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Abstract In this work, we present a novel approach for the efficient materialization
of dynamic web pages in e-commerce applications such as an online retail store with
millions of items, hundreds of HTTP requests per second and tens of dynamic web
page types. In such applications, user satisfaction, as measured in terms of response
time (QoS) and content freshness (QoD), determines their success especially under
heavy workload. The novelty of our materialization approach over existing ones is
that, it considers the data dependencies between content fragments of a dynamic
web page. We introduce two new semantic-based data freshness metrics that capture
the content dependencies and propose two materialization algorithms that balance
QoS and QoD. In our evaluation, we use a real-world experimental system that
resembles an online bookstore and show that our approach outperforms existing
QoS-QoD balancing approaches in terms of server-side response time (throughput),
data freshness and scalability.
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1 Introduction

Today as well as in the future, no business can succeed without an Internet presence.
In fact, in the near future the boundaries between “conventional” and “electronic”
commerce (e-commerce) will become increasingly blurred as businesses move their
sales and services onto the web, with no barriers of time or distance. Our work
focuses on e-commerce applications, such as an online retail store or an e-bookstore,
built on top of web databases (webdb). Specifically, these applications are imple-
mented by dynamic web pages that are generated on-demand by executing resource-
hungry template scripts that access local or remote databases to produce HTML
content.

Reportedly, billions of dollars are lost every year due to excessive delays in e-
commerce web pages that force users to abandon their session [14]. This typical hap-
pens in a flash-crowd situations, where a web database server suddenly experiences a
huge spike in requests/traffic and cannot keep up with it. It could also happen when
the expected traffic in the web site is underestimated and before it is fixed by adding
more resources.

The study in [18] presents a comprehensive and comparative listing of early
approaches for enhancing quality-of-service QoS (user-perceived latency) under
heavy workload. These approaches offer better QoS at the expense of uncontrolled
quality-of-data QoD (freshness of data served). Improving on [18], the approaches
in [3, 5, 7, 10, 21, 23] attempt to balance QoS and QoD by re-using from the cache
as much as necessary stale content in order to spare computational resources and
boost QoS. However, an open challenge has been the quantification of data freshness
(QoD) of content and how this can be traded with QoS. In other words, the problem
that we address is which pages or parts of pages (also known as content fragments) are
‘less important’ at a given time for ‘that particular user’ so that they can be re-used
from cache under heavy or bursty server workload.

In an earlier version of this paper [19], we posed that current QoS-QoD balancing
approaches fail to meet the requirements of modern e-commerce, web database ap-
plications under those server workload circumstances for the following two reasons:

– Link Dependencies. There is no consideration for the navigation needs of a user:
If a content fragment is reused from cache, then it may be missing a needed
valid HTML link for further user navigation at that given point in time. For
example, a link on the upper right part of a web page of an e-bookstore may be
recommending to the user to add the current book in the shopping cart, however,
that link may be invalid since its containing fragment was reused from cache.

– Set-View Dependencies. There is no consideration for content fragments that
must be synchronized (i.e., present consistent information) at the same time. For
example, a part of the web page is showing book search results while another
part is showing irrelevant suggested book listings from a previous search.

We addressed these shortcomings by proposing two new metrics for QoD and two
algorithms that optimize these metrics. In this paper, we elaborate on the realization
of our algorithms and present a thorough evaluation of the effectiveness of their
key components in regulating QoS when balancing QoS-QoD. In addition, in order
to better illustrate our proposed solution, we discuss how content fragments are
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designed and organized into template files and analyze their dependency in the
context of an e-bookstore.

Contributions The three key contributions of this paper are:

1. We enhance the notion of QoD with the inclusion of the above content depen-
dencies (i.e., dependencies of web page content fragments). To encapsulate link
dependencies, we introduce the metric of QoLF that considers the freshness of
links in the content served and, thus, measures the ability of the user to navigate
to the next page. To encapsulate set-view dependencies, we introduce the metric
of QoSF that measures the degree of synchronization between content parts
served.

2. We present two novel content materialization algorithms, namely, QLS and
QLSV, that balance performance (QoS) with data freshness (QoD) in terms of
the proposed QoLF and QoSF metrics.

3. We experimentally show that our algorithms outperform existing QoS-QoD
ones in terms of throughput (i.e., better server-side response time), increased
data freshness and scalability by sustaining more user sessions. Our performance
evaluation is carried out using a real-world bookstore web database application,
which is the canonical example of the majority of e-commerce web applications
and online stores.

Roadmap In the next section, we first present the underlying assumptions of our
work and then introduce our motivating application, providing a detailed analysis
of its content fragments and their dependencies. In Section 3, we discuss existing
content materialization approaches and their shortcomings. In Section 4, we present
our approach for QoS-QoD balancing for materialization and in Section 5 our
materialization algorithms. In Section 6, we discuss our performance evaluation and
conclude in Section 7.

2 Background

In this section, we first present our assumed system model and discuss the generation
of dynamic web pages from content fragments. Then we illustrate the use of content
fragments and their dependencies in an e-bookstore application which we refer to
throughout the rest of the paper.

2.1 Basic assumptions

System model We assumed a user-driven, personalized e-commerce web data-
base applications with infrequent database updates and a typical client/proxy/web
server/application server/application database(s) architecture as shown in Figure 1.
All the components may have a data cache, however, we focus on the cache of
the application server (middle-tier) which is the module responsible for content
materialization as well as regulating QoS by varying the quantity of cached content
served [8, 9, 11]. Moreover, we do not assume a common shared cache across all user
sessions. We distinguish between individual user sessions with the use of cookies in
user browsers.
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Figure 1 The typical layered web architecture supporting web db applications

The performance of the system is primarily determined by computation resources
and not storage resources—even though a cache could be quite large, the computa-
tion latency may not be able to fully utilize it. Thus, the performance of the system is
measured in terms of server throughput and the average server-side response time.
The server-side response time is defined to be the lapsed time from the moment that
a user request arrives at the web server until the response is transmitted to the user.
This includes any computation and communication latency to the database back-end.
A well provisioned server is expected to provide for an average server-side response
time specified by a threshold.

The performance of the system is not measured in terms of the client-perceived
latency because this depends on network delays and other client related aspects such
as a slow client computer, which are beyond the purview and control of the server.

