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Abstract K-core (k-shell) is an interesting measure that discriminates the core and fringe
nodes in a complex network. Recent studies have revealed that some nodes of high k-core
values may play a vital role in information diffusion. As a result, one may expect that
attacking the nodes of high k-core values preferentially will collapse the Internet easily.
To our surprise, however, the experiments on two Internet AS-level topologies show that:
Although a k-core-based attack is feasible in reality, it is actually less effective than the
classic degree-based attack. Indeed, as indicated by the measure normalized susceptibility,
we need to remove 2 % to 3 % more nodes in a k-core-based attack in order to collapse
the networks. Further investigation on the nodes in a same shell discloses that these nodes
often have drastically varying degrees, among which are the nodes of high k-core values but
low degrees. These nodes cannot lead to sufficient link deletions in the early stage of a k-
core-based attack, and therefore make it less malicious than a degree-based attack. Finally, a
strategy called “ELL” is employed for the Internet enhancement. Experiments demonstrate
that “ELL” can greatly improve the Internet robustness at very small costs.
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1 Introduction

The Internet has become the most important communication infrastructure in the world [43],
especially after the boom of online social networking sites [28, 29]. Tremendous research
efforts have been devoted to scale-free networks, such as the AS-level Internet in the level of
autonomous system [3, 6, 8, 36, 37, 46, 49]. Among them, attack survivability is one of the
core topics. People find that, while the Internet is robust to the random failure, it is fragile to
malicious attacks, which are generally defined as removing important nodes or links prefer-
entially from the networks [1]. Specifically, the simple degree-based attack, i.e., attacking
the nodes with higher degrees preferentially, is often regarded as the most feasible attack
type in reality. For example in 2006, an Internet Service Provider called Con Edison(AS
number is 27506) announced a number of prefixes owned by other ASes and “stole” Inter-
net traffic from these ASes [12]. In 2009, a misconfiguration triggered a bug in the Cisco
Border Gateway Protocol implementation, and caused a ten-fold increase in global routing
instability for about an hour. This failure was just imported by a small Czesh provider(AS
number is 47868) [38]. Other types of attacks, e.g., attacking the nodes with higher between-
ness preferentially, may be more malicious than the degree-based attack. But they often
need the global topological information of the networks and are very time-consuming [4],
and thus become infeasible in practice [19]. Recently, some studies attempt to use local
centrality to capture the global betweenness information [16, 27], but its effectiveness for
large-scale technical networks (like the Internet) remains unclear.

K-core (k-shell) is an interesting measure that categorizes the nodes in a complex net-
work into the core nodes and the fringe ones. Recently, in their landmark paper [22], the
authors found in many types of complex networks that k-core is a more effective measure
to describe the influence of a node to the propagation of information or diseases. Indeed,
they disclosed a surprising fact that some nodes with high degrees play a trivial role in
the information spreading process. They argued that a k-core viewpoint is more instructive;
that is, those high-degree nodes actually have low k-core index values and thus locate in
the fringe of the network. From this aspect, one may expect that a k-core-based attack, i.e.,
attacking high k-core index nodes preferentially, can collapse the Internet more easily than
a degree-based attack. This motivates our study on the k-core-based attack, which to our
best knowledge is among the first few studies along this line.

To this end, we performed comparative studies on the two types of malicious attacks. Six
measures including both the structural and propagative ones were introduced to characterize
the damages to the networks during the attacks. To our surprise, the results on two real-world
AS-level Internet data sets showed that: Although a k-core-based attack is feasible using
the traceroute tool [14, 20], it is less malicious than a classic degree-based attack. Indeed,
as indicated by the normalized susceptibility measure, we need to remove 2 % to 3 % more
nodes in a k-core-based attack to make the network collapsed. Further investigation on the
nodes in a same shell disclosed that these nodes often have highly varying degrees, among
which are the nodes of high k-core values but low degrees. These nodes cannot contribute
sufficient link deletions in an early stage of a k-core-based attack, and therefore make it less
malicious than a degree-based attack.

Finally, we paid attention to the enhancement of the AS-level Internet by employing
a simple strategy called “ELL” proposed in our previous work [48]. In a nutshell, ELL
adds new connections between the nodes of lower degrees preferentially. Experiments
demonstrated that “ELL” can effectively improve the Internet robustness at very small costs.

