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Abstract Nowadays, more and more people join different social networks to share or com-
ment on their daily activities. Along with the popular usage of social networks, people’s
privacy becomes a big concern. Therefore, recently, many works studied how to publish
privacy preserving social networks for ”safely” data mining or analysis. These works all
assume that there exists a single publisher who holds the complete graph. While, in real
life, people join different social networks for different purposes. As a result, there are a
group of publishers and each of them holds only a subgraph. Since no one has the complete
graph, it is a challenging problem to generate the published graph in the distributed envi-
ronment without releasing any publisher’s local content. In this paper, we propose an SMC
(Secure Multi-Party Computation) based protocol to publish a privacy preserving graph in a
distributed environment. We prove that our scheme can publish a privacy preserving graph
without leaking the local content information and meanwhile achieve the maximum graph
utility. We show the effectiveness of the protocol on real social networks under different
distributed storage cases.
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1 Introduction

Recently, privacy preserving graph publication has become a hot research topic since infor-
mation published on the Web can be combined together to break the privacy in a graph. As
a result, many privacy preserving graph models have been proposed to protect the privacy
of the graph [4, 5, 9, 11, 15, 20, 25, 27–29]. All these models assume there is a trustable
centralized data source, which has a complete original graph G, and can directly generate
the privacy preserving graph G′ from G.

However, in reality, people join different social networks due to different interests or
purposes. For example, a person uses Facebook to share his information with his classmates
and coworkers. At the same time, he may also build his blog on a blog server to share his
interests with others. As a result, his connection information is stored in two social networks.
A consequence of this joining preference is that each social network website only holds
partial information (a subgraph) of the complete social network G. We call such a social
network website as a data agent. Consider a social graph as shown in Figure 1 where each
person in the graph has two labels and people are involved in different kinds of interactions,
the graph can be stored on three data agents, A1, A2 and A3 separately as shown in Figure 2.

Although people join different networks, it is often necessary to obtain a privacy pre-
serving graph generated from the complete graph for criminal investigation [19] or mining
useful patterns/influential persons [11, 13, 19]. This requests that the distributed agents
should cooperatively generate a privacy preserving graph G′. There are three potential
approaches [17] to jointly publish privacy preserving relational data in a distributed system.
For graph data, similar approaches can be implemented as shown in Figure 3.

A Third-Party approach (Figure 3a) is to let all the data agents send their local contents
to a trustable third party agent. This third party agent generates the published graph by
integrating all the data. However, since the data of each site is its most valuable asset, no
one is willing to share its data with others, finding such a trustable third party data agent
is not feasible in the real world [17]. A crash or a compromise on the third party agent by
attackers could lead to a complete privacy loss. Thus, the Third-Party approach is unsuitable
to generate a privacy preserving graph in a distributed environment.

The naive approach (Figure 3b) is to let each data agent generate a privacy preserving
graph based on its local content and securely combine these graphs into a large privacy pre-
serving graph.1 Secure combination means no local content is released during the process.
However, this approach encounters two problems. The first is that it results in the low quality
of the published data since the graph is constructed only based on local information instead
of the complete graph. The second problem is that most graph protection models [4, 7, 20,
28, 29] need to consider the connections between nodes. A privacy preserving graph gen-
erated only by local information may violate the privacy requirement when globally more
connection information is provided. The secure combination needs to delete some connec-
tions to ensure the final published graph satisfies the privacy requirement. Therefore, the
published graph will have incomplete information of the original graph.

Another approach (Figure 3c) is that each data agent participates in a protocol to produce
a privacy preserving graph. The privacy preserving graph is generated just as there virtu-
ally exists an agent who has the integrated data. During the computation, except the content

1The overlapping between subgraphs should be considered. [12] showed it is not safe even when each pub-
lisher publishes privacy preserved data independently if their data is overlapping. A solution based on naive
approach can be found in Section 5.1. Here we use Figure 3 to show the basic workflow of the naive approach.
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Figure 1 The complete graph

derived from the final published graph, the protocol controls no additional local content of
a data agent is released. This solution is known as the famous Secure Multi-Party Compu-
tation (SMC) [8, 10, 17, 22]. SMC deals with a problem where a set of parties with private
data wish to jointly compute a function of their data. A lot of SMC protocols have been
proposed for different computation problems [8, 10, 17, 22], but not for privacy preserving
graph publishing in a distributed environment. SMC has two basic requirements: 1) Cor-
rectness requirement: the computation is performed in a distributed environment just the
same as doing it on an agent who holds the integrated data; 2) Security requirement: each
data agent should not know the local information of other agents even with the intermediate
results passing through each other. Due to the Correctness requirement, the SMC approach
guarantees the published data has the same quality as the Third-Party approach. However, it
is not trivial to implement such a protocol. The Correctness requirement requests the com-
putation must be implemented on the integrated information from all data agents. While the
Security requirement requires the participants who conduct the computation cannot know
the local information of others. These two requirements conflict to each other. An SMC pro-
tocol needs to correctly solve this conflict based on the characteristics of the corresponding
problem.

In this paper, we follow the SMC approach and design a secure protocol SP to allow
the data agents to cooperately generate a graph G′ based on a recently proposed protection
model [4], called S-Clustering. Through clustering methods, S-Clustering publishes a graph
G′ that only contains super nodes (clusters) where each super node represents multiple
nodes in G. We call a published graph which satisfies S-Clustering as the S-Clustering
graph. We select this model due to its three advantages [4]: (1) Unlike previous works

Figure 2 The distributed storage
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Figure 3 Architectures for privacy preserving data publishing

[5, 9, 11, 15, 20, 25, 27–29] that only prevent node re-identification in the published graph,2

S-Clustering provides protections for both nodes and linkages. (2) An attacker’s background
knowledge is not limited to structural or label. It can be a combination of any structural
information and label. (3) Unlike other protection models, S-Clustering supports a flexible
representation of rich interaction graphs which is capable of encoding multiple types of
interactions between entities, including interactions which can involve large numbers of
participants (not just pairs). Nevertheless, in this paper, we propose a protocol to generate a
S-Clustering graph in a distributed environment.

We refer the algorithm which generates the S-Clustering graph in a centralized environ-
ment as the centralized algorithm. The distributed version of the centralized algorithm, SP ,
should work the same as running the centralized algorithm on the complete original graph.
For any data agent, SP protects its local information when generating the published graph.
We propose novel solutions in SP based on random lock, permutation, and Millionaire
Protocol [24] and prove that our protocol satisfies all the requirements of SMC.

To demonstrate the effectiveness of SP protocol, we implement a Relaxed Secure Pro-
tocol (RSP ) (Section 5.1) which is based on the naive approach (Figure 3b). We compare
the graphs generated by RSP and SP . The result shows that the graph generated by SP

has much higher utility than the one generated by the naive approach. We also test the
communication cost of SP on a real cloud computing platform.

Finally, we demonstrated how to extend the basic design idea of SP to another protecting
model for simple graphs. The results showed that the protocol design proposed in this paper
can be used for different clustering based graph protecting models.

The rest of this paper is organized as follows: we discuss the related works of privacy
preserving graph publishing and SMC in Section 2. We define the problem and intro-
duce the S-Clustering [4] in Section 3. In Section 4, the protocol SP is introduced in
detail. We demonstrate the effectiveness of SP in Section 5 on a real data set. Section 6
discusses how the proposed design idea can be adapted to other graph protection mod-
els on simple graphs and evaluates the effectiveness. Finally, we summarize this work in
Section 7.

2Node re-identification refers to find a node with certain background knowledge in an anonymized graph
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2 Related work

When publishing an anonymized social network, the unique patterns such as node degree,
subgraph, or distance to special nodes can be used to re-identify the nodes/links [15]. This
kind of attack is called the “structure attack”. A lot of works [4, 5, 9, 15, 20, 25, 27–29]
have been conducted on how to publish privacy preserving graphs to avoid the “structure
attack”. The basic methods to generate a privacy preserving graph include clustering and
edge editing. Clustering [4, 9, 15, 27] is to cluster “similar” nodes together and publish
clusters instead of the original nodes. Edge editing [20, 25, 27–29] is to change the graph’s
structure by adding/deleting edges.

Hay [15] proposed a clustering model to prevent privacy leakage from vertex refinement,
subgraph, and hub-print queries. Zheleva [27] discussed how to use clustering and edge edit-
ing to prevent the sensitive link leakage by mining observed links in published networks.
Campan [5] discussed how to implement k-anonymous when consider both node labels and
structure information by clustering. Cormode [4, 9] introduced (k, l)-clustering model for
bipartite graph and S-Clustering for social networks to do the protection respectively. Liu
[20] defined and implemented k-degree anonymous model by edge editing, that is for a
published network, for any node in it, there exists at least k − 1 other nodes have the same
degree as this node. Zhou [28] considered a stricter model: for every node there exist at least
k − 1 other nodes share isomorphic neighborhoods when taking node labels into account.
Zou [29] proposed a k-Automorphism protection model: A graph is k-Automorphism if and
only if for every node there exist at least k − 1 other nodes do not have any structure differ-
ence with it. Cheng [7] designed a k-isomorphism model to protect both nodes and links:
a graph is k-isomorphism if this graph consists at least k disjoint isomorphic subgraphs.
Ying [25] studied how random deleting and swapping edges changes graph properties and
proposed an eigenvalues oriented random graph change algorithm. All these works assume
there is a trustable data agent who has a full original graph and directly generate the privacy
preserving graph G′ from G.