Templates of content fragments The web server is the public entry point of the
application and directly serves request for static content (e.g., style sheets, images).
Requests for a dynamic web page are routed to an application server that executes
the corresponding template file to generate the content. For modularity and perfor-
mance, template files, such as ASP or PHP files, consist of script blocks that relate
to different parts of a web page or content fragments. Content fragments as also
referred to as “modules”. A typical template file contains a simple HTML layout
using either HTML Tables or Dividers (DIV) in which the content fragments are
graphically aligned. A content fragment, for example one that presents the search
results for books, (as we explore below in our motivation application), contains at
least one SQL statement on the application database. The results of the statement
are appropriately wrapped with HTML and style sheets for presentation.

The content and purpose of each fragment as well as their positioning in their cor-
responding templates is determined by the functional and presentation requirements
of the application. Fragments in a template can be added, removed or repositioned
within a template dynamically and at runtime. For example, the Cold Fusion server-
side scripting language (Cold Fusion1) allows a custom HTML tag to be assigned
to fragment, which in turn is included in a template file. This method allows for
“cleaner” and modular development since fragments can easily be imported or
moved inside template files.

1http://www.adobe.com/products/coldfusion-family.html

http://www.adobe.com/products/coldfusion-family.html
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Content fragmentation using template files is a convenient and popular approach
for developing, administrating and maintaining a dynamic webdb application with
the use of a content management system (e.g., Plone CMS2 and Drupal3).

When processing a template request, the containing fragments can be either
retrieved from cached or freshly materialized possibly by accessing the back-end
database. When all the fragments in the template became available, they are assem-
bled together according to the template file’s HTML layout and transmitted to the
user through the web server.

The typical architecture described above can also facilitate webdb applications
based on Asynchronous XML (or AJAX) [20] with the addition of the appropriate
client-side (typically JavaScript) scripts. AJAX applications differ from traditional
web-based approaches since the underlying assumption is that an application can
“live and run” inside a single instance of a dynamic web page. The most typical
example is that of Google’s Gmail [26], where a basic template remains loaded on
the browser and certain areas change dynamically to load search and folder results as
well as compose a new message. The big advantage of AJAX applications is increased
performance, since only the necessary data is loaded on every user request. The
major drawback, however, is that AJAX applications are stateless, in the sense that
the notion of “back” and “forward” for the browser does not exist. In other words, a
user can loose the whole setup and state of the application if the “forward” or “back”
buttons are pressed. Although in this work we do not consider this type of stateless
applications, the underlying principles of our materialization approach can be used
to support selective loading of data in AJAX.

2.2 Motivating application

Let us consider as a motivating example an online bookstore application, modeled
after the popular Amazon webdb application,4 which typically has about 20 different
templates of which the four most popular are a search page, a view book page, a
shop box page (shopping cart), and a used books page. These four pages account
for more than 95 % of user accesses. Other less popular web pages include editorial
reviews pages, feedback pages, user profile pages, as well as check-out specific pages.
Figure 2 illustrates a breakdown (in fragments) of the three most popular bookstore
templates. The arrows denote that a user can use a link or an HTML Form from
within the source fragment to navigate to another (or the same) template. Some
fragments have link dependencies to more than one templates.

Template search.dyn (S) Fragment F1topresults displays the top book search results
and F2allresults displays all the results in a page-numbered way. F3suggested1 and
F4suggested2 show suggested related sponsored results. F5searchform contains the HTML
search Form for submitting book queries plus a few suggested terms for repeating
search. F6resubmit1 and F7resubmit2 support search resubmission according to book tags
and product categories, respectively. Finally, a bottom fragment F8history carries a

2www.plone.org
3www.drupal.org
4www.amazon.com

http://www.plone.org
http://www.drupal.org
file:www.amazon.com
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Figure 2 The fragments of the three most popular pages of the bookstore application with their
linking dependencies to other templates

history of the recently viewed books. Fragments F1topresults, F2allresults, F3suggested1,
F4suggested2 and F8history of search.dyn, that contain book listings, link the users
to viewBook.dyn, the most popular page of our store which generates and displays
information on a specific book. The rest (F5searchform, F6resubmit1 and F7resubmit2) link
again back to the search.dyn page for repeating a search.

Template viewBook.dyn (V) The viewBook.dyn page synthesizes all information
related to a book. The main fragment F1bookinfo displays its cover picture and
summary info, while F2bookreviews shows reviews and ratings. F3addtoshopbox contains
a panel for adding the book into a shopping box through various financial/shipping
ways. Fragments F4related1, F5related2 and F6related3 show listings for other related books
(what other people bought, sponsored, used etc.) linking again to bookView.dyn.
The fragments F7repeatsearch1 and F8repeatsearch2 link back to search.dyn for search
resubmission according to book tags and product categories. Finally, fragment
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F9searchform contains the search form plus a few related suggested terms for repeating
search.

Template shopBox.dyn (B) Fragment F3addtoshopbox of the previous template links
to the shopping box of our application, implemented by the shopBox.dyn
template. This template is called when a book or product is added to the shopping
cart from the viewBook.dyn template. F1checkout of this template links to a less
popular checkout page with various parameters that relate to shipping and payment.
Fragments F2related1, F3related2 and F4related3 show related book listings and link to
viewBook.dyn. They also link to shopBox.dyn for adding the book directly
into the shopping box without viewing it. F5creditoffers links to special credit card
offerings. Finally, F6adjustquantities displays the shopping cart contents with options for
increasing/decreasing quantities that link to the same page shopBox.dyn.

Fragment materialization in our model is analogous to virtual WebViews [6].
However, WebViews fragments are oblivious to their contents and usage. In our
context, the fragments are assumed to contain HTML form and URL links with
dynamic parameters that provide the user with the means of navigating between
dynamic web pages. Links point statically to a target template and have ap-
pended dynamic parameters according to the application semantics, i.e., the link
“/doBook.php?bookid=2345 & action=changeQuantity& value=−1” instructs the
target template to perform specific tasks. We assume that a fragment reused from
cache always contains outdated links since their parameters would refer to a previous
user application-specific state and, therefore, would be invalid. Hence, according to
our system model, fragments that are reused from cache do not have any freshness
weight (importance). On the other hand, a fragment that is materialized upon a user
request is considered fresh within is containing web page.

