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Abstract In recent years the inverted lists evaluation model along with holistic stack-based
algorithms have been established as the most prominent techniques for evaluating XML
queries on large persistent XML data. In this framework, we are using materialized views for
optimizing XML queries. We consider a novel approach which instead of materializing the
answer of a view materializes exactly the inverted sublists that are necessary for computing
the answer of the view. This originality allows storing view materializations as compressed
bitmaps, a solution that minimizes the materialization space and empowers performing opti-
mization operations as CPU-efficient bitwise operations. To realize the potential of bitmap
materialized views in optimizing query performance, we define and address the following
problem (view configuration problem): given an XML tree and its schema find a template
of tree-pattern views (view configuration) such that: (a) the views of this configuration can
answer all the queries that can be issued against the schema, (b) their materialization fits
in the space provided, and (c) evaluating the queries using these views minimizes the over-
all query evaluation cost. We consider an instance of this problem for tree pattern queries.
Our intension is to find view configurations whose materializations are small enough to
be stored in main memory. We find two candidate solution configurations and we identify
cases where views can be excluded from materialization in a configuration without affect-
ing query performance. In order to compare our approach with an approach which also can
support the optimization of every query on the schema, we implemented an improvement
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of a state-of-the-art approach which is based on structural indexes. Our experimental results
show that our approach is stable, greatly improves evaluating queries without materialized
views, outperforms the structural index approach on all test cases and is very close to the
optimal. These results characterize our approach as the best candidate for supporting the
optimization of queries in the framework of the inverted lists model.

Keywords XPath query evaluation · XML · Materialized views · View configuration

1 Introduction

A powerful query optimization technique in current database systems consists in mate-
rializing (that is, precomputing and storing) views. The main idea is that storing these
materializations in a view pool will be beneficial to the evaluation of some incoming queries.
In the Relational model, the use of materialized views for answering and optimizing queries
has been studied extensively [7, 8] and integrated into commercial DBMSs in past years
in addition to indexing techniques [1, 5, 12, 39]. In XML, the number of contributions on
these issues has been restricted. This is due to the fact that the use of materialized views for
answering queries is limited when the traditional approach is used for defining XML query
answers, and for evaluating a query using materialized views.

In this paper, we adopt a novel approach for materializing views in the context of XML.
Our approach avoids many of the limitations of the traditional approach in view usabil-
ity. In our new context, view materializations are compressed bitmaps of inverted lists. Our
bitmap view approach is extremely space efficient. It is able to materialize thousands of
views (and consequently to support the efficient evaluation of thousands of queries) in a
space where other approaches that follow previous materialization schemes [3, 18, 29, 38]
can only materialize a handful of views (and consequently support a restricted number of
queries). Because of their small size thousands of bitmap materialized views (whose size is
usually a tiny fragment of the base data) can be kept in main memory. This is one of the sev-
eral reasons this technique presents a significant advantage over other view materialization
techniques. Our ultimate goal is to evaluate the efficiency of our approach. That is, (a) we
want to see to what extent we can speed up the evaluation of queries using bitmap material-
ized views compared to evaluating queries without using views, and (b) how our approach
compares in terms of evaluation time to other approaches that aim at using auxiliary struc-
tures (materialized views and indexes) for optimizing the evaluation of queries. However, in
order to do this evaluation the problem of deciding what views to select for materialization
in the database has to be solved. The view selection problem is a well known problem in
databases both in the Relational [11, 14, 30] and the XML context [18, 27]: given a query
workload and information about the dataset decide what views to materialize in the database
that satisfy a number of constraints (e.g., materialization space constraints) and minimize a
cost (e.g., the evaluation cost of a given workload). This problem does not directly fit our
needs because our intention in this paper is to find view sets to materialize that can sup-
port the optimization of all the queries of the class under consideration that can be issued
against the database and not only (or mainly) those that appear in the workload. Therefore,
we define here a different version of the view selection problem that can accommodate our
goal. In order to introduce the problem we address in this paper and outline our contribu-
tions, we overview next with an example our novel framework for optimizing queries on
XML data. We provide formal definitions later in Section 2.1.
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1.1 Query optimization framework

A recent approach for evaluating queries on large persistent XML data assumes that the
data is preprocessed and the position of every node in the XML tree is encoded [6, 15].
Figure 1a shows an XML tree and the positional encoding of its nodes in the form of triplets
(〈begin, end, level〉). The nodes in the XML tree are partitioned by node label, and an
index of inverted lists is built on this partition. Figure 1b shows the inverted lists for some
of the labels in the XML tree of Figure 1a. As is common with the inverted lists of XML
data we assume that there is an index structure that identifies the nodes in an inverted list
satisfying a given predicate [6]. For instance, in the example of Figure 1b, the inverted list of
label year(2012) provides the nodes of the inverted list of year which satisfy the predicate
year = 2012.

Queries are XPath expressions. Figure 2 shows an XPath query Q and two XPath views
V1 and V2 represented as tree patterns. Single line edges represent child relationships while
double line edges represent descendant relationships. Subscripts in labels distinguish nodes
with the same label. A node label in bold indicates the output node of a query. Query Q asks
for the authors of cited articles published in 2012. View V1 computes the authors of articles
published in 2012 or of articles citing an article published in 2012. View V2 computes the
citing articles. As an example, one can see that view V2 has one match to the XML tree.
According to the traditional approach, its answer consists of the subtree rooted at node
(15, 28, 4) labeled article. In contrast to the traditional approach, the answer of a query Q

in our approach is not a subtree of the XML tree but a set of tuples having one field for
every node in Q (that is, all query nodes are regarded as output nodes). Each tuple contains
the (positional representation of) the XML tree nodes that match the query nodes in an
embedding of the query to the XML tree. Figure 3a shows the answer of view V1 on the
XML tree of Figure 1a as a set of tuples. Observe that if the answer of a view is directly
materialized as a set of tuples, nodes may be redundantly stored multiple times.

Query evaluation model In order to evaluate a query, the nodes of the relevant inverted lists
are read in the pre-order of their appearance in the XML tree. We refer to this evaluation
model as inverted lists model. A major advantage of this evaluation model is that in order
to evaluate a query, only the inverted lists of the labels that appear in the query need to be
fetched from disk and scanned.

Viewmaterialization For materializing views, we employ a novel approach where instead of
materializing the answer of a view V (set of tuples), we materialize inverted sublists for all
view nodes. These inverted sublists comprise exactly the XML tree nodes that appear in the
answer of the view for the corresponding node. Figure 3b and d depict the materializations
of views V1 and V2 of Figure 2 as sets of sublists (one sublist for each view node). This
solution greatly reduces the view materialization space since it can store an exponential
number of tuples in polynomial space, and also addresses the redundancy issue associated
with tupled-based view materializations. In order to minimize the storage space, the inverted
sublist of every materialized view node is represented as a bitmap over the corresponding
inverted list and is compressed. Figure 3c and e depict the materializations of views V1 and
V2 of Figure 2 as sets of bitmaps.