Frikken [11] designed a protocol which allows a group of agents to generate an integrated
graph. However, the graph generated by this protocol cannot provide the protections against
the “structure attacks” proposed in recent works [4, 5, 9, 15, 20, 25, 27–29]. Kerschbaum
[19] designed a protocol to generate an anonymized graph from multiple data agents. Each
edge in the anonymized graph has a digital signature which can help trace where this edge
comes from. While, simple removing the identifiers of nodes in a graph cannot resist an
attack which aims to re-identify the nodes/links [15]. Therefore, it is essential to investi-
gate protocols that support the stronger protection models [4, 5, 9, 15, 20, 25, 27–29] in a
distributed environment.

Secure multi-party computation (SMC) targets on designing protocols to make a set of
participants jointly finish some computations with private inputs. Each participant should
not learn the private inputs of others. [18] targeted on set union computation. [1] designed
protocol to compute the kth element. [17] proposed a protocol to securely compute the k-
anonymous table of the tabular data. They assume the tabular data is horizontally partitioned
and stored on multiple agents. [21] designed protocols to compute the k-means of verti-
cally partitioned tabular data. Most SMC works suppose the participants are semi-honest.
The semi-honest means all the participants follow the protocol as requested but are eligible
to make induction based on the intermediate results and final published result. Jiang [16]
discussed how to extend a secure two party computation framework for semi-honest users
to malicious users. However, they claimed in their paper [16] “most practical algorithms
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developed have only been proven secure under the semi-honest model. While not a proof,
this certainly gives evidence that achieving security against a malicious adversary adds sig-
nificant complexity and expense”. In this paper, we suppose all data agents are semi-honest
and leave the malicious case as our interesting future work.

3 Problem description

3.1 Graph and storage model

An online social network with rich interactions can be represented as a bipartite graph
G(V, I,E) [4, 14, 23], where each node in V represents an entity in the social network
and each node in I stands for an interaction between a subset of entities in V . An edge
e(u, i) ∈ E (u ∈ V , i ∈ I ) means entity u participates in the interaction i. Each entity
has an identity and a group of attributes. Without loss of generality, each entity’s identifier
can be represented as a unique id within the range [1, |V |]. In the rest part of this paper, we
refer entity u as the same as the entity with id u. Each interaction also has an identity and
a set of properties as shown in Figure 1. An interaction can involve more than two entities,
such as the interaction “game3”. Two entities can also be involved in different interactions
at the same time. For example, in Figure 1, v1 and v2 participate in “blog1” and “blog2”
simultaneously.

In a distributed environment, the graph G is distributively stored on l different data
agents. That is, each agent Ai holds a portion of the graph Gi(Vi, Ii, Ei) such that V =
∪l
i=1Vi , I = ∪l

i=1Ii and E = ∪l
i=1Ei . The interactions that an entity participates may be

stored on different agents. Note each Vi must contain all the entities that participate in every
interaction in Ii . In other words, each interaction stored on an agent must be complete. The
Gi held by different data agents may overlap, such that the intersection between two graphs
stored on different agents might not be an empty set.3 That is, ∩l

i=1Vi �= φ and ∩l
i=1Ii �= φ.

Figure 2 shows an example of a distributed storage of Figure 1, where both entities and
interactions have overlaps in different agents. For example, both A1 and A2 store node v2
and interaction f riend1. In the rest of this paper, we use node to specifically represent an
entity in V and use interaction to represent an item in I . When we say two nodes u, v have
a connection, it means u and v are involved in a same interaction i in I (In the graph, we
have two edges e(u, i) and e(v, i)).

3.2 Problem definition

In this paper, we propose a protocol which securely generates a S-Clustering graph [4]
for interaction based graphs in a distributed environment. S-Clustering [4] assumes that an
attacker can know the id, label and any connection information of a node. An attacker uses
the information he knows about some users to analyze the published graph in order to learn
more about these users. For example, an attacker knows that two users have an interaction,
which is blog1 subscribed on 1/9/08. When he read a published graph such as Figure 1,
he can learn the two users must be v1 and v2. Then these two users’ age, nationality as
well as the information that they also have another interaction blog2 subscribed on 2/10/08

3When Vis do not have overlap (∩l
i=1Vi = φ), G is a disconnected graph since each data agent only holds a

subgraph that is isolated from other parts.

World Wide Web (2015) 18:1481–15171486



Figure 4 A clustered graph

are disclosed to the attacker. Given a constant k, S-Clustering publishes a clustered graph
(S-Clustering graph) which guarantees the following three Privacy objectives:

Objective 1: For any node u, an attacker has at most 1
k

probability to recognize it.
Objective 2: For any interaction i, an attacker has at most 1

k
probability to know a node u

involves in it.
Objective 3: For any two nodes u and v, an attacker has at most 1

k
probability to know

they have a connection (u and v participate in a same interaction).

The problem we solve in this paper is:

1. Input: A graph G which is distributed stored on l data agents and a constant privacy
parameter k.

2. Output: A S-Clustering graph G′ of G under k.
3. Constraints:

(a) Correctness: G′ is computed just the same as generating it on an agent who holds
G;

(b) Security: The three Privacy objectives of S-Clustering are guaranteed even when
each participant gets the intermediate results during the computation.4

3.3 S-clustering model

Given a graph G(V, I,E), to satisfy the three privacy objectives, a S-Clustering graph
G′(CV, I,CE) is published, where CV is a super node set in which each super node repre-
sents a group of entities in V . These super nodes are also called clusters. We use c to denote
a cluster in CV and |c| to denote the cluster size, which is the number of entities in c. For
each interaction i in I , if c contains an entity which participates in i, there is an edge e(c, i)
in G′. Figure 4 is a clustered graph of Figure 1.

To guarantee the three privacy objectives, the S-Clustering graph G′ must satisfy:

– Each cluster represents at least k entities. This guarantees the Objective (1).
– The Clustering Safety Condition (CSC) [4]:

4The local information of each agent which violates the Privacy objectives of S-Clustering is protected.
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Definition 1 A division (clustering) of nodes V into clusters satisfies the Clustering
Safety Condition (CSC) if for any node v ∈ V , v participates in interactions with at
most one node in any cluster S ⊂ V , that is:

– ∀e(v, i), e(w, i), e(v, j), e(z, j) ∈ E : w ∈ S ∧ z ∈ S ⇒ z = w;
– ∀e(v, i), e(w, i) ∈ E : v ∈ S ∧ w ∈ S ⇒ v = w;

This condition guarantees Objectives (2) and (3).

Algorithm 1 Clustering with CSC

The CSC requires that any two nodes in a cluster cannot be connected or connect to the
same node. Figure 4 is a clustered graph which satisfies CSC. For any two nodes that appear
in the same cluster of Figure 4, they do not have a connection or connected to the same third
node. For any two nodes u and v, if they satisfy (or do not satisfy) the CSC, we denote this
as CSC(u, v) (or ¬CSC(u, v)). Similarly, for a cluster c and a node u, if u satisfies (or does
not satisfy) CSC with all the nodes in c, we denote this as CSC(c, u) (or ¬CSC(c, u)).

Algorithm 1 [4]5 is used to generate a published graph. Firstly, the nodes in V are sorted
by a pre-given sorting rule, for example, by node degrees. Then, each node v is sequentially
added into an existing cluster c if CSC(c, v). This is tested in line 6. If there is no such a
cluster, a new cluster which only contains v is created.

It is suggested to sort nodes on one or more node attributes and degree before clustering
in order to achieve good utility [4]. The selected attributes for sorting is based on queries
that will be operated on the published graph. So the sorting rule is set as sorting nodes
by some attributes and the degree. However, since all the node attributes are published as
shown in Figure 4, it is not safe when the sorting rule contains node attributes even without
publishing the sorting rule. Assume we publish a clustered graph where each node has two
labels, location and age. A portion of the graph is shown in Figure 5. Without any prior
background knowledge, we may observe that location is a parameter to do the sorting when
the graph is large. This is because nodes with same location tend to be grouped together.
There are one interaction between clusters (1,8,9) and (2,5,7), thus, we conclude there are

5When Algorithm 1 finishes, it is possible that there exists several groups with size less than k. The nodes in
these groups can be assigned to other groups under CSC similar to lines 5-9. In this paper, same as [4], we
describe the algorithm by ignoring this part.
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Figure 5 A clustered graph

edges e((American,31), email7) and e((American,50), email7).6 Therefore, in order
to guarantee the privacy, the sorting rule should not contain any node attribute. Another
problem is that all the privacy preserving graph publication works [4, 5, 9, 11, 15, 20, 25,
27–29] assume the future mining tasks or queries on the published data cannot be known in
advance. Otherwise, the mining results or query results instead of a graph can be directly
published. Therefore, in this paper, we sort the nodes by degree. It should be emphasized
that this is not the constraint to our protocol. Our protocol can support sorting by attributes.
Since globally each attribute value can be represented by a number, the sorting on any
attribute is the same as sorting on degree.

4 Secure protocol (SP)

4.1 Overview

We proposed SP to generate a S-Clustering graph in a distributed environment as shown
in Algorithm 2. We call a computation that satisfies the Security requirement as a Secure
Computation. Thus, SP contains four stages such that each stage conducts one Secure Com-
putation in lines 1, 7, 15, and 16, respectively. Stage 1 sorts nodes without releasing any
degree information. Stage 2 clusters nodes by correctly checking CSC(c, v) without releas-
ing any connection information. Stage 3 and Stage 4 generate the interactions on clusters
and attributes for clusters respectively without disclosing any interaction-node mapping and
node-attribute mapping.

When the computations in lines 1, 7, 15, and 16 of Algorithm 2 can be securely operated,
the only intermediate information is the result of CSC checking (line 6 & line 7) and the
computation order of nodes (line 1 & line 3). Unfortunately, a participant can potentially
break the Security requirement if he knows these information.

