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Abstract In order to understand user intents behind their queries, many researchers
study similar query finding. Recently, the click graph has shown its utility in describ-
ing the relationship between queries and URLs. The previous approaches mainly
either generate related terms or find relevant queries based on the co-clicked URLs.
However, these approaches may suffer from the complexity of natural language
processing and click-through data sparseness. In this paper, we tackle this problem
through three query probability distribution representation models: Click Model,
Term Model, and Semantic Model. The Click Model extracts credible transition
probability from queries to URLs, and describes a query without considering web
contents. The Term Model focuses on representing a query via term distribution
over its main entities and purposes, which can better capture information needs
behind short and ambiguous keyword queries. The Semantic Model learns potential
intent distribution of queries to distinguish user intents behind a query. Among the
three models, we apply pairwise similarity metrics and graph-based personalized
pagerank to find similar queries. Compared to traditional representationmodels, our
representationmodels are verified to be effective and efficient, especially for long tail
queries.
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1 Introduction

In a typical search scenario, users search information via keyword-based queries.
However, due to vocabularymismatch and query ambiguity, it is a challenging task to
provide appropriate and relevant documents according to the queries issued by users.
Luckily, similar query finding is considered as an effective strategy to understand the
original queries. It benefits various Information Retrieval (IR) applications, such
as query understanding [11], query suggestion [30] and even Web advertisement
recommendation [27, 31].

Previous methods for similar query finding can be separated into two major
categories: content-based metrics and behavior-based metrics. In content-based met-
rics, similarity between queries is separately measured by words in queries or
relevant documents of queries. By considering the relevant content of queries,
some researchers propose the sequential dependence model [25], the latent concept
expansion model [26], etc, to find similar queries. Meanwhile, others consider about
the utility of top-k relevant documents from search engines to represent a query.
As a result, kernel functions [29], topic models [15] are applied to compute query
similarity. In behavior-based metrics, similarity between queries is extracted from a
click graph [10, 23, 24, 30] or a query-flow graph [4–6]. They define the similarity of
adjacent queries and propagate the similarity via users’ behavior profile (click logs or
sessions). However, both methods have some problems. Content-based metrics may
suffer from the complexity of natural language processing (NLP) [7] and are hard
to capture users’ search intents. As to behavior-based metrics, click graphs are over
dependent on users’ click, thus it lacks of content understanding of queries.While the
major problem of query flow graphs is that queries in a session may have different
search intents, so that it may cause dissimilar connections and concept drift.

In order to solve above problems and find better similar queries, we analyze
users’ interaction process with search engines. Two typical search scenarios are as
follows. In one case, a user wants to travel by aeroplane and she/he submits a query
“aa” to search engines. Before viewing page contents, she/he only sees the snippets
which introduce web pages in the search results list. And then, she/he is attracted
by “American Airlines—Airline tickets and cheap flights at AA.com” (the title of
“http://www.aa.com/”). So she/he clicks “http://www.aa.com/”. In the other case, a
user wants to find out information about “Alcoholics Anonymous”. She/He may
probably also submit the query “aa” to search engines. After that, she/he is attracted
by “Alcoholics Anonymous” (the title of “http://www.aa.org/”) and clicks this URL.
Both click behaviors will be recorded in logs. These typical behaviors indicate that
the motivation of click behaviors is largely because of high relevance between users’
intents and snippets of URLs rather than the relevance between their intents and
web page contents of URLs [22]. So the snippets, which are shown on the results list,
make a great help for users’ information retrieval and result in further their final click
behaviors. These situations motivate us to capture the semantic relations between
queries and URLs by using both users’ click information and content information.

http://www.aa.com/
http://www.aa.com/
http://www.aa.org/
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In this paper, we propose a two-stage method for similar query finding. In the first
stage, we establish a hierarchical structure for query representation. In the second
stage, we find similar queries to original queries.

In the first stage, we propose an effective query probability distribution represen-
tation framework based on both users’ click bipartite graph and the content related
to clicked URLs. The representation framework is a hierarchical structure. In the
bottom layer, we construct a bipartite graph between queries and clicked URLs
(calledClick Model). Based on the bottom layer, we propose a method to capture re-
lationships between queries and content of clicked URLs (called Term Model). Fur-
thermore, we map queries into an intent space (called Semantic Model). First, Click
Model provides a robust transition probability (or called URL description probabil-
ity) for query representation. The model considers each query as a document which
is filled with URLs. In another words, URLs are the basic elements that represent a
query. Similar to cf · iq f , we consider description ability of each URL and leverage
clicks on click graphs. Second, TermModel is based on transition probability defined
in Click Model and users’ behavior analysis. Term Model uses the expected number
of terms to represent queries. The expected number is not a simple counting process,
but a process of computing term expectation based on the transition probability
from a query to URLs. Term Model combines both click information and semantic
information seamlessly. We denote this as a term expectation distribution for query
representation. Third, from terms to intents, we analyze topic distribution of queries
based on Term Model and treat queries as a process of generation (called Semantic
Model). In this model, we apply topic modeling techniques on queries which have
been represented by a bag of terms in Term Model. And then we map queries into a
semantic space.

In the second stage, we find intent relevant and similar queries to queries issued
by users with these three representationmodels. Based on the learned representation
models, queries are represented as probability distribution over different morphemes
in different representation spaces. Typically, we employ both pairwise similarity
metrics and graph-based similarity metrics to find similar queries. Pairwise metrics
(such as Cosine similarity or Jaccard similarity coefficient, et al.) measure query
similarity based on the distance and positional information in query representation
spaces. Graph-based metrics (such as personalized pagerank or random walk, et al.)
mostly measure relationships between queries by query transition graphs. The two
kinds of methods help us make use of query representation models to discover query
relationship (query similarity in this paper).

Our models can provide an effective way to organize web log information.
Different from the previous works, our models have three advantages. Firstly, we
propose URL transition probability in Click Model to leverage the relationships be-
tween popularity of queries and description power of URLs for query representation.
Secondly, we propose term expectation in Term Model to capture the main entities
and intents of users’ information needs. Thirdly, we have tackled the problem of vo-
cabulary mismatch and synonymous query finding by mapping queries into semantic
spaces in Semantic Model. In the end, we can discover more semantic related and
similar queries for original queries issued by users.

The rest of the paper is organized as follows. The related work is reviewed in
Section 2. Section 3 discusses three query representation models in detail. Then
we present the similarity metrics to find similar queries in Section 4. Experimental



1164 World Wide Web (2014) 17:1161–1188

results have been described in Section 5. Finally, we present our conclusion and
future work in the last section.

2 Related work

Our work is highly related to the research on query similarity and query representa-
tion. Query similarity focuses on metrics of similarity between queries, while query
representation concentrates on representing users’ information needs.

2.1 Query similarity

Calculating query similarity is an interesting but challenging problem. A trustworthy
query similarity metric can benefit various IR applications in most scenarios, such as
query reformulation [11, 21], query suggestion [8, 13, 23, 29, 30] and even web ad-
vertisement recommendation [27]. However, since queries are short and ambiguous,
it’s too difficult to learn users’ actual intent only based on terms in queries. So many
previous works either take advantage of related content to calculate query similarity
(content-based metrics), or make use of users’ behavior to discover relevant semantic
association paths from one query to other queries (behavior-based metrics).