Computing a query using materialized views As we explain later, if a view can be used in
answering a query, mappings are established from the view nodes to the query nodes. A
view node which is mapped to a query node n is called covering node of n in the view. In
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(a) An XML tree

(b) inverted lists

Figure 1 An example XML tree and some of its inverted lists

order then to evaluate the query using the view, a holistic stack based algorithm is employed
which computes the answer by using, for every query node, the inverted sublist of the cov-
ering view node (if any) instead of the inverted list of its label. This reduces substantially
the evaluation time since the sublists are, in general, much smaller than the corresponding
inverted lists. In the example of Figure 2 the dotted lines show the covering view nodes of
query nodes. Therefore, a query evaluation algorithm can compute the answer of Q by using
for query node article1 the inverted sublist of the materialized view node article shown
in Figure 3b instead of the inverted list of label article shown in Figure 1b. Note that our
approach allows the computation of a query answer using inclusively or exclusively multi-
ple views materialized in a view pool. When multiple views can be exploited in answering a
query, a query node can be computed using the intersection of the inverted sublists of all its
covering view nodes in the same and/or different views. This even further reduces the size
of the sublists used for computing the query. In our running example of Figure 2 the answer
of Q can be computed by using for query node article1 the intersection of the inverted sub-
lists of the materialized view nodes article of V1 and article1 of V2 shown in Figure 3b
and d, respectively.

Figure 2 A query, two views,
and homomorphisms from the
views to the query
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(a)

(b)

(d)

(c)

(e)

Figure 3 Materializations of views V1 and V2 of Figure 2 on the XML tree of Figure 1a

Besides storage gains, the bitmap representation of the inverted sublist has also perfor-
mance advantages during the computation of query answers since: (a) the intersection of
the inverted sublists can be implemented as a bitwise operation which incurs less CPU cost,
and (b) fetching into memory the operand bitmaps and the resulting inverted sublist has less
I/O cost than fetching the operand inverted sublists.

View usability As shown in Section 3.1, in the context of our novel concept of view materi-
alization, a query can be answered using a view if there is a homomorphism from the view to
the query. This condition can be generalized to multiple views. In our example of Figure 2,
query Q can be answered using view V1 or view V2, as the depicted homomorphisms sug-
gest. Note that these homomorphic mappings define also the covering view nodes of a query
node. In fact, because all nodes of Q are covered by view nodes, Q can be answered using
exclusively the (materializations) of V1 and V2. Interestingly, what is needed for exploiting
the view materializations in the computation of a query is the identification of the covering
view nodes of the query and this, as we explain in Section 3.1, can be done in polynomial
time without enumerating all the possible homomorphisms from the views of the view pool
to the query.

1.2 Problems addressed and contribution

To realize the potential of bitmap materialized views in optimizing query performance, it
is necessary to have a process to determine, for a given input XML database, a proper set
of views to materialize. Our goal is to support the optimization of all queries that may be
issued against the XML database rather than a specific set of queries. To this end, we make
the following contributions.

• We formally define and address a problem called view configuration problem. A view
configuration represents a set of views defined by a view template. The view configu-
ration problem takes as input an XML tree and its schema and aims at finding a view
configuration, which when materialized as bitmap views (a) fits in the space available
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for view materialization, (b) can answer all the satisfiable queries that can be issued
against the schema, and (c) minimizes the overall cost of evaluating the queries using
the materialized views. We consider an instance of the problem for tree pattern queries
and views. Our intention is to find view configuration whose bitmap materializations
are small enough to fit in main memory (Section 2).

• We are looking for a pragmatic not a theoretical solution to the view configuration prob-
lem. We find two possible solution configurations (binary paths and binary twigs—the
former subsuming the later) of increasing benefit and size. We show how we can refine
them and avoid materializing redundant views without compromising their capacity in
supporting the optimization of queries (Section 3.2).

• We implemented our approach on both view configurations. In order to compare it
with previous ones, we considered and implemented also a state-of-the art approach
(denoted SIdx) which combines inverted lists with structural indexes. SIdx has been
shown in [21] to be generally faster than other approaches in the context of the inverted
lists model. Since the original version of SIdx has limitations (in particular with recur-
sive DTDs) we employed for our comparison an extension of it that addresses these
problems (Section 3.3).

• We run extensive experiments on real, benchmark and synthetic datasets. The experi-
mental results show that our approach for computing queries using bitmap views with
the solution configurations greatly improves the basic inverted lists approach, in certain
cases by orders of magnitude. It also outperforms SIdx on all testing cases and comes
very close to the optimal. Further, it is stable and scales smoothly in terms of both space
and query executions time when the size of data increases (Section 4).

• Our results suggest that using our approach for appropriately selecting views for mate-
rialization as compressed bitmaps is the most promising and practical technique for
optimizing XML queries.

Related work is presented in Section 5 along with a further comparison of our approach
to the traditional approach. We conclude in Section 6 and suggest future work.

2 Bitmap view configurations

In this section, we present the data and evaluation models we adopt, and the class of queries
and views we consider, and we outline the bitmap materialized views approach. We then
introduce the concept of view configuration and define formally the view configuration
problem.

2.1 The bitmap materialized view approach

Data model An XML database is commonly modeled by a node labeled tree structure. We
denote by L the set of XML tree node labels. Without loss of generality, we assume that
only the root node of every XML tree is labeled by r ∈ L.

As described in the introduction, the XML tree data is preprocessed and the posi-
tion of every node is encoded. For every label a in the XML tree, an inverted list La

of the nodes with label a is produced. List La contains the positional representation
(〈begin, end, level〉 triplets) of the nodes labeled by a in T ordered by their begin field.
Given an XML tree T , L denotes its set of inverted lists.
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Query and view language We focus on tree-pattern queries and views. A tree-pattern query
(TPQ) specifies a pattern in the form of a tree. Every node in a TPQ Q has a label from
L. There are two types of edges in Q. A single-line (resp. double-line) edge between two
nodes in Q denotes a child (resp. descendant) structural relationship between the two nodes.
Figure 4a and b show two queries.

The answer of a TPQ on an XML tree is a set of tuples. Each tuple has one element for
every TPQ node. The elements are (positional representations of) XML tree nodes and are
named by the corresponding TPQ nodes. More formally, an embedding of a TPQ Q into an
XML tree T is a mapping M from the nodes of Q to nodes of T such that: (a) node labels
are preserved, and (b) if there is a single-line (resp. double-line) edge between two nodes X

and Y in Q, M(Y) is a child (resp. descendant) of M(X) in T . We call solution of Q on T a
tuple whose elements are the images of the nodes in Q under an embedding of Q to T . The
answer of Q on T is the set of solutions of Q under all possible embeddings of Q to T .

We assume that a query has at least two nodes since otherwise it can be answered by
a simple lookup on the corresponding inverted list. Also, we assume that a query does not
include a root-to-leaf path r//a (rooted at an r node and comprising only a single double-
line edge). Figure 4c–e show examples of such tree patterns (which are not considered to
be legal queries). Note that the tree-pattern of Figure 4b does not include such a path and
is a legal query. A root-to-leaf path r//a is not allowed in a query Q because it does not
provide any additional restriction to the rest of the query: the answer of Q is the Cartesian
product of the answer of the rest of Q (that is, the query resulting by removing the a node
and its incoming double-line edge) and the inverted list for label a. For instance the answer
of query 4d is the Cartesian product of the answer of the query r/a and the inverted list of
label b.