The rest of this paper is organized as follows. Section 2 and Section 3 introduce the
related work and preliminaries, respectively. In Section 4, we introduce the real-world
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experimental data sets. Section 5 models the malicious attacks and describes the feasibility
of a k-core-based attack, with the experimental results given in Section 6. The enhancement
of the robustness of the AS-level Internet is discussed in Section 7, and we finally conclude
our work in Section 8.

2 Related work

Weak attack survivability but strong error tolerance [1] is a dilemma for the complex net-
works. In recent years, many researchers focus on the robustness analysis and enhancement
of complex networks. For instance, Cohen et al. unveiled that the Internet is resilient to
random failures [9] but fragile to the intentional attack [10]. Holme et al. proposed four dif-
ferent attacking strategies and found that attacks by recalculating degrees and betweenness
centrality are often more harmful than attacks based on the initial network [19]. An optimal
model was presented by Tanizawa et al. to generate robust networks against random errors
and malicious attacks [40]. Several approaches for network enhancement were also pre-
sented in [34, 42, 48]. The absence of an epidemic threshold in computer virus infections on
the Internet was found through the analysis on real data [30]. Then targeted immunization
schemes [31] and the immunization of random acquaintances of random nodes [11] were
presented to reduce the immunization threshold.

K-core has attracted many research interests from different fields in recent years. For
example, Seidman studied the cohesion of the social network by presenting k-cores [35].
Wuchty and Almaas applied a core decomposition method to identify the inherent layer
structure of the protein interaction network [41]. Garas et al. employed the k-core decom-
position method to quantify the spreading power of a node in the global economic
network [17]. Meanwhile, as a key metric in complex networks, k-core also attracts a lot of
research interests in the scope of the Internet. For example, Carmi et al. used information
on the connectivity of network shells to separate the AS-level Internet into three subcompo-
nents [6]. Zhang et al. found that the k-core with larger k is nearly stable over time for the
real AS-level Internet [46]. Zhang et al. proposed a model based on k-core decomposition
to model the Internet Router-level topology [47]. In the inspirational work [22], Kitsak et
al. focused on evaluating the influence of a node in the spread of information or diseases
through its k-core index. They reported an unexpected finding that some hub nodes may
locate in the periphery of the network.

Despite of the abundant existing research on the network robustness and k-core index,
little work has been done to unveil whether the attack based on k-core is more malicious
than other types of attacks to the Internet. This indeed motivates our study in this paper.

3 Preliminaries

In this section, we first discuss the feasibility of attacking the AS-level Internet, and then
revisit the measures to characterizing the damages of networks caused by malicious attacks.

3.1 Feasibility of attacking the AS-level internet
The network of the AS-level Internet stands for business relationships between different

Internet Service Providers (ISP). Each AS contains one or several prefixes and different
ASes communicate with each other through the Border Gateway Protocol (BGP) [33], in
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which the security problem has not been addressed adequately [5]. In what follows, we
show it is indeed feasible to attack one AS in the current Internet.

A recent survey by Bulter et al. revisited several attacking methods [5]. For instance,
prefix hijacking means an AS A can advertise a prefix from the address space belonging
to another AS B; then the traffic that should be routed to B would be routed to A falsely.
For another, link cutting attack can be manifested by either physically attacking a link or
employing Denial-of-Service (DoS) attacks.

In addition, there have been quite a few real-world AS-attacking cases in the history
of the Internet [5]. In 1997, a misconfigured router maintained by a small ISP in Florida
injected incorrect routing information into the global Internet and claimed to have optimal
connectivity to all Internet destinations. As a result, most Internet traffics were routed to
this ISP, which overwhelmed the misconfigured router and crippled the Internet for nearly
two hours [5]. Another example is the notorious attack launched by Pakistan Telecom (AS
number is 17557) in 2008, which announced the prefix belonging to YouTube (AS number
is 36561) [45] intentionally. Routers around the world then received this announcement, and
redirected YouTube traffics to Pakistan [44].

Some natural disasters may also lead to the failure of the AS-level Internet [38]. For
instance, the fire caused by a train derail in the Northeast US caused the disruption of the
fibre backbone owned by seven major ISPs. Then most traffics were rerouted and the con-
gestion of alternative links led to a noticeable slowdown of the Internet. Another example
happened in 2006, where the earthquake near Hengchun, Taiwan crashed the submarine
cables that provide Internet connectivity between Asia and North America.

To sum up, attacking an AS in the real-world Internet is indeed feasible. As a result, it is
meaningful to discuss attack survivability of the Internet in the AS-level.

