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Abstract The bloom of Internet has made fast text categorization very essential.
Generally, the popular methods have good classification accuracy but slow speed,
and vice versa. This paper proposes a novel approach for fast text categorization, in
which a collaborative work framework based on a linear classifier and an extreme
learning machine (ELM) is constructed. The linear classifier, obtained by a modified
non-negative matrix factorization algorithm, maps all documents from the original
term space into the class space directly such that it performs classification very
fast. The ELM, with good classification accuracy via some nonlinear and linear
transformations, classifies a few of documents according to some given criteria to
improve the classification quality of the total system. Experimental results show
that the proposed method not only achieves good accuracy but also performs
classification very fast, which improves the averaged speed by 180 % compared with
its corresponding method.
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1 Introduction

Text categorization (TC) is a task of automatically assigning predefined categories
to a given text document based on its content [22]. In some applications based
on TC, both the accuracy and speed are important, e.g., web retrieval [29], email
classification [17], and news search [4].

A growing number of machine learning techniques have been used for TC such as
linear map method [27, 31], probabilistic model [16], k-nearest neighbor [24], neural
networks [2], support vector machines (SVM) [3, 12], and extreme learning machine
[18, 32].

Among these methods, the linear map methods perform the classification faster
than others because it assign categories directly by a simple linear transformation.
Generally, such linear transformation methods could not achieve satisfactory accu-
racy because of the existence of linearly inseparable data [22]. In contrast, SVM
has been regarded as one of the most successful methods in term of the accuracy
[5, 22, 32]. However, its parameter tuning usually needs to spend a lot of time [12].
Moreover, the extension from binary classification to multiclass classification will
increase additional computational cost, so classification with SVM will become quite
slow if the number of categories is relatively large.

Extreme learning machine (ELM) [10] is a rapidly developed learning technology
recently. It is shown that ELM could learn much fast with high generalization
performance [8, 11]. In addition, ELM could be used to implement the multiclass
classification [9] and the multi-label classification [32] easily because of its network
output structure.

Nevertheless, text categorization based on ELM needs multiple stages [32], in-
cluding: dimensionality reduction, nonlinear transformation (from input nodes into
hidden nodes), linear transformation (from hidden nodes into output nodes) and
category determining. Therefore, it runs slower than linear classifiers.

In order to take the advantages of the linear classifier and ELM, this paper
proposes a novel approach for fast categorization. We firstly used a modified non-
negative matrix factorization algorithm to obtain two transformation matrices, one
is to map documents from the high dimensional term space into a low dimensional
semantic subspace, the other is to map documents from the semantic subspace into
the class space. With these transformations, a linear classifier was constructed, which
has a very low time complexity. Furthermore, a collaborative work framework was
given, in which most documents were classified via the linear classifier, only a few
of documents were classified via ELM according to some given criteria such that
some linearly inseparable data might be correctly discriminated by the ELM with
a nonlinear activation function. Therefore, the total system could achieve a good
tradeoff between the accuracy and speed.

This article is an extension of [33], the main extensions are (a) we embedded the
ELM into the collaborative work framework rather than SVM to obtain more fast
classification speed; (b) the new method extended the capacity to handle the multi-
label situation; (c) numerous extended experiments were evaluated which verified
the effectiveness and efficiency of the proposed method.

The rest of this paper is organized as follows: Section 2 provides a brief review
of ELM and non-negative matrix factorization. Section 3 explains the proposed
method in detail. Experimental results and analysis are given in Section 4. Finally,
we summarize the conclusions in Section 5.
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2 Preliminaries

2.1 Extreme learning machine

ELM is a single hidden layer feed forward networks (SLFNs) where the input
weights are chosen randomly and the output weights are calculated analytically. For
n arbitrary distinct samples (xi, ti) ∈ R

m × R
k, the SLFNs with ñ hidden nodes and

activation function g(x) are mathematically modeled as:

o j =
ñ∑

i=1

βig
(
wT

i x j + bi
)
, j = 1, · · · , n, (1)

where wi = [wi1,wi2, · · · , wim]T is the weight vector connecting the ith hidden
node and the input nodes, bi is the threshold of the ith hidden node, and βi =
[βi1,βi2, · · · , βik]T is the weight vector connecting the ith hidden node and the output
nodes. If a SLFNs with ñ hidden nodes can approximate these n samples with zero
error (i.e.