A view is a named query. The class of views is not restricted: any kind of legal query can
be a view.

Computing queries in the inverted lists evaluation model The inverted lists evaluation
model ignores the XML tree T and assumes that the input for the evaluation of queries and
views is the set of inverted lists L of T . The query evaluation algorithms in this model are
based on stacks. Comparison studies on XML query evaluation techniques [13, 21] show
that holistic stack-based algorithms [6, 15, 34, 35] in the inverted lists model are supe-
rior to other algorithms and evaluation models (streaming/navigational approaches [24] or
sequential/string matching approaches [26]).

Let X be a node in query Q labeled by label a. The elements of query node X in the
answer of Q are computed by the evaluation algorithm by scanning the inverted list La .
Therefore, only inverted lists for labels that appear in Q are involved in the computation.

When a query Q is evaluated on L, if the elements of node X in the answer of Q can
be computed using a sublist L′ of La we say that node X can be computed on L using the
sublist L′.

(a) (b) (c) (d) (e)

Figure 4 a–b queries, c–e tree patterns not considered as queries
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Materialized views as compressed bitmaps If X is a node in a view V labeled by a, the
materialization, LX , of X on L is a sublist of La containing only those nodes that are
elements of X in the answer of V on L. The materialization of X is represented by a bitmap
on La which is stored compressed to even further reduce the materialization space. The
materialization V (L) of a view on L is the set of the materializations of its nodes on L.

Using materialized views in query answering: definitions Let V (L) be the materialization
of a view V on L. View V can be used in answering a query Q if for some node X in Q

there is a node Y in V with the same label as X, such that for every L, X can be computed
using LY ∈ V (L). If this is the case, we say that query node X is covered by view node Y

or that Y is a covering node of X.

When multiple materialized views V1, . . . , Vn are present, they can be exploited for
answering a query. We say that the views V1, . . . , Vn can be used for answering a query Q

iff some of the Vis can be used for answering Q.
Let’s assume that Q can be answered using V1, . . . , Vn, and let CN(X) denote the set

of covering nodes of X in V1, . . . , Vn. If every node in Q is covered by a node in some
Vi , we say that Q can be answered using exclusively V1, . . . , Vn. In this case, ∀X ∈ Q,
CN(X) �= ∅. Otherwise, we say that Q can be answered using inclusively V1, . . . , Vn.

Computing a query answer using view materializations In order to use the materializations
of views V1, . . . , Vn in the computation of Q, for every node X of Q, the intersection of the
materializations of all the covering nodes in CN(X) is computed. Since these materializa-
tions are stored as bitmaps, their intersection can be performed by bitwise AND-ing bitmaps
and the cost of this operation is insignificant. The resulting sublists for all the query nodes
are fed into a stack-based algorithm which computes the answer of Q. The intersection of
the materializations of the nodes in CN(X) is a sublist which is usually much smaller than
the inverted list for the label of X. Therefore, when CN(X) for the query nodes X is avail-
able, computing the answer of Q using the materialized views non-strictly reduces the cost
of computing Q using the inverted lists of the query node labels. We show in the next sec-
tion that the cost of the computation of the nodes in CN(X) is not significant, even for a
large number of views V1, . . . , Vn.

2.2 The view configuration problem

We assume that an XML tree and the structural part of a DTD (tree or graph) without con-
straints and cardinalities is given. In the absence of a DTD, a structural summary [20] (e.g.
an 1-index), is equally appropriate. We refer to this structure (DTD structure or structural
summary) as schema.

View configurations A configuration of views is a view template. It represents the set of
views resulting by instantiating the template in all possible ways. The template is similar
to an XPath tree-pattern expression which involves axis variables ‘#i’ (instead of child ‘/’
and descendant ‘//’ axes) and label variables Xi, Yj , Zk, . . . (instead of XML tree labels).
The axis variables ‘#i’ are instantiated with ‘/’ or ‘//’, and the label variables are instanti-
ated with XML tree labels to yield TPQs. An example of a configuration is the template
X#Y which represents path pattern views with two nodes involving a child or descendant
relationship (we call this configuration binary path configuration). Figure 5a–d show some
possible instantiations of this template. Another example of a configuration is the tem-
plate X[.#1Y ]#2Z representing tree pattern views with a root and two child nodes involving
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5 Binary path views (a–d), binary twig views (e–i)

child and/or descendant relationships (we call this configuration binary twig configuration).
Figure 5e–i shows some possible instantiations of this template.

A query is satisfiable w.r.t. a schema s, if it has a non-empty answer on an XML tree
which complies with s. The instantiation C(s) of a view configuration C on a schema s is
the set of views which can be obtained by instantiating the label variables of template C

with node labels from s and the axis variables of C with child and descendant axes such that
the resulting view is satisfiable w.r.t. s. The materialization C(L) of a configuration C on
the set of inverted lists L of an XML tree that complies with s refers to the materialization
of the views in C(s) on L.

The problem We now define the view configuration problem. Given a schema s, the set L of
inverted lists of an XML tree that complies with s, and a threshold t representing the size of
the space available for view materialization, compute a view configuration C that satisfies
the following conditions:

(a) the space consumed by the materialization of C on L does not exceed t . That is,
size(C(L)) ≤ t .

(b) every query which is satisfiable w.r.t. s can be answered using exclusively the views
in the instantiation C(s) of C on s.

(c) the average cost of answering all the satisfiable w.r.t. s queries using the views in C(s)

is minimal.

Note that we are interested only in configurations whose materialization on L does not
exceed 1 to 2 % of the size of the base data so that they can be also stored and remain in
main memory.

Note also that condition (b) guarantees that not only every (satisfiable w.r.t. s) query
is supported by a materialized view but also that every part of the query is supported by
a materialized view of the configuration instantiation. Indeed, the requirement of a query
being answerable using exclusively the views in the instantiation, guarantees that every node
of it is covered by a node of a materialized view of the configuration instantiation.

Multiple alternative formulations of the view configuration problem can be envisaged
including considering smaller (more restricted) view configurations, materializing multiple
view configurations, and materializing a fragment of a view configuration. These consider-
ations are out of the scope of this paper, our purpose being: (a) to provide a practical and
quick way for choosing bitmap view sets for materialization that will support efficiently
all the queries, and (b) to compare the bitmap materialized view approach on these view
selections against other state of the art approaches that also support the evaluation of all the
queries.
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3 Choosing view configurations

We provide in this section a solution to the view configuration problem and then we show
how solution configurations can be refined. In order to do so, we use some previous results
on computing queries using bitmap views which are presented next. In the last part of this
section, we elaborate on two approaches our approach is compared against.

3.1 Computing covering view nodes

As explained in Section 2.1, in order to compute query answers using bitmap views what
is needed is the computation of the set of covering view nodes for the query nodes. To
identify covering view nodes we employ the concept of homomorphism from a view to a
query. A homomorphism from a view V to a query Q is a mapping that maps all the nodes
of V to nodes with the same label in Q and preserves child and descendant relationships.
Figure 6 shows a query and three views as well as homomorphisms from the views to the
query. A view can have multiple homomorphisms to a query. For instance, View V1 has two
homorphisms to Q. The following theorem relates node coverage to homomorphisms.