Definition 1 (Freshness of a content fragment) A dynamic web content fragment is
considered fresh if it has been materialized on a user request, according to the user-
submitted parameters.

Definition 2 (Freshness of a dynamic Web page) A dynamic web page is considered
fresh if all the fragments in its corresponding template are served fresh.

3 Current approach and its shortcomings

Existing dynamic web page materialization methods balance QoS and QoD by
varying the number of fresh fragments per template request according to the indi-
vidual importance of their containing fragments [3, 7, 10, 21]. The “less important”
fragments are the first to be reused from cache when server workload increases. The
importance factor or weight of a fragment is template-specific and measures only the
fragment’s contribution to the overall freshness of its containing template. The sum
of the weights of all fragments inside a template sums up to 1, which is the maximum
value of freshness when all the fragments of a requested template are materialized.



976 World Wide Web (2014) 17:969–995

A fragment F contributes to the freshness of a template T, if it is materialized when
T is requested.

Definition 3 (weightIF(F,T)) Let weightIF(F, T) be the freshness importance factor
of an individual fragment F in template T. If F1, F2, . . . , Fn are all the member
fragments of a template T, then weightIF(Fi, T) ∈ (0, 1) and

n∑

i

weightIF(Fi, T) = 1

Definition 4 (countIF(F,T)) countIF(F, T) of a fragment F in template T is

countIF(F, T) =
{

1 if F is materialized in T

0 if F is reused from cache in T.

Basically, existing materialization methods focus on the importance of individual
fragments and for this reason, we refer to their underlying approach as the QoIF
(Quality of Individual Fragments) approach and their adopted QoD metric as the
QoIF metric.

Definition 5 (QoIF(T)) Let F1, F2, . . . , Fn be all the member fragments of template
T. QoIF(T) is the freshness of template T whose value is

QoIF(T) =
n∑

i

weightIF(Fi, T) × countIF(Fi, T)

The problem with the traditional QoIF approach is that, it considers the templates
and their fragments as independent by ignoring content dependencies within and
across templates. More specifically these problems are as follows.

3.1 No provision for link dependencies

Definition 6 (Link dependency) A fragment Fsource is link-dependent on a template
Tdest, if there is at least one URL link or HTML Form inside fragment Fsource that
links to Tdest.

For example, fragment F3addtoshopbox in template viewBook.dyn has a link
dependency to template shopBox.dyn.

As discussed above, the links between templates are dynamic, in the sense that
their parameters are not hardcoded. If F3addtoshopbox is reused from cache, because of
its relative low QoIF importance weight, then it may not contain the correct HTML
links to navigate to shopBox.dyn and add the requested book in the cart. Thus,
even though the QoIF(viewBook.dyn) might be high, the absence of a freshly
materialized F3addtoshopbox (an unsatisfied dependency—also called “broken link”)
stalls the user session which can only resume as soon as a fresh F3addtoshopbox is
materialized and delivered to the user.
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3.2 No provision for set-view dependencies

Definition 7 (Set-view dependency) A fragment Fi in template Tx is set-view de-
pendent on fragment F j in the same template Tx if both fragments must present
consistent-to-each-other information.

For example, in template shopBox.dyn, fragment F4related3 is set-view dependent
on fragment F6adjustquantities. If F4related3 is reused from cache, then it may show
inconsistent results with a fresh fragment F6adjustquantities, since it may suggest the
purchase of a book that already exists in the cart of the user. In general, a set-view
dependency relates to the necessity of having two content fragments synchronized
in order to simultaneously present consistent information on the user’s browser.
Clearly, the QoIF approach which handles fragments independently cannot synchro-
nize the materialization of interdependent fragments.

4 Our approach to QoS-QoD balancing

Our approach for balancing performance (QoS) with data freshness (QoD) takes
into account link and set-view content dependencies when materializing a dynamic
page, thus reducing broken links and unsynchronized content. In a nutshell, our
goal is to select the right set of fragments to materialize per page request, given
the current server workload constrains. Under light workload, all fragments are
materialized and all content dependencies are met. Under heavier workload, the
right set of cached fragments is reused so that the most important-to-the-user link
and set-view dependencies are met at that particular point in time. Our approach,
illustrated in Figure 3, is broken down into the following three sub-goals (building
blocks, or modules):

– Ensuring QoS. Constantly calculating the maximum possible number of frag-
ments per template request that need to be materialized in order to keep the
average response time below a predefined QoS threshold (in ms),

– Speculation. Employing user access patterns to ‘guess’ the next template that a
user will request,

Emply two New Data
Quality Metrics

that Maximize QoD

QoS Controller
to maximize QoS

Given current
workload,

computer maximum
number of fragments

that can be
materialized

in template Tx

User X requests Teamplate Tx

Speculate on the next
template that User X

will request after
receiving tempalte Tx

(for example Ty)

Speculation Module
employing user
access patters

Select fragments to
materialize in Tx

that satisfy
link dependecies

from Tx to Ty.
Use rest fragments

from cache

Template Tx sent to user X

Figure 3 Overview of our proposed approach
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– Maximizing QoD. Selecting the appropriate mixture of fragments per template
request that satisfy link and set-view dependencies to the highest possible degree,
given the ‘guessed’ next template that the user will request, in order to reduce
broken links and unsynchronized content.

In the rest of this section, we elaborate on how we achieve these three sub-goals.
In the next section, we bring together these three sub-goals and show how they are
used by our proposed materialization algorithms.

4.1 Ensuring QoS and the QoS controller

4.1.1 Overview

The QoS Controller is responsible to ensure the specified QoS. It is based on
the idea of regulating QoS by increasing or decreasing the number of fragments
that are materialized per template request so that performance goals are met.
Those fragments that are not materialized are reused from cache. This procedure
is essentially symmetric to the QoD-centric OVIS algorithm found in [7], according
to which effort is first made to keep data quality within acceptable margins. The
reason for adopting such a straightforward QoS-centric approach over a QoD-centric
one is because, there is no guarantee that by reducing the overall QoD would yield
improved performance. Specifically, by enforcing a lower QoD per template does
not imply that fewer fragments are materialized, since fragments do not have the
same data quality weight. Instead, by explicitly reducing the number of materialized
fragments per template, we secure performance gains since computational resources
are immediately spared.
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Figure 4 How QoS controller regulates QoS
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Figure 4 illustrates the methodology of controlling QoS with a simplified example.
Two essential factors for the QoS Controller are the maximum tolerable response
time (QoS-threshold) (set at 200 ms) and the average response time of currently
active user sessions (curved line at about 175 ms at t = 0). The former defines a
threshold for the latter which, when violated/crossed, triggers the QoS Controller to
initiate a corrective action as follows: At run time, the average response time of active
user sessions is computed every tuning period of W sec (e.g., 5 s). If that is found
steadily higher than the maximum tolerable QoS-threshold (at about 60 users), then
initially one fragment per template is reused from cache for a small percentage of
users.