3.2 K-core index and basic measures

The Internet can be intuitively modeled as a graph G(V, E) at different levels, where V is
the set of interfaces, routers or ASes, and E is the set of links between them. In this paper,
we mainly focus on the AS-level Internet, which means a node stands for an AS and a link
stands for the connection between its two ends. The number of links of a node is defined as
its degree. Then the averaged degree of a network can be defined as (k) = 21E|

The distribution of the degree of a graph is denoted as p(k). For the AS-level Internet,
p (k) typically follows a power-law distribution [21, 26]. The Heterogeneity of a network,

2
defined as H = % is often used to characterize the non-uniformity of the degrees.

The clustering coefficient of a node i characterizes how closely its neighbors are intercon-
nected [32]. It is defined as C; = o IE |1 3 where E; is the set of ties between i’s neighbors

and k; is the degree of i. For the case of k; = 1, we set C; = 0. The average clustering
coefficient of a network can then be defined as C = Zif\}’l G

K-core [35] in a graph G is defined as the maximum subgraph G¥, in which each node’s
degree is at least k [2]. By recursively pruning the least connected nodes, the hierarchical
structure of the network can be broken down to the highly connected central part, which is
stated as the core of the network [2, 15]. Then the k-core index, denoted as k;, is used to
characterize how far a node is from the core of a network. A node i has a k-core value k;
if it is in the kg-core but not in the (ks + 1)-core. A larger k; indicates the more closeness
of the node to the core. Hereinafter, we interchangeably use K-core and K-core index when
there is no confusion.
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K-core can be computed through the following steps [6, 22]. First, remove all the nodes
with degree k = 1. After this step, there may appear new nodes with k = 1. Then keep on
pruning these nodes until all nodes with degree k = 1 are removed. The k; of the removed
nodes is then set to 1. We repeat the pruning process in a similar way for the nodes with
degree k = 2 and subsequently for higher values of k until all nodes are removed. After this
process, the k-core values of all the nodes can be determined.

3.3 Measures for network robustness

We employ four structural measures to characterize the damage of a network. The relative
size of the giant connected component, denoted as fgcc, is a generally used metric to quan-
tify the extent to which a network is damaged. Another intuitive measure is the number of
disconnected clusters in the network. The greater the number is, the more disconnected sub-
networks are due to the attack, which indicates a more serious damage. We can normalize
this number by dividing it by the size of the network, denoted as f.jysrer. Network effi-
ciency [24] is the only topological property we adopt in this paper, which relates strongly to
global shortest paths. It is defined as

NI o o
N(N —1) ¥ dij
where N is the size of the network and d;; is the length of the shortest path between nodes
i and j. A lower A means the averaged length of shortest paths in the network is longer
and the network efficiency is lower. We finally employ the normalized susceptibility [23],
which is defined as
3 ngs?
N

§= : 2
where n; is the number of components of size s. A phase transition in the variation of S
indicates the collapse of the network. However, the network is just shrinking if there is no
phase transition during the attack.

In [13, 25], the AS-level topology of the Internet was employed as the underlying net-
work for worm spread investigation. Hence, we also adopt two propagative measures,
corresponding to the Susceptible-Infected-Susceptible (SIS) model and the Susceptible-
Infected-Recovered (SIR) model, respectively, to describe the damage status of an AS-level
network. For the SIS model, the nodes in the network are classified into two categories: the
infected ones and the susceptible ones. Each susceptible node can be infected by its infected
neighbors with a probability ©, meanwhile an infected one may return to the susceptible sta-
tus with a probability 8. As a result, we denote a SIS model as S7S(u, ). As time evolves,
the fraction of the infected population will eventually stabilize at a certain level, denoted
as fCSI s, fCS I8 can be used to characterize how far the disease can spread in the network,
and thus reflect the damage status of the underlying network. All other things being equal,
a smaller fCSI S implies a more severe damage. In the SIR model, a node in the network is
in one of the three statuses: susceptible, infected and recovered. For a susceptible node, it
may get infected by its infected neighbors with a probability u, and an infected node may
get recovered with a probability A and will never be infected again. As a result, we denote
the SIR model as ST R(u, A). Theoretically, all the nodes in the network will get recovered
finally. Therefore, we utilize the maximum fraction of nodes that get infected during the
spreading process, denoted as f3IR to characterize the worst situation.

max ’
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Figure 1 The degree distribution of the two data sets

In summary, we will employ four structural measures, i.e., fccc, feiuster, A and S, as
well as two propagative measures, i.e., fCS IS and f5 ch 5, to describe the extent of the damages
caused by malicious attacks.