Suppose during the computation, a participant knows nodes u and v does not satisfy CSC

(¬CSC(u, v)) (i.e, the result of CSC checking). Moreover, in the final published graph, u
and v are in two clusters which connect each other through interactions and do not connect

6The soring rule is either “R1(American, Asia)” or “R2(Asia, American)”. For R1, the connection must be
between two Americans. Otherwise, these two Americans should be put into the same cluster. For R2, it
cannot be the sorting rule. Otherwise, at least one group should contain three nodes only with attribute “Asia”.
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Table 1 A violation testing sequence

Step CSC Result Current Clusters

1 ¬CSC(1, 2) ({1}, {2})
2 ¬CSC(1, 3) ({1}, {2})
3 ¬CSC(2, 3) ({1}, {2}, {3})
4 ¬CSC(1, 4) ({1}, {2}, {3})
5 ¬CSC(2, 4) ({1}, {2}, {3})
6 CSC(3, 4) ({1}, {2}, {3, 4})
7 CSC(1, 5) ({1, 5}, {2}, {3, 4})
8 CSC(2, 6) ({1, 5}, {2, 6}, {3, 4})

to the same third cluster. Then this participant can conclude that u and v have a connection
without any background knowledge. In the above example, if u is replaced by a cluster
c, this participant can conclude for any node u′ in c, the probability that u′ and v have a
connection p′ ≥ 1

|c| . Since |c| < k when checking CSC in Algorithm 2, p′ ≥ 1
k

. This

violates one of the privacy protection objectives.7 As a result, the computation information
that contains any ¬CSC between nodes should not be revealed to any participant.

Algorithm 2 Clustering with CSC in distributed environment

To hide the computation information that contains ¬CSC, the computation order of
nodes should also be hidden. For example, we would like to achieve our privacy objec-
tives with k = 2, and the sorting order of the nodes is 1, 2, 3, 4, 5, 6. If the final clustering
result is {{1, 5}, {2, 6}, {3, 4}}, according to Algorithm 2, the computation information as in
Table 1 can be deduced. This information contains the results of CSC checking, which may
also cause the violation of the Security as analyzed in the previous paragraph.

To summarize, we must avoid the releasing of the following information:

1. Degree information (from Stage 1);

7The combination of intermediate results and the final result should not break any privacy protection objective
of the S-Clustering model.

World Wide Web (2015) 18:1481–15171490



Figure 6 The distributed storage with weights

2. Specific node-attribute mapping (from Stage 4);
3. Specific connection information, including node-interaction mapping and connection

between nodes (from Stage 2 & 3);
4. Any ¬CSC result and the computation order of nodes (from Stage 1 & 2).

Next, we introduce our design of SP for each stage in detail and prove the Correct-
ness and Security of our protocol. Before presenting SP , we assume each node/interaction
has a weight that represents how many duplicated copies of this node/interaction have
been stored in the system. We call these weights duplicated weights. Duplicated weights of
nodes/interactions can be computed by passing each node/interaction’s id through all data
agents to query how many duplicates are stored. Since only node/interaction ids are passed,
this process does not violate the Security requirement. Details of the method to generate
duplicated weights is shown in Appendix A. Figure 6 shows the distributively stored graphs
with duplicated weights. For example, v2 has weight 2 since two agents A1 and A2 store
it. f riend2 has weight 2 since both A2 and A3 store it. During the process of our proto-
col, when counting an attribute or an interaction with duplicated weight w, we multiply the
attribute value with 1

w
to eliminate the overlapping.

4.2 Stage 1: Secure sorting sub-protocol (SSSP)

4.2.1 Protocol design

In this stage, we sort the nodes without revealing any degree information and the computa-
tion order of nodes (the sorting order of nodes on real ids) information. The basic idea is
to do the sorting on permuted ids with their corresponding “locked” degree values. We use
the random number to lock the real degree of each node. That is, we make one agent hold
a key (a random number) and another agent hold the locked degree value (real degree plus
this random number). Then, we sort all nodes on permuted ids through the cooperation of
these two agents. During the sorting, the agent who has the locked degree values cannot
learn any key value and the agent who holds the keys cannot learn any locked value. The
Secure Sorting Sub-Protocol (SSSP) works as follows (Figure 7):

1. A1 generates a random real number vector D with size |V |. A1 constructs a variable
vector D′ = D. Then, for each node u stored on A1, A1 adds

∑
e(u,i)

1
wi

to D′[u] (wi

is the duplicated weight of the interaction i). Finally, A1 sends D′ to A2;
2. When A2 receives D′, for each node u stored on A2, we add

∑
e(u,i)

1
wi

to D′[u]. Then,
A2 sends D′ to A3;

3. Each Ai (i > 1) does the same operation as A2 and sends D′ to Ai+1 if Ai+1 exists;
4. Al generates a random permutation function π , passes π to A1 and sends π(D′) to S1
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Figure 7 Stage 1: The Secure Sorting Sub-Protocol (SSSP)

5. A1 sends π(D) to S2.
6. S1 and S2 cooperately sort all the nodes. During the sorting, each time when S1 needs

to compare two values π(D′)[i] − π(D)[i] and π(D′)[j ] − π(D)[j ], S1 and S2 uses
the Millionaires’ Protocol [24]8 to securely get the result by comparing the value
(π(D′)[i] − π(D′)[j ]) on S1 and (π(D)[i] − π(D)[j ]) on S2.

Theorem 1 SSSP sorts all nodes on π(id)s without violating the Security requirement.

The detailed proof of Theorem 1 can be found in Appendix B.

4.3 Stage 2: Secure clustering sub-protocol (SCSP)

4.3.1 Protocol design

In Stage 2, we need to cluster nodes based on the sorted order L without revealing any
connection information. Since S1 holds L after Stage 1, in SCSP , we continue to make S1
generate clusters on π(id)s. Before S1 can do clustering on π(id)s, the connection informa-
tion between nodes should be mapped on π(id)s firstly. So, SCSP contains the following
three steps:

1. Generate a noise matrix MR on A1 and a noised adjacent matrix MR′ of G on Al .
For any two nodes u and v, MR′[u][v] − MR[u][v] > 0 is equivalent to u, v has a
connection;

8The Millionaires’ Problem is: there are two numbers a and b hold by two people, they want to know the
inequality a > b or a < b without revealing the actual values of a and b. The Millionaires’ Protocol [24, 26]
can securely compare a and b based on the techniques such as Homomorphic Encryption. When we want to
compare two degree values d1 and d2 in case that Sx knows r1, r2 and Sy knows (r1 + d1), (r2 + d2), we can
use the Millionaires’ Protocol to compare the value ((r1 + d1)− (r2 + d2)) on Sx and the value (r1 − r2) on
Sy . Since ((r1 + d1)− (r2 + d2)) > (r1 − r2) equals to d1 > d2 and vice versa, the comparison of r1 and r2
is correctly performed.
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Figure 8 Stage 2: The Secure Clustering Sub-Protocol (SCSP) 1

2. Create a matrix NMR on A1 and NMR′ on Al based on MR and MR′, respec-
tively. For any two nodes u and v, NMR′[u][v] −NMR[u][v] is a [0, 1] matrix where
NMR′[u][v] − NMR[u][v] = 1 indicates that u, v have a connection;

3. Do clustering on π(id)s with π(NMR′), π(NMR) through the cooperations among
S1, S2 and S3.

The first two steps map the connection information on π(id)s (The [0, 1] character of
NMR′ − NMR will be used for securely clustering). The last step does the clustering on
the connection information between π(id)s. During the computation, to satisfy the Security
requirement, we make the agent who holds MR, NMR or π(NMR) cannot get the noised
content MR′, NMR′ or π(NMR′) and vice versa.

Figure 8 shows the first step’s working process to compute MR and MR′ securely:

1. A1 generates a random real number matrix MR with size |V | × |V |. A1 constructs a
variable matrix MR′ = MR. Then, a self-edge is added for each node (The self-edge
will be used to determine the CSC). For each u, A1 sets MR′[u][u] = MR′[u][u]+ a1

(a1 is a random positive number). For any interaction i and any two nodes u and v that
participate in i, A1 sets MR′[u][v] = MR′[u][v]+a2 (a2 is a positive random number),
and then A1 sends MR′ to A2;

2. After A2 getting MR′, for any interaction i and any two nodes u and v that participate
in i, A2 sets MR′[u][v] = MR′[u][v] + a3 (a3 is a positive random number), and then
A2 sends MR′ to A3;

3. Each Ai (i > 1) does the same operation as A2 and sends MR′ to Ai+1 if Ai+1 exists;

After the first step, Al gets a noised matrix MR′. For any nodes u and v, MR′[u][v] −
MR[u][v] > 0 is equivalent to u and v have a connection.