As more users log on to the system (peak workload at 75 users) and performance
goals are yet not met, more users must be affected. In the example, performance
goals are met only when 45 users are have one fragment reused from cache per
template request. From that point on, the procedure is reversed by decreasing the
number of users that are affected. We refer to the action of applying a decrease on
the number of fresh fragments for a user session as “degrading the user” or “dropping
one fragment from a user”. We refer to “upgrading a user” for the opposite action.

In the case where all users are degraded and still the average response time is
steadily above the QoS threshold, then an additional second fragment is reused from
cache initially for a small percentage of users and so on. Note that, all users must be
degraded before issuing an additional drop to any user.

The QoS-threshold depends on the application requirements and can be modified
accordingly, at any time, by the system administrator. A typical value would be in the
order of hundreds of milliseconds [22]. As we stated earlier in Section 2.1 where we
presented our system model, the use the threshold does not guarantee that all users
receive their requested pages after that threshold has elapsed due to unaccounted
network and client-side delays. What is essentially achieved is the regulation of the
total time a user request is allowed to live in the system from the time it is received
until it has finished processing and dispatched to the user. This regulation is then
translated into enhanced server throughout as we discuss in Section 6 where we
present our performance results of our evaluation.

The QoS tuning period (W) and the percentage of users (Userdiff) to degrade
per period depend on the arrival rates which do not follow any known distribution
[2, 25]. Both parameters define the “aggressiveness” of the QoS Controller. We study
their effectiveness using linear and bursty arrival rates as part of our evaluation in
Section 6.

4.1.2 The details

Since the number of fragments in each template and their execution time are not
equal, we introduce an abstraction layer that applies a common denominator on how
many fragments are dropped per template in each tuning period. For this reason, the
QoS Controller maintains a Global QoS Level Index. Its value reveals the magnitude
(or coefficient) of dropped fragments per user necessary for the system to maintain
QoS and is independent from the number of fragments reused from cache per
template. In addition, it maintains a Local QoS Level Index for every user session, in
order to keep track the number of times a user has been degraded.

Figure 5 displays the pseudocode of the QoS Controller. At initialization, the
Global QoS Level is set to 0 (line 1), it implies that the current trend is to materialize
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  Global_QoS_level = 0;  // no workload at system startup
  while (True)

    wait( W seconds );    // do QoS Threshold check every Tuning Period
    
    if ( average response time is SteadilyAbove   QoS Threshold )
       // this directive is used by the QLS algorithm
       QoS_Directive  =   " must favor QoS "
       if ( all active users have local QoS_level = Global_QoS_level )
              Global_QoS_level --

   else if ( average response time is SteadilyBelow    QoS Threshold )
        QoS_Directive  =    " must favor content quality "
       if ( all active users  have local QoS_level = Global_QoS_level )
             Global_QoS_level ++
  end  while

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Procedure QoS Controller ()

Figure 5 The QoS controlling loop

all fragments per template request for all user sessions due to light workload. Every
tuning period of W seconds (line 3), the algorithm checks the average response
time (line 6). If that is found above the specified QoS threshold, then the QoS
Controller issues a QoS directive to the materialization algorithms (e.g., our new QLS
algorithm) for a need to increase performance (line 8). Finally, the QoS Controller
decides weather to decrease or not the Global QoS Level Index (lines 9–10). As
mentioned earlier, this happens only if all users all active users have been degraded
equally. On the other hand, if the average response time is found below the specified
QoS threshold, then the QoS Controller issues a QoS directive for more fragment
materialization (line 13) and increases the Global QoS Level Index (lines 14–15)
accordingly.

In the next section, we examine in detail how the QoS directive and the Global
and Local QoS Level Indexes are used by our materialization algorithms.

4.2 Speculation and usage plans

The second sub-goal of our approach is a speculation mechanism on the next tem-
plate that a user will request. This speculation is required so that link dependencies
are considered when selecting which fragments to materialize per template request.
Since user speculation is not the main focus of this work, we only briefly discuss
a simple speculation scheme based on data mining findings and pattern matching,
which we use to implement our speculation module. A detailed description of the
speculation module can be found in [17].

4.2.1 Recurrent user behavior

According to [25], the popularity of dynamic pages (and of templates) obeys a zipf-
like distribution similar to static documents and media files. In other words, fewer
templates account for more requests in a structured, almost predictable manner: the
most popular template is accessed roughly at a rate of 50 %, the second most popular
at a rate of 25 % and so on. It has also been shown that for webdb applications, a small
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Figure 6 Five usage plans of the bookstore application: three uni-usage plans S*, V*, B*, and two
bi-usage plans (SV)* and (VB)*

set of templates (approximately four) account for almost 95 % of the requests [1],
where this set of templates is stable over time [16]. Similarly, [4, 15] refer to “mostly
working” user sessions, in which users exhibit a very strong temporal locality in their
request patterns on a small set of documents.

In our motivating application, the template access pattern of a typical user
session is

S → S → V → V → B → V → B → ...

The session begins with the user performing a couple of book searches using the
search.dyn template (S). Subsequently, the user picks a book for viewing from
the results by navigating to viewBook.dyn (V). Following that, the user picks a
second book for viewing from a related book listing inside V. The book is added to
her shopping box by navigating to shopBox.dyn (B), and so on.

4.2.2 Encoding the recurrent user behavior

To encode recurrent access patterns, we develop a scheme called Usage Plans whose
two components are: (a) Uni-Usage Plans (uni-UP) that capture looping requests
for the same template, and (b) bi-Usage Plans (bi-UP) that capture looping requests
between the same two templates. Figure 6 presents five Usage Plans of the bookstore
application with the three most popular templates of the application.