Theorem 1 [36, 37] Let Q be a query and V be a view. A node X in Q is covered by a node
Y in V iff there is a homomorphism from V to Q that maps Y to X.

A query node can be covered by multiple nodes of the same or different views. For
instance, in the example of Figure 6, query node b1 is covered by nodes b of views V1 and
V2.

Based on Theorem 1, the set of covering view nodes of a given query node is determined
by the homomorphisms from the views to the query. Let h1, . . . , hk be the homomorphisms
from a view V to a query Q and Y 1

i , . . . , Y
mk

i be the nodes in V whose image under hi is
query node X. Then, the set CN(X) of covering nodes for X in V is

CN(X) =
⋃

i∈[1,k], j∈[1,mk]

{
Y

j
i

}

The set of covering nodes of a given query node in multiple views is determined in terms
of the set of covering nodes of the query in a single view: let X be a node in query Q,
and CN1(X), . . . , CNn(X) be the sets of covering nodes of X in V1, . . . , Vn, respectively.
Then, the set CN(X) of covering nodes of X in V1, . . . , Vn is

CN(X) =
⋃

i∈[1,n]
CNi(X)

Figure 6 Homomorphisms from
the views V1, V2 and V3 to
query Q
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View usability conditions The following corollary of Theorem 1 specifies necessary and
sufficient conditions for using materialized views in answering a query.

Corollary 1 A materialized view V can be used in answering Q iff there is a homomor-
phism from V to Q.

In the example of Figure 6, each one of the views V1, V2 and V3 can be used to answer
query Q since there is at least one homomorphism from each one of them to Q. Further,
since every node of Q is covered by a node in V1, V2 or V3, Q can be answered using
exclusively V1, V2 and V3.

Avoiding homomorphism enumeration The covering nodes for a node of a query Q in a
view V are defined in terms of the homomorphisms of V to Q. The number of these
homomorphisms can be exponential in the number of view nodes. However, the number of
covering nodes in CN(X) is bounded by the number of nodes in V. For the computation
of covering nodes we use a stack-based algorithm [36, 37] which computes in polynomial
time and space the covering nodes of the nodes in Q without explicitly enumerating all the
homomorphisms from V to Q.

3.2 A solution to the view configuration problem

It is not difficult to see that the only configurations that satisfy condition (b) of the defini-
tion of the view configuration problem in Section 2.2 are those corresponding to the view
templates Ck = X[.#1Y1] . . . [.#k−1Yk−1]#kYk . Figure 7a shows an instantiation of this tem-
plate for k = 5. If k = 1 the template corresponds to a binary path configuration (X#Y1).
For k = 2 it corresponds to a binary twig configuration (X[.#1Y1]#2Y2). Intuitively, the
views in the instantiation of any one of these configurations can be used to assemble any
arbitrarily complex query or view.

Condition (a) of the view configuration problem constraints the size of the materializa-
tion of the selected configuration, while condition (c) requires the minimization of the query
evaluation cost.

We can observe that if n > m, a configuration Cn subsumes a configuration Cm in
the following sense: for every view Vm in the instantiation Cm(s) of Cm on a schema s,
there is a view Vn in Cn(s) such that there is a homomorphism from Vn to Vm that maps
descendant (resp. child) edges to descendant (resp. child) edges and all the nodes in Vm are
images of nodes in Vn under the homomorphism. Clearly, Vm has also a homomorphism
to Vn that maps descendant (resp. child) edges to descendant (resp. child) edges. Nodes in
the two views Vn and Vm that are associated through these homomorphisms have the same
materialization on the set of inverted lists L of any XML tree that complies with s. For
instance, in the example of Figure 7b, nodes b of V2 and b1 and b2 of V4 have the same
materialization on L. The reason is that for every embedding of Vm to an XML tree, there is
an embedding of Vn that maps nodes associated through a homomorphism in the two views
to the same XML tree node, and vice versa.

Also, if there is a homomorphism from Vm to a query Q, there is also a homomorphism
from Vn to Q that maps view nodes associated through a homomorphism in Vm and Vn to
the same query node.

These observations suggest that:

(a) The number of views in Cn(s) is non-strictly larger than that in Cm(s).
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(a) (b)

Figure 7 a An instantiation of configuration C5, b Views V2 and V4 and their node correspondences

(b) The size of the materialization Cn(L) of Cn on L is larger than that of Cm(L). That is,
the size of Ck(L) increases monotonically with k.

(c) For every query node X, the intersection of the materializations (inverted sublists) of
the covering view nodes of X in the instantiation Cn(s) of Cn on s is a subset of the
intersection of the covering view nodes of X in Cm(s). As a consequence, the number
of nodes in each inverted sublist employed for evaluating a query using materialized
views from Cn(L) is non-strictly smaller than what we can obtain using materialized
views from Cm(L).

The cost of evaluating a query using bitmap materialized views is composed of two parts:
the query optimization cost and the query execution cost (the cost of running a holistic
stack-based algorithm on the inverted sublists of the query nodes).

The optimization cost consists in turn of two components: the cost for computing the
covering view nodes for the nodes of the query and the cost for decompressing and bit-
wise ANDing the bitmaps of the view node materializations. As mentioned in Section 3.1,
our algorithm computes covering view nodes efficiently. The time for decompressing and
bitwise ANDing the bitmaps of the view node materializations is insignificant.

The query execution cost which is the bulk of the query evaluation cost depends on the
size of the inverted sublists used to compute the query. As mentioned in remark (c) above,
the size of these inverted sublists, non-strictly monotonically decreases with k.

The query optimization cost is a very small percentage of the query execution cost (at
least for values of k which lead to materializations of Ck of manageable size). This is due to
the efficiency of our algorithm that computes the covering view nodes and is also confirmed
experimentally in the next section. Since the optimization time is insignificant compared to
the query execution time, choosing a configuration Ck with a larger k non-strictly reduces
the query evaluation cost.

The previous remarks show that for values of k of practical interest, the solution to the
view configuration problem is the configuration Ck with the greatest k whose materializa-
tion Ck(L) fits in the available space (i.e. its size does not exceed the given threshold t).
In fact, because of the low threshold we have imposed on the space available for material-
ization, we have to restrict the configurations we consider to binary twigs and often even
to binary paths. The materializations of higher degree configurations (k > 2) exceed the
threshold. Therefore, in practice, the solution to the view configuration problem is the binary
twig configuration if its size on the input dataset allows its materialization or otherwise, the
binary path configuration (whose materialization usually fits in the available space).

The next theorem shows that for non-recursive schemas (that is, schemas that do not
have cycles) the inverted sublists reach their minimum size at k = 2 and therefore their size
stabilizes beyond k = 2. As a consequence, for non-recursive schemas, the configurations
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Ck with k > 2 need not be considered even if they fit in the space available for material-
ization: these configurations do not reduce the query evaluation cost and they increase the
space consumption.

Theorem 2 Let X be a node of a query Q on an XML tree T with non-recursive schema
s. Let also CN2(X) (resp. CNk(X), k > 2) be the set of covering view nodes of X in the
instantiation C2(s) of the configuration C2 (resp. Ck) on s. Let finally L2 (resp. Lk) be
the intersection of the materializations (inverted sublists) of the nodes in CN2(X) (resp.
CNk(X)) on T . Then, L2 = Lk .