The second step securely computes the matrices NMR and NMR′ as shown in Figure 9:

1. Al generates a random permutation function π2 on |V | × |V | numbers and sends π2 to
A1. Al sorts all the numbers in MR′ row by row to obtain a vector L′

2 whose length is
|V | × |V |;

2. A1 sorts MR row by row to obtain a vector L2;
3. A1 sends π2(L2) to S3 and Al sends π2(L

′
2) to S3;

4. S3 computes two random number vectors LN2 and LN ′
2 which satisfy

LN ′
2[i] − LN2[i] =

{
0 π2(L

′
2)[i] − π2(L2)[i] = 0

1 π2(L
′
2)[i] − π2(L2)[i] > 0

Then, S3 passes LN2 to A1 and LN ′
2 to Al;
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Figure 9 Stage 2: The Secure Clustering Sub-Protocol (SCSP) 2

5. A1 computes π−1
2 (LN2) and converts the results to a |V | × |V | matrix NMR. A1

passes π(NMR) to S2; Similarly, Al generates the corresponding matrix NMR′ based
on π−1

2 (LN ′
2) and passes π(NMR′) to S1;

The third step is to do the clustering on π(id)s. Before introducing how S1 conducts the
clustering, we prove a property we use in the next computation. For a node u, we call Eu

(|Eu| = |V |) the connection vector of u. Eu is a [0, 1] vector and Eu[u] = 1. If nodes
u and v have a connection, Eu[i] = 1, otherwise Eu[i] = 0. For example, node v1’s
connection vector in Figure 1 E1 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0]. For a cluster of nodes C, we
call EC = (

∑
∀u∈C Eu) as C’s connection vector. The connection vector has the following

property:

Theorem 2 For any cluster of nodes C, if there exists a t where EC[t] > 1, then C does
not satisfy CSC; otherwise, C satisfies the CSC.

The detailed proof of Theorem 2 is shown in Appendix C.1.
For a cluster of nodes C on π(id)s, it is obvious EC = ∑

∀u∈C(π(NMR′)[u] −
π(NMR)[u]). Based on the property of connection vector, when S1 needs to check whether
v can join a cluster c based on CSC, the protocol works as (Figure 10):

1. S1 computes a connection vector ERC = ∑
∀u∈C π(NMR′)[u]. Where C = c ∪ {v}.

The size of this vector is |V |.;
2. S1 generates a random permutation pattern π ′ and sends (C, π ′) to S2;
3. S2 computes a vector RC = π ′(

∑
∀u∈C π(NMR)[u]). S2 continues to generate a

random vector R′ with size |V | and sends R′ to S1. S2 sends R′
C = RC + R′ to S3;

4. S1 computes ER′
C = π ′(ERC)+ R′ and passes ER′

C to S3;
5. S3 computes EC = ER′

C − R′
C . If EC contains a number bigger than 1, it returns

“cannot cluster” to S1. Otherwise, it returns “can cluster” to S1.
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Figure 10 Stage 2: The Secure Clustering Sub-Protocol (SCSP) 3

S1 does the clustering on L and uses the above method to test CSC. S1 finally gets the
cluster set CV ′ on π(id)s and passes CV ′ to A1. A1 computes the cluster set on real ids
CV = π−1(CV ′).

Theorem 3 SCSP clusters all nodes without violating the Security requirement.

The detailed proof of Theorem 3 can be found in Appendix C.2.

4.4 Stage 3: Secure edge generation sub-protocol (SESP)

4.4.1 Protocol design

In Stage 3, we generate the interactions among clusters. After A1 gets the cluster set CV on
real ids, A1 reports CV to all Ais one by one. Each Ai generates the interactions between
clusters and sends the results to Ai+1. Finally Al gets a clustered graph with correct interac-
tions. The working process of SESP is shown in Figure 11. The above process only passes
the connection information through interactions without the attribute information. Each Ai

directly sends the attribute of each interaction to Al since all the interactions will be clearly
published.

Since the interactions between super nodes reported by each Ai is a sub-set of the final
result, the middle results are already included in the published graph. Therefore the Security
requirement is satisfied.

Figure 11 Stage 3: Secure Edge Generation Sub-Protocol (SESP)
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Figure 12 Stage 4: Secure label generation sub-protocol (SLSP)

4.5 Stage 4: Secure label generation sub-protocol (SLSP)

4.5.1 Protocol design

In Stage 4, we generate the node attributes for each cluster without disclosing any specific
node-attribute mapping. Suppose there are m′ attributes for each node. The Secure Label
Generation Protocol (SLGP) works as follows (Figure 12):

1. A1 generates a random real number matrix AT with size |V | × m′. A1 constructs a
variable matrix AT ′ = AT . Then for each node u stored on A1, for any attribute x

of node u, if u’s duplicated weight is wu and the attribute value is a, AT ′[u][x] =
AT ′[u][x] + 1

wu
a;

2. When A2 receives AT ′, for each node u stored on A2, for any attribute x of node u, if
u’s duplicated weight is wu and the attribute value is a, AT ′[u][x] = AT ′[u][x]+ 1

wu
a.

A2 sends AT ′ to A3;
3. Each Ai (i > 1) does the same operation as A2 and sends AT ′ to Ai+1 if Ai+1 exists;
4. Al generates a random permutation function π ′′ (a new permutation function), Al

passes π ′′ to A1 and sends π ′′(AT ′) to S1;
5. A1 sends π ′′(AT ) and π ′′(CV ) to S1

6. S1 computes π ′′(AT ′)− π ′′(AT ), then generates the node attributes for each cluster in
π ′′(CV ). Suppose the result is CV ′

atr ;
7. S1 sends CV ′′

atr to Al , Al computes π ′′−1(CV ′′
atr) to get the node attributes for each

cluster.

Theorem 4 SLSP assigns node attributes to each cluster without violating the Security
requirement.

We prove this theorem by showing for any participant, no node-attribute mapping is
disclosed. The analysis is similar with SSSP , we ignore this part.

Based on the above step by step illustration of Algorithm, we conclude that the whole
SP satisfies the Correctness and Security requirements.

Corollary 1 SP exactly implements Algorithm 2 and satisfies the Security requirement.
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Algorithm 3 The algorithm running on data agent Ai

It is obviously that SP implements Algorithm 2 step by step. We can observe that SP has
the following property: the intermediate results of one stage do not influence other stages
since computation contents are different. Since each stage satisfies the Security requirement,
the whole SP also satisfies the Security requirement.

5 Experiment

To demonstrate the effectiveness of SP protocol, we implement a Relaxed Secure Protocol
(RSP) which is based on the naive approach (Figure 3b). We compare the graph generated
by RSP and SP . We also test the communication cost of SP on a real cloud computing
platform.

5.1 Relaxed secure protocol (RSP)

We implement RSP by clustering nodes on local data agents and deleting some cross agent
interactions. By doing this, the Security can be guaranteed. A cross agent interaction is
an interaction whose participants contain at least two nodes which have duplicates in the
system. For example, the interaction game1 in Figure 2 is a cross agent interaction since
both v2 and v3 are stored more than 1 once. We only delete the cross agent interactions
which break or have the potential risk to break the CSC.

RSP runs Algorithm 3 on each Ai . For each Ai , a super graph
G′

i−1(CVi−1, CIi−1, CEi−1) is passed from Ai−1 to it. Ai first computes a node set V ′
i

which contains all the nodes in Vi that have not been involved in CVi−1. Then Ai sorts and
clusters the nodes in V ′

i based on the local information Gi . The clusters composed by the
nodes in Vi is stored in set CVi . For an interaction i, if it satisfies the following conditions:

1. It does not connect two clusters in CVi−1 which already have a connection in G′
i−1;

2. It does not create connection within a cluster in CVi−1;
3. It does not violate the CSC combining with already selected interactions.

Ai selects interaction i, otherwise Ai deletes it. For case 1, when two clusters in CVi−1
already have a connection, interaction i may connect two nodes in the same cluster to the
same node. It has the potential to violate the CSC. Therefore, we delete interaction i. For
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Figure 13 A running example of RSP

case 2, since agents A1, ..., Ai−1 only cluster nodes using their local information, it is
possible Ai finds two nodes in a cluster in CVi−1 have a connection with Gi . In this case, Ai

directly deletes the interaction which causes this connection. For case 3, since the clusters
in CVi−1 are only based on local information, Ai may find two clusters in CVi−1 does not
satisfy CSC. In this case, Ai only remains the interactions that do not violate CSC.

Finally Ai generates a new clustered graph G′
i and passes G′

i to data agent Ai+1. When
Al finishes the computation, Al gets the published graph. A1 starts with an empty graph G′

0.
Figure 13 shows an example of RSP on Figure 2. A1 generates a clustered graph G′

1
with two clusters {{v1, v4}, {v2, v3}}. A2 creates two new clusters {{v5, v8}, {v6, v7}}. For
the interaction “game1”, it connects nodes v2 and v3. Since v2 and v3 are put in the same
cluster in G′

1, “game1” is deleted. After A2 generates clustered G′
2, it passes G′

2 to A3.
A3 generates the cluster {v9, v10}. Since interaction “email2” connects two nodes in the
same cluster in G′

2, it is deleted. “email1” is deleted since the two super nodes {v5, v8} and
{v6, v7} already have connections in G′

2. Finally, A3 constructs the final published graph.
Here due to the sparsity of the social networks, we make the same assumption as [4] that
each data agent can find clusters that satisfy CSC.

Theorem 5 RSP generates a clustered graph which satisfies the three privacy require-
ments of S-Clustering without violating the Security requirement.

The proof of this theorem is straightforward since each participant only does the
computation on its local content.

5.2 Criteria

The analysis in our protocol description part proves the Correctness and Security of SP .
Since SP exactly follows the centralized algorithm which by default gets the best utility, we
can use SP as the baseline and compare with RSP . We focus on comparing two aspects to
show the benefit of designing an SMC protocol: the information loss and the utilities.

The naive approach RSP does the clustering with local knowledge and can only delete
the interactions which may violate the CSC. We should estimate the information loss of
RSP comparing with SP (SP does not delete any interaction). Assume del is the num-
ber of interactions that are deleted by RSP and the original complete graph contains |I |
interactions, we use the ratio of deleted interactions ( 100del

|I | %) to represent the information
loss.

