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Abstract Online social networks (OSNs) such as Twitter, Digg and Facebook have become
popular. Users post news, photos and videos, etc. and followers of such users then view
and comment the posted information. In general, we call the users who produce the
information as the information producers, and the users who view the information as
the information consumers. The recently popular targeted information advertising systems
enable the producers to target users (i.e., consumers). A key problem of the advertising sys-
tem is to efficiently find the top-k most desirable targeted users, who next will view the
advertised information and perform potential e-commerce activities. Unfortunately, state-
of-the-art solutions to find the top-k desirable targeted users in large OSNs incur high space
cost and slow running time. In this paper, we focus on designing efficient algorithms to
overcome such efficiency issues. Experimental results, over synthetic and real data sets,
demonstrate the effectiveness and efficiency of our algorithms.
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1 Introduction

Recently, online social networks (OSN) such as Twitter, Digg and Facebook have become
popular. Users post news, photos and videos, etc. and followers of such users then view and
comment the posted information. Beyond this, many OSNs nowadays host online appli-
cations. Via the hosted application, users advertise product promotion campaign, post job
information, or invite partners of online games. Then, other users click the product cata-
log, apply for the job position, or participate the invited games. In general, we call the users
who produce the information as the information producers, and the users who view the
information as the information consumers.

Given the producers and consumers, the recently popular targeted information advertis-
ing systems [4, 13, 17, 21, 28, 30–32] enable the producers to target users (i.e., consumers)
based on users demographics, profile information and online activities. The targeted users
(i.e., consumers) then click the advertised information (including products, online games,
news information, etc.), which matches the users’ personalized interests. The information
producers achieve potential benefits from the clicks and e-commerce activities performed
by the consumers.

In this paper, we are interested in an effective and efficient solution to the advertising
technique. First, for a specific advertiser, neither massively broadcasting postings informa-
tion to all users nor randomly finding some target users should be conducted, since such
approaches annoy users and makes the postings becoming spams. Thus, among all potential
users in OSNs, finding only the top-k desirable users will avoid the spam. Unfortunately,
the existing works either ignore the effect of social networks [17, 21, 28, 30] or leverage
limited knowledge of social networks [4, 13, 31, 32] (e.g., only the topology of the social
networks).

Second, the efficiency is also an important issue for the online advertising application.
For example, we take Digg postings as the example of the advertised information. Among
the most popular Digg postings, all of them become popular within 3 days; Digging votes,
particularly in the initial several hours, are influential to become popular [34]. Therefore, an
ideal solution should quickly find top-k desirable users as fast as possible. The targeted users
then can view the fresh Digg posting as early as possible. Otherwise, a slow offline process
delays the advertisement, and the targeted users have to view expired and then meaningless
Digg postings.

Unfortunately, in large OSNs (which are frequently modelled as large social graphs),
performing an efficient algorithm to find the top-k most desirable targeted users is a chal-
lenging problem (in short the SAU problem). State-of-the-art top-k solutions require the
availability of sorted lists of partial attribute scores. In the context of the SAU problem, the
maintenance of sorted lists requires either high space cost or slow running time. In addi-
tion, the previous works on social information advertising [4, 13, 31, 32] suffer from high
overhead by solving the optimization problem involving the whole social networks.

To overcome the above issues, in this paper, we design efficient algorithms with the
following contributions.

– We design an aggregated scoring function to measure the relevance between the adver-
tised information and the targeted users (Section 2). The scoring function outperforms
the approach only considering either the content similarity or structure similarity.

– To reduce the searching time, we propose a variant of NRA algorithm, i.e., NRA SAU,
to find the top-k most desirable targeted users. It creates sorted lists of user similarity on
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the fly by incrementally running an adapted Dijkstra algorithm to reduce the overhead
(Section 3).

– To further improve the running time, the batching algorithm, BAT SAU, proposes two
techniques to optimize NRA SAU: pruning unnecessary candidates and using multiple
phases of batch process (Section 4).

– The empirical study using both the synthetic and real data sets validates the proposed
algorithm (Section 5) before we investigate related works (Section 6).

2 Preliminary

In this section, we first define the similarity of users, and then formulate the SAU prob-
lem, After that, we review the classic TA and NRA algorithm. Finally, we give alternative
algorithms and show their limitations.

2.1 Similarity definition

In an OSN, users are registered to the OSN and maintain follow-up relations with other
users. We use a social graph G to model the OSN. The graph G consists of user vertexes V
and followup edges E , where a vertex u ∈ V indicates a user registered to the OSN and the
edge eij indicates the followup relation between the users ui and uj (where 1 ≤ i �= j ≤ V ).
We consider an undirected graph G, i.e., if ui is a friend of uj , then uj is also a friend of
ui . This property is common in real social networks, such as Microsoft Messenger social
network and Facebook.

In the graph G, each edge eij is associated with a weight to indicate the similarity between
ui and uj (given in Section 2.1.1). Next, we extend the similarity to the general case that ui

and uj are connected by a path (given in Section 2.1.2).

2.1.1 Similarity between neighbors

Given two neighbors ui and uj in a graph G, the similarity between ui and uj , denoted by
simnbr (ui, uj ), covers the content similarity and the structure similarity as follows.

First, we compute the content similarity between ui and uj , i.e., simcon(ui, uj ), based
on the history content items that ui and uj ever viewed (voted, or other user activities).
If both ui and uj share more similar interests and viewed common items more times, we
consider that the content similarity between ui and uj is higher. This is consistent with the
item-based collaborative filtering approach [1]. Suppose D(ui) denotes the set of informa-
tion (e.g., Web pages) that ui has ever viewed, and |D(ui)| denotes the cardinality ofD(ui).

Similar denotations occur for uj . Then, we compute simcon(ui, uj ) =
|D(ui )∩D(uj )|
|D(ui )∪D(uj )| . For

possible extension, we plug other similarity functions (like cosine similarity) and properties
(like the popularity [3]) to measure the content similarity, without degrading the proposed
scheme.