To prove the above theorem recall that from the previous discussion in this section, Lk ⊆
L2. In order to show that L2 ⊆ Lk, let X′ be a covering node of X in a view Vk ∈ Ck(s).
Observe that if a node l in the inverted list of the label of X is not in the materialization of X′
of Vk on T (because there is no embedding of Vk to T that maps X′ to l) then there is a view
V2 ∈ C2(s) which is a subtree of Vk and comprises X′, and l is not in the materialization of
X′ of V2 on T . As an example of this observation, consider the XML tree T and the query
Q and views V3, V2 and V1 shown in Figure 8. Integers are used as node identifiers in T and
the materialization of the query and view nodes on T are shown by the nodes in the figure
(the materializations are empty for all the nodes of Q, V3 and V2 as this query and views do
not have an embedding to T ). Node 3 of T labeled by b is not in the materialization of node
b of V3. As a consequence, there is a view in C2(s) which is a subtree of V3 and comprises
node b and node 3 is not in the materialization of b of this view on T . This is view V2. We
conclude that L2 ⊆ Lk .

Notice that this is not the case with a covering node of X in a view V2 ∈ C2(s) (a binary
twig): there is not necessarily a view V1 ∈ C1(s) (a binary path) which is a subtree of V2 that
comprises X′, such that l is not in the materialization of X′ of V1 on T . Looking again at
the example of Figure 8, one can see that there is no view in C1(s) which is a subtree of V2
that comprises node b such that node 3 is not in the materialization of b of V1 on T . Indeed,
view V1 is the only binary path subtree of V2 that comprises b and the materialization of b

of V1 contains 3.
In the rest of the paper, we focus on binary path and binary twig configurations. We

discuss next how we can refine these two configurations by eliminating redundant views
and by replacing views with simpler ones.

Refining the binary path configuration We start by providing a definition for redundant
views.

Definition 1 Given a configuration C and a schema s, a view V in the instantiation C(s) of
C on s is redundant in the presence of another view V ′ in C(s) if for every query Q and for

Figure 8 An XML tree T and a query and three views along with the materialization of their nodes on T

shown by the nodes between { and }
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(a) (b)

Figure 9 a A fragment of the MONDIAL schema, b A fragment of the XMark schema

any materialization of C on an XML tree that complies with s: if a node XQ in Q is covered
by a node X of V , there is a node X′ of V ′ which also covers XQ and the materialization of
X′ is a subset of the materialization of X.

Clearly, a redundant materialized view V does not need to be included in the material-
ization of a view configuration when the view that renders V redundant is materialized.

The next proposition characterizes redundant views in the instantiation of a binary path
configuration on a schema. We first provide a definition: an edge (x, y) (x not necessarily
different than y) in a schema s is transitive if: (a) node x or y are on a cycle in s that does not
include (x, y), or (b) there is a path from node x to node y in s that does not include edge
(x, y). As an example, in the schema of Figure 9a (a fragment of the MONDIAL1 schema),
edge (country, name) is transitive while (province, city) is not. In the schema of Figure 9b (a
fragment of the XMark2 schema), the edge (listitem, parlist) is the only non-transtive edge,
All the other edges, e.g., (keyword, keyword) and (keyword, emph) are transitive.

Proposition 1 Let C1 be the binary path configuration and s be a schema. The view x/y is
redundant in C1(s) in the presence of the view x//y if the edge (x, y) is not transitive in s.

The proof can be obtained by observing that in the materialization of C1 on an XML tree
that complies with s, the materialization the view x/y is the same as the materialization of
the view x//y.

Refining the binary twig configuration In a binary twig configuration, symmetric binary
twig queries are twigs whose leaf nodes have the same label and their edges are both child
or both descendant edges. Figure 5g and h show examples. As discussed in a more general
context in the beginning of Section 3.2, a symmetric twig query can be replaced in the
configuration materialization by the binary path view obtained by merging the leaf nodes

1http://www.dbis.informatik.uni-goettingen.de/Mondial/#XML
2http://monetdb.cwi.nl/xml/

http://www.dbis.informatik.uni-goettingen.de/Mondial/#XML
http://monetdb.cwi.nl/xml/
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of the twig. For instance, the binary twig of Figure 5g can be replaced by the binary path of
Figure 5b and the one of 5h by 5a.

Clearly, the size of the materialized binary path is smaller than that of the corresponding
binary twig. Therefore, replacing symmetric binary twigs by the corresponding binary paths
in a configuration materialization: (a) does not affect the size of the inverted sublists used
for evaluating the query using the materialized views (that is, it does not affect the query
execution cost), (b) decreases the optimization time of the queries since the number of view
nodes to be considered when computing the covering view nodes of query nodes is lower,
and (c) reduces the materialization space (therefore increasing the chances for a binary twig
configuration to fit in the space available for materialization).

The next proposition characterizes redundant views in the instantiation of a binary twig
configuration on a schema.

Proposition 2 Let C2 be the binary twig configuration and s be a schema. The binary twig
view x[./y]//y is redundant in C2(s) in the presence of the binary twig view x[.//y]//y if
the edge (x, y) is not transitive in s.

The proof in this case results from the fact that in the materialization of C2 on an XML
tree that complies with s, the materialization of the view x[./y]//y is the same as the mate-
rialization of the view x[.//y]//y (all x nodes and all y nodes in the two views have the
same materialization, respectively).

The view configuration selection process can be summarized as shown in Figure 10.

3.3 Comparison approaches

Our approach cannot be compared to previous view selection approaches since they all aim
at supporting a predefined workload of queries. In contrast, our approach aims at optimizing
all the queries. It is appropriate to compare it with index-based approaches in the inverted
lists model since it shares with them the goal of improving query performance by filtering
out from the inverted lists nodes that do not contribute to the answer of the query (irrelevant
nodes). For this reason, we choose an approach which is based on structural indexes [16].
Our choice is based on the fact that this approach was shown in [21] to perform better than
other approaches in the inverted lists model. For the comparison, we extend this approach
to further improve its performance.

Figure 10 An outline of the view configuration selection process
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A structural index based approach Given a partitioning of the nodes of an XML tree T

based on an equivalence relation on its nodes, a structural index for T is a graph G such
that: (a) every node in G is associated with a distinct equivalence class of nodes in T , and
(b) there is an edge in G from the node associated with the equivalence class A to the node
associated with the equivalence class B, iff there is an edge in T from a node in A to a node
in B. The equivalence class of nodes in T associated with each node in G is called extent
of this node. Structural indexes have been used as a back-end for XML query processing
(i.e., queries are evaluated on the structural indexes alone). The majority of recent works
on exploiting structural indexes for evaluating queries [4, 16, 21, 22] considers an approach
that combines structural indexes with inverted lists to support XML query evaluation.

An often-used structural index, also adopted here, is called 1-index [20]. A 1-index con-
siders as equivalent nodes in an XML tree T that have the same incoming path from the root
of T . It is a tree representing a summarization of the paths that actually occur in T . It can
be constructed by traversing the given XML tree once, and it is usually much smaller than
the corresponding XML data.