Utility is used to estimate the quality of the published graph. For the clustering-based
protection models [4, 5, 15, 27], the utility testing is operated by drawing sample graphs
from the published one, measuring the utility of each sample and aggregating utilities across
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samples. Most previous works [5, 9, 11, 15, 20, 25, 27–29] used the difference between
certain statistic graph characteristics of the original graph and the published graph as the
utility. Some works [4, 28] also used the average query errors of some randomly selected
aggregate queries as the utility. In our experiment, we follow the above selections and test
the following measures:

1. Degree Distribution
Degree Distribution[20, 29] is a basic graph character which is considered by nearly all
social network analysis works. Suppose the sorted degree sequence of the original graph
G is DG and the sorted degree sequence of a sampled graph Gc is DGc . The different
between the degree distributions of G and Gc can be represented as the Euclidean
Distance between DG and DGc :

EDDD(DG,DGc ) =
√
√
√
√ 1

|V |
|V |∑

i=1

(DG[i] −DGc [i])2

We compute the average EDDD of 30 sampled graphs for each protocol. Suppose the
SP ’s result is EDDD,SP and RSP ’s result is EDDD,RSP , we use EDDD,RSP−EDDD,SP

EDDD,SP
×

100 % to compare these two protocols.
2. A group of randomly selected queries

We test three aggregate queries as the same as [4]. We compute the average query error
between the sampling graphs and the original graph. Suppose SP ’s result is errorSP
and RSP ’s result is errorRSP , we use errorRSP−errorSP

errorSP
× 100 % to compare them. The

three aggregate queries include:

(a) Pair Queries: how many nodes with certain attribute interact with nodes with
another attribute. For instance, how many users from American are friends with
users from Asia?

(b) Trio Queries: how many two hop neighbors. For example, how many Americans
are friends with Asians who are also friends with Africans?

(c) Triangle Queries: how many triangles. For instance, how many Americans are
friends with Asians and Africans who are also friends?

As the same as [4], we select a random set of queries of each type to do the testing.
For each type, we select 20 queries and compute the average query error between the
sampling graphs and original graph.

5.3 Data set and distributed storage

Our experiment is operated on a real life social network from ArXiv (arXiv.org).
ArXiv(arXiv.org) is an e-print service system in Physics, Mathematics, Computer Science,
Quantitative Biology, Quantitative Finance and Statistics. We extract the co-author graphs
in Computer Science. Each node denotes an author, and each interaction means a unique
coauthor paper. The ArXiv provides 37 categories in Computer Science to search the papers.
Since most people work in multiple sub-fields and each paper also belongs to multiple sub-
fields, the authors of papers in different categories are overlapped and finally form a large
graph. We set each author’s research field as his/her node label. The research field is set as
the category of papers he/she published most. There are totally 37 different values of node
attribute. We divide the 37 categories to 6 sets and store the crawled graph of each category
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Figure 14 Generate the distributed storage

set on one data agent. This can be seen as different data agents maintain the relationship of
people in different fields. The number of nodes stored in the 6 data agents are 6371, 6370,
7705, 5923, 4676 and 7876 respectively. There are r = 34 % nodes stored multiple times
on different agents. The integrated graph of these 6 subgraphs contains 28868 nodes and
23290 interactions. On average, each interaction is involved by 2.4 nodes.

We consider the following two distributed storage cases:

1. Real Distributed Case
The 6 subgraphs we crawled in different research fields can be seen as 6 data agents
maintain the relationship of people in different research fields. The number of nodes
stored in the 6 data agents are 6371, 6370, 7705, 5923, 4676 and 7876 respectively.
There are r = 34 % nodes stored multiple times on different agents. We call r the node
overlapping ratio.

2. Simulated Distributed Case
We manually divide the integrated graph G to 6 parts that have similar node numbers
with different node overlapping ratios (rs). When we want to generate the distributed
storage with node overlapping ratio around r , we use the following method to divide
the graph:

(a) We randomly sort all the nodes in G;
(b) We put the nodes to 6 overlapping sets, each set with size 1+r

6 |V | as shown in
Figure 14. Each node set is assigned to an agent. Then agent Ai holds the nodes
from position (i − 1) · 1+r

6 |V | + 1 to position i · 1+r
6 |V | in the sorting list. The

nodes from position i · 1+r
6 |V | to i · 1+r

6 |V | are stored both on Ai and Ai+1. For
any two adjacent agents Ai and Ai+1, there are r

6 |V | nodes stored on both of them.
r|V | nodes are stored on multiple agents.

(c) We assign interactions to data agents. For the interactions that their participants
appear in both Ai and Ai+1, we randomly assign 1/2 of them on Ai and assign the
left 1/2 on Ai+1. For an interaction that no data agent holds all its participants, we
randomly assign it to an agent who has at least one of its participants by adding its
other participants to that agent.

It is obvious that this method generates a distributed storage with node overlapping ratio
at least r . In our experiment, we change r from 5 % to 80 % to test the three criteria.
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Figure 15 Real distributed case

5.4 Result

5.4.1 Result on Real Distributed Case

We compare the performance of SP and RSP under different privacy parameter ks. Fig-
ure 15a shows the result of information loss. From the result we can see, RSP deletes
13 % to 17 % interactions. This is a fairly significant information loss. The published graph
by RSP fails to correctly represent the original graph. Another phenomenon is that RSP
deletes more interactions with the increasing of k. This is because larger k means stronger
protections, which needs stronger protection conditions. Thus RSP needs to omit more
interactions to satisfy the clustering safety condition CSC. Figure 15b shows the com-
parison of degree sequence distance. RSP performs 45 % to 80 % worse than SP . The
published graph by RSP is much worse than SP when estimating by the degree distribu-
tion. With the increasing of k, the published graph represents less and less information of
the original graph. Compared with RSP , the benefits of using SP will decrease when k

increases. Figure 15c shows the results of queries. In most cases, the RSP performs 10 %
to 25 % worse than SP . Since the random sampling and random query selections, the result
vibrates a lot. In most cases, SP gets a much better graph than RSP .

5.4.2 Result on Simulated Distributed Case

For the Simulated Distributed Case, we set k = 5 and compare the performance of SP

and RSP with different node overlapping ratio rs. Figure 16a shows the number of deleted
interactions. Larger r means more overlapping between data agents and more chances to
delete an interaction. In most cases, RSP deletes 10 % to 20 % interactions. Figure 16b
shows the comparison of degree sequence distance. RSP performs 25 % to 45 % worse than
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Figure 16 Simulated distributed case
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SP . Figure 15c shows the results of queries. In most cases, the RSP performs 5 % to 35 %
worse than SP . SP generates a graph with higher utilities than RSP . With the increasing
of node overlapping ratio r , RSP will omit more interactions. Thus the “information loss”
(Figure 15a) and “increased distances” (Figure 15b) rises with the increasing of r . The
clustering based method used in this paper imports a lot of fake interaction information
(From the clustering safety condition CSC, the number of interactions between two clusters
is limited by at most k. Other possible k2 − k interactions are all fake ones.). In this case,
deleting some interactions may reduce the three connection queries error which is caused
by information losing and graph clustering. So compared with RSP the benefits of using
SP decreases when k increases on error of queries.

From the testing results, we can find SP exhibits benefits on both information complete-
ness and the utilities of the published graphs. Firstly, the RSP deletes roughly 13 %-19 %
interactions, publishing a graph which loses such a large portion of information is not
acceptable. While SP guarantees no information loss in the published graph. Secondly, the
utilities of the graph generated by SP are much better than RSP . It is necessary to design
an SMC protocol such as SP for the privacy preserving graph publication problem. Actu-
ally, since SP has the same effect as running the state-of-art centralized graph construction
algorithm on the complete original graph, the published graph generated by SP can be seen
as the best.

6 Adaptation to simple graph protecting model

The proposed protocol design idea can be easily adapted to other graph protection models on
simple graphs (The graph only contains vertices, edges and vertex attributes). In this section,
we demonstrate how to design an efficient algorithm and the corresponding SMC protocol
for the clustering protection model [15]. We select this model because it can avoid the node
re-identification with any background knowledge (i.e., it allows an attacker to use arbitrary
subgraph to do the attack), which provides the strongest protection to nodes. For a simple
graph, by clustering, the published graph G′ only contains super nodes (clusters) where
each super node represents multiple nodes in the original graph. Figures 19a and 19b are
two clustered graphs of Figure 17. Each super node in these two clustered graphs represents
three original nodes in Figure 17. The weight on each super edge in Figures 19a and 19b
means the number of original edges this edge represents. For example, in Figure 19b, super
node A contains original nodes {0, 1, 2}, since there are three edges a(0,1), b(0,2) and
c(0,2) between nodes {0, 1, 2}, A has a self-edge with weight 3. It is easy to see when a
clustered graph is published, if the minimum cluster size is k, with whatever background
knowledge, an attacker can only re-identify an individual with probability at most 1

k
. When

Figure 17 The original graph
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Figure 18 The distributed storage

using a clustered graph, a customer can sample a graph which is consistent with the clustered
one. Here, consistent means the edges between nodes in the sampled graph must match
the weights on the edges in the clustered graph. Figure 20 shows three sampled graphs of
Figure 19b. Normally, when a user wants to do a computation on the clustered graph, in
order to get an accurate result, he samples a group of graphs and compute the average result
on these graphs.