2.1.1 Content-based metrics

Content-based metricsmeasure query similarity based on content similarity indepen-
dently, where content often comes from queries themselves or related documents and
is highly related to the original queries. Owing to vocabulary mismatch and shortness
of queries, various data sources have been applied to enrich the description of
queries, mainly including terms, bigrams, nouns and entities in content of queries and
content from related documents. Somemethods find similar queries by query content
analysis. Metzler and Croft [25] introduced a sequential dependence model, which
took advantage of phrase structure. While the latent concept expansion model [26]
added new term proximity features, and then collected similar queries. Besides query
content analysis, other works take advantage of content from related documents.
Generally speaking, they collect content from search results to represent a query.
On the one hand, many researchers apply similarity metrics on Vector Space Model
(VSM) [1, 20], including Cosine similarity, Jaccard coefficient, term overlap and edit
distance, to find similar queries. On the other hand, language models also can be em-
ployed to find similar queries. One of the typical works is Kernel function [29]. It has
been proved effectively based on the TF-IDF weighted vectors of search result snip-
pets. Guo et al. [15] leveraged Cosine similarity and query semantic models to calcu-
late query similarity under each intent learnt from search result snippets of queries.

2.1.2 Behavior-based metrics

Behavior-based metrics measure query similarity based on the behavior relationship
between queries, and the similarity between queries is defined on click graphs [10,
23, 24, 30] or query-flow graphs [4–6].

The click graph is a bipartite graph between queries and URLs. The basic idea is
that user click behavior can be modeled as a bipartite graph, which is an essential



World Wide Web (2014) 17:1161–1188 1165

technique to describe the semantic association information contained in the search
logs. Craswell et al. [9] described two strategies of random walk to find similar
queries. Mei et al. [24] proposed hitting time on the graph to evaluate the similarity
between queries. Deng et al. [10] considered information entropy of each URL, and
then proposed the cf · iq f model to adjust weights in click graphs. Besides, some
researchers considered additional information [23], such as relationship between
users and queries. Ma et al. [23] proposed a joint matrix factorization method to
build a query similarity graph based on the low-rank features learnt from query-URL
bipartite graphs and user-query bipartite graphs. Furthermore, due to sparseness of
click graphs, Yi and Allan [33] added missing clicks to click graphs, and then calcu-
lated content similarity on the graphs. Liu et al. [22] used the snippet of clicked URLs
to understand queries and built global and local snippet click models to discover
related keywords for original queries. They proposed a detailed analysis on reasons
of users’ click behavior, which showed that a series of users’ clicks was a process of
“what you see and click is what you want”. It is a similar work as ours, but we consider
users’ real intent by establishing a hierarchical graph including semantic and behavior
knowledge instead.

The query-flow graph is a directed graph with queries as nodes, query co-
occurrence relationship in sessions as edges. The graph is constructed based on the
assumption that two queries are relevant when they have appeared in the same
sessions. So the similarity between two queries can be propagated to any associated
queries on the graphs. Bordino et al. [5] applied random walk to find similar queries
based on the transition probability between queries on the query-flow graphs. Sub-
sequently, Bordino [6] projected the graph on a low-dimensional Euclidean space,
and then mapped graph nodes into geometric spaces so that the distance distortion
was minimized. In addition, Song et al. [30] employed pagerank and learning to rank
methods on a topic-based term-transition graph in order to leverage user re-query
feedbacks for query suggestion. But the same sessionmay contain queries in different
intents, we haven’t considered session information here.

There are also some works that leverage both click graphs and query-flow graphs
to understand queries. In [17], Hu et al. represented queries as major subtopics,
where each subtopic was represented by a cluster filled with related URLs and
keywords. In [8], Chen et al. applied cf · iq f on both behavior graphs and semantic
graphs to find similar queries.

Many previous researches adopt either content-based metrics or behavior-based
metrics. However, they haven’t addressed that how models learn users’ information
needs. In content-based metrics, because queries are really short and unintelligibly
in most instances, term based methods may suffer from the complexity of natural
language processing(NLP) [7]. Usage of search results enhances the search engines’
IR ability, but ignores users’ actual intents underlying queries. The above two
problems may neglect both the users’ actual information needs and find queries with
irrelevant intents. While in behavior-based metrics, click graphs are over dependent
on users’ clicks, but the graphs lack the semantic understanding of users’ actual
information needs. As to query-flow graphs, they suffer from the major problem that
queries in the same session may have different search intents (or called “concept
drift”), which will cause dissimilar connections.

To find similar queries reasonably and effectively, we take both content infor-
mation and behavior information into consideration. In this paper, we apply a
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scoring rule, it is used extensively in information retrieval to leverage the importance
and description ability of URLs on the query-URL bipartite graph. Therefore we
model users’ information needs from the content of clicked documents, and directly
apply pairwise similarity metrics or random walk to find semantic similar queries.
In this way, we generate similar queries to make clear and explain users’ original
information needs.

2.2 Query representation

Understanding users’ real information need underlying a short query has long been
treated as an important and difficult part of effective information retrieval. Despite
this, early query representation models focus on query reformulation to overcome
the situation of synonymy and polysemy, which easily lead to vocabulary mismatch
and ambiguity. Thus query representation models are devoted to make relationships
between queries clear. These previous methods can be divided into three categories:
query term based [2, 25, 26], search results based [15, 29] and click data based
[10, 18].

Query term based methods depend on the assumption that similar queries have
relationship with each other when they share common words, chunks or nouns.
Croft’s earlier work focused on relevance between terms: the sequential dependence
model [25] added phrase structure to queries issued by users, and the latent concept
expansion model [26] added new term proximity features and words. In 2012,
Bendersky and Croft [2] built a hypergraph structure using various morphemes
such as terms, bigrams, nouns and entities to represent a query. In [32], Xue et al.
generated a reformulation tree based query representation to organize multiple
sequences of reformulated queries as a tree structure.

Search results based techniques tackle the problem by enriching expressions
with additional features from top-k results returned by the search engines [15, 29].
Researchers collected content or URLs in search results lists to represent a query.
Furthermore, topic models [15] and kernel functions [29] also have been applied to
model a query.

Click data based methods get abundant information from click logs. In [17], Hu
et al. leveraged users’ click information and mined major subtopic intents for query
representation, where each subtopic was represented by a cluster. Deng et al. [10]
represented queries as a URL vector based on query-URL bipartite graph.

Query representation is a basic and crucial work in IR. An effective and appro-
priate query representation model can benefit lots of applications and researches.
Previous representation models introduce terms, search results and click data to
comprehend users’ information needs. However, in query term based methods,
it’s very common for two similar queries with less or no overlap in terms. So
methods have evident advantages on long queries rather than short queries. Search
results provide rich contextual information for queries automatically, but it is not a
substitute for users’ judgments. Meanwhile, search results still need a better way to
organize and display. Click data basedmethods are more reliable than the other two.
They stimulate us to propose a transition probability from a query to URLs and to
use titles of clicked URLs to represent users’ information needs released through
their interaction with search engines.
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3 Query representation models

The basic idea of our models is that users’ real information needs are released via
the titles of their clicked URLs. We dedicate this section to describe our query
representation models in detail, namely Click Model, Term Model and Semantic
Model. In each model, we regard each query as a document. The morphemes in these
documents (here are queries) are URLs, terms, and intents, respectively. Conversely,
our representation framework includes three levels. The first level is behavior level
(Click Model), which shows users’ clicking behavior information. The second and
third levels are both semantic levels. The second level is fine-grained semantic level
(TermModel), which indicates users’ actual semantic information needs using terms
in the retrieval process. The third level is coarse-grained intent level (Semantic
Model), which represents users’ search intents with distinguishing features (also
called topics in text mining).

In this section, we firstly introduce the preliminaries and notations, and then
discuss about models in detail. Secondly, we try to give the answers to following ques-
tions: how can we leverage the relationship between queries and URLs contained in
the entire click log effectively (in Section 3.2), why do titles contain the information
needs of users (in Section 3.3), and how to combine both behavior relationship and
semantic information for query representation (in Section 3.4).