Next, we design the structure similarity between ui and uj , denoted by simstr (ui, uj ).
Suppose that N (ui) denotes the union of ui and its neighbors (resp. N (uj ) denotes the

union of uj and its neighbors). We compute simstr (ui, uj ) = |N (ui )∩N (uj )|
|N (ui )∪N (uj )| . Since ui

and uj are neighbors, then N (ui) ∩ N (uj ) is not null and simstr (ui, uj ) > 0 holds. In
addition, we apply other similarity functions, e.g., cosine distance, graph edit distance, etc.
for simstr (ui, uj ).
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Based on the above simcon(ui, uj ) and simstr (ui, uj ), we compute simnbr (ui, uj ) =
α ·simcon(ui, uj )+(1−α)·simstr (ui, uj ), where α and (1−α), within the range [0.0, 1.0],
indicate positive weights of simcon(ui, uj ) and simstr (ui, uj ) over the neighbor similarity,
respectively. Since both simcon(ui, uj ) and simstr (ui, uj ) are positive numbers smaller
than 1.0, we then have 0.0 ≤ simnbr (ui, uj ) ≤ 1.0.

2.1.2 Similarity between pair of arbitrary vertices

Let’s proceed to the general case that ui and uj are a pair of arbitrary vertices in G.
Following [22], we note that there exist multiple paths between ui and uj in the graph
G. Inside each of these paths, the edge connecting two neighbors ui and ui+1 has a
weight simnbr (ui, ui+1). Then, for such a path, we compute the similarity between ui

and uj by a product of the neighbor similarity values for all edges inside the path, i.e.,
∏

path:ui ,ui+1,...,uj
simnbr (ui, ui+1). Based on the definition, when ui and uj are far away,

sim(ui, uj ) is small.
For each path between ui and uj in G, there is an associated similarity value. Among

the similarity values associated with all paths between ui and uj , the maximal one can be
treated as the optimal similarity sim(ui, uj ), and the path associated with the optimal sim-
ilarity is called the optimal path between ui and uj . Note that, when there exists an infinite
loop inside the path between ui and uj , using the maximal value makes sense to select the
path associated with fewer edges without infinite loops (surely having larger similarity).
Without special mention, sim(ui, uj ) by default refers to the optimal similarity between
ui and uj .

We use Figure 1 as an example to compute sim(ui, uj ). There are three paths between
u1 and u3: (i) u1 − u3, (ii) u1 − u2 − u3 and (iii) u1 − u2 − u4 − u3. The 2-nd one is the
optimal path with the highest similarity 0.24, i.e., the optimal sim(u1, u3) = 0.24.

We note that the above similarity definition is consistent with the previous works [3, 22,
27] which use the shortest path distance to measure the similarity. Many real data sets show
the shortest path distance is practically useful to compute the similarity between users. For
example, the analyst result [23] based on real Microsoft Messenger network shows that
a user is interested in finding content from those users that are similar to him/her in the
social graph. The experimental result of wikipedia search [26] indicates that the distance of
a query initiation point (the query context) to relevant web-pages is an important parameter
in ranking search results. All these results practically verify the effectiveness of the shortest
path distance.

Figure 1 An example of a social graph
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2.2 Problem statement

Based on the sim(ui, uj ), we formally define the SAU problem to advertise a given con-
tent item d towards the top-k most desirable targeted users. We assume that the item d is
associated with preference weights weight (d, ul) by I initial seed users ul (1 ≤ l ≤ I ).
The meaning of weight (d, ul) depends on the OSNs. For example, in the Digg.com, the
value of weight (d, ul) = 1.0 means that the user ul ever digged the item d and oth-
erwise weight (d, ul) = 0.0 if ul did not digg d . The seed users ul and preference
weights weight (d, ul) help exploring more potential users who are also interested in d . By
weight (d, ul) and sim(ul, ui) for 1 ≤ i �= l ≤ N , the following monotonic score function
measures the relevance score between ui and d:

SCORE(d, ui) =
I∑

l=1

[weight (d, ul) · sim(ul, ui)] (1)

We define the SAU problem as follows. Among all users in the social network G, we
want to find the top-k desirable users with the highest SCORE(d, ui). We denote K to be
the top-k users (except those I seed users). Each user ui ∈ K will have high potentials to
be interested in the advertised content d . We focus on designing efficient algorithms for the
SAU problem with low space cost and fast running time.

2.3 Review of the TA and NRA algorithms

For helping understand the proposed algorithm, we first review two classic top-k query
algorithms (TA and NRA).

The top-k query algorithms assume the data is accessed by sorted access, random
access and a combination of both. In sorted access, objects are accessed sequentially
ordered by some scoring predicate, while for random access, objects are directly accessed
by their identifiers. As a common assumption, the cost of random access is generally
more expensive than that of sorted access [16]. There are two categories of top-k query
algorithms in the literature: threshold algorithm (TA) and not random access (NRA)
algorithm.

TA [10] scans multiple sorted lists and maintains an upper bound T for the overall score
of unseen objects and a heap of overall scores for all seen objects. The upper bound T is
computed by applying the scoring function to the last seen objects in different lists. The
overall score of a seen object is computed by applying the scoring function to object’s partial
scores, obtained from different sorted lists. To obtain the overall scores, each new object in
one of the lists is looked up in all other lists via the random access. All objects with total
scores that are greater than or equal to T are reported. TA terminates after returning the k-th
output.