So the protection model targets to generate a clustered graph with the minimum number
of possible sampling graphs when giving the minimum cluster size k [15]. The number of
possible sampling graphs is called the number of possible worlds. Suppose the super node
set of a clustered graph G′ is V ′, for the heterogeneous graph model, the number of possible
worlds |W(G)| can be computed as:

∏
X∈V ′ ( 1

2 |X|(|X| − 1))d(X,X)
∏

X,Y∈V ′(|X||Y |)d(X,Y ),
where d(X, Y ) denotes the weight on edge (X, Y ). For example, |W (Figure 19a)| =
(3)2(9)5 = 312 and |W (Figure 19b) | = (3)3(3)2(9)2 = 39. Figure 19b is much better than
Figure 19a since |W (Figure 19b)| is 1

27 of |W (Figure 19a)|.
Hay [15] used a stochastic method to partition nodes into clusters. They designed a simu-

lated annealing algorithm (SA). However, the stochastic algorithms like SA need to compute
too many steps to achieve an acceptable solution. Besides the efficiency problem, the long
computation sequence provides many information. This characteristic makes the stochastic

Figure 19 Examples of the clustering model
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(a) (b) (c)

Figure 20 Example of sampled graphs

algorithms unsuitable for the SMC Problem. The server who runs the algorithms can easily
find out certain information stored on other servers through the computation logs. For exam-
ple, one basic operation of the SA algorithm designed by [15] is to move one node from one
cluster to another cluster. If after several steps, the clusters are changed from Figure 19a to
Figure 19b, the connection information such as there exist edges f (3,5) and g(4, 5) can be
deduced.9

6.1 Problem definition

The problem to be solved here for simple graphs is:

Problem 1 Given a distributively stored graph G(V,E) which is hold by m different data
agents, and a constant number k, generate a clustered graph G′(V ′, E′, AV ′, AE) from G

that satisfies:

– Correctness:

– Privacy: ∀us ∈ V ′, |us | ≥ k

– Utility: |W(G′)| is the smallest among all clustered graphs which satisfy the
Privacy requirement.

– Security: The intermediate results any participant gets during the computation do not
provide any more information than the final published graph.

Problem 1 can be proved to be an NP Hard problem which does not have a polynomial
time approximate algorithm with constant factor from the classic Balanced Graph Partition
Problem (BGP Problem) [3].

6.2 Algorithm design

We observed the following two properties to minimize |W(G)| :

– The size of clusters should be as small as possible.
– The fewer cross cluster edges, the better a clustered graph is.

From the first property, the clusters should have as small size as possible. So for the opti-
mal solution, for most clusters, 1

2 |X|(|X| − 1) = 1
2k(k − 1) and |X||Y | = k2. Since

k2 > 1
2k(k − 1), fewer cross cluster edges are preferred. We should design a clustering

9In Figure 19a, there’s no edge between {1, 3, 4}. In Figure 19b, there are two edges between {3, 4, 5}. Then,
the two edges must be (3, 5) and (4, 5).
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algorithm which makes each cluster as small as possible and makes the number of cross
cluster edge as few as possible to minimize the number of possible worlds. The above
requirements are similar to the BGP Problem. We design our heuristic clustering algorithm
HEU CLUSTERING based on the Fiduccia-Mattheyses Algorithm [2, 3]. The details is shown
in Algorithm 4. HEU CLUSTERING is a top-down recursive partition algorithm which starts
with the largest cluster which contains all the nodes in G. The input of this algorithm is a
cluster X, the constant privacy parameter k and the current partition (cluster) set C.

Algorithm 4 Heuristic Clustering Algorithm: HEU CLUSTERING

The algorithm works as follows. We first check whether X’s size is less than 2k. If
X’s size is less than 2k, X cannot be split into two clusters. Therefore, we add X into C.
Otherwise we randomly split X into two new clusters X1 and X2. In order to split X as
balance as possible and generate as more clusters as possible, we set X1’s size as the closest
value to |X|

2 which can be divided by k. This guarantees the final clusters we computed
at most has one cluster with size bigger than k, which maximizes the number of clusters.
After splitting X into two new clusters X1 and X2, for each node u, we compute the gain of
moving this node, which is the number of edges between X1 and X2 that can be reduced if
moving u from the current cluster to the other cluster.10 For example, in Figure 21a, nodes
0, 1, 3 are put in one cluster and nodes 2, 4, 5 are put in the other cluster, the number next
to each node is its gain. For node 5, it has one cross cluster edge and one inner cluster edge.
So moving node 5 to the other cluster does not reduce the number of cross cluster edges.
Node 5’s gain is 0. For node 2, it has three cross cluster edges and one inner cluster edge, so
node 2’s gain is +2. Since moving a node with the positive gain helps to reduce the number
of cross cluster edges, Algorithm HEU CLUSTERING switches nodes between X1 and X2
in line 6-18 until no more benefit can be gotten. Each time,HEU CLUSTERING moves one
node with the maximum gain that has not been moved in its corresponding cluster. Since we
need to keep the size of X1 and X2, whenever we move a node from X1 to X2, we move one

10Gain represents the benefit when moving u from the current cluster to the other cluster.
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Algorithm 5 Switch two nodes

node back from X2 to X1 in the next step. When a node is moved, the gains of the nodes
connecting with this node should be re-computed. An example is shown in Figure 21b, when
node 3 is moved, the gains of nodes 2,3 and 5 are changed.

Each time, when a cluster X is split into two clusters X1 and X2, only the nodes
with edges between X1 and X2 may be moved. In the worst case, HEU CLUSTERING

runs with O(|E|) complexity. Since social networks are sparse, the time complexity of
HEU CLUSTERING is O(|V |). In the experiment part, we will show this heuristic algorithm
generates quite well results by comparing it with the SA algorithm [15] through testings
both on real datasets and synthetic datasets.

Algorithm HEU CLUSTERING stops switching when no positive gain can be gotten.
When Algorithm HEU CLUSTERING splits a cluster X into two clusters X1 and X2, for the
edges in X, at most 1

3 of them may cross X1 and X2. So the number of cross cluster edges

is at most 1
3 |E| + 1

3
2
3 |E| + 1

3 (
2
3 )

2|E| + ...+ 1
3 (

2
3 )

(log
|V |
k −1)|E| = (1 − ( 2

3 )
log

|V |
k )|E|. In the

clustered graph G′, if |V | can be divided by k, the number of G′’s possible world is at most

( 1
2k(k − 1))(

2
3 )

log
|V |
k |E|(k2)(1−( 2

3 )
log

|V |
k )|E| ≤ ( 1

2 )
( 2

3 )
log

|V |
k |E|k2|E|.

6.3 Protocol design

In this section, we show how a protocol using the similar idea as Section 4 can be developed.
We firstly introduce the protocol design strategy in Section 6.3.1. Then we give the details
of our protocol design in Section 6.3.2.

6.3.1 Strategies

As shown in Problem 1, the protocol should guarantee the correctness (i.e. Privacy and Util-
ity) and the Security of the computation. To guarantee the correctness, the protocol should
exactly implement the HEU CLUSTERING algorithm. To guarantee the Security, the proto-
col should make sure for each participant, the intermediate information it gets during the

Figure 21 Examples of HEU CLUSTERING
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Figure 22 The distributed storage with duplicated weights

computation should not beyond the final published graph. The computation and compari-
son of the node gain values are two elementary operations in Algorithm 4. These operations
may leak local connection information of data agents. In order to make sure that no local
connection information is released, we have to implement secure computing and comparing
of the node gain values (Fig. 21).

Gain Value Computation on Local Information We can make each data agent compute the
gain values only based on its local connection information. It is easy to see the gain value of
each node is the sum of local gain values if the edges do not have duplicate copies. However,
it is possible that the edges may be stored multiple times on different data agents. When
combining the local computed results, the duplicate computation on one edge should be
removed. We assume each edge and node has a weight that represents how many duplicate
copies of this node/edge have been stored in the system. We call these weights duplicated
weights. Duplicated weights can be generated using the protocol in Appendix D. Figure 22
shows an example of Figure 18 where the number on each edge is this edge’s duplicated
weight.

Then, when computing the gains based on local information, we add/reduce the recipro-
cal of each edge’s duplicate weight to avoid the duplicated computation. In Figure 22, the
number beside each node is the gain of this node based on the corresponding local informa-
tion. If we add the gains of a node on different data agents, the result is exactly the gain of
this node.

Secure Gain Value Computation The above method makes sure the computation of gains
does not release any local connection information. While, it is still not enough to achieve
the security requirement since the exact gain values are still available to the participant who
adds all the local gains. When a node u is moved, only the gains of nodes that connect with
u change. The participant who knows the gains can easily get the connection information.
For example, in Figure 21, at the beginning, node 2’s gain is +2 and node 5’s gain is 0. After
node 3 is moved, node 2’s gain becomes 0 and node 5’s gain becomes −2. The participant
who gets the above information can immediately conclude there exists an edge (2,3) and
an edge (3,5). So to guarantee the security, the exact gain values should also be hidden.

The mechanism we use is adding noise numbers. Instead of doing the computation on
real value x, one participant px generates a random number r and another participant py

does the computation on the value x + r . We make sure the computation can be finished by
letting px only know r and py only know x + r .
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Figure 23 Protocol: Stage 1

Secure Gain Values’ Comparison In our algorithm, the computation on the gain values is
to select the node u with the maximum gain value and determine if u’s gain value is bigger
than 0 or not. So the only computation is the comparison between gain values. We use Yao’s
Millionaires’ Protocol as a black box when computing the node with the maximum gain and
determining whether this maximum gain is bigger than 0. When we want to compare two
gain values x1 and x2 when px knows r1, r2 and py knows (r1 + x1), (r2 + x2), we can use
Yao’s Millionaires’ Protocol to compare ((r1+x1)− (r2+x2)) and (r1− r2). By doing this,
the comparison computation can be finished without reveal the realing values of x1 and x2.