∑n
j=1 ||o j − t j|| = 0), there exist βi, wi and bi such that

ñ∑

i=1

βig
(
wT

i x j + bi
) = t j, j = 1, · · · , n. (2)

The above n equations can be written compactly as:

Hβ = T, (3)

where

H =
⎡

⎢⎣
g

(
wT

1 x1 + b 1
) · · · g

(
wT

ñ x1 + b ñ
)

... · · · ...

g
(
wT

1 xn + b 1
) · · · g

(
wT

ñ xn + b ñ
)

⎤

⎥⎦

n×ñ

, (4)

β =
⎡

⎢⎣
βT

1
...

βT
ñ

⎤

⎥⎦

ñ×k

and T =
⎡

⎢⎣
tT
1
...

tT
n

⎤

⎥⎦

n×k

, (5)

H is called the hidden layer output matrix of the neural networks; the ith column of
H is the ith hidden node output with respect to inputs x1, x2, · · · , xn.

Huang et al. [10, 11] proved that one may randomly choose and fix the hidden
node parameters with almost any nonzero activation function and then analytically
determine the output weights when approximating any continuous target function
on any compact input sets. Therefore, (3) becomes a linear system and the output
weights β are estimated as:

β̂ = H†T, (6)

where H† is the Moore–Penrose generalized inverse of the hidden layer output
matrix H. Thus the output weights β are calculated in a single step, and this avoids
any long training procedure where the network parameters are adjusted iteratively
with appropriately chosen control parameters.
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Huang et al. [7] also show that from the standard optimization method point of
view, ELM for classification is equivalent to SVM, but ELM has less optimization
constraints due to its special separability feature.

As a rapidly developed technology, numerous variations [1, 6, 19, 21, 26] and
applications [25, 30, 32, 35] of ELM have emerged in recent years.

2.2 Basis orthogonal non-negative matrix factorization

In text categorization, a major difficulty is the high dimensionality of the input
feature space. Non-negative matrix factorization (NMF) [14] can easily map the
documents from the high dimensional term space into a low dimensional semantic
subspace [23]. Mathematically, given a terms-by-documents matrix A, let

A ≈ Wm×r × Hr×n, (7)

where m and n are the number of the terms and documents respectively, and r
is a positive integer, W is called basis matrix and H is called coefficient matrix.
Because each column vector of W is constituted with some non-negative values of
terms, it can be regarded as the latent semantic basis vector, and then these basis
vectors could span a semantic subspace with dimensionality r. When r � min{m, n},
the dimensionality of the semantic subspace is far less than the dimensionality of the
original term space.

To deal with the uniqueness problems of scaling and permutation of NMF [14], a
basis orthogonal constrain could be added into the objective function of (7), i.e.,

{
l(W, H) = ||A − W H||2F + λ||WTW − I||2F
s.t.W, H ≥ 0

, (8)

where || · ||F is the Frobenius norm, I is the identity matrix, and λ is used to control
the tradeoff between the approximation error and the orthogonal constraint.

Following the multiplicative update algorithm [15], the solution of (8) can be
obtained [33], which is:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Wi, j ← Wi, j

(
W HT + 2λW

)
i, j(

W H HT + 2λW WTW
)

i, j

Hi, j ← Hi, j

(
WT A

)
i, j(

WTW H
)

i, j

. (9)

3 Collaborative work for fast text categorization

The goal of the work is to implement a framework in which most documents are
classified via a very fast linear classifier, only a few linearly inseparable data are
classified via ELM with a nonlinear activation function. Since ELM tends to require
more hidden neurons than conventional tuning-based algorithms in many cases [34],
its scale will become remarkable large if we use the high dimensional text data as
input. Thus, text is firstly represented in a low dimensional semantic subspace using
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a modified NMF algorithm before ELM works. With the NMF algorithm, a linear
classifier that works in the original term space is also constructed, which has a low
time complexity. Finally, based on two reclassified criteria, the collaborative work
schema is implemented.

3.1 Text representation

Given a document d = (t1, t2, · · · , tm)T, where m is the dimensionality in the term
space. The t f idf value [20] for each term is defined as:

t f idf (ti, d) = t f (ti, d) × idf (ti), (10)

where t f
(
ti, d

)
denotes the number of times that ti occurred in d, and idf (ti) is the

inverse document frequency which is defined as idf (ti) = log(n/df (ti)), where n is the
number of documents in training set and df (ti) denotes the number of documents in
training set in which ti occurs at least once. A document can be represented as a
vector:

d = (w1, w2, · · · , wm)T, (11)

where wi = t f idf (ti, d)/

√
m∑
j

t f idf (t j, d)
2.