3.1 Preliminaries and notations

We assume that there is a collection of M unique queries Q = {q1, · · · , qM} sharing
a set of K potential search intents S = {s1, · · · , sK}. Let U = {u1, · · · , uD} be the set
of D URLs clicked for these queries. The contents of these URLs share the same
set of V terms T = {t1, · · · , tV}. The term frequency of term t j in the content of URL
uk is denoted as t fkj. The query-URL bipartite graph is an undirected graph G =
(Q

⋃
U, E). For each pair (qi,u j) ∈ E, the weight wij of the edge is the raw number

of times that the URL u j was clicked in response to the query qi. We count the
number of different queries connected with u j and denote it as n(u j). We consider
the total number of clicks after the submission of query qi as leni. Considering query
qi as a document (here is called “a query document”) composed of the clicked URLs
as disordered terms (“a bag of URLs”), len means the “query document length”.

For query representation models, we use QC to mark the representation matrix in
Click Model, where qCij means the weight of URL u j that describes query qi. We use
QT to mark the representation matrix in Term Model, where qT

ij means the weight
of term t j that describes query qi. QS is used for marking the representation matrix
in Semantic Model, where qS

ij means the weight of intent s j that describes query qi.
We summarize notations in Table 1.

3.2 Click model

In this section, we propose Click Model to leverage the relationship between
queries and URLs contained in the entire click log effectively. Due to shortness and
ambiguity of queries, it’s difficult to learn similar intent under different keywords.
Luckily, users’ behaviors introduce a new way of representation similar queries. In
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Table 1 Notations of our
model

Symbol Description

M The number of unique queries
K The number of potential search intents
D The number of unique URLs
V The number of terms
Q The set of queries
S The set of intents
U The set of URLs
T The set of terms
t fkj The term frequency of term t j in the content of

web page uk
wij The raw number of times that URL u j connected

with query qi
n(u j) The number of different queries connected

with URL u j

leni The total number of clicks after the submission
of query qi

QC The representation matrix in Click Model
QT The representation matrix in Term Model
QS The representation matrix in Semantic Model

click logs, we find that users will click similar URLs to their similar queries. So a
large-scale bipartite graph is constructed to describe relevance between queries and
URLs by using the click log.

Figure 1 is a toy example, with 4 queries and 3 URLs. As Figure 1 shows, queries
can be explained by all the URLs that are connected to them on the graph. On the
basis of frequency-based function, the raw click numbers can be normalized to rep-
resent a query. However, each URL contains different capacity to describe a query.
The more queries a URL connects with, the weaker discriminatory power it has to
describe a unique query. This situation has been already proved in [10]. For example,
query “apple” has an equal number of clicks to “http://www.google.com/mobile/
ipad/” and “http://www.apple.com”. So in frequency-based function, u1 and u2 will
get a same score of 0.5. But in fact, u1 also describes and connects with “ipad”
and “Google mobile”. That means u1 can hit the target of more search intents and
isn’t an exact description for “apple”. Even though URL u1 and URL u2 share the

Figure 1 An example of
query-URL bipartite graphs

http://www.google.com/mobile/ipad/
http://www.google.com/mobile/ipad/
http://www.apple.com
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same number of clicks to q1, URL u1 has a weaker discriminative power for query
q1 compared against URL u2. The circumstance is very similar to the reason why
researchers proposed a numerical statistic of TF-IDF in text mining.

According to the analysis on query-URL graphs, we apply OKAPI scoring
function [28] to adjust the weight of edges from queries to URLs.Here we just choose
the basic OKAPI function to illustrate our idea. Besides, many BM25-style functions
also can be applied to our model. We define cf (click frequency) and iqf (inverse
query frequency) to measure the descriptive ability of URL u j to a special query qi.
The formulas are:

cf
(
qi, u j

) = wij · (k1 + 1)

wij + k1 ·
(

1 − b + b · leni
avglen

) , iqf
(
u j

) = log
M− n(u j)+ 0.5

n(u j)+ 0.5
, (1)

where k1 and b are free parameters in BM25 [28] (usually chosen as k1 ∈ [1.2,2.0]
and b = 0.75). The parameters k1 and b are used together for considering the length
of query documents and the raw frequency of the URLs. k1 is used for leveraging
these two aspects. While, b is used to adjust the influence of the unique document
length compared with average document length in corpus. The bigger we set b ,
the greater effect on relevance the length of this unique document has, and vise
versa. In Click Model, cf

(
qi,u j

)
mainly leverages the total number of clicks in query

document of qi and the raw click frequency from query qi to URL u j. Meanwhile,
iq f

(
u j

)
evaluates discriminative description power of URL u j. Thus, the query

representation in Click Model is defined based on cf and iqf :

qCij =
cf

(
qi,u j

) · iq f (
u j

)

∑
ut∈U cf (qi, ut) · iq f (ut) , (2)

where ut iterates the URL setU . We show the matrix transformation of the Figure 1
in Table 2. Table 2b and c show that u1 has the lowest iqf and the expressive power
of u1 has been decreased for query representation in Click Model.

In Click Model, we leverage the relationship between queries and URLs by an
adjusted click number of URLs to a query (cf ) and description power of each URL
(iqf ). So, the model provides a credible weight for query representation by URLs.
However, users’ information need is not satisfied by the URLs they have clicked.
Users’ final click behavior is decided by the judge over the relevance between their
information needs and the short content displayed in the results list. So we want to
understand users’ information needs by semantic analysis.

Table 2 Matrix representation for Figure 1
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3.3 Term model

In this section, we take both behavior information and semantic information into
query modeling. Click Model represent queries only by using users’ behavior, but
doesn’t consider that users’ click behavior is based on the judge over the relevance
between their information needs and the short content (titles and related abstracts
which are sensitive to queries) displayed in the results list. That means the semantic
information of our search goals in web search can be revealed by the terms displayed
around clicked URLs. These terms can describe users’ needs in a fine-grained way.
So we propose TermModel to represent queries by terms appropriately this section.

Besides, there is also another reason that prompts us to learn users’ real infor-
mation needs through terms of these short content. On the internet, there is a lot of
duplicate content generated by copy-paste, mainly existing in news or blogs. This is a
pretty common situation. For example, we search for some news of “the death of Neil
Alden Armstrong”. The news has appeared on pages of Reuters, Chicago Tribune,
NewYork Times and et. al. Similar queries of this search intent submitted by different
users, and these users may have preference on different news sites, which can cause
different URL transition probability distributions between these similar queries. In
spite of this, titles of the clicked web pages will probably indicate the similar informa-
tion need via the same or similar terms. Luckily, Huang et al. [19] in 2010 performed
a large-scale of research on examining the similarities and differences in language
model properties between queries and web documents. The analysis has been con-
ducted with three types of text streams related to web documents: the body, the title,
and the anchor text. Their information theoretical analysis shows that queries seem
to be composed in most similar ways to anchor texts or titles. So titles (showing on the
search results list) of the clicked URLs not only show users’ information need more
explicitly than queries themselves, but also are composed in a similar language to
queries.Meanwhile, although anchor texts are similar to queries as well, not all URLs
have available anchors. Above all, the title provides the main idea and the brief
summarization of a web document which can explain users’ intent much better. So we
select titles of the clicked web pages as a transferring language to represent queries
in our Term Model.

In TermModel, queries are represented by terms in the titles of clicked web pages.
We define a term expectation to represent a query based on the Click Model, which
has considered description power of URLs to a query (here, we consider the presen-
tation distribution over URLs as a transition probability from a query to URLs). So,
the weight qT

ij of term t j for query qi is defined as mathematical expectation of terms:

qT
ij =

∑

uk∈U
qCik · t fkj (3)

The matrix format of (3) is:

⎡

⎢
⎢
⎢
⎣

qC11 qC12 · · · qC1D
qC21 qC22 · · · qC2D
...

...
. . .

...

qCM1 qCM2 · · · qCMD

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

t f11 t f12 · · · t f1V
t f21 t f22 · · · t f2V
...