Note that two Usage Plans do not overlap and do not share the same template
transition. In other words, every transition between two templates is a member of only
one Usage Plan. This restriction is very important because it allows us to define a
session to consist solely of a sequence of Usage Plans. Let us demonstrate this with
an example of a user session in our motivating application, shown in Figure 7: The
user performs first a search for a book three times in a row using S, views a couple of
books using V and adds the last viewed book in the shopping basket using B. Then
from within B, the user picks a suggested book to view using V, and then adds it
to the shopping basket using B. The sequence of templates is shown along with the
projected Usage Plans that emerge.
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Figure 7 A session illustrated
as a sequence of usage plans.
Note that each usage plan is
immediately followed by
another one

S    S     S      V    V    B    V     B

S* V*

(VB)*(SV)*

4.2.3 Speculation on user behavior

Our profile-based speculation works in three distinct steps:

Step 1 A user session is constantly monitored and encoded in terms of Usage Plan
switching using a FSM with three states: (a) “currently on a uni-usage plan”,
(b) “currently on a bi-usage plan” and (c) “partial bi-usage plan”. The first
state implies that the user has requested the same template again for at least
one time (for example, S→S). The second state implies that the user has at
least looped once between the same two templates (for example, S→V→S).
The third state implies that the user has completed only one transition of a
bi-Usage Plan.

Step 2 A speculation on the next template to be requested by the user is issued
on every user request by considering prior user patterns on Usage Plan
switching. These patterns are captured in a user-wise pattern-mapping table
in which each row is a quintuple that represents a possible change in user
behavior. Each quintuple encodes (a) the previous state of the user, (b)
its current state, (c) the template that the user is currently viewing, (d) the
template that the user is currently requesting by clicking on a URL link or
through an HTML Form, and (e) the speculated Usage Plan that relates to
the first four entries of the quintuple. An example of a quintuple is (“cur-
rently on a uni-usage plan”, “partial bi-usage plan”, S, V, V*) which means
that the user has requested template search.dyn for at least two times,
is currently requesting template viewBook.dyn and the user’s speculated
behavior is to request again template viewBook.dyn. The list of patterns
can be set a-priori, based on the semantics of the application. However,
these may be refined/adjusted dynamically using web mining techniques
(e.g., [24]).

Step 3 For feedback purposes, the speculated template is compared to the actual
user behavior. If there is a conflict, the fifth entry on the corresponding
quintuple of the pattern-mapping table is corrected.

4.3 Maximizing QoD and the new QoLF and QoSF data freshness metrics

The third sub-goal of our approach is the selection of the right set of fragments to
materialize per template request so that link and set-view dependencies are met. The
pre-requisites are: (a) the maximum number of fragments per template (computed
by the QoS Controller) and (b) the speculation on the next template in a user’s access
pattern (computed by the Speculation Module), as presented above.

As opposed to existing methods, we consider the importance of a fragment to
be a multi-faceted metric which relates (i) to the ability of a user to request the
next template and (ii) to the relation of that fragment to other fragments inside its
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template. Thus, to select which fragment to materialize per template request, we
make use of two novel data quality metrics, namely, QoLF and QoSF, These two
new metrics substitute the traditional QoIF metric of existing methods.

4.3.1 QoLF—Quality of link fragments

The metric of QoLF quantifies the existence of freshly materialized fragments inside
a template Ts with link dependencies toward a target template Td. It captures this by
means of QoLF importance weight of a fragment toward a link-dependent template.

Definition 8 (weightLF(Fi, Ts, Td)) Let weightLF(Fi, Ts, Td) be the QoLF impor-
tance factor of fragment Fi in template Ts toward template Td. For all Fi in Ts with
a link dependency to template Td, weightLF(Fi, Ts, Td) ∈ (0, 1) and

n∑

i

weightLF(Fi, Ts, Td) = 1

In other words, weightLF(Fi, Ts, Td) measures the navigation/linking importance
of fragment Fi in template Ts toward template Td. In this way, the importance of Fi

is dynamic since it depends on a target template Td.
For example, consider a user viewing a book through template viewBook.dyn.

If the expected behavior of the user is to add the book in the shopping cart by
linking to shobBox.dyn, then the importance of fragment F3addtoshopbox in template
viewBook.dyn which links the user to shopBox.dyn is relatively higher to other
fragments that link the user to other templates. Alternatively, if the expected behav-
ior of the user, after viewing the book in viewBook.dyn, is to repeat search using
suggested book listings, the importance of fragments F7repeatsearch1 and F8repeatsearch2

that perform tagged book search by linking to template search.dyn is relatively
higher to the importance of fragment F3addtoshopbox.

In any case, if all fragments inside template Ts with link dependencies to Td are
materialized when Ts is requested by a user, then the QoLF for template Ts toward
Td has the maximum value of 1.

Definition 9 (QoLF(Ts,Td)) For all fragments Fi in template Ts with link depen-
dency to Td, then

QoLF(Ts, Td) =
n∑

i

weightLF(Fi, Ts, Td) × countIF(Fi, Ts)

As in the case of QoIF, if a particular linking fragment from Ts toward Td is not
materialized, then the QoLF value is reduced according to the QoLF importance
weight of that fragment toward Td.

4.3.2 QoSF—Quality of set-view fragments

The metric of QoSF quantifies the overall set-wise consistency of set-view dependent
fragments inside a template. This is achieved by means of QoSF importance weight
which measures the importance of having synchronized materialization of two
fragments of a template.
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Definition 10 (weightSF(Fi, F j, T)) Let weightSF(Fi, F j, T) be the QoSF impor-
tance weight between fragments Fi and F j in template T. For all Fi and F j which
are set-view dependent T, weightSF(Fi, F j, T) ∈ (0, 1) and

n∑

i, j

weightSF(Fi, F j, T) = 1

In other words, weightSF(Fi, F j, T) measures the importance of having fragments
Fi and F j in template T synchronized/present consistent content. The QoSF im-
portance between two fragment is set according to the application semantics, as
discussed in Section 3, using a decimal value between 0 and 1. In addition, all the
QoSF importance weights in a particular template must sum up to 1.