Following with [33], we extend the document vector with its category information,
and then the class vector associated with d is defined as:

c = (c1, c2, · · · , ck)
T, (12)

where k is the number of categories in dataset, and ci is equal to 1 or 0 depending
on whether the related document belongs to the corresponding categories, e.g.,
assuming there are five categories (k = 5), a document d = (w1, w2, · · · , wm)T be-
longs to the first and the forth category, then the corresponding class vector is
c = (1, 0, 0, 1, 0)T.

We combine d and c into an extended vector x:

x = (w1, w2, · · · , wm, c1, c2, · · · , ck)
T, (13)

and then all training documents can be combined into an extended matrix X,
represented as

X = [
DT CT]T

(14)

where D is the weighting matrix of all training documents, C is the class matrix
related to D, and each column of X is an extended vector obtained by equation (13).

Assuming the matrix X is decomposed with (9) as follows:

X =
[

Dm×n

Ck×n

]
≈ W(m+k)×r × Hr×n, (15)
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let

W(m+k)×r =
(

Sm×r

Lk×r

)
, (16)

and then (
Dm×n

Ck×n

)
≈

(
Sm×r × Hr×n

Lk×r × Hr×n

)
. (17)

Therefore, Dm×n ≈ Sm×r × Hr×n, we let the representation of documents in a low
dimensional semantic subspace (r dimensionality) as:

Ĥr×n ≈ P × Dm×n, (18)

here

P = normlize (Sm×r)
T , (19)

where normlize(Sm×r) means cosine normalization for each column vector of (Sm×r).
It should be noted that we does not use P = (Sm×r)

† (used in [33]) to avoid any
negative value appear such that it could provide more semantic explanations for the
text representation.

Consequently, S could be regarded as a transformation matrix that maps docu-
ments from the term space into a low dimensional semantic subspace spanned by S,
and Ĥ is the representation of all documents in this semantic subspace.

3.2 Linear classifier construction

With (17), we have

Ĉk×n ≈ Lk×r × Ĥr×n, (20)

where Lk×r could be regarded as a transformation matrix that maps documents from
the semantic subspace into the class space, and Ĉk×n means the projection of Ĥr×n in
the class space.

When the transformation matrices P and L are obtained, we can map documents
directly from the term space into the class space, i.e.,

Ĉ ≈ T × D, (21)

where T = L × P.
Given a test document d, its category coding ĉ = (ĉ1, ĉ2, · · · , ĉk)

T can be obtained
directly with (21). Ideally, if d belongs to some categories, its corresponding bits of ĉ
should be equal to 1, and 0 otherwise. However, this situation is unpractical because
of the computation error and the existence of linearly inseparable data. In spite of
this, the values of ĉ still imply some meaningful information of category. Normalizing
ĉ as follows:

c̄ = (
c̄1, c̄2, · · · , c̄k

)T
, (22)

where c̄i = ĉi/

√∑k
j ĉ2

j . According to the uni-label corpus (i.e., a document can only
be assigned to a unique category in this corpus), a simple intuition is that if a
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document belongs to a category, its corresponding bit of c̄ should be larger than
others. According to the multi-label corpus, a simple intuition is that if a document
belongs to some categories, its corresponding bits of c̄ should be relatively large.
Therefore, we define the category discrimination function as:

Category(d) =

⎧
⎪⎨

⎪⎩

arg
i

max(c̄i) for uni-label corpus

arg
i

(c̄i > τ) for multi-label corpus
, (23)

where τ is a threshold parameter.
Figure 1 gives an illustration about the linear classifier, its classification procedure

has a very low time complexity O(k × m).

3.3 Collaborative classification based on linear classifier and ELM

With (21) and (23), the linear classifier could be implemented. However, such
directly map method usually could not achieve satisfactory accuracy because of the
numeral error and the linearly inseparability of some data. Since ELM has high
classification accuracy in a low dimensional semantic subspace with the nonlinear
activation functions [32], we then use it to classify the documents that are easily mis-
classified by our linear classifier. The motivation is that we can take the advantages
of our linear classifier and ELM to achieve a good tradeoff between accuracy and
classification speed.