4 Real-world network topologies

In this section, we give a brief introduction to the real-world Internet topologies used for
our experiments. As a global but decentralized network [5], Internet is comprised of many
smaller interconnected networks and here we investigate it mainly from the AS-level. An
autonomous system (AS) is a network under the administrative control of a single organi-
zation. The routing process between different ASes is implemented by the Border Gateway
Protocol, which guarantees the inter-domain routing. So if we treat an AS as a node, the
path between different ASes for information exchange could be depicted as a link in the
graph used to represent the Internet.

It is hard to obtain an accurate and complete picture of the AS-level Internet. In order
to make our results more reliable and convincing, we use two AS-level Internet data sets.
The first one, denoted as DIMES -AS, comes from the project of DIMES!. DIMES is a dis-
tributed scientific research project aiming to study the structure and topology of the Internet,
with the help of a volunteer community. DIMES - AS was released in Mar., 2010. In this net-
work, each node represents an AS, and each link means there exists an AS path between the
related two nodes.

The second data set, denoted as UCLA-AS, was released by Internet Research Lab in
UCLAZ in Nov., 2010. They collected the topology from the BGP routing tables, the rout-
ing updates, and other existing resources. We only extract the topology from the map file
released on Nov. 23, 2010.

These two are both scale-free networks, with the degree distributions shown in Figure 1.
It is clear that the degree distributions follow the power-law exactly [32, 39], with y = 2.2
for DIMES-AS and y = 2.0 for UCLA-AS, respectively, estimated by the method given

Thttp://www.netdimes.org
2http://irl.cs.ucla.edu/topology/
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Table 1 Real-world data sets

Data Set Vi |E] (k) c H fece Setuster A
DIMES-AS 26424 90267 6.83 0.47 74.66 1.00 0.00 0.32
UCLA-AS 38200 140726 7.36 0.36 48.95 1.00 0.00 0.29

in [7]. Table 1 lists the details of the two data sets. As can be seen, while UCLA-AS contains
more nodes and edges than DIMES-AS, DIMES-AS is clustered more heavily and more
heterogeneous. The efficiencies of the two networks, as indicated by A, are similar to each
other.

Nodes with the same k-core value are deemed to be in the same shell of the network.
Based on the definition in Section 3, we can divide DIMES -AS into 38 shells and UCLA-AS
into 77 shells. We define the fraction of nodes in each shell as fi , where k; is the k-core of
the corresponding shell. As shown in Figure 2, f;; roughly follows a power-law distribution,
which means the shell with a lower k-core contains more nodes.

5 Modeling attacks to the AS-level internet

In the section, we first give the definitions of attacks based on the degree and k-core of
network nodes, respectively. Then we demonstrate how to estimate the k-core index, which
enables the k-core-based attack to real-world networks.

5.1 Defining attacks

Here we focus on two kinds of malicious attacks to the AS-level Internet. One is the attack
based on the node degree, called degree-based attack (DA). The other is the attack based on
the k-core index, called k-core-based attack (CA). In a degree-based attack, we sort all the
nodes in the descending order of degrees and remove from the network the ones with higher
degrees first. Similarly, in a k-core-based attack, all the nodes in the network are ranked in
the decreasing order of k-core values. Nodes located in the same shell, i.e., having a same
k-core value, are further sorted in the decreasing order of degrees. Then the nodes will be
removed from the highest rank to the lowest rank gradually. Note that we do not recalculate
the nodes’ degrees or k-core values after each wave of attack, as done in [19, 34].

Figure 2 The fraction of the 0

10
nodes in each shell l ‘ ® DIMES-AS
A UCLA-AS
-1 ‘
10 e
..
AA..
2
10 A
¥ & s
~ L4
10
107 e
-5
10
10° 10'
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Table 2 Traceroute samples

Ti 1 2 3 4 5
DIMES-AS  T(1,500) T(26, 260) T(53, 530) T (132, 1320) T (264, 2640)
UCLA-AS  T(l,500) T(38, 380) T(76, 760) T(191, 1910) T (382, 3820)
6 7 8 9
T(528,5280)  T(793,7930) T(1057,10570)  T(1321,13210)

T(764,7640)  T(1146,11460)  T(1528,15280)  T(1910, 19100)

5.2 Estimating the K-core index

Generally speaking, the k-core index of a node is robust, i.e., it can be estimated from limited
information of the network. To illustrate this, we perform simulations of traceroute [18] on
the two AS-level topologies.