Given that QoSF considers pairs of fragments, only synchronized pairs contribute
to and counted toward the freshness of their template.

Definition 11 (countSF(Fi, F j, T)) countSF(Fi, F j, T) of a pair of fragments Fi and
F j in template T is

countSF(Fi, F j, T) =
{

1 if Fi and F j are synchronized
0 otherwise.

Fragments Fi and F j are synchronized if when their template is requested by
a particular user, either both are materialized on this request, or both are used
from cache but were previously generated on the same request. When all set-view
dependent fragments of a template T are synchronized then T is fully set-view
consistent and its QoSF has the maximum value of 1.

Definition 12 (QoSF(T)) For all fragment pairs Fi and F j in template T, then

QoSF(T) =
n∑

i, j

weightSF(Fi, F j, T) × countSF(Fi, F j, T)

In other words, if all pairs of set-view dependent fragments in a template are
synchronized when T is requested by a user, then the template T is fully set-view
consistent. If one pair of set-view dependent fragments is not synchronized, then
the overall set-view consistency of their template is reduced according to the QoSF
importance of that particular set-view dependency.

5 Materialization algorithms

In the previous section, we presented the three building blocks of our content
materialization approach. We explained how QoS is regulated by a QoS Controller
by using a Global QoS Level Index. We then introduced the notion of Usage Plans
for user access speculation and explained how those are employed by a very simple
speculation module that ‘guesses’ the next template that a user will request. Finally,
we introduced the metrics of QoLF and QoSF for measuring data freshness, given
the link and set-view dependencies of content fragments. In this section, we bring
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together these three building blocks and demonstrate our content materialization
algorithms that balance QoS with QoD.

5.1 The MP selection table

We organize together the Global QoS Level index, the Usage Plans and the new data
quality metrics into one structure called the MP Selection Table. In brief, this table
summarizes all combinations of fresh/cached fragments, for a specific template, into
groups according to a QoS Level Index and calculates their respective QoLF and
QoSF values. The combinations are called Materialization Plans (MP). The intuition
behind this grouping is that, the MPs in each group require approximately the same
execution time.

Lets consider for example template search.dyn (S) and assume that it consists
of only 4 fragments for ease of presentation. The corresponding MP Selection Table
for template S is shown in Figure 8. At QoS Level Index equal to 0, there is only
1 MP, the ‘1111’ and implies that all fragments are materialized. At QoS Level Index
equal to −1, there are 4 possible MPs. The MP ‘1101’ implies that all fragments are
materialized except the third one which is retrieved from cache. For each MP, a
QoLF value for each template to which template S links to is computed according to
Definition 9 in Section 4.3.1. In our example, template S links to its self and template
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Figure 8 The MP selection structure for template search.dyn
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viewBook.php (V) when the user is on usage plan S* and (SV)* respectively. In the
right-most column of the MP Selection Table, the QoSF for each MP is computed
according to Definition 12 in Section 4.3.2.

5.2 QLS: The QoL-sensitive algorithm

The first algorithm we propose, namely QLS, balances QoS with QoD in terms of
the QoLF metric. It is sensitive to link dependencies meaning that its goal is to
facilitate seamless user navigation even at high workloads where more fragments per
template are served from cache (and contain outdated links). Recall that seamless
user navigation relates to the ability of a user to request the next template in
its request sequence by using a valid link. An instance of the QLS algorithm is
instantiated for every new user session.

Figure 9 shows the pseudo-code of QLS. Triggered on every user request for a
template, QLS’s main loop secures first QoS by computing the approximate quantity
of fragments to materialize in the requested template (lines 4–16). To do that, first it
reads the QoS directive from the QoS Controller. If the directive is, for example, to
favor QoS due to high workload, then it degrades the user by reducing its Local QoS
Level Index. Note that, the number of users that are degraded per tuning period W
is limited to a percentage (UserDiff) of active user sessions.

 while (the user X requests templates)
      user has requested template Tx

      get the server workload ( QoS_Directive), from the QoS Module
      degrade or upgrade user X, if necessary
         if (QoS_Directive = "must favor QoS") then
              if ( % of users degraded  in current Check Period < UserDiff ) then
                     Local_QoS_Level --
         else
         if (QoS_Directive = "must favor QoS") then
              if ( % of users upgraded in current Check Period < UserDiff ) then
                     Local_QoS_Level ++

      compute apprx. quantity of fragments in Tx, using Local_QoS_Level
               get candidate MPs from MP Selection Structure of Tx,
               with QoS level = Local_QoS_Level

       get the next speculated template  of user X,
               from the Speculation Profiling Module
       compute the right set of fragments  in Tx to materialize
               get MP from candidate MPs, that maximizes QoLF

       materialize the fragments of template Tx with 1s
       retrieve from cache the fragments in Tx with 0s
       assemble the all fragments in template Tx and send to user
end while

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

QLS Materialization Algorithm    ( for user X )

First,
secures

QoS

Then,
maximizes

Data Quality
in terms of

QoLF

Figure 9 The QLS algorithm



World Wide Web (2014) 17:969–995 987

Given the user’s Local QoS Level Index, QLS then secures data quality (lines
18–24) First, it reads the speculated template that the user will request from the
Speculation Module. Then, it isolates the group of MPs from the MP Selection table
with QoS Level equal to the user’s QoS Level Index. In the example highlighted
in Figure 8, the the user has requested template search.dyn and its Local QoS
Level Index is set to −1. There are now four possible combinations of cached/fresh
fragments to select from (column 2 from the table). QLS will then pick the MP
with the highest possible value of QoLF toward the speculated next template in the
user’s access pattern. If the speculated template is viewBook.dyn (V), then the
selected MP is the ‘1110’ whose QoLF value is 1. Finally, the fragments with the
corresponding 1s in the requested template are materialized while those with the 0s
are retrieved from cache. All fragments, fresh and cached, are then assembled in one
file according to the template and send to the user.

5.3 The QLSV algorithm

Our proposed second algorithm, called QLSV, is a variation of QLS and balances
QoS with QoD in terms of both the QoLF and QoSF metrics. Similar to QLS, its
goal is to enable seamless navigation for users at high workloads with the additional
goal of strengthening data synchronization in the template as much as possible.
Specifically, we added to QLS the extra goal of selecting the materialization plan
with the highest possible index for QoSF with respect to a relax factor on QoLF
(line 21 of the QLS algorithm).