A key issue of this collaborative work framework is how to judge which documents
are easily to be misclassified by the linear classifier. Our work is based on following
intuitions:

– In a space where data cannot be linearly separated completely, the points
closing to the hyperplane are usually to be misclassified because of the nonlinear
distribution.

– In a space where data can be linearly separated completely, the points closing to
the hyperplane are usually to be misclassified because of the numeral computa-
tion error.

Figure 2 shows an illustration about which points are easy to be misclassified. In
this figure, points could be well separated via a nonlinear boundary (denoted by the

Figure 1 An illustration of the
linear classifier.
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Figure 2 Illustration of the
points that are easy to be
misclassified (the solid line
denotes a hyperplane that
separates category a and b,
and the dash line denotes an
ideal separating boundary)

Category b

Category
a

dash line), but some points that are close to the category boundary are misclassified
by the hyperplane (denoted by the solid line). Moreover, some points, even be
correctly separated by the hyperplane, are also easy to be misclassified due to the
computational error when they are very close to the hyperplane. Mathematically, if a
point is closes to the hyperplane, its corresponding class vector might contain two or
more elements with relative large values. Let secondmax(c̄) denotes the second large
value in class vector c̄ of a document d, we define a threshold function as follows:

threshold(d) = secondmax(c̄)
max(c̄)

. (24)

For the uni-label corpus, a document d needs to be reclassified when it follows the
criterion as:

threshold(d) > θ, (25)

where θ is used to control the number of reclassified documents. It is worth to note
that when θ = 1, the system only performs our linear classifier, and when θ = 0, all
results are given by ELM.

For the multi-label corpus, we can not use (25) to judge whether a document is
easy to be misclassified, since a document might belong to several categories (i.e.,
two or more relative large values in the class vector are permitted). Alternatively, we
define a reclassified criterion as follows:

max(c̄i) < σ (26)

where σ ≤ 1 is a threshold parameter that has a similar function with θ . The criterion
is based on an intuitional assumption: when a document satisfies (26), we think that
a relatively large computational error might occurs (otherwise there is at least one
relatively large value in its class vector), so the classification result with (23) becomes
unreliable, i.e., it needs to be reclassified. Note that the system only performs our
linear classifier if σ = 0, and all results are given by ELM if σ = 1.

World Wide Web (2015) 18:235–252242



Figure 3 An illustration of the
collaborative framework for
classification

Thus, for a test document d that needs to be reclassified, its output target vector
of ELM can be evaluated as:

o = h̃β̂, (27)

where h̃ is the hidden layer output vector of d, and β̂ is the output weights learned
by training set. Following [32], the discrimination function is:

Category(d) =

⎧
⎪⎨

⎪⎩

arg
i

max(oi) for uni-label corpus

arg
i

(oi > ρ) for multi-label corpus
, (28)

where ρ is a threshold parameter.
Figure 3 illustrates the collaborative framework for classification. If we sup-

pose that the time complexity of the classification procedure with ELM in a
r-dimensionality semantic subspace is φ(r), and the probability of reclassifying
is p, then the time complexity of the collaborative classification procedure is
O (k × m + p × (φ(r) + r × m)). Hence, if p is small, the total classification proce-
dure still performs very fast.

4 Experiments

For convenience, we denote our method as LELM (Linear classifier & ELM) and
compared it with three related methods: ELM [32], SVM [13], and LSVM [33]
(Linear classifier & SVM), here we extended [33] to multi-label case for comparative
need.

We set the discrimination threshold parameters τ = 0.5 (in (23)), ρ = 0.5 (in (28)),
where 0.5 is the midpoint between 0 and 1 (corresponding to class label). λ (in (9))
was simply set 0.5 for computational convenience. For ELM, the radial basis function
was selected as the activation functions, the number of hidden nodes was set to 2,000,
and its regularized parameter was set to 5. For SVM, its parameters were obtained
by 4-fold cross-validation, and the same values were used in LSVM.
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Other parameters in the experimentation will be discussed in the result part, and
all programs were run on Matlab 2012a with 3.3 GHz CPU and 6 GB memory.