...
. . .

...
t fD1 t fD2 · · · t fDV

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

qT
11 qT

12 · · · qT
1V

qT
21 qT

22 · · · qT
2V

...
...

. . .
...

qT
M1 qT

M2 · · · qT
MV

⎤

⎥
⎥
⎥
⎦

(4)
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In (4), it is clear that D is larger than V, because each term must included at least
one title of a URL.

Term Model mainly has two advantages. Firstly, the model proposes term ex-
pectation to leverage click information and semantic understanding via the web
pages’ titles for representing search intent. Secondly, information overlapping on the
internet has been well handled during modeling.

3.4 Semantic model

Due to vocabulary mismatch, Term Model have no way to find synonyms for the
original queries. But we know, synonymous queries must share the same topics or
intents. So in this section, we propose Semantic Model to represent queries at intent
level to tackle this problem.

In both Click Model and TermModel, we think of a query as a document. And the
basic components in the query documents are URLs and terms in the titles of clicked
URLs respectively. Especially in TermModel, queries are represented as a document
of terms with mixed semantic information. Term Model describes main entities and
the possible purposes of a query based on term expectation. But we know that the
term representation structure cannot discriminatively explain the multiple intents
of a query, which will make the query representation models become invalid for
synonymous names and statements. For example, “baseball” and “softball”, in many
cases, both are a kind of sports and their basic rules are always the same. That means
they refer to the same thing. But due to vocabulary mismatch and query-sensitive
titles of clicked results, Click Model and TermModel may become invalid. The same
situation happens when representing query “yang tao” and query “kiwi fruit” (a kind
of fruit). So we want to find more discriminative and semantic features to represent
queries. In other words, the representation model should have the ability to judge
and tell which categories queries belong to.

Based on term representation for queries in Term Model, we discover the intent
distribution for queries. We assume that our query set consists of some intents, which
has the same meanings as topics in a collection of documents. The intents are the
aspects of queries. Take the query “Jane Eyre” as an example. The intents of “Jane
Eyre” perhaps are “books”, “movies” or “novels”. So there comes an idea that we
can represent a query with probability distribution over these discriminative intents.
We apply Latent Dirichlet Allocation (LDA) [3], an algorithm for soft clustering
to train our Semantic Model on queries. LDA is an unsupervised generative topic
model. This model can discover underlying semantic structure of a document col-
lection based on a hierarchical Bayesian analysis of the original texts. Based on
LDA, we can discover intents contained in our query collections. And each intent
is represented as a probability distribution over a fixed vocabulary of terms, where
terms used to describe the same thing will appear with high probability in a unique
topic. In Term Model, queries are query documents made up of terms, so a query
collection is like a document collection. In Semantic Model, we choose topics learnt
from LDA as semantic features (intents) to represent queries.

Next, let’s look at some important details of Semantic Model. One is the estima-
tion of parameters in Semantic Model, the other one is how we select the number of
topics here.

At first, we show a list of the notations only used in this subsection in Table 3.
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Table 3 Notations for
Semantic Model

Symbol Description

α, β The hyperparameters of the Dirichlet prior on
the per-query topic distributions and on
the per-topic word distribution.

θi The topic distribution for query qi, denoted as
qS
i as well

φl The term distribution for topic sl
sij The topic for the jth term in query qi
tij The specific jth term in query qi

Our Semantic Model use topics (also called intents in this paper) probability
distributions θ to represent queries.Wemodel the generation process of TermModel
by the following steps, just like the generation process of documents in LDA:

1. K, α, β has been predefined
2. For each of topic l = 1 : K, sample the mixture of terms φl ∼ Dir (α)
3. For each of query i = 1 : M, sample the mixture of topics θi ∼ Dir (β)

For each term j = 1 : leni in the Term Model of query qi

(a) sample a topic sij ∼ Multinomial (θi)
(b) sample a term tij ∼ Multinomial

(
φsij

)

The generative procedure is shown in Figure 2.

P (si = j|ti, s−i, α, β) ∝
n(ti)−i, j + β

n(·)−i, j + Vβ
· n(qi)−i, j + α

n(qi)−i,· + Kα
, (5)

where si = jmeans the topic of term i is s j, and ti here only means a sign for the term i.
s−i represents all the assignment for sk (k �= j). n(ti)−i, j is the count of term ti assigned to

the topic j, and n(·)−i, j is the total number of terms that are assign to topic j. n(qi)−i, j is the

count of terms in query qi being assigned to the topic jwithout ti, and n(qi)−i,· is the total
number of terms that have already been assigned to topics not including the current
one.

Figure 2 A plate representation of LDA for Semantic Model. Nodes denote random variables,
shaded nodes stand for observed random variables and edges denote dependence between variables.
The plates represent replication. The outer plate represents queries, while the inner plate represents
the repeated sampling of topics and terms in each query document
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Then Gibbs sampling algorithm starts with a random assignment of terms to
topics and approximates posterior distribution of a topic over all terms. Thus, the
parameters are estimated as follows:

φ̂(t)
l = n(t)l + β

n(·)l + Vβ
, (6)

θ̂
(s)
i = n(s)i + α

n(·)i + Kα
, (7)

where n represents a count matrix, n(t)l is the number of term t assigned to topic sl,
n(·)l is the total number of terms assigned to topic l in the whole corpus, n(s)i is the
number of terms assigned to topic s in query qi, n

(·)
i is the number of all times topics

are assigned to query qi. See more detailed derivation in [14].
Before parameter estimation, we should decide the number K of topics. In LDA

training, the number of potential search intents is an important parameter and should
be predefined. We select it by a process of clustering. After clustering, the number of
clusters will be set as the number of topics. We use DBSCAN [12] after features se-
lection to get the number of topics in our log. DBSCAN is one of automatic density-
based clustering algorithms. Based on the term representation in Term Model, the
density-based clustering algorithm is suitable for the topic number decision.

In the paper, we use terms in Term Models as basic features of each query and
use qT as the initial weights of features. Because different features have different
distinguishability, we select high distinguishability terms for clearing the difference
between queries. Firstly, we normalize the term expectation value calculated in
Section 3.3 into the range of [0, 1], marked as QT ′

. Secondly, we calculate quality
of terms as follows:

Quality
(
t j
) =

∑

qi∈Q
(qT ′

ij )
2 − (

∑
qi∈Q qT ′

ij )
2

M
(8)

Thirdly, we rank the terms by the scores of Quality
(
t j
)
and select top-ranking

terms (here we choose 10 % of terms ). In QT ′
, we keep the original weight of

selected terms, and the weights of other terms are set to 0. After clustering by
DBSCAN, we get 18 clusters. So 18 is pre-defined number of topics for our Semantic
Model at last.

In Figure 3, we show intent distribution of the query “The Chinese Paladin 2”.

3.5 Summary

The query representation models (Click Model, Term Model and Semantic Model)
are proposed in this section. Each model is defined based on the former one sequen-
tially, and all these three models think of queries as documents, where components
in the documents are URLs, terms and intents, respectively. Firstly, Click Model
considers the number of clicks from URLs to queries and the description power
of each URL to smooth query-URL bipartite graphs. This model can be employed
in other bipartite graphs, such as user-item graphs, traffic network graphs (easily
modeled as bipartite graphs). Secondly, Term Model takes advantages of content of
clicked web pages by click behaviors analysis and defines an expectation distribution
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Figure 3 An example of
Semantic Model. “The
Chinese Paladin 2” is the name
of a famous Role Play Games
in China, the name of a
television series and the name
of a bestselling novel as well,
where we can see three main
intents (id = 2, 9, 13) in the
line chart

over terms to describe queries. Thirdly, Semantic Model inferred from LDA maps
ambiguous queries into a distinguishing feature (intent) space.