In the simulation, we randomly choose the sources and destinations from the network.
Each simulation is denoted as 7 (s, d), where s is the number of sources and d is the number
of destinations. For simplification, we let d = 10s (since d = 10 is not sufficient to setup
the experiment, we let d = 500 when s = 1), and adopt the typical assumption that a
route obtained by traceroute is a shortest path between the source and the destination [14].
Each sample obtained from one pair of (s, d) is denoted as G4 Table 2 shows the nine
samples for DIMES -AS and UCLA-AS, respectively.

We first investigate the correlation between the original k-core index and the new k-
core index (denoted as kYT) estimated from traceroute samples. As shown in Figure 3,
for DIMES-AS with 7(528, 5280) and UCLA-AS with T (764, 7640), most of the nodes
have their k-core values estimated correctly; that is, they are located densely near the line
ks = k.

We also validate the robustness of k-core index by checking the attack sequence. For
each sample GT6D from T (s, d), we obtain the list of nodes in the descending order of

a b
60
50
40
&% 30
20
® o °
10 e® % Co
° o r ¢ H
58 @ooetP o P’ S8
0 10 20 30 40 0 20 40 60 80
ks ks
DIMES-AS with T°(528, 5280). UCLA-AS with T°(764, 7640).

Figure 3 Correlation between k! and k,
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Figure 4 Distances between sample sequences and real sequences

k-core values, denoted as ¢ ¢4 For the nodes with a same k-core value, we reorder them
by their degrees. Similarly, from the original network we can get the attack sequence ¢. We
then measure the distance between the two sequences ¢ 7 ¢ “4) and ¢. We define the distance
between two rank lists 71 and r, with a same length as follows:
Zi;é j dij
dy = =2, 3
nin—1)

where n is the length of the rank list, and

L, r1(@) > ri(j), r2(@) < r2(j)
L, ri@) < ri(j), r2(0) = r2(j) “)
L, ri@) =ri(j), r2(Q) # ra(j)

0, otherwise

dij =

in which (i) (r2(i)) stands for the rank of i in r| (). Therefore, a lower d; indicates
the greater similarity between r; and r;. We select top f;,p nodes from cT@5) g5 r, and
select the same set of nodes from ¢ to compose ;. As shown in Figure 4, for both the
DIMES-AS and UCLA-AS networks, as the number of sources increases, d; decreases
rapidly. For example, in DIMES -AS, the sequence from 7 (528, 5280) is very similar to the
real sequence with d; < 0.1. For UCLA-AS, the sample 7' (764, 7640) also captures most
of the true sequence information.

In summary, for the real-world AS-level Internet, to estimate the k-core value of an AS
or to obtain the attack sequence based on k-core index, is indeed not very difficult. For
DIMES-AS or UCLA-AS, the attackers only need to collect the IP addresses of about 2 %
of the total ASes to perform traceroute, which is feasible in reality.

6 Empirical study
In this section, we perform malicious attacks to real-world AS-level networks, and compare

the results using the above-mentioned six measures. Some explanations will then be given
to highlight the characteristics of a k-core-based attack.
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Figure 5 Comparison of two attacks to DIMES-AS
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Figure 6 Comparison of two attacks to UCLA-AS
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6.1 Experimental results

Here, we consider the degree-based attack and k-core-based attack. We denote the fraction
of removed nodes as f;.. For the four structural measures, we first perform one round of
attack and then calculate the measure values. For the two propagation measures, we first
conduct one wave of attack and then simulate the SIS or SIR model on the networks for 100
times, and return the average fCSI S or ,%f value. Note that we let © = 1.0 and B = 0.3
for the SIS model, and = 1.0 and A = 0.3 for the SIR model.