The structural index approach usually processes a given query Q in two steps. In the first
step, in most existing realizations [4, 21], it computes the embeddings of Q to the 1-index
G. Because the size of G is usually small, the cost of this step is not important.

In the second step, for every embedding e of Q to G, Q is evaluated against the extents of
the images of its nodes under e. Usually, a holistic twig join algorithm such as T wigStack

[6] is employed for performing this evaluation. The solutions obtained from each evaluation
are unioned to compute the answer of Q.

When Q has a very small number of embeddings to G, and is very selective, the structural
index approach can greatly reduce the CPU and disk-read cost of the original inverted lists
approach. The structural index approach refines the label-based partitioning of the nodes
of the XML tree T . Because the partitioning is usually much more refined, the size of the
extents is much smaller than that of inverted lists. Therefore, the structural index makes it
possible to skip a large number of nodes that do not participate in the query solutions.

However, the original structural index approach exhibits exponential behavior when the
input query has a large number of embeddings to the structural index. To address this prob-
lem, in this paper, we use an improved version of the approach which modifies the original
one in two ways.

First, for computing the images of the nodes of Q to G, we employ an algorithm which,
similarly to the algorithm that computes covering nodes, performs the computation without
enumerating all the embeddings of Q to G.

Second, in order to scan the extents of the image nodes in G of a node in Q only once,
for each node in Q, we logically union these extents and make these unions the input to
algorithm T wigStack.

An optimal approach For a given a query, minimum size inverted sublists for evaluation can
be obtained when the query itself is stored as a materialized view. In this case, the sublists
of the view nodes comprise exactly the XML tree nodes that appear in the answer of the
query for the corresponding query nodes. Therefore, the number of their nodes represents a
lower bound in the number of nodes of the sublists produced by any approach that aims at
improving the inverted lists approach by filtering out irrelevant nodes. Reducing the number
of nodes of the sublists given as input to an evaluation algorithm in the inverted lists model
reduces also the query evaluation cost. Clearly, not all possible queries can be stored as
materialized views in the database. Thus, this is not a view materialization approach that can
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be implemented. However, the number of sublist nodes used by this approach for the eval-
uation of a query can be compared with that of other approaches as a measure of closeness
to the optimal.

4 Experimental evaluation

We compare our bitmap materialized view approach on the two materialized view con-
figurations with the improved structural index approach. Even though the two approaches
employ different techniques, they have a common denominator which is that both aim at
filtering out, in advance, nodes of the inverted lists that do not participate in the answer
of the query. This way, the processing of these nodes is avoided. For the comparison, we
implemented the following approaches: (1) the inverted lists approach with the T wigStack

algorithm [6] (denoted INV ), (2) the improved structural index approach (denoted SIdx),
and (3) our compressed bitmap materialized view approach (denoted MVbit) on the config-
uration with binary paths (denoted MV Path) and on the configuration with binary twigs
(denoted MV T wig). We refer to the evaluation of queries using MVbit on their own materi-
alization as OPT. The performance of the approaches is measured in terms of three metrics:
(a) the total time required for evaluating the query, (b) the total number of inverted list nodes
accessed (a metric that reflects the ability of each approach to skip nodes that do not belong
to the final query answer), and (c) the number of page I/Os used.

4.1 Experimental setup

Our implementation was coded in Java. All the experiments reported here were performed
on an Intel Core 2 CPU 2.13 GHz processor with 2GB memory running JVM 1.6.0 in
Windows XP Professional. Each displayed time value in the plots is averaged over five runs.

Datasets To analyze the behavior of each approach we ran experiments on three datasets
which have different structural properties. The statistics of the datasets are shown in Table 1.
The first one is a real dataset, the DBLP dataset.3 The DBLP dataset is flat, shallow and
bushy. It contains a few fairly regular structural patterns. The second one is a benchmark
dataset using XMark4 with f actor = 5. It is deep and has many regular structural patterns.
Both DBLP and XMark datasets include very few recursive elements. The third one is a
synthetic dataset generated by IBM’s XML Generator.5 The generator was configured with
NumberLevels = 8 and MaxRepeats = 7. By construction, this dataset comprises highly
recursive and irregular structures. The statistics for the structural indexes (1-indexes) of the
three datasets are also shown in Table 1.

4.2 View and query generation

View generation For the two materialization configurations MV Path and MV T wig, we
use the DTD of the XML document to generate all the possible satisfiable binary path and
binary twig views.

3http://dblp.uni-trier.de/xml/
4http://monetdb.cwi.nl/xml/
5http://www.alphaworks.ibm.com/tech/xmlgenerator

http://dblp.uni-trier.de/xml/
http://monetdb.cwi.nl/xml/
http://www.alphaworks.ibm.com/tech/xmlgenerator
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Table 1 Dataset statistics
DBLP XMark Synthetic

Size 632MB 568MB 582MB

#nodes 15397K 8157K 16519K

#labels 35 74 27

Max/Avg depth 6/3 12/5.6 9/8.9

#1-index nodes 144 514 3075

Most of the edges in the schemas of the DBLP and XMark datasets are non-transitive (see
Section 3.2). Therefore, we can take advantage of Propositions 1 and 2 to reduce the number
of views that need to be materialized by excluding some of them. Table 2 shows the number
of the views generated for each one of the three datasets. The XMark dataset has the largest
DTD in terms of elements, and generated the largest number of views. Notice also that a
large percentage of the generated views for the DBLP dataset have empty answers. The
reason is that most of the cardinality constraints on the DBLP DTD elements are optional
and also, unlike the XMark and the synthetic datasets, the DBLP dataset is not randomly
generated according to a DTD. Therefore, even if a view is satisfiable w.r.t. the DTD, it may
not necessarily have an answer in an instance conforming to that DTD.

Query generation We used the XPath generator YF ilter http://yfilter.cs.umass.edu/ to gen-
erate random queries. YF ilter uses the DTD of the XML document to generate views
according to specified parameters, such as the maximum query depth, the probability of
descendant edges (//), and the probability of branches. In order to create more general
workloads, we modified YF ilter in the following two ways: (a) we removed the limitation
on supporting only one level of nesting of path expressions so that it can generate com-
plex XPath queries with arbitrary nesting, and (b) we relaxed the restriction on the axis of a
predicate path expression so that it is not only a child axis (/).

For each of the three datasets, we generated a broad spectrum of queries. It comprises
one-, two-, three-, and four-branch queries, which are queries whose nodes have at most
one, two, three, and four child nodes, respectively. The number of unique XPath queries to
be generated for each query type was set to 100. The probability of descendant edges was
set to 0.8 for all the generated queries. The maximum query depth was set to 4, 8, and 5 for
the queries on the DBLP, XMark and synthetic datasets, respectively.