We demonstrate this with an example as highlighted in Figure 8. If the user’s Local
QoS Level Index is −1 and the speculated Usage Plan is (SV)*, then only the MP
‘1110’ with QoLF equal to 1 and QoSF equal to 0.6 is considered. However, a relax
factor of 10 % implies that the algorithm additionally considers the MP ‘1011’, which
has QoLF equal to 0.9 and QoSF equal to 1. The effect of the relax factor is that
reduces the linking ability the user in order to improve data synchronization inside
the template. In the highlighted example, a 10 % relax factor on QoLF yields a 40
% gain on the QoSF of the selected MP. Finally, a relax factor of 0 % implies that
the algorithm considers only the MPs with the highest possible QoLF index (as the
original QLS algorithm does).

6 Performance evaluation

In this section, we present the performance evaluation of our proposed materializa-
tion algorithms. In our evaluation, we first assert the effectiveness of QoS Controller
and then compare the performance of our materialization algorithms with the current
QoIF approach in terms of data freshness, throughput (i.e., server-side response
time) and scalability (i.e., maximum user sessions support).

The evaluation is performed on an experimental platform that emulates a real-
world web database application similar to the bookstore application discussed in
Section 2.1. Every experiment was run at least 5 times to secure statistically signifi-
cant results.
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6.1 Experimental platform: e-Bookstore

6.1.1 Webdb system

Our main server machine (a dual CPU, 2GB RAM, RAID 0) hosted our Java-based
web server structured according to the multi-threaded system model. On the same
machine, we deployed an application server according to our proposed architecture
in Section 4. The application database runs on a separate machine (also a dual CPU,
2GB RAM, RAID 0) on the same local network and it is implemented on Microsoft
SQLServer 2005. The database holds the data for a bookstore with more than a
hundred thousand books, in addition to data for book availability, authors, shopping
baskets, orders etc.

We prepared a mixture of templates, each containing eight to ten fragments.
The fragments and their content dependencies are setup according to the bookstore
application. Every fragment contains script code that manipulates the results of
one read-only query on the application database. In addition, one fragment of the
shopBox.dyn template executes one update on the application database for placing
(or removing) a book in a user’s shopping box.

6.1.2 Workload

On a separate machine, we developed and deployed a multi-threaded User Genera-
tor engine capable of emulating a large number of user browsers. We chose to create
our own user generator engine in order to have greater control over our experiments
in terms of user statistical traces and fragment handling. Specifically, our browser
emulators can issue a special HTTP GET request for receiving a fresh version of a
fragment when a user selects a link embedded in a fragment served from the cache
which is broken.

Our synthetic workload follows basic principles according to the transactional
web e-Commerce benchmark (TPC-W) [13], In particular: (a) the popularity of
documents follows a zipf-like distribution, (b) a small set of documents (around four)
account for at least 95 % of total user requests, (c) this set is stable over time, (d)
consecutive user requests occur about every ten seconds [12].

6.2 Evaluating the QoS controller

In our first group of experiments, we evaluate the QoS Controller in order to identify
its effectiveness in regulating QoS and explore the impact of each tunable parameter.

Experiment 1 In our first experiment, we test the QoS Controller’s sensitivity to the
number of user’s degraded (UserDiff) per turning period W using a linear rate for the
arrival of new user sessions. We set QoS-threshold at 200 ms and the tuning period W
at 10 s. We start the experiment with active 25 user sessions and new users arrive at a
rate of one per five seconds. We stop the experiment when the number of concurrent
users reaches 250. We perform three runs of the experiment with UserDiff values
equal to 20 %, 60 % and 100 % respectively.

The results (Figure 10a) show that the average response time is maintained
below the QoS-threshold for all three runs, however, the average response time
is more aggressively pushed lower when a higher UserDiff value is used. This is
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(a)

(b) (c)

Figure 10 Evaluation of the QoS controller—sensitivity to UserDiff

attributed to the rate user sessions are degraded to lower QoS levels as the number of
concurrent users increases. A lower UserDiff value results in more gradual degrades
(Figure 10b) as opposed to a higher UserDiff value that results in more rapid
degrades (Figure 10c).

Experiment 2 In our second experiment, we test the QoS Controller’s sensitivity to
the length of the tuning period W, again using a linear rate for the arrival of new
user sessions. This time, we fix UserDiff at a moderate 60 % and the routine of the
experiment is the same as previous. We run the experiment for three settings using a
tuning period of 5, 10 and 15 s, respectively. To our surprise, the results (Figure 11a)
show that there is no notable difference by using different tuning periods. The charts
in Figure 11b and c reveal that this similarity is due to the symmetry in degrading
user sessions. A smaller tuning period W has shorter and more frequent degrades, as
opposed to a larger period that has longer but less frequent degrades.

Experiment 3 Our next experiment evaluates the sensitivity of the QoS Controller
to UserDiff under a bursty arrival episode of new user sessions. We run the
experiment for three settings with UserDiff values equal to 20, 60 and 100 % while
having the tuning period fixed at a modest ten seconds. We start the experiment
with 100 loaded user sessions in Local QoS Level equal to −3. At this workload,
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(a)

(b) (c)

Figure 11 Evaluation of the QoS controller—sensitivity to tuning period W

the average response time is below the QoS-threshold. We continue by adding 50
new user sessions in the next ten seconds and stop the experiment when the average
response time is stabilized below the QoS-threshold.

The results of this experiment (Figure 12a), show that the system is more respon-
sive to bursty user arrivals when the UserDiff value is higher. On the other hand,
a system with a lower UserDiff value not only requires considerably more time to
stabilize the average response time but also suffers from increased response times.
This is attributed to the slow pace of degrading users to lower QoS levels, as already
discussed in our previous experiment of using linear arrival of users.

Experiment 4 We run a similar experiment as Experiment 3 in which we test the
system’s sensitivity to the length of the tuning period W with values of 5, 10 and
15 s. The UserDiff is fixed at a modest 60 %. The experiment produced some very
interesting results (Figure 12b). A more lengthy tuning period leads to a slower initial
response to the bursty arrival of users. However, it stabilizes the average response
time faster due to the fact that more time is given to the system to degrade users
between successive tunings. On the other hand, a short tuning period identifies the
bursty arrival of users earlier and starts to respond quicker. However, it leads to
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(a)

(b)

Figure 12 Evaluation of the QoS controller—bursty arrival of users

lengthy periodic increases and decreases of the average response time until that is
stabilized below the QoS-threshold. This is because a shorter tuning period degrades
only a fraction of user sessions between successive tunings and, as a result, response
times are only momentarily pushed below the QoS-threshold.