Figures 5 and 6 show the results. As can be seen, to our surprise, we find that the k-
core-based attack (CA) is less malicious to the AS-level Internet than the degree-based
attack (DA). We take the DIMES-AS network for illustration. As shown in Figure 5a, as
fr increases, fgcc decreases more slowly for CA. This means that after removing the
same amount of nodes, the network damaged by CA contains a larger GCC. Meanwhile,
Jeiuster increases more quickly for DA, which implies that DA is more likely to break the
network into pieces. As to A, it decreases less steeply for CA as f, grows. That is to say,
compared with DA, CA will not degrade the network efficiency rapidly. Finally, regarding
to S, the critical points of f, at which a phase transition occurs are different for CA and DA.
Specifically, the critical point for CA is 0.051, a value much larger than 0.029, the critical
point for DA. This implies that DA can result in an earlier collapse of the network. Indeed,
additional 528 ASes need to be attacked for CA to collapse DIMES-AS, and this number
rises to 1146 for UCLA-AS.

The propagative measures also validate the less maliciousness of k-core-based attack.
As can be seen in Figure Se, for the model S75(1.0, 0.3), fCS’ S decreases more slowly for
CA, which means that the information or disease will spread more widely in the network
bearing CA rather than DA. A similar trend can be found for f,%f in Figure 5f for the
STR(1.0,0.3) model. Note that we have tried different configurations of 1, 8 and A for the
models and obtained similar observations invariably.

All the six measures indicate similar results for the UCLA-AS network in Figure 6; that
is, the k-core-based attack is less malicious than the degree-based attack. Nevertheless, it is

0.8

—@-Degree Preferred
0.7 0.8 —A— K-core Preferred

—@—Degree Preferred
—A— K-core Preferred

0.6
0.5 0.6

0.4

fTES

0.3

0.2 0.2

0.1

10° 10 10

DIMES-AS UCLA-AS

Figure 7 The fraction of residual links
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DIMES-AS UCLA-AS

Figure 8 Comparison of degrees in the same shell

still noteworthy that the disparities of the measures between CA and DA are greater for the
UCLA-AS network. For instance, as shown in Figure 6d, the critical points for CA and DA
are 0.095 and 0.061, respectively, which lead to a gap larger than the one for the DIMES -AS
network.

In summary, while being influential to information diffusion [22], the concept of k-core
seems not very important to malicious attacks. In particular, the k-core-based attack is less
malicious than the simple degree-based attack to the AS-level Internet.

6.2 Explanations and discussions

Here, we explain the above finding by exploring the interrelationship between the degree
and the k-core of a node.

The essence of attacks based on node removals is to delete the links connected to those
nodes. We define the fraction of residual links in the network as f.; and observe how it
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Figure 9 Comparison of fi>i,
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Figure 10 Variance of k-core for nodes with a same degree

varies as f; increases. As shown in Figure 7, the fraction of residual edges for the k-core-
based attack is clearly larger than the one for the degree-based attack. This implies that the
k-core-based attack leads to much less link deletions.

Let us take a closer look at the nodes with a same k-core value. As shown in Figure 8§,
for nodes in the same shell, their degrees vary dramatically. As a result, compared with
the degree-based attack, the k-core-based attack tends to delete less links from the nodes
that have higher k-core values but lower degrees. To further illustrate this, we compare
the attack sequences of CA and DA. We choose the first L nodes from the sequences and
examine the fraction of nodes with degrees no less than a threshold kr, denoted as fi>; .
As shown in Figure 9, compared with the degree-based attack, fi>x, is obviously less for

007l @ [ = DIMES_AS|
@ UCLA-AS

0.06 |

0.05}

0.04 1

fa

0.03}

0.02

0.01¢
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the k-core-based attack, especially at the early stage when 50 < L < 300 for DIMES-AS
or 50 < L < 1000 for UCLA-AS. It is also noteworthy that the gap of fi>k, is larger
for UCLA-AS, which leads to the more significant differences between the two attacking
strategies in Figures 5 and 6, respectively.

Moreover, to understand why the gap between the two different attacks is more obvious
for UCLA-AS, we examine the variance of k-core for nodes with a same degree. Figure 10
shows the result. As can be seen, the variance in UCLA-AS is much higher than the variance
in DIMES-AS, especially when 50 < k < 200. This implies that the attack sequences
by DA and CA are more inconsistent in UCLA-AS, which eventually leads to significantly
different attacking effects.