Table 2 Space usage (in MB) and number of materialized views for each one of the approaches

Datasets INV SIdx MVPath MVTwig

DBLP # views (# non-empty) 242 242.2 241 (127) 3099 (1010)

data size (size of bitmaps) 242.27 (0.27) 245.17 (3.17)

Xmark # views (# non-empty) 128.3 128.7 372 (369) 3405 (3369)

data size (size of bitmaps) 130.03 (1.73) 146.6 (18.3)

Synthetic # views (# non-empty) 260 262.7 91 (91) 1614 (1433)

data size (size of bitmaps) 265 (5) 344.3 (84.3)

http://yfilter.cs.umass.edu/
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Figure 11 Query evaluation time
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4.3 Space usage

We compare the disk space usage of the three approaches. Table 2 reports on the space
consumed by each one of them on the three datasets considered. The baseline approach
INV consumes the least space since no additional structures are employed. SIdx uses
slightly more space than INV because of the small space overhead incurred by the use of a
more refined node partitioning.

The space used by the bitmap materialized view approach MV bit consists of two parts:
(1) the space for storing the inverted lists of the corresponding dataset, which is the same
as that of INV , and (2) the space for storing view materializations. Recall that the view
materializations are stored as compressed bitmaps, one per each view node. We compressed
the bitmap materializations using the Java zip package, and we stored them in a commercial
RDBMS as Binary Large Objects.

The space consumed by the view materializations for the two materialization configu-
rations MV Path and MV T wig is shown in Table 2 within parentheses next to the total
space used. The amount of space used by MV Path is close to that of SIdx. MV T wig uses
significantly more space than MV Path. The ratios of the size of the materialized views
used by MV T wig (MV Path) over the size of the base data on the DBLP, XMark, and
the synthetic datasets are 1.31 % (0.11 %), 14.3 % (1.35 %), and 32.4 % (1.92 %), respec-
tively. Therefore, only on the DBLP dataset MV T wig does not exceed the threshold of
2 % and can be exploited. On the XMark and the synthetic datasets, only the binary path
configuration can be materialized.

4.4 Query performance

We compare the query performance of the three approaches. The performance is expressed
by the query evaluation time, which is the total time required by each algorithm to compute
the query answer. The query performance of an algorithm is determined by the total number
of nodes accessed and the total number of I/Os performed during evaluation. Figure 11
reports on the query performance of evaluating four types of queries on the three datasets.
Notice the logarithmic scale of the Y-axis in Figure 11a. Each reported value is the average
evaluation time of 100 queries. The average number of nodes accessed as a percentage of
those accessed by INV and the average number of I/Os performed by each algorithm are
shown in Tables 3(a) and 3(b), respectively.

Table 3 Percentage of nodes accessed and number of I/Os per approach

INV SIdx MVPath MVTwig

(a) Average percentage of inverted list nodes accessed per query

DBLP 100 9.50 4.03 2.79

XMark 100 20.75 17.61 14.48

synthetic 100 40.88 47.90 42.13

(b) Average number of I/Os per query

DBLP 12993 1234 597 423

XMark 9464 1969 2286 2285

Synthetic 26783 11126 25892 25684
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Table 4 shows the closeness of the query performance of each approach to the perfor-
mance of OPT (the optimal one) on each dataset.

The bitmap materialized views approach As it can be observed in Figure 11, the bitmap
view materialization approach MV bit on the two materialization configurations greatly
improves the baseline approach INV . It also outperforms SIdx on all testing cases. Further,
the performance of MV bit is stable, and does not degrade with more complex queries and
on data with highly recursive structures.

Note that the query evaluation time of MV bit consists of the optimization time and
the query execution time. The query execution time is the time needed for computing the
query using the view materializations. The optimization time consists of the time needed for
finding the covering view nodes of the query nodes and the time needed for decompressing
and bitwise ANDing the bitmaps of the node materializations. In [33], a bitmap compression
technique is developed which allows bitwise logical operations to be performed directly
on compressed bitmaps. We have not pursued this direction further in this paper as our
experimental results show that the optimization time of both configurations is already very
small: the average optimization time of MV Path and MV T wig over all three datasets is
only about 0.5 % and 1.63 % of the query evaluation time, respectively.

On the DBLP dataset, both MV T wig and MV Path outperform INV by orders of mag-
nitude for the two-path queries and above. The reason is that both configurations are able to
determine queries having empty answers almost immediately after they are issued because
of empty covering view node materialization intersections (Section 2.1). MV T wig outper-
forms of course MV Path since its view set contains that of MV Path and the availability
of larger query subpatterns (binary twigs vs. binary paths) allows a more aggressive filter-
ing of inverted lists nodes that do not participate in the answer of the query. This in turn
reduces the CPU and I/O costs (Figure 11a, b and c).

MV bit obtains significant performance savings at a small space overhead thanks to the
compressed bitmap view materializations. This is especially the case with the MV Path

configuration. As Table 2 shows, the space used by MV Path exceeds that of INV only by
about 0.11 %, 1.35 %, 1.92 %, on the DBLP, XMark, and synthetic datasets, respectively.
With such small space overhead, MV Path achieves query performance which is 71 %,
83 %, and 87 % of the optimal for the above three datasets, respectively (Table 4).

The structural index approach The structural index approach SIdx uses a 1-index (a struc-
tural index) for the evaluation of the queries. As mentioned in Section 3.3, a 1-index makes
it possible for the structural index approach to skip a large number of nodes that do not par-
ticipate in the query solutions. It also helps SIdx to cluster XML tree nodes participating
in query answers in a smaller number of pages than MV bit . For this reason, SIdx is able
to achieve less page I/Os on the XMark and the synthetic datasets compared to the other
approaches (Figure 2b).

Table 4 Closeness to the
optimal performance INV SIdx MVPath MVTwig

DBLP 4.22 45.52 70.57 98.49

XMark 24.25 82.77 82.52 93.82

Synthetic 55.23 69.29 86.66 94.68
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A 1-index is also able to detect queries with empty answers thereby stopping their eval-
uation at an early stage of the computation. These are queries without embeddings to the
1-index of the dataset. However, not every query with an empty answer can be detected by
the structural index approach. In contrast, MV Path and MV T wig are able to detect more
cases of queries with empty answers during the optimization phase without executing the
query.

In all the testing cases, SIdx outperforms INV by filtering out a large percentage of
irrelevant nodes. On the XMark dataset, SIdx performs slightly better than MV Path for
2-paths queries (Figure 11b).

However, when the number of image nodes of the input query on the 1-index is very
large, the cost of performing a logical union of the extents of the image nodes (Section 3.3)
can offset the savings obtained by the filtering of irrelevant data nodes and the reduction of
the page I/Os. For instance, on the synthetic dataset, SIdx is able to filter out the largest
number of irrelevant nodes in the inverted lists for evaluating the queries (Table 3). With
an average number of 88 images per query node, SIdx is outperformed on the average by
MV Path and MV T wig by a factor of 1.25 and 1.35, respectively (Figure 11c). For some
queries, the query processing time of SIdx even exceeds that of INV .

4.5 Scalability

Finally, we measured the scalability of our MV bit approach on evaluating the four types of
queries over XMark datasets with size increasing from 200MB to 800MB.

Figure 12a shows the space usage of MV bit on the two materialization configurations.
As a comparison, we also show the space usage of INV . As we can see, the size of mate-
rializations of both configurations grows very slowly as the document size increases, with
the percentage on the corresponding space of INV being less than 1.5 % and 16 % for
MV Path and MV T wig, respectively.