When random access is not supported, NRA [10] exploits sorted accesses only. Instead
of reporting the exact object scores, NRA produces the top-k answers using both the score
lower bounds and upper bounds. The score lower bound of some object t is on t’s known
partial scores. Its score upper bound is obtained on t’s known scores and the maximum
possible values of t’s unknown scores, which are the same as the last seen scores in the
corresponding ranked lists. When the score lower bound of t is not smaller than the score
upper bounds of all other objects (including unseen objects), then t is safely reported as the
next top-k object.
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2.4 Baseline solution and limitations

Before presenting the proposed algorithms, we review alternative solutions by directly re-
using the classic TA and NRA [10, 16] algorithms. First, any vertex user in a social graph
theoretically has the possibility to become a top-k result. Therefore, we might (pre-)compute
the pairwise similarity of any two vertex users before the TA and NRA [10, 16] are adopted
over the sorted lists of the similarity sim(ui, uj ) between any seed users ul and every
candidate user uj . However, given a very large graph, the maintenance cost of the pairwise
similarity, at the scale of O(V 2), is expensive. For example, by the assumption that the pair
of 〈uj ,sim(ui, uj )〉 requires the data size of 40 bytes, the Facebook US user base alone
with 103 million in 2009 has to maintain 400 petabytes space, i.e., 40 bytes× (103× 106)2

≈ 4× 1017 bytes. Such a dramatically huge storage cost is for the indexing structure alone,
without involving any other production data. In addition, instead of maintaining the costly
pre-computed pairwise similarity, the online computation of pairwise similarity, i.e., all-
pairs shortest path distance problem, for example by the Dijkstra algorithm [8], simply
requires the low space cost to maintenance neighbor similarity only (e.g., with the help of an
adjacent list-based index). However, it incurs very high running time, at the scale of O(E2)

or improved O(V logV + E).
Consequently, the offline and online approaches above incur either high storage cost

or high running time. This issue is essentially caused by overly maintaining or computing
unnecessary users similarity (i.e., the pairwise similarity). In the following sections, we
leverage the adjacent list-based index, and compute the similarity as needed, such that the
storage cost and running time is trivial.

3 NRA SAU

The proposed algorithm essentially is a variant of NRA with the sorted lists created on
the fly by incrementally running the Dijkstra algorithm. Depending on whether or not the
NRA condition is met, the Dijkstra algorithm computes the similarity items if and only if
needed. In this section, we first adapt the Dijkstra algorithm to create the sorted lists on the
fly (Section 3.1), and use the adapted algorithm to answer the SAU problem by a variant of
NRA (Section 3.2).

3.1 Adapted Dijkstra algorithm

We adapt the Dijkstra algorithm to output a vertexw together with the similarity sim(ul, w)

regarding to a given seed user ul . For convenience, we call the adapted algorithm
Dijk sorted sim. As a unique property, when we call the function Dijk sorted sim by
k rounds, the number k of outputted vertexes w are sorted by descending order of the
similarity sim(ul, w).

We first give an observation. Given a seed user ul and one of its neighbors, say ui , we
claim that sim(ul, ui) must be larger than sim(ul, uj ), where uj is any neighbor of ui

(except that uj is also ul’s neighbor). It is because each similarity value is inside the range
[0.0, 1.0]. Given 0.0 ≤ sim(ui, uj ) ≤ 1.0, we then have sim(ul, uj ) = sim(ul, ui) ×
sim(ui, uj ) ≤ sim(ul, ui).

The basic idea of Dijk sorted sim is as follows. Suppose that in the last round, the
vertex ui is the output vertex of Dijk sorted sim; the set H maintains the candidate ver-
texes (except ui) with larger similarity regarding to ul than other existing vertexes. Then



World Wide Web (2015) 18:661–679 667

among all members inside both H and ui’s neighbors, we choose the vertex w having the
largest similarity sim(ul, w) as the output of Dijk sorted sim in the current round. Fol-
lowing the above observation, the vertex w must have the largest similarity sim(ul, w)

among all existing vertexes (except those previous output vertexes). In this way, the out-
put vertexes w of Dijk sorted sim are sorted by descending order of the similarity
sim(ul, w).

Algorithm 1 Dijk sorted sim (seed user ul , graph G, heap H, set K)

1: ifH is null then InitiateH, and insert all pairs 〈Nj (ul),Nj (ul).sim〉 toH;
2: ifH is empty then return null;
3: pop the head item w ofH, and add w to K;
4: for all items w′ inN (w) do
5: if w′ is not in the heapH and not in K then
6: Insert 〈w′,sim(ul, w) × simnbr (w, w′)〉 intoH;
7: else if sim(ul, w) × simnbr (w, w′) > siminh(ul, w′) then
8: siminh(ul, w′) = sim(ul, w) × simnbr (w, w′);
9: end if

10: end for
11: return w;

For the input parameters of Dijk sorted sim in Algorithm 1, besides the given seed
user ul and the social graph G, we use the parameter H (i.e., a maximal heap structure) to
maintain the candidate output vertexes, and the parameter S as the set to record the previ-
ously outputted vertexes. Inside the algorithm, ifH is null (i.e., we run Dijk sorted sim in
the first time), then the output vertex must be inside nl’s neighbors and we add such neigh-
bors toH. After that, among all members insideH, the head item with the largest similarity
is the output vertex w. After that, the remaining vertexes inside H and the new neighbors
w′ of the output vertex w are together merged into H as the candidate output vertexes for
the next round. In this way, we simply return the head item H as the output of the next
round.

During the above merge, we consider the following cases:

(i) w′ is not processed previously: Then lines 5-6 directly add the neighbor vertex w′ to
H together with the similarity sim(ul, w)×simnbr (w,w′). Note that such a similar-
ity may not be the (non-optimal) similarity associated with a path between ul and w′
which intermediately goes through w. The short name inh indicates siminh(r, w

′)
is the similarity value maintained inside the heapH.

(ii) w′ has been already added to H: Then, lines 7-8 update siminh(r, w
′), if the new

similarity between r and w′, associated with a new path between r and w′ intermedi-
ately going through w, is larger than the current siminh(r, w

′). The intuition is that
among multiple paths between r andw′, the one with the largest similarity is optimal.

(iii) w′ has already returned from H, and added to K: It is unnecessary to handle this
case.
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Now we can verify that the complexity of Algorithm 1 is O(Nw) where Nw is the number
of the output vertex w’s neighbors.