6.3.2 Protocol details

Clustering In Algorithm HEU CLUSTERING, the lines 6,9,10,13,15,17 need the coopera-
tion of all data agents and may violate the security. We divide Algorithm HEU CLUSTERING

into three stages as shown in Algorithm 4. In this section, we introduce how our pro-
tocol works for the first two stages respectively since Stage 3 is the recursive invoking
of Algorithm HEU CLUSTERING. Before the protocol is invoked, we assign unique ids to
all nodes/edges using the protocol in Appendix E without releasing any real node/edge
identifier information. When ids are assigned, the node number is known by each agent.
Stage 1 No specifically, we use data agent A1 to control the schedule of Algorithm
HEU CLUSTERING. The working process of Stage 1 is shown in Figure 23:

(i) Suppose the current cluster is X, the data agent A1 checks whether X’s size is less
than 2k. If X’s size is equal to or bigger than 2k, Al randomly divides X into two
clusters X1 and X2 as the same as lines 3 and 4 in Algorithm 4.

(ii) For each node in X1, A1 generates a random number and stores these random num-
bers in table R1. A1 also generates random numbers for the nodes in X2 and stores
them in table R2. The node ids in table R1 and R2 are sorted.

Algorithm 6 Find the node with the maximum gain in Cx on A1
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(iii) A1 computes the gains of the nodes in X1 based on its local storage and stores the
results in table G1,1. The gains of the nodes in X2 are computed and stored in table
G2,1. The node ids in table G1,1 and G2,1 are also sorted. Then A1 computes two
tables G′

1,1 = R1 +G1,1/G′
2,1 = R2 +G2,1 and sends G′

1,1/G′
2,1 to A2.

(iv) Each data agent Ai does the same operations as A1 in step 3. Ai sends the computed
two tables G′

1,i and G′
2,i to the next data agent Ai+1 if Ai+1 exists.

After finishing the above steps, data agent Am gets two tables G′
1,m and G′

2,m. For a node
u and any table T , we use T (u) to represent u’s corresponding value in T . For each node u
in X1, u’s gain is G′

1,m(u)−R1(u) and for each node v in X2, v’s gain is G′
2,m(v)−R2(v).

Stage 2 In this stage, we need to switch nodes between X1 and X2 until no benefit can be
gotten from the moving. A1 controls the whole moving process. It is important to securely
find the node with the maximum gain in each cluster and update the gains of nodes. As dis-
cussed in Section 6.3.1, we use the Millionaires’ Protocol to compare two nodes’ gains. We
use Algorithm 6 to find a node in a cluster Xx with the maximum gain. The Millionaires’
Protocol is used to compare two nodes’ gains in Algorithm 6. To determine whether the cur-
rent maximum gain is bigger than 0 in Algorithm HEU CLUSTERING line 10, we use the
Millionaires’ Protocol to check whether G′

x,m[posmax] is bigger than Rx [posmax].
After moving a node, the gains of nodes should be re-computed. The updating of gains

follows the same operations as the 2-5 steps in Stage 1. During updating, we only compute
the gains of nodes that have not been moved.

Super edge and attribute generation After running Algorithm 4, A1 gets the cluster set C.
The next step is to generate super edges and attributes for super nodes. This step is the same
as Section 4.5.

It is clear that the protocol we designed exactly implements Algorithm 4. So the protocol
satisfies the correctness requirement.

Theorem 6 The above protocol satisfies the Security requirement.

We prove the Security of our protocol by analyzing the intermediate information each
participant gets. The details can be found in Appendix F.

6.4 Evaluation

In this section, we use experiments to answer two questions:

– How good is algorithm HEU CLUSTERING: We show the effect of algorithm
HEU CLUSTERING by comparing its results with the SA algorithm [15] on several real
datasets and synthetic datasets.

– The advantage of using distributed computation to generate the published graph: If there
is no protocol to support the distributed computation, we can use the following method
to construct a published graph. We can request each data agent to generate a clustered
graph only based on its local content and finally combine the clustered graphs to a large
published graph Gd (The vertices set different data agents work on are not overlapped).
We show the published graph generated by the distributed computation is much better
than Gd .

We test four real datasets: Cora (www.cs.umd.edu/projects/linqs/projects/lbc/index.html,
2708 nodes and 5429 edges), DBLP (kdl.cs.umass.edu/data/dblp/dblp-info.html, 6000
nodes and 31985 edges), Arnet (arnetminer.org, 6000 nodes and 37848 edges) and ArXiv
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Figure 24 The effect of Algorithm HEU CLUSTERING on real datasets

(arXiv.org, 28868 and 74086 edges). We also tested several synthetic datasets, we use the R-
MAT graph model [6] with the same parameters as Zhou’s paper [28] to generate 3 synthetic
datasets with 1000, 2000 and 3000 vertices respectively.

6.4.1 The effect of algorithm HEU CLUSTERING

For a problem which does not have an approximation algorithm with constant factor, nor-
mally either heuristic algorithms or stochastic algorithms are used. Hay [15] designed a
simulated annealing (SA) algorithm to find a clustered graph with the minimum number of
possible worlds. We would like to use this method as the baseline. Suppose the graph gener-
ated by Algorithm HEU CLUSTERING is G′

heu and the graph generated by SA [15] is G′
SA,

we compare G′
heu and G′

SA with different ks by showing the value log10(
|WG′

SA
|

|WG′
heu

| ). [15]

showed the SA can get “good enough” result with at most 100|V | steps (|V | is the number
of nodes in the graph). We use the results of SA when it runs 100|V | steps and 150|V | steps
to do the comparision respectively.

Figure 24 shows the testing results on the real datasets. Figure 25 shows the testing results
on the synthetic datasets. From the results we can see, for all the graphs, even after SA
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Figure 25 The effect of Algorithm HEU CLUSTERING on synthetic datasets
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Figure 26 The effect of the distributed computation

algorithm running many steps, the results are still much worse than the heuristic algorithm.
Algorithm HEU CLUSTERING performs quite well.

6.4.2 The effect of distributed computation

If there is no distributed computation protocol, we can use the following naive approach to
generate a published graph which lets each data agent do the computation only based on its
local content.

– A1 generates a clustered graph G′
1 using its local content and passes G′

1 to A2;
– A2 clusters all the nodes stored on it but not covered by G′

1 and generates a new
clustered graph G′

2 by adding the new super nodes into G′
1. A2 passes G′

2 to A3;
– Each Ai does the same operations as A2 and finally Am gets the clustered graph which

covers all the nodes.

Suppose the published graph generated by the above method is G′
simple and the graph

generated by our protocol is G′
dis , we show log10(

|WG′
simple

|
|WG′

dis
| ) under different ks.

We tested the two distributed storage cases for ArXiv dataset as the same as Section 5.3.
To avoid the influence of the computation sequence among A1 to A6, we try all the possi-
ble computation sequences and use the best one as G′

simple. The testing results are shown
in Figure 26. From the result we can see for both two cases and all ks, |WG′

dis
| is only

1
10600 |WG′

simple
| to 1

102000 |WG′
simple

|, a large benefit can be obtained by using our distributed

computation protocol.

7 Conclusion

In this paper, we target on the secure multi-party privacy preserving social network publi-
cation problem. We design two protocols SP and RSP for the latest clustering based graph
protection model. The first protocol SP follows the same logic as the centralized algorithm.
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Which makes SP generates a published graph with the same quality as the one generated in
the centralized environment. RSP reduces the communication cost of SP a lot by publish-
ing a graph with less utility than the one generated in the centralized environment. We show
the cost-utility trade-off between these two protocols on a real data set in the experiment.
SP is designed for small size social networks or the distributed system which has a high
bandwidth. RSP is designed for large size social networks. As far as our knowledge, this
is the first work on SMC privacy preserving graph publication which against the structure
attack. In our extension work, we’ll study how to enhance the current solution to handle the
malicious or accessory agents. How to design SMC protocols for the editing based graph
protection models will be another interesting future work.

In this paper, we target on the secure multi-party privacy preserving social network pub-
lication problem. We design an SMC protocol SP for the latest clustering based graph
protection model. SP can securely generate a published graph with the same quality as
the one generated in the centralized environment. As far as our knowledge, this is the
first work on SMC privacy preserving graph publication against the “structure attack”. In
the future, one interesting direction is to study how to enhance the current solution to
handle the malicious or accessory agents. How to design SMC protocols for the editing
based graph protection models will be another interesting direction. Another interesting
direction is to design more efficient protocols since the current solution passes |V | × |V |
matrix between agents. The communication cost is high. One possible method is to use
the compression techniques such as delta-compression to reduce the size of message to be
passed.

Acknowledgment This work is supported in part by the Hong Kong RGC Project MHKUST602-12,
National Grand Fundamental Research 973 Program of China under Grant 2012-CB316200, Microsoft
Research Asia Gift Grant and Google Faculty Award 2013.

Appendix

A Method for duplicated weights computation

Since each node and interaction has a unique id, A1 generates two random vectors RVdup

and RIdup . RVdup has size |V | and RIdup has size |I |. Then A1 generates two vari-
able vectors Vdup and Idup with Vdup = RVdup and Idup = RIdup . Vdup[i] − RVdup[i]
will be used to represent the duplicated weight of node i. Idup[i] − RIdup[i] will be
used to represent the duplicated weight of interaction i. Each Ai does the following
operations:

– For each node i stored by Ai , Vdup[i] = Vdup[i] + 1;
– For each interaction i stored by Ai , Idup[i] = Idup[i] + 1;
– Passes Vdup and Idup to Ai+1 if Ai+1 exists.