Details on similar queries finding based on query representation models are
discussed in the next section.

4 Finding similar queries

Query representationmodels can be helpful for many IR applications, such as similar
query finding, query suggestion and query reformulation, etc. With distribution
representation mentioned above (URL transition probability distribution, term dis-
tribution and semantic intent distribution), we can apply common measurements to
find similar queries. In this paper, two kinds of metrics are chosen: pairwise similarity
and graph-based random walk measures.

4.1 Pairwise similarity measure

As queries are represented by a vector of URLs, terms or intents, two vector-based
similarity metrics are chosen: Cosine similarity and Jaccard coefficient.

The Cosine similarity is a measure of similarity between two vectors by measuring
the cosine of the angle between them in space. The bigger the value of Cosine similar-
ity is, the more similar two queries are. The similarity between qi and q j is defined as:

Cos
(
qi,q j

) = qi · qj
‖ qi ‖‖ qj ‖ (9)

The Jaccard coefficient is widely used in similar queries finding [1, 10]. The
metric is defined to measure similarity and dispersion between two sets. The Jaccard
coefficient is the value of the intersection divided by the value of union of the vectors:

Jac
(
qi,q j

) = qi · qj
‖ qi ‖2 + ‖ qj ‖2− ‖ qi ‖‖ qj ‖ (10)

In both metrics, qi and qj denotes the representation models of query qi and
query q j.
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4.2 Graph-based random walk measure

For graph-basedmeasures, the similarity between queries is defined on query graphs
[5, 6]. A typical query graph is the query transition graph, which is a directed graph
G = (Q,E, Pqq), where Q is the set of queries, E = {(qi,q j)} is the set of edges, and
Pqq is the transition probability matrix between queries, where pqqij = p(q j|qi) is the
transition probability from qi to q j. In our models, QU , QT and QS are all representa-
tion matrixes for query representation. The rows of thesematrixes are representation
for each query. The columns of these matrixes are items used for representing
queries. They are URLs in URLModel, terms in TermModel and intents in Seman-
tic Model, respectively. We normalize these matrixes by row and get transition prob-
ability from a query to each item, denoted as the transition matrix Pq2i. Analogously,
we normalize these matrixes by column to get transition probability from a item to
each query, denoted as the transition matrix Pi2q. So the transition probability from
qi to q j is defined as:

p
(
q j|qi

) =
∑

k

pi2qjk pq2i
ki , (11)

where k iterates over each item in the representation models, pq2i
ki is the transition

probability from query i to item k and pi2qjk is the transition probability from item k
to query j.

The personalized pagerank [16] is usually used to rank vertices by random walk
on the graph in a query dependent way. The rank strategy is showed in (12):

Rn+1
i = (1 − α)R0

i + α ·
∑

j

p
(
qi|q j

)
Rn

j , (12)

where R0
i is a personalized initial values for vertex i (the vertex i means query qi on

the graph), and n is the steps of random walk. We set R0
i = 1 if vertex i is the given

query and 0 for others. The parameter α is set to 0.7 as the previous study [10].
In the end, we provide a ranked candidate queries on the top of the similarity

score list. In our experiments, we judge the performance from the view of list-based.
We compare representation models with each other, and the traditional similar
queries finding based on terms of queries is our baseline representation method (see
Section 5.3). The experimental results of similar query finding by pairwise similarity
metrics is shown in Section 5.3, and the evaluations of query recommendation by
personalized pagerank in Section 5.4.

5 Experiments

In this section, we conduct experiments to verify the effectiveness of our represen-
tation models for similar query finding on a Chinese click-through data set from a
Chinese search engine.

The task focuses on finding the most semantic similar queries for the seed query
based on click graphs. In the rest of this section, firstly, we introduce our data set,
the assessments and evaluation metrics. Secondly, we compare three representation
models (ClickModel, TermModel, SemanticModel) with traditional OriginalModel
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Table 4 Examples in our click-through data (explanations in parentheses)

Query Title of the URL URL

sina xin lang shou ye http://www.sina.com.cn/
(sina home page)

hui sheng hui ying hui sheng hui ying X4 zhuan ye http://www.corel.com/servlet/Satellite/
shi pin bian ji ruan jian cn/cs/Product/1175714228541

(a professional video editing software
called Ulead VideoStudio)

da wei bei ke han mu da wei bei ke han mu–bai du bai ke http://baike.baidu.com/view/2298.htm
(David Beckham in Baidu’s
Encyclopedia)

(introduced in Section 5.3). Thirdly, this section also includes a detailed analysis
of effectiveness on different frequency queries. Finally we show some examples of
similar queries. Because our queries are in Chinese, we show them in Chinese Pinyin
with explanations in parentheses throughout this article.

5.1 Data collection and analysis

We obtain a click-through data set randomly sampled from a widely used Chinese
search engine, Baidu,1 during three months in 2010. These samples contain about 108
million records. We show some examples of records in Table 4. In the table, queries
are submitted by users. The titles in the data come from the web page of users’ clicks,
such as “xin lang shou ye (sina home page)” is the title of “http://www.sina.com.cn/”.

The data is cleaned and trimmed as follows. Firstly, we only keep well-formatted,
English or Chinese queries (queries which only contain English or Chinese characters
and space). Secondly, we segment queries into terms (we use ICTCLAS tools,2

because Chinese queries don’t have blank spaces between each term.) to segment
queries in this paper and remove stop words. Thirdly, we filter out queries and corre-
sponding click-through data containing adult content, privacy information and mar-
ket information, so these records are not taken into account in our study. Fourthly,
the query-URL pairs that have appeared at least 5 times, are retained. By the means
above, we reduce possible noises and keep generality as well. Finally, we get 190,614
queries, 175,141 URLs and 117,894 terms. As usual, a general query contains 5.06
characters on average and 3.04 terms after segmentation. A total of 1,763,335 edges
are observed on our query-URL bipartite graph, which indicates that each query has
4.1 distinct URLs, and each URL is clicked by 1.58 different queries. The times of
query submission have been averaging out 1,804 times (varying from 5,925,555 times
to 15 times) and the average number of clicks for each URL is 239 times (varying
from 683,341 times to 5 times). Therefore, our data set contains various kinds of
queries with different frequencies and different amount of corresponding clicked
URLs.

1www.baidu.com
2http://www.ictclas.org/

http://www.sina.com.cn/
http://www.corel.com/servlet/Satellite/cn/cs/Product/1175714228541
http://www.corel.com/servlet/Satellite/cn/cs/Product/1175714228541
http://baike.baidu.com/view/2298.htm
http://www.sina.com.cn/
http://www.baidu.com
http://www.ictclas.org/
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5.2 Experimental data and settings

In our experiments, we select queries that have connected more than 3 distinct URLs
to construct our three representation models, and then 16,531 queries are chosen in
total. With different representation models, we apply two pairwise measures to find
similar queries and apply one graph-basedmeasure mentioned in Section 4 for query
recommendation

We take t f · id f weighted word vectors of original queries (called Original Model,
denoted as QO) to represent queries as the baseline of representation models, and
then apply the same similarity measures on vectors to find similar queries. In Click
Model, we set k1 = 2.0 and b = 0.75 as default [28]. Click Model extracted from the
bipartite graph is calculated off line. Term Model obtains terms in titles that are
segmented in the same way of query segmentation. Regarding Semantic Model, we
set the number K of topics as 18 learnt from the results of clustering (mentioned
in Section 3.4), where the parameters of DBSCAN are set as default: epsilon to 0.9,
minpoint to 6. The parameters of LDA are: α to 0.3, β to 0.1. For Gibbs Sampling, we
find that when the sampling time is reasonable large (i.e.≥ 10,000), the performance
is comparatively stable.