3.2 Answering SAU

We use a variant of the NRA algorithm, NRA SAU in Algorithm 2, to answer the SAU
problem. Given I seed users ul , NRA SAU calls the above Dijk sorted sim as needed to
create I sorted lists of similarities with respect to the seed users. With no random access, we
leverage the sorted lists to approximate the lower bound SCORElb(d, ui) and upper bound
SCOREub(d, ui), respectively (we will give the approximation in the final part of this sec-
tion). After that, if the NRA stopping condition, i.e., the k-th largest lower bound of the
candidates for final results is smaller than the upper bound of any non-candidate, we then
return the candidates with the top-k largest lower bounds as the final results.

Algorithm 2 NRA SAU(I raters rl with 1 ≤ l ≤ I , graph G, number k)

1: Initiate I heapsHl for seed users rl , and the top-k candidate heap K;
2: For each ul , insert all items ofN (rl) to the heapHl ;
3: while MIN∀ui∈K(SCORElb(d, ui)) < MAX∀ui∈G\K(SCOREub(d, ui)) do
4: w ← the head item with the max. score over I heapsHl ;
5: call Dijk sorted sim(ulw,G,Hlw,K)

6: end while
7: return the top-k items with the largest lower bounds in K as is;

The pseudo-code of NRA SAU is given by Algorithm 2. Line 1 usesHl (a maximal heap
structure) to represent the sorted list with respect to each seed user ul , andK to represent the
set of the candidates for final results. The NRA stopping condition is shown in line 3. Once
the stopping condition is not met, among the heap items in the I sorted lists (i.e. the heaps
Hl), line 4 chooses the item w having the largest value sim(ulw,w) × weight (ulw, d). For
such an itemw, we denote ulw andHlw to be the associated seed user and the heap with such
w, respectively. After that, in line 5, the function Dijk sorted sim(ulw,G,Hlw,K) adds
the output vertex (i.e., the head item w) to the set of candidates K, and updates the existing
sorted listHlw . Since the output vertexes Dijk sorted sim are sorted by descending order
of the similarities, the approximated upper bound becomes gradually smaller and the k-th
largest lower bound becomes larger. As a result, when Dijk sorted sim outputs vertexes
as needed, the stopping condition will be met finally.

Finally we set the lower bound SCORElb(d, w) and upper bound SCOREub(d,w) for the
output vertex w in line 4 as follows. Though we might set SCORElb(d, w) = sim(ulw,w)×
weight (d, ulw), this lower bound is too loose. For improvement, we observe that w, though
chosen from Hlw , may appear inside another heap Hlw′ ( �= Hlw) associated with the
seed user lw′. In this case, we set a tighter lower bound SCORElb(d, w)= sim(ulw,w) ×
weight (d, ulw) + siminh(ulw′ , w) ×weight (d, ulw′). Next, to set SCOREub(d,w), when
sim(ulw′ , w) is missed, we replace the missed sim(ulw′ , w) by sim(ulw′ , ul′w′), where
ul′w′ is the head item of Hlw′ . Thus, we set the upper bound SCOREub(d,w) based on the
replaced sim(ulw′ , ul′w′).
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4 BAT SAU

Though the NRA SAU algorithm works correctly to answer the SAU problem, there exist
potentials for improvement. In this section, we first introduce two ideas to overcome the
issues of NRA SAU (Sections 4.1 and 4.2), then present a BAT SAU algorithm (Section
4.3) and finally give a running example (Section 4.4).

4.1 Pruning unnecessary candidates

Recall that when NRA SAU calls Dijk sorted sim, the lines 4-6 in Dijk sorted sim

process all neighbors w′ of w and add them, if not appearing, to Hw . Nevertheless, in case
that w′ is not a top-k result, adding w′ toHw is useless and incurs more cost.

To overcome the above shortcoming, we expect that the neighbor w′ at least has the
possibility to become the final top-k result. If w′ has no possibility to become a top-k
result, we will not add it to Hw . Thus, before adding w′ to Hw , we ensure that the crite-
ria SCOREub(d,w′) ≥ MIN∀ui∈K(SCORElb(d, ui)) holds, i.e., SCOREub(d,w′) is at least
larger than the k-th largest lower bound SCORElb(d, ui) among all candidates ui ∈ K.
This criteria surely prunes those neighbors that are not the top-k results, which is proven as
follows.

By contradiction, we assume that there exists a vertex with SCOREub(d,w′) <

MIN∀ui∈K(SCORElb(d, ui)). Then we infer that for the lower bound SCORElb(d, w′), the
following statement

SCORElb(d, w′) ≤ SCOREub(d,w′) < MIN∀ui∈K(SCORElb(d, ui))

holds. Following the stopping condition of Algorithm 2, we verify that a real top-k result
ui must satisfy MIN∀ui∈K(SCORElb(d, ui)) > MAX∀ui∈G\K(SCOREub(d, ui)). Thus, for
any vertex w′, if the condition SCOREub(d,w′) < MIN∀ui∈K(SCORElb(d, ui)) holds, the
vertex w′ is not a top-k result, and we safely prune it.

4.2 Multiple phases of batch process

NRA SAU essentially is a sequential approach: each iteration of the while loop fetches an
item w from Hw and invokes an update on K. For N iterations, we then have N items w

and N sequential updates on K. Since each update involves the cost O(log|K|), the overall
cost for a large N is corresponding non-trivial.

To this end, we propose a batch approach to reduce the update cost, by fetching multiple
items as a batch from each heap Hw . Now suppose we have fetched N batches of items
fetched from all of I heaps Hw , and we propose two following techniques to optimize the
items which are then used to update K.

First, suppose that an item w appears in multiple, say two, batches. We next merge the
two batches of items together and thus reduce the number updates on K.