Further let v,’(’t‘”‘ = maxy vg,, we can then generate different variance regions from the

max

maximum value, e.g., [oevk , vt ], where 0 < o < 1. For each region generated by
s )

o, we count the fraction of degrees whose variances of k-core index are in this region,
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denoted as fy. As can be seen from Figure 11, f, is larger in UCLA-AS for the same «,
which is consistent with our former statement that the k-core variance is more evident in
UCLA-AS. Itis also apparent that as « increases, the corresponding region of k shrinks, and
f« decreases accordingly. Corresponding to each variance region, we could get a window
of degree at k-axis in Figure 10. For example, when « = 0.9, the window is [49, 116]
for DIMES-AS, and [117, 176] for UCLA-AS. When the critical value ¢ = 1, i.e., the
maximum variance is reached, we get k = 116 for DIMES-AS and k = 117 for UCLA-AS.
From the above observations, it could be learned that for the nodes with degrees between
50 and 200, the variance of k-core is tremendously large. This implies that the k-core-
based attack may select some nodes with higher k-core indexes but with degrees located in
[50, 200], which would eventually lead to less link deletions during the attack.

In summary, the reason for the k-core-based attack being less malicious is that the nodes
with high k-core values may own low degrees, and thus leads to less link deletions in the
early stage of the attack.

0.8
0.7
= fc/uster | 0.6
0.5
9]
= L 04
~
0.3 +cELL=20%
0.2 +CELL=70%
01 +CELL:5%
.0 ——Cp =0% |
107 10™ 10°
Ir
CerL=20% $§15(1.0,0.3)
(o
0.8
07 +CELL=20%
+CELL=1O%
06 +CELL=5%
s 0.5 +CELL:O%
=S 04
n g
= 03
0.2
0.1
0
107 10™ 10°
Jr
SIR(1,0,0.3)

Figure 13 “ELL” for UCLA-AS

@ Springer



764 World Wide Web (2015) 18:749-766

7 Enhancing the AS-level internet

The AS-level Internet is fragile to the malicious attack, although the attack may be as simple
as the degree-based attack. As shown in Figures 5 and 6, we only need to remove nearly
3 % and 6 % of ASes, respectively, to make both of the two networks crashed.

Considering the extreme vulnerability of the Internet, it is intuitive to find a feasible but
simple way to enhance its robustness against the malicious attack. In fact, many approaches
for enhancing scale-free networks have been proposed recently, including the one called
“ELL” proposed in our previous work [48], which adds new links between the nodes with
lower degrees preferentially. However, the validation of “ELL” in the previous work was
just performed on small-scale networks with only one robustness measure GCC. Hence, it
is still interesting to test whether this strategy could work for large-scale networks in terms
of more robustness metrics related to, for example, virus propagation. We define the cost of
the enhancement as the fraction of newly added links as follows:

|Enew|
|Eori in|’
8

&)

CerLL =

where Ej., is the set of newly added links and E,;g;, is the set of links in the original
network. Figures 12 and 13 show the effects of “ELL” on enhancing the two networks
against the degree-based attacks. As can be seen, all the six measures indicate that the
attack survivability of the AS-level Internet has been improved greatly as Cgrp goes up.
For instance, for the enhanced UCLA-AS network with Cgrr = 20 %, the critical point
of the phase transition has been postponed from 0.061 to 0.754, which is indeed quite an
impressive improvement.

In summary, the AS-level Internet is vulnerable to simple attacks such as the degree-
based attack. As a simple enhancement strategy, “ELL” can help improve the network
robustness at very small costs.

8 Conclusion and future work

The Internet plays a vital role in modern communications. However, as a typical instance
of scale-free networks, it is fragile to the malicious attacks. In this paper, we proposed k-
core-based attack, a malicious attack preferentially to the nodes with higher k-core values,
and compared it with the classic degree-based attack. Extensive experiments on two AS-
level Internet topologies using six measures demonstrate that: (1) The k-core-based attack
is feasible in real-world scenarios; (2) The k-core-based attack is less malicious than the
degree-based attack; (3) The nodes in a same shell may have drastically varying degrees,
which degrades the efficiency of a k-core-based attack; (4) As a simple scheme, “ELL”
can well enhance the robustness of the AS-level Internet by connecting low-degree nodes
preferentially.

In the future, we plan to extend this study in the following directions. First, we will try
to give theoretical rather than empirical explanations to the less malignity of the K-core-
based attack. Second, current investigation of the Internet robustness is mainly focused on
the network structure, and little attention has been paid to Internet security from the view
of information diffusion. It therefore would be interesting to build an attack model taking
the information spread into consideration. Third, we have mentioned that natural disasters
could cause damage to certain parts of the Internet and finally affect the entire network.
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However, the dynamics of how failure spreading geographically from one part to the others
in the Internet remains unclear. We would like to reveal it in the future research.
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