We randomly collect 90 seed queries from 3 groups which are classified by their
submission frequency (popular queries, normal queries and long-tail queries). We
choose 30 queries from each group. The details are shown in Table 5 (the average
number of submissions and the average number of different URLs connected with
them, denoted as ANS and ANU, respectively).

For each seed query, we generate similar candidates via our models (we output
no more than 10 candidates with nonzero similarity to be evaluated). Evaluating the
quality of semantic similarity between queries is difficult, in particular for these UGC
(User Generated Content). In this paper, we ask five experts for judging work. For
finding similar queries, human judgers’ work is to rate similarity candidates for seed
queries, and for query recommendation ,their work is to click the recommended
queries. Before rating, we show experts top ten search results of the seed query
returned by search engines for understanding the original one. We define 3 levels
(0, 1 and 2) to measure the relevance between the seed queries and the candidates,
in which 0 means “totally irrelevant”, 1 means “weak related or similar with the seed
query” and 2 indicates “entirely relevant”. The final similarity judges of query pairs
use majority vote to decide. In this way, we obtained a similar query set with total
5,032 distinct queries and 6,710 pairs to be judged. In our experimental data, 1,106

Table 5 Snapshots for seed queries

Group ANS ANU Examples

q-tail 15.5 3 Lenka (a singer),
ao wei si (a parttime job site called Ao Wei Si),
duo pu da shou ji lun tan (Dopod smart phone Forum)

q-norm 23165 4 HeFei lun tan (HeFei Forum),
uuu9 (a popular game portal in China),
kuai bo (a video player program called QvodPlayer)

q-pop 35118.7 38.77 Zhong guo yi dong (China Mobile),
qian cheng wu you (a job-hunting site called future),
nan fei shi jie bei kai mu (2010 FIFAWorld Cup opening ceremony)
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pairs are mostly similar (labeled 2, 16.5 % in total), 1369 pairs are similar (labeled 1,
20.4 % in total), and 4,235 pairs are totally irrelevant (63.1 % in total).

For the task of query recommendation, we show the judgers seed queries and
mixed recommendations from four models to ensure that they don’t know which
model recommendations come from. We define 3 levels (0, 1 and 2) to measure
the satisfaction of recommendations. 0 means that nobody has clicked on this
recommended query, 1 means that 1 to 3 persons have clicked on it and 2 means
that more than 3 persons have clicked on this recommended query. After clicking,
we get 5,313 recommended query pairs for all seed queries. In our evaluation data,
2,332 pairs are labeled 2 (43.9 % in total), 1,186 pairs are labeled 1 (22.3 % in total),
and the rest are labeled 0 (33.78 % in total).

5.3 Evaluation on similar queries finding

In the evaluation part, we compare our representation models (Click Model as QC,
Term Model as QT , Semantic Model as QS) with the Original Model (QO, details
in Section ). We evaluate the effectiveness of our models by Coverage Ratio (CR),
precision (P@n),MeanAverage Precision (MAP) and show examples for them. The
following sections abbreviate “Similar Queries Finding” to SQF.

5.3.1 Evaluation for SQF on coverage ratio

Coverage Ratio (CR) means the average number of similar queries output from the
model divided by the default output number. The Single Coverage Ratio (SCR) for
each query is defined as

SCR (qi) = r (qi)
R

, (13)

where r (qi) is the number of candidates with nonzero similarity as the models output
for query qi, and R is the default output number of similar queries (here is 10). The
CR is defined on the whole test set:

CR =
∑

qi∈SQ SCR (qi)

|SQ| , (14)

where SQ means the set of seed queries and |SQ| means the size of the set. The
results are showed in Table 6:

In Table 6, we report comparative results of CR on different models and consider
whether our methods can boost the performance when using representation models.
We find that the best CR is 0.996 of Semantic Model with Cosine similarity. As
expected, our proposedmethods outperform the baselinemodel, at least have 14.2%
up (Click Model to Original Model on Cosine similarity), at most have increased
24.4 % (Semantic Model to Original Model on Jaccard coefficient). We can see that

Table 6 Comparison between different representation models on CR

Method QO QC QT QS

Cosine similarity 0.753 0.894 0.994 0.996
Jaccard coef f icient 0.419 0.561 0.661 0.663

Bold entries are the best results
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Cosine similarity is better for SQF on CR, when we use vector space model to repre-
sent queries. CR increases greatly from Original Model, Term Model, Click Model
to Semantic Model. Term Model outperforms Click Model and has a sharp increase.
The reason is that Term Model shares two key points. One is that it has redefined
the description power of each query-URL edge besides the original weight, and the
other one is that the model use probability statistical distribution of term expectation
to represent a query appropriately.Moreover, SemanticModel gets a higherCR than
others. Because in Semantic Model, queries are represented as distinct intents in a
high-dimension space, such that topics here are coarse-grained categories for users’
intents, such as movies, games, digital products and so on. In Section 5.3.3, we will
have a detailed discuss about the similar queries found via Semantic Model.

5.3.2 Evaluation for SQF on accuracy

Two evaluation metrics, P@N and MAP are employed to measure the accuracy
of SQF. P@N shows the percentage of similar queries at the top N of the similar
query list. Due to reasons that SQF is still a ranking question, we also use a position
considered metric,MAP, to analysis. MAP here is defined as follows:

MAP =
∑

k
avgPk

|SQSCR(q)>0| , (15)

where |SQSCR(q)>0| means the number of seed queries which has at least one similar
query, avgPk is the average precision of similar queries when current query k is
posted. It is defined as:

avgPk =
C(qk)∑

j=1

p ( j) · l ( j)
C (qk)

, (16)

where p ( j) is the accuracy of the jth similar query, l ( j) is label information. C (qk)
is the number of similar queries to the seed query qk. MAP reflects the accuracy of
SQF and evaluates the global effectiveness of query representation models.

We look into the accuracy on whole test queries at first, and then display
performance on queries with high, middle and low frequency using different models.

In the Table 7, there is 6 to 7 % increase from Original Model to Click Model. It
verifies that Click Model is more effective on the task of similar queries finding. We
learn that Click Model improves over Original Model by up to 9.75 % ((0.822 −
0.749)/0.749 = 0.0975) on Cosine similarity and 7.41 % ((0.797 − 0.742)/0.742 =
0.0741) on Jaccard similarity. Term Model gets higher performance over other
models including Semantic Model which is constructed based on it. So we can infer
that understanding search intent can’t ignore the fact that queries are mainly made
of terms and semantic understanding can not be separated from terms. We also learn

Table 7 Accuracy for different models

Method QO QC QT QS

Jaccard coef f icient 0.749 0.822 0.845 0.570
Cosine similarity 0.742 0.797 0.840 0.590

Bold entries are the best results
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that it is unsuited to directly apply coarser-grained topic-level description (term-level
description is finer-grained) on the task of similar query finding. Even though they
are both on the semantic level, the similar queries found by Semantic Model may
easily go far from the intrinsic queries. For example, “China Mobile” and ‘China
Telecom” are both service providers. But the two queries are referred to different
companies. Semantic Model learns the intent distribution of the two which are
remarkably similar to each other, because they provide the same service and both
do the network construction. Thus, Semantic Model provides us the view of queries
from the semantic categories. That is to say, Semantic Model can find the queries
under similar category distribution, which provides us with more class information
of the original queries. So, when users don’t clear about their intents and only have
keyword queries, Semantic Model is a good choose for query recommendation.

In Figure 4, we show the comparison of different models using P@n. In Figure 4b,
Original Model drops in performance sharply. Click Model, Term Model and Se-
mantic Model change slowly and are more stable in position, especially Semantic
Model. According to the experimental results, considering term expectation distri-
bution over queries (Term Model) is very essential for query representation. It can
effectively manage and organize the main intents of queries.

Next, we conduct a detailed analysis about performance of models on different
frequency queries.