4.1 Datasets

Three popular TC benchmarks are tested in our experiments: Reuters-21578,
WebKB, and 20-Newsgroups. The Reuters-21578 dataset1 is a standard multi-
label TC benchmark which contains 135 categories. In our experiments, we use a
subset called Reuters-top10 that includes the ten most frequent categories among
the 135 topics. The subset was divided into the training and test set with the
standard “ModApte” version. The pre-processed procedure includes: removing the
stop words, switching upper case to lower case, stemming,2 and removing the low
frequency words (less than three). After that, 5,920 training documents and 2,315
testing documents with 5,585 term features are obtained.

The WebKB dataset is a standard uni-label TC benchmark which contains web
pages gathered from university computer science departments. A subset3 including
four most populous entity-representing categories was used in our experimentation.
After pre-processed procedure, 2,777 training documents and 1,376 testing docu-
ments with 7,287 term features are obtained.

The 20-Newsgroups dataset4 is also a uni-label TC benchmark which contains
approximately 20,000 articles evenly divided among 20 usenet newsgroups. After
pre-processed procedure, 11,269 training documents and 7,505 testing documents
with 31,116 term features are obtained.

4.2 Evaluation measures

In text categorization, the most commonly used accuracy measures are recall, preci-
sion and their harmonic mean F1. For multiple categories, we use the micro-averaged
F1 [22] to evaluate the total performance and denoted it as mF1 for briefness.

We also define a measure to evaluate the classification speed, which is defined as
follows:

tpd = elapsedTime
#test

, (29)

where elapsedTime denotes the time cost during the classification stage, and #test de-
notes the number of documents in test set, thus tpd means the averaged classification
time for each test document (time per document). We use microsecond per document
(μs/d) as the unit of tpd.

4.3 Results

Figure 4 gives a result of LELM on Reuters-top10 where the dimensionality in
the semantic subspace was set to 50. Here, the parameter σ was changed and its

1http://www.daviddlewis.com/resources/
2http://tartarus.org/~martin/PorterStemmer/
3http://web.ist.utl.pt/~acardoso/datasets/
4http://people.csail.mit.edu/jrennie/
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Figure 4 Accuracy vs. speed
on Reuters-top10 (the interval
bounded by two dash-dot line
indicates the ideal range for
parameter σ )
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corresponding mF1 and tpd were recorded. It can be observed that the time cost
(plotted by the dashed line) descends as σ descends, while the accuracy (plotted by
the solid line) almost has no variation until σ achieves the left dash-dot line. The
interval bounded by two dash-dot line indicates the ideal range for parameter σ ,
where tpd reduces to about 50-30% but the corresponding mF1 almost has no change.

Figures 5 and 6 give the results of LELM on WebKB (dimensionality = 70) and 20-
Newsgroups (dimensionality = 210), respectively. Similarly, the time cost descends as
the parameter θ increases, while the accuracy almost has no variation until θ achieves
the left dash-dot line. The best tradeoff occurs when the parameter falls into the
interval bounded by two dash-dot line. In this situation, the accuracy has little loss
but the elapsing time declines dramatically.

Table 1 presents more results on Reuters-top10, where the Dim means the
dimensionality in the semantic subspace. For each dimensionality, σ was selected
by 4-fold cross-validation on training set such that the value of (mF1 − ω ∗ tpd)
achieves maximum, where tpd is the normalization of tpd for all σ , and ω is a

Figure 5 Accuracy vs. speed
on WebKB (the interval
bounded by two dash-dot line
indicates the ideal range for
parameter θ)
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Figure 6 Accuracy vs. speed
on 20-Newsgroups (the
interval bounded by two
dash-dot line indicates the
ideal range for parameter θ)
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weighting that is used to control the tradeoff between accuracy and speed, it was set
a small number (0.02) experimentally, since the main aim of parameter selection is
to increase speed while accuracy could be ensured. From this table, we can observed
that the SVM, LSVM, ELM, and our LELM almost have completely same accuracy
(their accuracy difference according to each dimensionality was equal to zero at the
5 % significance level when T-test was performed). Moreover, LELM runs very fast
than its competitors. In most cases, LELM performs two times faster than ELM, and
hundreds of time faster than SVM.

More results on WebKB and 20-Newsgroups are given in Tables 2 and 3, respec-
tively. For each dimensionality, the parameter θ is obtained using a similar method as
selecting σ . Based on the two tables, T-test was performed. The accuracy differences
between LELM and ELM (or between LSVM and SVM) were less than 0.25 % at
the 5 % significance level. It is clearly shown that LELM not only has a comparable
accuracy with other methods but also has a very fast classification speed. In sum,
the averaged speed of LELM increased by 180 % (compared with its corresponding
method) without loss of accuracy.