Secondly, since the output vertexes w of Dijk sorted sim are sorted by descending
order of sim(uw, w), among a batch of items fetched from Hl , the last one must be
associated with the smallest similarity inside the batch. Therefore, we utilize the smallest
similarity to set the tightest bounds of SCORElb(d, ui) and SCOREub(d, ui).
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Algorithm 3 BAT SAU(I seed users ul , graph G, number k)

1: The same as lines 1-2 of Algorithm 2;
2: while MIN∀ui∈K(SCORElb(d, ui)) < MAX∀ui∈G\K(SCOREub(d, ui)) do
3: if this is the first phase then
4: Fetch the top-k items w from eachHl ;
5: else
6: T1 ← MAX∀ui∈G\K(SCOREub(d, ui)) − MIN∀ui∈K(SCORElb(d, ui));
7: Fetch the items w with sim(ul, w) ≥ T 1

I×weight (ul ,d)
from eachHl ;

8: end if
9: for each unique fetched item w do

10: update K by the item w;
11: lines 4-10 of Dijk sorted sim(uw,G,Hw,K)

12: end for
13: end while
14: return the top-k items with the largest lower bounds in K as is;

4.3 Algorithm details

The proposed BAT SAU (Algorithm 3) uses the above techniques to improve NRA SAU.
The key of this algorithm is how to set the size of a batch. We use two phases of fetches,
and each phase adaptively tunes the size of the batch.

Phase 1 (lines 3-4): In the first phase, we fetch a batch of the top-k items ui from each
heapHl (with respect to the seed user ul). Next, in lines 9-12, the total k×I items
ui are fetched from the I heaps Hl , and update the heap K and Hl . After that,
before continuing the next iteration of the while loop, we validate whether or not
the NRA stopping condition is satisfied. If the stopping condition is satisfied,
the NRA SAU algorithm directly returns the final top-k results. Otherwise, the
following phase 2 continues.

Phase 2 (lines 6-7): This phase first sets a threshold T1 by the gap between the two
items in the stopping condition, i.e., T1 = MAX∀ui∈G\K(SCOREub(d, ui)) −
MIN∀ui∈K(SCORElb(d, ui)). Using the gap consistently follows the claim in
Section 4.1, such that only those necessary neighbors, if and only if needed,
are considered as the candidates. By the threshold T1, we use T1/I as the cri-
teria to select more items as a batch from each heap Hl . Using the division
T1/I is because each of the I seed users ul contributes to SCORE(d, ui). Based
on the selection criteria T1/I , we then select those items ui from Hl with
sim(ul, ui) ≥ T1/(I × weight (d, ul)). After all such items over the I heaps
are fetched, we next update the heap K, and renew the top-k stopping condi-
tion. If the renewed top-k stopping condition is still dissatisfied, we reset T1 as
before and again fetch more batches of items. This phase continues until the
top-k stopping condition is satisfied and the final top-k results are found.

Note that during the update of the heap H in line 10, we use the last fetched item inside
a batch to set the lower and upper bounds SCORElb(d, w) and SCOREub(d,w). This ensures
the top-k stopping condition is satisfied as early as possible.
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4.4 A running example

By using Figure 1 (having the three seed users u1, u6 and u8) as the example social graph,
we illustrate how BAT SAU is able to find the top-3 users. We assume weight (d, ul) = 1.0
for each seed user.

In Figure 2a, for the seed users u1, u6 and u8, the associated column (i.e., the heap per-
taining to the seed user) contains the pairs of candidates and the similarity values between
the seed user and the candidate users. The pairs are sorted by the similarity values. For exam-
ple, in the column of u1, the first pair 〈u2, 0.4〉 indicates the similarity value 0.4 between
the candidate user u2 and the seed user u1.

Following BAT SAU, the Phase 1 first fetches the top-3 items (above position 3) per-
taining to each seed user. Given the three seed users u1, u6 and u8, we fetch 9 items but
with only six distinct users u2, u3, u4, u5, u7 and u9. Thus we use 6 insertion operations,
instead of 9 operations to update the heap K by together with their bounds SCORElb(d, ui)

and SCOREub(d, ui) given by Figure 2b. For example, the lower bound of relevance score
for u4 is 0.58 (= 0.08+ 0.5), and the upper bound is 0.62 (= 0.08+ 0.5+ 0.04). Next, due
to SCOREub(d, u3) = 0.38 < MIN∀ui∈K(SCORElb(d, ui)) = 0.5 , we discard u3 because
it cannot be a top-3 result.

Next, Phase 2 sets T1 = MAX∀ui∈G\K(SCOREub(d, ui))−MIN∀ui∈K(SCORElb(d, ui))

= 0.54 − 0.5 = 0.04. Thus, we fetch the candidates with similarity larger than T1/3 =
0.04/3 = 0.013. Next, as an example, the vertex u5 at position 4 of the heapH1 is fetched.
After that, K is updated with new lower bounds and three upper bounds (highlighted by the
bold font of Figure 2c).

Then, Phase 2 again updates T1 = 0.508− 0.5 = 0.008, and fetches the candidates with
similarity larger than T1/3 = 0.008/3 = 0.0023. For example, in the heapH1, the user u7 at
position 5 is fetched. Then, in Figure 2d, the heapK is updated with three new lower bounds,
and the stopping condition MIN∀ui∈K(SCORElb(d, ui)) = MAX∀ui∈G\K(SCOREub(d, ui))

= 0.508 holds. The top-3 results u4, u5 and u7 are returned.

5 Experimental evaluation

We implement the main memory version of NRA SAU and BAT SAU in Java 1.6.0, and
run the experiments on a Debian Linux server of 2.6.22 version with a 3.00GHz Intel Xeon
CPU and 16 GB of RAM.

Figure 2 Running example
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The data sets include the real Digg trace [34] and synthetic social graphs with Eppstein
Power Law distribution [9]. With the real data, we prove both effectiveness and efficiency
of our algorithms. In addition, synthetic data helps better support the efficiency.