Performance of popular, normal, long-tail queries on MAP shows in Figure 5.
In our experimental data, popular queries are mainly about current buzz (such
as college entrance examination, real estate) or integrated information web sites.
Original Model, Click Model and Term Model all have good performance on both
pairwise similarity metrics (Jaccard coefficient and Cosine similarity).

For normal queries, which are mainly related to social networks or navigation
web sites for a single purpose (software finding or image search), Term Model
outperforms the other models. An interesting thing is that, Click Model and Term
Model can successfully boost similar query finding for long-tail queries, which
compose most of queries in search logs. That is to say, Click Model and TermModel
have a strong modeling skill on representing queries, especially for long-tail queries.

(a) (b)

Figure 4 The performance comparison of different models on P@n. a Cosine similarity, b Jaccard
coefficient



World Wide Web (2014) 17:1161–1188 1181

(a) (b)

Figure 5 The performance of popular, normal, long-tail queries on MAP. a Cosine similarity,
b Jaccard coefficient

For popular queries, users often can write words correctly and precisely, so the
traditional model has a good performance. For normal queries, TermModel is better
than the traditional one. For long tail queries, click information and term expectation
are effective for modeling information need. Owing to the fact that traditional model
has a low CR, which means our models can find similar queries for more queries,
models proposed in this paper are much better on the whole.

5.3.3 The examples for similar queries

In this part, we present some examples of similar queries in Tables 8, 9 and 10. And
we pursue discussions over the results.

For long tail queries (shown in Table 8), we show two queries. One is a query
that searches for a part-time job institution “ao wei si”, and the other one is a
query searching for a singer “Lenka Kripac”. The two queries connect 3 URLs with
total 15 clicks, respectively. “ao wei si” and “Lenka” are both names of entities.
In our data set, we find that there are no expanded queries for these two queries.

Table 8 The top 5 results of long tail queries: 1. ao wei si (a part time job site), 2. Lenka (a singer)

Model ao wei si Lenka

QO wang wei da shi (a software) None
wang si yi (a super star)
wei tang (a software)
jiang wei (a General)
ya si (IELTS)

QC None None
QT 1010 jian zhi wang (1010 part-time site) xia zai ge qu (music download)

jian zhi wang zhan (part-time web site) ge qu xia zai mian fei (songs free download)
jian zhi lun tan (part-time forum) shi pin ge qu xia zai (music download)
jian zhi wang (part-time web site) yin yue xia zai mp3 (music download mp3)
jian zhi zhao pin (part-time recruitment) mp4 ge qu xia zai (mp4 songs download)

QS zhao pin wang zhan (recruitment web site) lao ge jing xuan (selections of old melodies)
zhao gong zuo wang zhan (Job search sites) fan chang ge qu (covers)
zheng zhou ren cai (Zhengzhou Talent) hao ge tui jian (music recommendation)
zhi lian zhao pin (zhaopin.com) zai xian ting ge (music online)
ren shi xin xi wang (personnel site) jing dian lao ge qu (classic oldies)
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Table 9 The top 5 results of normal queries: 1. Hefei lun tan (Hefei Forum), 2. uuu9 (a game site)

Model Hefei lun tan uuu9

QO Hefei tian qi yu bao yi zhou uuu9.com mo shou di tu xia zai
(Hefei weather forecast in a week) (map of Warcraft download)
Hefei fang di chan cctv9 (China Central Television 9)
(Hefei real estate)

Hefei di tu (Hefei maps) ie9 (a browser)
qq lun tan (QQ Forum) u9 wang (a game site)
shi jie bei lun tan 9 ku ying yue wang (a music site)
(the World Cup Forum)

QC Hefei (the capital of Anhui Province) u9 mou shou (u9 Warcraft)
mou shou rpg di tu
(Warcraft rpg map)

mou shou zheng ba guan wang
(Warcraft of f icial website)
war3
dota shi pin (competition video of dota)

QT Hefei gong ye da xue u9 mo shou (u9 Warcraft)
(Hefei University of Technology) dota guan wang

(dota of f icial website)

Hefei tian qi yu bao yi zhou uuu9.com mou shou di tu xia zai
(Hefei weather forecast in a week) (map of Warcraft download on uuu9)
Hefei fang di chan jiao yi wang mou shou rpg di tu

(Warcraft rpg map)

(Hefei real estate trading web sites) dota 6.67c (a version of dota)
Hefei (the capital of Anhui Province)
Hefei di tu (Hefei Map)

QS XiCi Hutong mou shou zheng ba di tu
(map of Warcraft)

(Xici–the No.1 portal of Chinese mou shou di tu xia zai
community)

Hefei (the capital of Anhui Province) (map of Warcraft download)
shang du wang dota guan wang (dota of f icial

web sites)

(a news portal of Shangdu.com ) mou shou fang shou di tu
xin xi wang (information sites) (Warcraft maps in defense mode)
jin ti wang (community service rpg di tu xia zai
web sites)

(Warcraft rpg map download)

So, traditional method shows us some queries with several same characters but no
semantic similarity. Due to the fact that they share no same URLs with others, Click
Model is invalid to find similar queries. This is a universal situation for long-tail
queries. According to statistics, the number of URLs in our data is 175,141 and the
number of queries is 16,531. The average number of edges observed for each query
is 4.1, and for each URL is 1.58. That means the number of queries which share at
least one URL with a unique query is only 4.1 · (1.58 − 1) = 2.38 on average. So it
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Table 10 The top 5 results of popular queries: 1. qian cheng wu you (a job-hunting site called future),
2. yi che wang (a famous portal site about cars)

Model qian cheng wu you yi che wang

QO qian cheng wu you zhao pin wang wang yi (NetEase)
(Future, A job-hunting website) yi wang (EasyNet)
wu you wang wang yi you xiang (Netease E-mail)
(a job-hunting site called Wuyou wang) wang yi xin wen (Netease News)
wu ren jia shi (unmanned) wang yi you xi (Netease Game)
san guo wu shuang (a YOKA game)
zhan guo wu shuang 2 xiazai
(a game of “zhan guo wu shuang”
download)

QC 51job (Another web site for job search ) biao zhi
qian cheng wu you zhao pin wang (PEUGEOT car)
(a job-hunting web site called future) qi che bao jia wang
51job zhao pin wang (51job) (car prices web sites)
wu you wang qq che bao jia
(a job-hunting site called Wuyou wang) (an Internet price quote for QQ car)
zhao pin wang zhan (Job web sites)

QT 51job.com qi che bao jia wang (car prices web sites)
qian cheng wu you zhao pin wang qi che lun tan (cars forum)
(a job-hunting site called future) qi che bao jia ji tu pian
zhi lian zhao pin (pictures and price quote for cars )
(Zhaopin.com, a job search web site) qi che xiao you xi (car games)
zhao gong zuo (Finding a job) qi che yin yue (car audio)
zhao pin wang zhan (job-hunting web sites)

QS zhao gong zuo wang zhan (Job websites) qi che bao jia ji tu pian
wu han zhao pin (Wuhan recruitation) (pictures and price quote for cars)
shen zhen ren cai wang (Shenzhen Talent ) xin ao tuo bao jia ji tu pian
Suzhou yuan qu ren cai xin gan xian (pictures and price quote for cars)
(Suzhou Talent Network) da zhong qi che bao jia ji tu pian
Qing dao she bao wang (pictures and price quote for cars)
(The web site of Qingdao social zhong hua qi che bao jia ji tu pian
security administration) (pictures and price quote for cars)

chang cheng qi che bao jia ji tu pian
(pictures and price quote for cars)

is common for long-tail queries share no same clicked URLs with others. Based on
Click Model, the two semantic models (Term Model and Semantic Model) can find
out some queries about part-time jobs. Take “Lenka” for example, the two models
can lead users to search for more music (mp4 or mp3) about this singer.