After doing this, Al sends the Vdup and Idup to A1. Finally, A1 gets the duplicated
weights of all nodes and interactions by computing Vdup − RVdup and Idup − RIdup .
A1 passes the result to each Ai and Ai stores the duplicated weights for the nodes and
interactions in Gi .
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B Security of SSSP

Proof It is obvious that the sorting is based on node degrees. Since in this step, only node
degrees are passed, we just need to check whether specific degree values or sorting order on
real ids is disclosed or not. During the computation, only S1 and S2 have the sorting list L
on π(id)s. Since S1 and S2 do not know π , they cannot get the sorting list on real ids. So
no participant gets the sorting order on real ids. Next we show for each participant, no node
degree is disclosed.

– For agent A1, it only knows π , D and the degrees of the nodes stored on it. So no node
degree information is disclosed to it;

– For any data agent Ai (1 < i < l), Ai has an intermediate result of D′. Since D is not
available for any Ai all the time, Ai does not have the information in D′ −D. Thus Ai

cannot obtain any node degree information;
– Agent Al knows the final result of D′ and π . Since it does not have D, it gets no node

degree information;
– The server S1 has π(D′), it computesL based on π(D′)−π(D). Since the Millionaires’

Protocol is used to do the sorting, any information in π(D) is not released to S1. S1 gets
no node degree information;

– The server S2 has π(D), it helps S1 to compute L based on π(D′) − π(D). Since the
Millionaires’ Protocol is used to do the sorting, any information in π(D′) is not released
to S2. S2 gets no node degree information;

So SSSP sorts all nodes on π(id)s without violating the Security requirement.

C Security of SCSP

C.1 Proof of Theorem 2

Proof We prove this theorem by analyzing all the connection cases.

– If any two nodes u and v in C have a connection, then Eu[v] = 1 and Ev[u] = 1. Since
Eu[u] = 1 and Ev[v] = 1, we get EC[u] > 1 and EC[v] > 1.

– If there is a node x which connects two nodes u and v in C, then Eu[x] = 1 and
Ev[x] = 1. Thus EC[x] = Eu[x] + Ev[x] + ... > 1.

– If there is no connection between any two nodes u and v, and moreover, u and v do not
connect to the same node, then for any t ∈ [1, |V |], there exists at most one node which
satisfies E[t] = 1. Thus, EC contains only 0 and 1. There is no EC [t] > 1.

From the above analysis under all cases, the condition in Theorem 2 can correctly
check the violation of CSC. At the same time, the satisfaction of CSC is also correctly
checked.

C.2 Security of SCSP

Before proving the Security of SCSP , we give a lemma to show it is secure to let a par-
ticipant know the computation information on π(id)s. Then the SCSP ’s Security can be
proven based on this lemma.
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Lemma 1 For any participant p, p knows the computation information on π(id)s does not
violate the Security requirement.

Proof p knows the computation information on π(id)s, then p may know the clusters on
π(id)s as well. In the worst case, by comparing with the published graph, a cluster c′ on
π(id)s is exactly mapped to one and only one cluster c in the published graph. Suppose for
any two nodes u′ and v′ in π(id)s, the clusters they belong to are c′

u′ and c′
v′ respectively.

The mapping clusters of c′
u′ and c′

v′ in the published graph are cu and cv . Even when an
attacker finds ¬CSC(u′, v′), all the nodes in cu are the candidates for u′ and all the nodes in
cv are the candidates for v′. This does not violate any privacy objective of the S-Clustering
model. So p knows the computation information on π(id)s does not violate the Security
requirement.

Next, we prove that SCSP clusters all nodes without violating the Security requirement.

Proof The property of the connection vector guarantees that all nodes are correctly clus-
tered. Next we show for each participant, no specific connection information is released
to it. For the agents who do clustering, we prove they at most can learn the computation
information on π(id)s, then based on Lemma 1, the Security is proven. We analyze the
participants one by one as follows:

– For agent A1, in the first step’s computation, it knows π , MR and MR′
A1

. Since MR′
is not available to A1, no connection information is released to it. In the second step,
it receives π2 and LN2, since the numbers in LN2 are randomly generated by S3, A1

gets no relationship between LN2 and MR′ to guess MR′, no connection information
is released at this step too;

– For agent Ai(1 < i < l), Ai has an intermediate result of MR′. Since MR is not
available for Ai all the time, Ai does not have the information in MR′ −MR. Thus Ai

cannot learn any connection information;
– For agent Al , its Secure Computation in the first step can be analyzed as the same as

Ai (1 < i < l). In the second step, Al knows π2 and LN ′
2. Since the number in LN ′

2 is
randomly generated by S3, LN ′

2 provides no information of MR to Al . So Al gets no
connection information;

– For the agent S1, it knows π(NMR′), since both π and π(NMR) are not available
for S1, π(NMR′) does not provide any connection information to S1. During the clus-
tering, S1 gets the whole computation results on π(id)s, as shown in Lemma 1, this
does not violate the Security. Since S3 only returns “cannot cluster” or “can cluster” to
S1, S1 gets no more connection information between π(id)s besides the computation
information on π(id)s;

– S2 gets π(NMR), since it does not know π and π(NMR′), π(NMR) does not release
any connection information. During the computation in the third step, S2 only provides
the corresponding noise vector. At most S2 can know some computation information
on π(id)s;

– S3 receives π2(L2) and π2(L
′
2) in the second step and generates two random vectors

according to them. Since S3 does not know π2 and each π2(L
′
2)[i]−π2(L2)[i] is either

0 or a random positive number, π2(L
′
2)[i] − π2(L2)[i] provides no specific connection

information to S3. In the third step, S3 receives two vectors ER′
C and R′

C each time.
The two vectors are permuted by a random pattern π ′ and a random vector R′ is added
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into ER′
C and RC , too. Firstly, since the result is permuted by π ′, S3 can only conclude

“can clustering” or “cannot clustering”, therefore, no specific connection information
on π(id)s is released. Secondly, since each time a new random vector is added into
ER′

C and R′
C , S3 cannot get relationship between different rounds or relate them to

the two random vectors S3 generated in the second step. Thus S3 cannot deduce any
connection information through all the vectors it received.

So SCSP clusters all the nodes without violating the Security requirement.

D Protocol for duplicate weights computation in simple graph model

After each node and edge has a unique id, A1 generates two random vectors RVdup and
REdup . RVdup has size |V | and REdup has size |E|. Then A1 generates two variable vectors
Vdup and Edup with Vdup = RVdup and Edup = REdup . Vdup[i] − RVdup[i] will be used
to represent the duplicated weight of node i. Edup[i] − REdup[i] will be used to represent
the duplicated weight of edge E. Each Ai does the following operations:

– For each node i stored by Ai , Vdup[i] = Vdup[i] + 1;
– For each edge i stored by Ai , Edup[i] = Edup[i] + 1;
– Passes Vdup and Edup to Ai+1 if Ai+1 exists.

After doing this, Am sends Vdup and Edup to A1. Finally, A1 gets the duplicated weights
of all nodes/edges by computing Vdup −RVdup and Edup −REdup . A1 passes the result to
each Ai and Ai stores the duplicated weights for the nodes/edges in Gi .

E Protocol for node/edge id assignment

Nodes/edges can be assigned with unique ids using commutative encryption [19]. Each data
agent Ai creates a private commutative encryption key Ki . For any node/edge identifier
namex stored on Ai , Ai sends Ki(namex) to A(i+1)%m (Ki(namex) is the encrypted namex
with Ki ). A(i+1)%m encrypts Ki(namex) to K(i+1)%mKi(namex) and sends the result to
A(i+2)%m. Each agent does the same operation. Finally, Ai gets Ki−1...K(i+1)%m(namex).
Since the encryption is commutative, Ki−1...K(i+1)%m(namex) = K1K2...Km(namex). Ai

sends K1K2...Km(namex) to all the other agents. After each agent does the same operations
as Ai , each data agent gets the same encrypted node/edge identifiers by key K1K2...Km.
Nodes and edges can be assigned with unique ids based on these encrypted names. During
this process, no real identifier is released. Each agent directly gets the node/edge number of
the integrated graph.

F Security of the protocol for simple graphs

Proof We prove the Security of our protocol by analyzing the intermediate information
each participant gets. In the working of Algorithm 4,

– A1: A1 controls the whole running process. Each time, A1 knows the random number
tables R1 and R2. Al has tables G′

1,1 and G′
2,1, for any node u, since A1 does not know

G′
1,m(u), A1 cannot learn any connection information around u.
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– Ai(1 < i < m): Each time, A1 knows tables G′
1,i and G′

2,i , for any node u, since Ai

does not know R1 and R2, Ai cannot learn any connection information of u;
– Am: Am has tables G′

1,m and G′
2,m, for any node u, since Am does not know R1 and R2,

Am cannot learn any connection information around u.

Since A1 generates a new group of random numbers when computing or updating the
gains each time, the gain tables in different steps do not have any relationship.

In the process of super edge generation, since the edges between super nodes reported by
each Ai is a sub-set of the final result, the middle results are included in the published graph.

In the process of node attribute generation,

– For the agent A1, it only knows π and AT . A1 gets no more information than the final
result;

– For any data agent Ai (1 < i < m), Ai has a middle result of AT ′. Since AT is not
available for any Ai all the time, Ai does not have the information in AT ′ −AT . Thus
Ai cannot obtain a node u’s attributes;

– For the agent Am, it knows the final result of AT ′ and π , since it does not have AT , it
gets no node-attribute mapping information;

– The server S1 gets π(AT ′), π(AT ) and π(C), it can only compute π(AT ′)− π(AT ).
Since the vectors are permuted and S1 does not know π , S1 cannot relate a node with
its attribute values.

Based on the above analysis, none of the processes violates the security requirement.
Since the three processes’ middle results are not related, the whole protocol satisfies the
security requirement.
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