(i) The real Digg Secondary Trace (ST): In the Digg, users and their friends and fans
form the Digg social network. When users submit stories, the stories are first placed
on the upcoming stories section. Other users next browse recently submitted stories
on the upcoming stories section and digg what they like the best. We call the event
that a user digged a story as a digg event. Zhu [34] leveraged the Digg APIs to crawl
the Digg social network. For each user in the crawled social network, the associated
digg events by such a user were also fetched. The ST trace contains 580,228 users and
4,569,331 Digg events from March 17, 2009 to April 16, 2009. Based on the Digg
trace log, we compute both the content similarity and the structure similarity. In terms
of the content similarity, we sort the Digg events by the associated timestamps, and
use the early Digg events (e.g., with a rate of 0.001 of the whole Digg events) as the
history information to compute the content similarity simcon(ui, uj ).

For the storage cost to store the Digg ST trace, the adjacent list used by the SAU
algorithms (including NRA SAU and BAT SAU) needs only 156.7 MB. Yet, the stor-
age cost to maintain the similarity of all pairs of users (used by the offline NRA
algorithm) needs around 7746.5 GB. Note that the Digg ST trace contains only a sub-
set of the whole users in the Digg system. Given real users in the Digg system, the
storage cost incurred by maintaining the similarity of all pairs users, at scale of V 2, is
significantly large.

(ii) We generate synthetic graphs by the known open source graph project JUNG V2 [19].
We use two parameters V (the total number of vertices) and e (the average number
of friends per vertex) to generate Power Law graphs. With only the generated graphs,
we have to compute the similarity simnbr (u, v) only by the structure similarity
simstr (u, v).

5.1 Effectiveness

We first demonstrate that the SAU scheme itself is indeed useful before we show its effi-
ciency. We use the Digg trace to evaluate the effectiveness of SAU and compare it with
two approaches: (i) the adaptation of the collaborative filtering (CF) approach [14] to our
solution framework, and (ii) the social-aware advertising (ADV) [32]. For the adapted CF
approach, we only change our algorithms by setting the content weight α = 1.0 and thus
simnbr (u, v) = simcon(u, v). In this way, based on the similarity between users to digg
the stories, the adapted CF finds the top-k users sharing the most similar taste with such
seed users. For the ADV, we create cohesive subgraphs and then estimate the liking of the
subgraph members to be interested in the advertised content. Note that, unlike ADV, there
is no product category information in the SAU problem and we do not consider the category
information of all digg stories.

We compare the CF and ADV with SAU in terms of effectiveness. In detail, we first
consider the precision. For a given item d , we want to find the top-k users who will dig it.
Based on the Digg trace, for each digg event d , we can find all users who truly digged it.
We denote such users, as the ground truth, by U . Among the set of k users returned by CF,
ADV, and/or SAU (denoted by K), not all of them are inside U . Assume that the subset of
users R ⊆ K appear in U . We define precision as the number of returned interested users
over k, that is |R|/k.
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Besides the precision, another metric is recall. Because the SAU problem returns the
fixed number of k users anyway, we might compute the recall by |R|/k. Nevertheless, in
our context of top-k processing which always returns k users, the only metric that does make
sense is the precision at a level k of recall (named, P at k).

In this experiment, we use four parameters: the rate of history Digg events used to com-
pute simcon(u, v), the number I of seed users, the top-k number, and the weight α of
content similarity. By default, these parameters are set as: history rate = 0.001, I = 100,
top-k = 100, and α = 0.5.

First, we study the effect of history rate. As shown in Figure 3a, a higher rate of history
Digg events leads to higher precision for three schemes. The SAU approach has a highest
precision because it considers both the structure similarit and content similarity. For the
CF approach, it computes the content similarity only based on old history information, and
cannot guarantee a very high precision in term of new posted items. Moreover, the ADV
algorithm does not consider the weight information of social graphs and cannot achieve the
highest precision as the SAU approach.

Second, in Figure 3b, we change the number I of seed users from 2 to 100. When I

increases, the precision and recall of three schemes are higher. It is obvious because more
seed users indicate the view point of the majority of users in the social network. The reason
that SAU outperforms the ADV and CF schemes is due to the low default history rate (=
0.001). As a result, a very little history information is available to the CF scheme, which
then cannot precisely compute the similarity of users.

Next, Figure 3c shows the effect of the top-k number. A larger top-k number leads to
lower precision and recall of CF, yet the precision and recall of SAU and ADV are relatively
stable. It is because the structure similarity is independent on the top-k number, and the
precision and recall of SAU remain relatively stable. The ADV still leverages the social
graph to discover cohesive subgraphs, also independent of the top-k number. Instead, the CF
does not leverage the structure similarity, and a larger top-k cannot guarantee a larger |R|.
Since the precision and recall, computed by |R|/k, are reverse to the value of k, a larger k

leads to lower precision and recall.
Finally, Figure 3d plots the effect of the content weight α. As shown in this figure,

neither the smallest content weight α = 0.1 nor the largest one α = 0.9 leads to the highest
precision and recall of SAU. Instead, for α ∈ [0.5 − 0.8], the associated precision and
recall have the largest value. It means that neither using the content similarity nor structure
similarity alone can achieve the best effectiveness, and therefore it is necessary to combine
both of them.

We note that the precision in Figure 3 is not very high, less than 0.4. The main reason
is that the trace does not record the users who only viewed, not voted, the stories in Digg.
Nevertheless, our above results, in particular the Figure 3d, show the benefits of the work to
consider both the structure and content similarity.
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5.2 Efficiency

After demonstrating the effectiveness of SAU, based on both real Digg data set and the
synthetic data set, we now focus on the efficiency of the proposed algorithms. We measure
the efficiency by the average running time per content.