Figure 12b reports on the query performance of the three approaches. We used the same
set of queries which comprise all four query types. MV T wig has the best time performance
in all the cases. It significantly improves the query performance of INV by a factor of over
five. Also, its performance grows very smoothly as the size of XMark datasets increases.
The performance of MV Path closely follows MV T wig.

In Figure 12c, we show the percentage of query optimization time over the total query
evaluation time for MV T wig and MV Path. As we can see, in all cases, the optimization
time of both configurations is very small, with the percentage over the total query evaluation
time being less than 5 % and 2 % for MV T wig and MV Path, respectively. Also, the
percentage decreases when the size of XMark datasets increases from 200MB to 800MB.

5 Related work

We provide now a brief review on the state-of-the-art XML tree-pattern query (TPQ) evalua-
tion and optimization techniques. We focus on both: view-based techniques and index-based
techniques. Results on the complexity of the query containment problem in the presence
and in the absence of DTDs were presented in [19, 23].

View-based techniques Traditionally, the answer of an XML query (and likewise the materi-
alization of a view) is a set of subtrees of the XML tree against which the query is evaluated.
In order to evaluate a query using materialized views, a compensating query is computed
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Figure 12 Scalability of MV Path and MV T wig

which is a rewriting of the original query using materialized views [3, 17, 18, 27, 32, 38].
This compensating query is then evaluated over the materialized views and possibly the
input XML document.

Many contributions [3, 17, 18, 38] are restricted to query rewritings using a single mate-
rialized view. A common constraining requirement for view usability in this context is the
existence of a homomorphism that satisfies two conditions: (a) it maps the view output node
to an ancestor-or-self node of the query output node, and (b) it is an isomorphism on query
nodes that are not descendants of the image of the view output node. Papers studying the
problem of answering XML queries using multiple views [2, 27, 32] assume that output-
preserving homomorphisms exist among views and they present rewriting algorithms which
use intersection of view answers on node ids.

The traditional approach has a number of drawbacks: (a) view usability is low, (b) the
benefit from using materialized views (when this is possible) is restricted, (c) the size of
the view materializations can be very large, and (d) the query rewriting algorithms using
views are complex. Materializing additional information besides the subtrees, e.g., ancestor
path information, typed values and references to XML data [3], only partially addresses the
issues mentioned above while increasing the materialization space.

In the example of Figure 2, according to the traditional approach, query Q cannot be
answered using the materializations of both views V1 and V2 but also that it cannot be
answered using any one of them. That is, Q cannot be rewritten using V1 or V2 and therefore
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these views cannot be used to optimize the evaluation of Q. The reason is that the structural
restrictions of Q cannot be expressed on the subtrees rooted at the author nodes and the
lower article nodes that are returned by the views V1 and V2. In contrast, as we showed
in Section , query Q can be answered using V1 or V2 and can even be answered using
exclusively V1 and V2 in our novel context of view materialization, this way greatly reducing
the evaluation time of Q.

A couple of papers study answering XML queries using materialized views in the
inverted lists evaluation model [9, 25]. Phillips et al. [25] consider materializing intermedi-
ate query results as sets of tuples in order to allow additional evaluation plans for structural
joins. Materializing views as sets of tuples suffer from the problem of redundantly stor-
ing XML tree nodes, an issue we have very successfully addressed in this paper. Chen et
al. [9] proposed a materialization scheme for XML views that stores inverted sublists for
the view nodes. Unlike our approach, that approach stores, in addition, the precomputed
structural joins for views in the form of pointers that link nodes in the inverted sublists. A
query is computed by traversing the pointers of the materializations. The main drawback
of the pointer-based scheme, though, is its space requirement since the pointers consume
large amounts of storage space. The problem is exacerbated when the same structural join
which is involved in multiple materialized views is redundantly stored in the view cache.
Our approach is more general and flexible than the pointer-based scheme in terms of view
usability. By materializing views as compressed bitmaps, it minimizes the storage space and
avoids redundancy.

View selection In the context of XML databases, the materialized view selection problem is
discussed in [18, 28]. The proposed approaches are all workload-driven. They syntactically
analyze the workload to enumerate the relevant candidate views, and they greedily build a
configuration of the most pertinent views. Both approaches adopt the traditional approach
for answering XML queries using materialized views and suffer from its limitations and
they consider only answering queries using a single view. The goal of this paper is to non-
trivially support the optimization of all the queries that can be issued against the XML
database.

The scheme of materializing views as bitmapped inverted sublists was first presented
in [36]. Conditions for usability of multiple views are also reported there. The focus of
that paper is on the problem of answering XML queries using exclusively materialized
views in a distributed environment where the access to the base data is not possible. An
elaboration on using (inclusively or exclusively) bitmap views for optimizing queries in
a centralized environment is provided in [37]. Nevertheless, in both papers [36, 37] the
selection of views is performed randomly. In contrast, in this paper we focus on providing
a technique for selecting view configurations of compressed bitmapped materialized views
in order to optimize queries on XML data that comply with a schema.

Our work compares better with indexing techniques for the inverted lists model because
they also aim at filtering out irrelevant nodes in inverted lists.

Index-based techniques The approaches that speed up the processing of the original holistic
evaluation algorithm TwigStack [6] by skipping unnecessary nodes build indexes on the
input inverted lists to define node clusterings and/or orderings. They can be classified into
the following two categories.

The first category comprises approaches built upon the conventional B+-tree technique.
It includes the B+-tree [10], the XB-tree [6], and the XR-tree [15]. A study in [21] compares
the performance of the three B+-tree based techniques on evaluating TPQs.



World Wide Web (2015) 18:607–632 631

The other category consists of solutions which combine structural indexes with inverted
lists to support XML query evaluation [4, 16, 21, 22]. By partitioning the input XML data
nodes according to their structural properties, the size of the resulting structural index is
usually smaller than the original XML data. Consequently, the query evaluation conducted
directly on the structural index is expected to be more efficient than on the input data itself.

The experimental results presented in [4, 21] show that the structural index approach
performs better than the index-based techniques PRIX [26] and ViST [31]. Also, in [21],
it is shown that the structural index approach is generally faster than the XB-tree [6]
while consuming much less space. For this reason, in this paper, we choose the structural
index approach as a representative of the index-based techniques for comparing with our
approach.

6 Conclusion

We studied a novel technique for optimizing XML queries in the framework of the inverted
lists model which is currently the most promising technique for evaluating queries on large
persistent data. Our technique is based on materializing views as compressed bitmaps of
inverted sublists which can reside in main memory. In order to evaluate the potential of
our approach and compare it with previous ones we defined and addressed the problem
of choosing configurations of views for materialization which can support all the queries
that can be issues against a schema. Our extensive experimental analysis showed that our
approach outperforms a state-of-the-art approach which is based on structural indexes, is
very close to the optimal and scales smoothly in terms of both space consumption and query
performance. These results characterize our approach as the best candidate for supporting
the optimization of queries in the framework of the inverted lists model.

Future work includes examining additional cases where the properties of the schema can
be exploited to further refine the configurations. A different but relevant problem of equal
interest in the context of the bitmap materialized view approach is the selection of views
for materialization when a workload of queries of interest is given as input. The results
presented in this paper can be leveraged for addressing that problem too.
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