For normal queries (shown in Table 9), we show two queries: “Hefei lun tan (Hefei
Forum)” and “uuu9 (a game site)”. For query “Hefei Forum”, users probably want to
know information about Hefei, the capital of Anhui Province in Eastern China. Orig-
inal Model can get some related queries, but also get ones without semantic relations,
such as “qq Forum” and “the World Cup Forum”. Based on clicks, only “Hefei”
has nonzero similarity with “Hefei lun tan”. It indicates the situation mentioned in
Term Model (in Section 3.3): the same or related information about Hefei occurs on
different sites, but users prefer different web sites. So ClickModel has a lower perfor-
mance than other two models. After modeling term expectation, “Hefei real estate”,
“Hefei University of Industry” and “Hefei weather forecast” have been found out.



1184 World Wide Web (2014) 17:1161–1188

In Semantic Model, we provide similar queries with the intent of “forums”. Another
query “uuu9” is about a famous game site.3 A large number of users accessing this
site like playing “Warcraft”. Through our Click Model, “Warcraft official web site”
and “competition video of dota” can be helpful to lead most of users to a destination.
Term Model and Semantic Model also outperform the traditional method and pro-
videmany related products: “dota official web site”, “New version of dota” and so on.

For popular queries (shown in Table 10), we show “qian cheng wu you (a job-
hunting site called future)” and “yi che wang (a famous portal site about cars)”. Owing
to the same word “wu”, “qian cheng wu you” in Original Model resembles irrelevant
“san guo wu shuang”. In TermModel and Semantic Model, another relevant job web
site, “Zhaopin.com”, and even some social insurance web sites have been found(in
the line of Semantic Model). For “yi che wang”, Click Model captures the primary
intent of it and provides some similar queries with search intent of finding car price
information online. In Term Model, we maintain click and semantic information
via term expectation distribution. Hence, similar queries that share close semantic
relation but have less co-click relation can be found, such as forums, pictures and
audio about cars. SemanticModel gives us queries about popular car brands in China
and the main intent underlying this query (finding the pictures and prices about cars).

5.4 Evaluation on query recommendation

In this subsection, we apply our approach on query recommendation via the per-
sonalized pagerank with Original Model, Click Model, Term Model and Semantic
Model. The seed queries are the same ones as the queries used in the task of
SQF. For better understanding our models, we generate a recommendation list for
the given query with different number of steps (from 2 to 14). We evaluate the
effectiveness of our models on query recommendation by CR, P@n and MAP. The
following parts abbreviate “Query Recommendation” to QR.

5.4.1 Evaluation for QR on coverage ratio

The Coverage Ratio (CR) is similar to the definition in Section 5.3.1. The difference
is that r (qi) here means the number of recommendations for query qi with nonzero
similarity and R is the default output number of recommended queries (here is 10).
The Figure 6 illustrates the CR of four models for different steps. The CR of four
models all become stable after 3 steps. Obviously, Term Model and Click Model can
output more recommendations than Original Model and Semantic Model.

5.4.2 Evaluation for QR on accuracy

Two evaluation metrics are employed to measure the accuracy of QR: Precision@n
(P@n) and Mean Average Precision (MAP). P@n and MAP are defined as
description in Section 5.3.2. The different here is that we use recommendation labels
to replace similarity labels. First, we evaluate global performance on all test queries.
Second, we show the performance of different frequency queries.

The Figure 7a illustrates that MAP of models converges very quickly with the
increasing of steps. All models improve their performance slightly with the increase

3http://www.uuu9.com/

http://www.uuu9.com/
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Figure 6 The performance of
personalized pagerank models
on Coverage Ratio

of the number of steps, and they achieve the best performance when n equals 10. As
shown in the figure, it is clear that Click Model, Term Model and Semantic Model
outperform the Original Model in every step. We also show the performance of
different frequency queries on MAP in Figure 7b. It reveals that our models get a
higher user satisfaction in three kinds of frequency queries than the baseline model.
Click Model improves over Original Model by more than 30 %. The results also re-
confirm that click graphs can better capture semantic relations between queries than
original terms of queries do. Term Model suits the task of query recommendation
better than the other models on both popular and normal queries. Because Term
Model considers users’ actual information need through understanding historical
click behaviors and represents a query with its main purpose and entities appropri-
ately. For long-tail queries, as we discuss in Section 5.3.3, Semantic Model improves
overOriginalModel by up to 39.64%, over TermModel by up to 14.65% , over Click
Model by up to 3.37%. It confirms that Semantic Model helps for query understand-
ing from the user’s perspective via modeling queries as distributions over intents.

We also compare our models with Original Model to see the improvement trend
of performance. Table 11 further depicts the precision scores at position one, position
three and position seven for each method. Our models beat the baseline, but three
models have different performance on different kinds of queries. They suffer from
different changed trend cross the positions. For popular queries, Click Model and

(a) (b)

Figure 7 The performance of models on MAP. a MAP on all test queries, b MAP on different
frequency queries (in Step 10)
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Table 11 The comparison of different methods on different frequency queries by P@1, P@3 and P@7

Method Popular Normal Long-tail

P@1 P@3 P@7 P@1 P@3 P@7 P@1 P@3 P@7

QO 0.514 0.489 0.434 0.233 0.193 0.160 0.201 0.192 0.160
QC 0.772 0.744 0.734 0.836 0.789 0.744 0.533 0.445 0.404
QT 0.934 0.891 0.887 0.834 0.817 0.757 0.433 0.394 0.395
QS 0.867 0.859 0.847 0.667 0.561 0.590 0.513 0.510 0.426

Bold entries are the best results

Semantic Model have more steady performance than Term Model. While, Term
Model improves the performance of Click Model a lot and beats Semantic Model on
popular queries. For normal queries, Click Model gets the best predictions on P@1,
but it decreases more quickly than Term Model after the first position. For long-tail
queries, Click Model can suggest better queries in the first position than the others.
But due to the reason that long-tail queries display more personal or special informa-
tion need, it’s better to understand queries on topic level when recommending. From
the results in Table 11, it confirms that Click Model is applicable in adjusting weights
of click graphs, which is useful to model the relationships between two kinds of nodes
in bipartite graphs.

5.5 Discussions

Based on the above experimental analysis, we verify our models have three
advantages:

– URL Model has a strong capacity to represent users’ actual intent underlying
queries. Query representation based on query-URL bipartite graphs takes users’
judgment and preference into query modeling, which gives an effective distribu-
tion description of queries.

– Term Model and Semantic Model both give queries a semantic explanation
and description. Term Model (a fine-grained representation) proposes a novel
term expectation to represent queries, in which content of web pages and the
relationship between query and URLs have been considered carefully. Semantic
Model (a coarse-grained representation) maps a query into a high dimension
space to resolute queries into topics. The two representation models both
combine behavior information and content information seamlessly than before.

– Our approach has a good performance for the task of similar queries finding,
especially for normal queries and long-tail queries. We find similar queries to
help users reformulate their queries and make users’ information need clear.

6 Conclusion

In this paper, we proposed a two-stage framework to find semantic similar queries
with query representation models. We evaluated three query representation models.
Unlike previous methods, we provided a probability distribution over URLs, an
expectation distribution over terms and a probability distribution over intents for
query representation. Based on analysis and modeling, pairwise similarity metrics
and graph-based similarity metrics were applied on these models to compute similar-
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ity of two irregular and short queries. Furthermore, our methods can also be used in
many fields (sponsored search, image retrieval, Q&Aand so on). The work described
in this paper has raised several interesting questions and opens up several lines of
exciting research work in the future. As we know, a search process is a sequence of
user actions by submitting queries and clicking URLs. It is not a simple collection of
keywords. So learning users’ information need via sequence modeling will also be a
reasonable and interesting work.
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