We compare the two SAU algorithms with the online NRA, the adapted CF and the ADV
approaches. For the online NRA scheme (i.e., the baseline solution presented in Section 2),
we first use the Dijkstra algorithm (implemented by JUNG v2) to compute the similarity
between each rater and all other (V − 1) vertices. After that, the computed similarity values
are maintained as a sorted list. Given I raters, the Dijkstra algorithm is executed with I

times to maintain I sorted lists. Based on I sorted lists, the NRA algorithm next solves the
top-k problem.

5.2.1 Experimental results on Digg trace

First Figure 4a shows the effect of the number I of raters. When I varies from 2 to 200,
the running time of the two SAU algorithms is increased. We note that in the relevance
score function, all I raters contribute to the relevance score SCORE(d, ui). Thus, we intu-
itively treat that the computation of SCORE(d, ui) involves a dimensionality of I , and a
larger I leads to more running time. Since BAT SAU carefully selects those candidates (by
following the techniques in Sections 4.1 and 4.2) to make the stopping condition in line 2
quickly satisfied, the associated time of BAT SAU becomes much smaller than the one of
MRA SAU.

In addition, for the online NRA algorithm, for example, given I = 200, it uses 8289 folds
and 102 folds of the time used by BAT SAU and NRA SAU. The adapted CF approach is
essentially the SAU algorithm only with the weight α = 1.0, and uses the almost same time
as the SAU algorithm. The ADV approach needs to solve the fractional 0-1 knapsack prob-
lem involving the whole social network and incurs 1513 folds and 18 folds of the time by
BAT SAU and NRA SAU. The SAU algorithms achieve the obviously better result than the
online NRA and ADV algorithms, and the almost same results to the adapted CF approach,
and we then do not plot the results of the online NRA algorithm and adapted CF approach
in the figures.

Second, we study the effect of the top-k number in Figure 4b. When k grows from 10
to 1000, the running time of three algorithms is all slightly increased. It is because (i) the
running time of the SAU algorithms is dominated by the time of maintaining the sorted top-
k candidates (instead of finding the real top-k results when the top-k candidates are ready)
in an online manner, and (ii) k is significantly smaller than the number of maintained top-k
candidates.
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Next, in Figure 4c, we vary the rate h of history Digg events to compute the content sim-
ilarity. In this figure, a larger h leads to slower running time of the both SAU algorithms
(with 1.81 and 1.95 folds of growth). It is because given a larger h, i.e., more history infor-
mation, more users, who ever voted Digg events, appear in the history information. With
more such users, they are more diversely distributed in the social graph. Therefore, the real
top-k users are more possibly scattered in the social graph, and the SAU algorithms need
more traversals inside the graph in order to find the real top-k users. This leads to more
running time.

Finally, Figure 4d studies the effect of the weight α of content similarity. A larger α leads
to less running time of both SAU algorithms. It is because a larger α means less importance
of the structure similarity, and thus such real top-k users are more centralized around the
initial raters. This next leads to less traversals inside the social graph and less running time
of the SAU algorithms.

5.2.2 Experimental results on generated graphs

In this section, we study the efficiency of two SAU algorithms over generated graphs. The
used parameters include the number of vertices V , average number of friends per vertex,
and distribution of raters (i.e., clustered or random).

We study the effect of graph structure by varying the number of vertices V and the
average number of neighbors e, and plot the experimental results in Figure 5. First, when
V grows, the running time of the two SAU algorithms. It is because more vertices require
more cost to select the optimal path and then to compute the optimal similarity. Second,
we study the effect of average number of neighbor per vertex, e, by varying e from 10 to
100. In Figure 5b, with the growth of e, the running time of two NRA SAU and BAT SAU
algorithms grows by around 6 and 2 folds, respectively. Thus, more neighbors e lead to
exploring more candidate paths until the optimal path to compute sim(u, v) is found, thus
resulting in slower running time.

To study the effect of raters, we consider whether the initial raters are clustered or ran-
domly distributed inside the generated graph. Given the random manner, we randomly pick
I vertices from the generated graph as the I initial raters; given the clustering manner, we
pick I initial raters with Gaussian hops inside the generated graph. The clustered raters are
thus distributed with bias inside the graph. In this experiment, we vary the number I of
raters, and measure the running time of three algorithms.

Figure 5c–d plot the running time of the SAU algorithms, where I raters are random and
clustered inside social graphs, respectively. In both figures, when I grows from 2 to 100,
the running time of the two SAU algorithms is increased, consistent with the results from
the Digg data set.

10e+1

10e+2

10e+3

10e+4

10e+5

10e+6

10e+3 10e+4 10e+5 10e+6

T
im

e 
(m

se
cs

)

Total num. of users

NRA SAU

BAT SAU
10e+1

10e+2

10e+3

10e+4

10e+5

10e+6

 10  20  30  40  50  60  70  80  90  100

T
im

e 
(m

se
cs

)

Num. of friends per user

NRA SAU

BAT SAU
10e+1

10e+2

10e+3

10e+4

10e+5

10e+6

 10  20  30  40  50  60  70  80  90  100

T
im

e 
(m

se
cs

)

Num. of random raters

NRA SAU

BAT SAU
10e+1

10e+2

10e+3

10e+4

10e+5

10e+6

 10  20  30  40  50  60  70  80  90  100

T
im

e 
(m

se
cs

)

Num. of clustered raters

NRA SAU

BAT SAU

(a) Num.of vertices (b) Avg. num. of friends per vertex (c) Num. of random raters (d) Num. of clustered raters

Figure 5 Efficiency study of synthetic data: structure of graphs
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In addition, when we compare Figure 5c with Figure 5d, we find that given the clustered
raters, the two SAU algorithms in Figure 5d use less running time than the ones in Figure 5c.
For example, we consider I = 100; given the NRA SAU algorithm, the running time over
the clustered raters is around 0.465 times of the running time over the random raters; with
respect to the BAT SAU algorithm, the running time over the clustered raters is around
0.622 times of the running time over the random raters. This is because given the clustered
raters, the top-k candidates, located at the vertices similar to the raters, are associated with
high relevance scores, and the two SAU algorithms select fewer candidates. Thus, clustered
raters lead to less running time.

