation

We evaluate the scalability for the proposed techniques to handle a number of Pn‐of ‐N
queries regarding various parameters. We choose N = 106, and limit the data set size to 2×
106.For each space dimension d (1≤dłe5), we generate two streams (independent and anti-
correlated) with 2×106 data elements. The stock data is reported along with anti-correlated
data.

The scalability of our algorithms is recorded as follows. We randomly generate 2×106

Pn‐of ‐N queries and randomly assign them among the most recent 1 M elements. Then,
we run the pmnN algorithm to continuously maintain the data structures and run pnN for
processing Pn‐of ‐N queries. We record the processing time between two consecutive data
elements which includes both the time of processing the queries and the time to maintain the
data structures. Since such time is too short to be captured, we use average time for processing
1000 elements as the processing time. In Figure 7, we vary the number of points from 106 to
2×106. As illustrated, the proposed techniques could support queries over very rapid data
streams with the arrival speed higher than 10 K per second when dimensionality is lower (2
and 3). When dimensionality is higher (4 and 5), our techniques could still support data stream
with a medium arrival speed at 200 elements per second even in the most challenging scenario
of 5d anti correlated data set.
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We also report the impact of the expected occurrence probability (Pμ) in normal distribution
and the probability threshold (q) on the scalability of Pn‐of ‐N query processing. Figure 8
illustrates that the query processing techniques perform better with the increase of Pμ. This is
because when the occurrence probabilities of uncertain elements are large, it is less likely for
an element to be a probabilistic skyline point and thus the size of candidate set RN,q is smaller.
Figure 9 shows that the processing time decreases with the increase of probability threshold q
also because less elements are in the candidate set RN,q.

6.4 Evaluation of continuous query processing algorithm: pcnN

In this subsection we evaluate the performance of continuous query processing techniques -
pcnN. To make a comparison, we also run our pnN algorithm once per new data item arrival to
continuously process a Pn‐of ‐N query. We use 2d and 5d data for the evaluation. We choose
N=10 K and 1 M. In the system, 20 Pn‐of ‐N queries are generated such that 10 for N=1 M
and 10 for N=10 K. For N=10 K (N=1 M), these 10 queries are with n = i� N

10 (for 1≤i≤10),
respectively. We record the average delay (processing time) and maximum delay of an
element, respectively. Note that a delay of an element e means the processing time involving
processing e before processing next element; this includes the data structure maintenance costs
and query processing costs. Again to record precisely such a delay per element, we use the
average delay per 1000 elements instead. The performance of pcnN for continuous Pn‐of ‐N
queries is shown in Figure 10. As shown in the gure, both pnN and pcnN algorithms are quite
efficient, while pcnN technique can support a data stream against medium arrival speed even
for the most challenging 5d anti-correlated datasets.
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7 Extensions

Techniques proposed in this paper can also be applied to other extensions of skyline queries
over uncertain data streams under n-of-N model. In this section, we introduce several varia-
tions and briefly discuss the techniques.

7.1 Uncertain object model

In this paper we focus on the existential uncertainty of objects, namely, a probability value is
associated with an object to indicate the likelihood of its existence. In some applications, each
uncertain object may have several possible values (instances) and we call it the uncertain
object model. Below we formally define the Pn‐of ‐N in the uncertain object model and
briefly discuss the techniques.

In uncertain object model, an uncertain object U is represented by a set of instances such
that each instance u∈U is a point in a d-dimensional numeric space D = {D1,…, Dd} with the
probability P(u) to occur where 0<P(u)≤1 and ∑u∈U P(u)=1. Given a set of uncertain objects
U ¼ U1;⋯;Unf g , a possible world W={u1,⋯,un} is a set of instances with one instance
from each uncertain object. The probability ofW to appear is Pr Wð Þ ¼ ∏n

i¼1 pui . LetΩ be the
set of all possible worlds, then ∑W∈Ω Pr(W)=1.

We use SKY(W) to denote the set of objects such that for each object U∈SKY(W), U has an
instance in the skyline of a possible worldW. The probability that U appears in the skylines of
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the possible worlds is Psky(U)=∑U∈SKY(W),W∈Ω P(W). Psky(U) is called the skyline probability
of U.

Our framework still works for the uncertain object model based Pn‐of ‐N queries. It could
be verified that the candidate set for U is the set of objects with skyline probability no less than
the given probability q. The probabilistic critical dominance relationship could be identified
based on the techniques in Section 3.2. To manage the possibly large volume of instances for
each uncertain object, an in memory R-tree may be built to index all of its instances.

7.2 Probabilistic top-k skyline elements

Based on the definition of Pn‐of ‐N queries, a probabilistic top-k query retrieves the
k skyline elements with the highest skyline probability (but not smaller than q). In
case there are less than k elements with probabilities not smaller than q, only these
elements are output.

Our techniques could be directly applied to support probabilistic top-k skyline elements in
the n-of-Nmodel. After processingPn‐of ‐N queries, the skyline probability of each element e
in the result set could be computed by simply scanning the critical dominance list
(Section 4.1). The scanning is according to a decreasing order of elements in the critical
dominance list, till the constraint of “most n elements” is met. The k elements with the largest
skyline probabilities form the result set.

8 Related work

Börzsönyi et al. [3] first study the skyline operator in the context of databases and
propose an SQL syntax for the skyline query. They also develop two computation
techniques based on block-nested-loop and divide-and-conquer paradigms, respective-
ly. Another block-nested-loop based technique SFS (sort-filter-skyline) is proposed by
Chomicki et al. [4], which takes advantage of a pre-sorting step. SFS is then
significantly improved by Godfrey et al. [7]. The progressive paradigm that aims to
output skyline points without scanning the whole dataset is firstly proposed by Tan
et al. [17]. It is supported by two auxiliary data structures, bitmap and search tree.
Kossmann et al. [10] present another progressive technique based on the nearest
neighbor search technique. Papadias et al. [15] develop a branch-and-bound algorithm
(BBS) to progressively output skyline points based on R-trees with the guarantee of
minimal I/O cost.

Skyline queries processing in exact data streams is investigated by Lin et al. [12] following
the n-of-Nmodel. Tao et al. [18] independently develop efficient techniques to compute sliding
window skylines.

The skyline query processing on uncertain data is firstly approached by Pei et al.
[16] where Bounding-pruning-refining techniques are developed for efficient compu-
tation. Efficient pruning techniques are developed to reduce the search space for
query processing. While [16] solves the case of probabilistic skyline computation
with a pre-given threshold, [1] studies the problem of computing skyline probabil-
ities for every object in the uncertain database. In [21], instead of a pre given
probability threshold, k uncertain objects from the data set with the highest skyline
probabilities are retrieved. Stochastic skyline operators are proposed in [13, 19] to
retain a minimum set of candidates for all ranking functions in the light of expected
utility principles.
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9 Conclusions

In this paper, we presented novel techniques for on-line skyline computation over the most recent
n elements (for any n≤N) in an uncertain data stream in a probability threshold fashion. Each
element in the data stream is associated with an occurrence probability. We identify the minimum
candidate set to maintain and propose efficient query processing and index maintaining tech-
niques. Our experiment results demonstrated that the techniques can be used to process rapid data
streams in lower dimensional spaces with the space dimension not greater than 5.
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