6.3 Evaluating the QLS algorithm

For evaluating our QLS algorithm against the QoIF approach, we use a linear rate of
user arrivals because we are only interested in examining how data quality is affected
by the number of concurrent user sessions. For this reason, we use a low UserDiff
value of 20 % that has proven to maintain the average response time below the QoS-
threshold without being aggressive. In addition, we use a tuning period W of ten
seconds which, in our previous experiments, was found to be effective without being
aggressive.

Our first set of experiments compares QLS to the QoIF approach on the percent-
age of pages served with broken links. The results of the experiments (Figure 13,
dotted lines) show that the percentage of pages with broken links is proportional
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Figure 13 Evaluation of the QLS Vs traditional approach on broken links

to the workload. This is because increased workload implies that more users are
degraded toward lower QoS levels, and therefore more fragments are served from
cache having outdated links. Moreover, the results clearly state that QLS generates
approximately 50 % less pages with broken links than the QoIF approach, even at
high workload. This is because QLS selects the fragments for materialization with
link dependencies on the next speculated template of the user.

Our analysis has shown that the Speculation Profiling Module used by QLS has
a hit ratio of 86 % in speculation correctly the next template that the user will
request. Figure 13 (solid lines) also plots the performance of QLS by setting the
speculation hit ratio manually. The results suggest that our QLS is still better than
the QoIF approach even at a poor speculation ratio of 40 %, without the use of any
sophisticated web mining technique.

6.4 Evaluating the QLSV algorithm

In this set of experiments, we compare our QLSV algorithm to the QoIF approach
on the percentage of broken links and then on the percentage of unsatisfied set-view
dependencies. That is pairs of set-view dependent fragments that are served to the
user unsynchronized. For these experiments, we run QLSV with relax factors for
QoLF equal to 0, 10, 20 and 30 %. Recall that, the relax factor reduces the maximum
possible QoLF of the materialization plans in order for the algorithm to select the
plan with the maximum possible QoSF value.

The results, plotted in Figure 14 show that QLSV serves less unsynchronized set-
view dependent fragments than the QoIF Approach that has no related provision
whatsoever. The gains are greater by using a higher QoLF relax factor of 30 %.
However, the results come at a cost for the QoLF. Figure 15 plots the percentage
of broken links for the four runs of QLSV. The obvious reductions on the previous
gains of QLS are attributed to the reduced QoLF imposed by the QoLF relax factor.

6.5 Throughput and scalability

As mentioned earlier, we express performance in terms of throughput (server-side
response time) and scalability in terms of number of concurrent user sessions. Our
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Figure 14 QLSV vs traditional approach on unsynchronized content

last experiment measures the maximum throughput and concurrent users that can
be sustained by the QoIF approach, the QLS algorithm and its QLSV variation with
relax factors of 0, 10, 20 and 30 %. In other words, this experiment measures the
“industrial potential” of our algorithms. This experiment differs from the previous
since it provides support for handling broken links in cached fragments on the user’s
browser. To implement this, we alter the normal request sequence of a user when
a template with a cached fragment containing a needed link is received. When this
occurs, the user issues an extra special HTTP GET request to the server in order to
receive afresh only the missing fragment containing the valid link. Subsequently, the
user resumes its template request sequence.

The results of this experiment, illustrated in Figure 16 show that both QLS and
QLSV outperform the QoIF approach. QLS in particular achieves higher throughput
by sustaining about 25 % more concurrent users than the QoIF approach. This is
attributed to 50 % less extra load on the server to handle the special HTTP GET
request issued by users for missing fragments. Subsequently, the gains are reduced for
QLSV since a higher relax factor on QoLF generates more broken links than QLS.

0% 10%
20%

30%

Figure 15 Evaluation of the QLSV vs traditional approach on broken links
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Figure 16 Throughput and maximum user sessions of QoIF, QLS and QLSV

7 Conclusion and future work

In this paper, we considered the problem of meeting user QoS and QoD expec-
tations in dynamic web database applications under heavy load and identified the
shortcomings of current dynamic web page materialization approaches, which blindly
trade QoD for QoS. These shortcomings are basically failings to consider data
dependencies between content fragments in a dynamic Web page. In particular, we
identified as two such key dependencies, the link dependencies that ensure correct
navigation and the set-view dependencies which ensure data consistency among the
fragments of a page.

To mitigate these shortcomings, we introduced two new QoD metrics, namely
QoLF and QoSF and proposed two novel materialization algorithms of content frag-
ments, namely QLS and QLSV, that optimize these new metrics. The performance
advantages of our two materialization algorithms, including their scalability, were
experimentally demonstrated by using a real web database application of an online
bookstore. Our proposed algorithms achieve their performance by considering
content dependencies and user access patterns when selecting which fragments to
materialize and which to reuse from the cache when generating a web page.

Both QLS and QLSV are able to meet user and application QoS requirements
while incurring less impact on QoD compared to previous QoS-QoD balancing
methods. As opposed to QLSV, the QLS algorithm is more suitable in situations
characterized by more frequent user clicks—more impatient users—where response
time matters the most. The QLSV algorithm is more suitable for users that prefer to
spend more time exploring a single instance of a dynamic Web page.

Although the online bookstore is the canonical example of the majority of e-
commerce web applications and online stores, our next step is to evaluate our
approach in the context of other web database applications with larger web sites
and larger databases such as social networks, technical forums and newsgroups.

Currently, our proposed solution does not allow for the weights of the fragments in
our QoD metrics to be dynamic themselves. These weights capture the importance of
the dependencies of the individual fragments and are predefined for all users. We are
planning to develop a more dynamic fragment weighting mechanism that customizes



World Wide Web (2014) 17:969–995 995

QoD metrics based on user access patters as a supplement to our user speculation
module. Such a mechanism would further enhance performance by achieving a more
personalized QoS-QoD balance.
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