5.3 Discussion

In terms of the effectiveness, the SAU approach combines the benefits of the social simi-
larity and content similarity, and achieves higher precision (and recall). Instead adapted CF
approach considers only the content similarity, and the ADV approach leverages the social
graphs but without structure similarity.

In terms of the efficiency, the running time of the SAU algorithm is dominated by seeking
and maintaining top-k candidates in the sorted lists. The BAT SAU algorithm uses the batch
process to avoid costly updates of the candidates maintained inside heaps, and carefully
selects the candidates based on the gap T1. Instead, the classic TPUT algorithm [6] uses the
lower bound of the top-k candidates as the threshold to select candidates. TPUT, using the
lower bound of the top-k candidates, optimizes the network traffics and latency by three
phases of selecting candidates. In particular, the 3rd phases of TPUT can use the random
access to find the missed values during the 2nd phase. However, the three phases in TPUT by
using the threshold of the top-k candidate are inapplicable to our problem since the random
access is not allowed in our case. Moreover, the running example as shown in Figure 2b
directly indicates that using the threshold 0.7 of the top-k candidates (u4, u5 and u7) does
not at all select any candidates. In addition, in order to practically improve the efficiency, it
might be possible to set the limit of the top-k number, for example 1000. In this case, for
every user ul in the graph, we pre-compute the top-k (=1000) largest similarity sim(ul, w)

between a candidate w and each user ul with the space cost linear to the top-k number.
The pre-computation equivalently saves the efforts required for the Phase 1 of line 4 in
Algorithm 3. After that, we can similarly repeat the remaining steps in Algorithm 3 until
the final top-k results are found.

Finally, given a directed graph G, we easily extend the proposed algorithms as follow.
Following the classic Dijkstra algorithm on directed graphs, we choose only those candidate
nodes inside the paths outgoing from raters. After that, we find more candidates to ensure
the top-k stopping condition holds, until the final top-k results are found.

6 Related work

Targeted information adverting enables advertisers to target users based on user information
such as personal interests, profile information and online behaviours. The previous works
[17, 21, 28, 30] used the boolean subscriptions to model the user information and studied
the efficiency of the algorithm to match the advertised information against the subscriptions.
Bartolini et al., Herlocker, Yang and Dia and Yang et al. [4, 13, 31, 32] analyzed the topol-
ogy structure of OSNs and leveraged only limited social relations of users (e.g., only the
topology of the social networks). Unlike such solutions, we consider the relations of users
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in OSNs, define the relevance score function between the user information and advertised
content, and define efficient algorithms to answer the proposed SAU problem.

Different from the targeted information advertising, recommendation systems select a
set of meaningful content to attract a specific user. Based on the content-based filtering [11]
and collaborative filtering [5, 14] techniques, the recommendation systems exploit the con-
tent similarity and use similarity to improve the recommendation quality. Next, the recent
social-aware content query [3, 22] enhanced the content search with the help of social graph
models. Yahoo! advertising targeting options [29] developed techniques to provide accurate
and trustaware recommendations for social network users.

In terms of top-k query processing, it is a fundamental operation in modern information
retrieval (IR) and database systems. The classic top-k algorithms [16] frequently assume the
availability of sorted lists of partial scores with respect of each dimension and the missed
scores are accessed via either sorted accessed or random accessed or controlled random
probes. In the context of SAU, the sorted lists are unavailable and the proposed algorithms
therefore create the sorted lists on the fly. Similar to BAT SAU, the previous work [24] first
used the technique of batching of list accesses in combination with candidate pruning only
after each batch, and [6, 18] adopted multiple phases of candidates fetch. Nevertheless, [24]
did not give specific solutions to set the batch size, whereas [6, 18] assumed that the random
access fetched the missed scores.

Finally, we investigate algorithms that speedup the Dijkstra algorithm for the shortest
path [2, 12, 15, 25]. Amer-Yahia et al. [2] gave an efficient implementation of the Dijkstra
algorithm by using the radix heap structure, and gave a time bound of O(m + n logC).
However, it requires the edge is associated with a nonnegative integer cost bounded by C.
Ukkonen [25] presented a deterministic linear time and linear space algorithm. However, it
is specially designed for the undirected single source shortest paths problem with positive
integer weights. Differing from the assumption in [2, 25], the similarity of two neighbors
in our problem is a numeric value between [0.0, 1.0], instead of an integer, and thus the
algorithms given by [2, 25] are inapplicable. In addition, our work is only interested in the
top-k vertices v in the graph with the highest similarity sim(u, v) for a given vertex u.
Instead, [12, 15] computed the shortest distance (i.e., the similarity) of all pairs of vertices.
Similar to the original Dijkstra algorithm, they overly computed the shortest distances of
many unnecessary pairs of vertices.

7 Conclusion and future work

This paper studies the SAU problem to find the top-k desirable targeted users. To design
efficient SAU algorithms, we propose to store the similarity only for neighbor users with
low space cost, select the desirable candidate users with low overhead, and prune useless
candidates for fast running time. To evaluate the proposed algorithm, we use the real Digg
trace and synthetic data set for experiments. The experiment results validate that the SAU
(i) effectively achieves higher quality than the existing solutions CF and ADV, and (ii) uses
significantly less running time than state-of-the-art.

As future work, we consider new potential applications in recently popular Crowdsourc-
ing systems, for example, finding the most appropriate contributor to answer a specific
question [7], such as question in Yahoo! Answers. In addition, though the index (i.e., adja-
cent list) used by the proposed algorithms leads to low space cost, it is still possible that
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the adjacent list of a nowadays massive graph is out of the capacity of main memory of a

standard server. We plan to solve the SAU top-k problem upon the on-going work SAKY-

OMI [20, 33], a very efficient SSD-based general graph analytical system, which can use

the exposed APIs to implement various graph analytical algorithms including PageRank,

shortest path distance, connected comments, etc.
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