Table 1 Accuracy and speed on Reuters-top10

Dim mF1 (%) tpd (μs/d)

SVM LSVM ELM LELM SVM LSVM ELM LELM

30 94.41 94.34 94.91 94.87 1,729 797 57 25
50 94.65 94.59 94.75 94.67 2,352 1,137 60 23
70 94.74 94.63 94.99 94.90 2,954 1,320 61 25
90 94.83 94.64 94.88 94.70 3,587 1,505 65 23
110 94.62 94.41 94.81 94.68 4,225 1,695 73 27
130 94.93 94.90 94.92 95.05 4,793 1,960 77 25
150 94.56 94.33 94.65 94.54 5,540 2,094 88 27
170 94.82 94.75 94.82 94.85 6,217 2,402 90 30
190 94.91 94.92 94.90 94.99 6,929 2,753 93 29
210 94.71 94.66 94.57 94.59 7,581 3,298 95 37

The bold items denote the best performance (accuracy or speed) for each dimensionality
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Table 2 Accuracy and speed on WebKB

Dim mF1 (%) tpd (μs/d)

SVM LSVM ELM LELM SVM LSVM ELM LELM

30 89.24 89.24 89.68 89.75 1,093 687 51 20
50 89.03 88.88 90.04 89.75 1,484 531 53 20
70 90.12 90.12 90.04 89.83 1,944 932 53 20
90 90.26 90.26 90.12 89.90 2,454 1,081 66 19
110 89.97 89.90 89.90 89.97 2,911 1,141 71 28
130 89.97 89.90 89.32 89.89 3,407 1,671 74 27
150 89.75 89.46 89.68 89.68 3,959 1,649 74 30
170 89.83 89.83 88.74 89.30 4,450 2,113 80 22
190 89.83 89.90 88.81 88.32 4,970 2,908 87 28
210 89.17 88.81 88.30 88.59 5,550 1,891 91 22

The bold items denote the best performance (accuracy or speed) for each dimensionality

From the results above, we could find that LELM achieved better accuracy
than ELM in some cases. It means that the combination with linear and nonlinear
transformations might obtain some extra advantages for classification, which is very
interesting.

Therefore, an important problem is which nonlinear transformation should be
used in our correlative work framework. In other words, which activation functions
should be selected?

Figure 7 plots five commonly used activation functions: “sine” “sigmoid” “radial
basis function” (abbreviated as “radial”), “hard limit” (abbreviated as “hardlim”),
and “triangular basis function” (abbreviated as “tribas”). The accuracy comparisons
about these activation functions on Reuters-top10, WebKB, and 20-Newsgroup are
given in Figures 8, 9, and 10 respectively. For each dimensionality, parameter σ (or θ)
was selected as mentioned above.

From these figures, we can observe that the accuracy with activation function
“hardlim” is very poor. The results could be understood easily, since the “hardlim”
function actually does not take the advantage of nonlinear transformation, i.e., it can
not map the linearly inseparable data into a linearly separable space. By contrast,
the “radial” function, with a axial symmetry and smooth curve, performs well in
most cases. However, as is well-known, the “radial” function has two parameters

Table 3 Accuracy and speed on 20-Newsgroups

Dim mF1 (%) tpd (μs/d)

SVM LSVM ELM LELM SVM LSVM ELM LELM

30 78.71 78.69 79.08 79.04 2,920 888 47 17
50 78.97 78.77 79.23 79.12 3,729 1,153 54 16
70 79.76 79.51 80.03 80.06 4,601 1,348 60 16
90 79.45 79.20 79.64 79.65 5,492 1,900 62 25
110 79.76 79.60 80.23 80.15 6,548 3,275 66 35
130 79.91 79.77 80.01 79.77 7,555 3,388 79 32
150 79.69 79.64 80.09 80.01 8,500 4,023 84 30
170 79.85 79.83 80.10 80.11 9,530 5,603 84 42
190 79.97 79.93 80.41 80.37 10,554 5,222 87 41
210 79.71 79.56 80.28 80.07 11,590 5,224 99 37

The bold items denote the best performance (accuracy or speed) for each dimensionality
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Figure 7 Shapes of five commonly used activation functions of ELM
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Figure 8 Accuracy comparisons of activation functions on Reuters-top10
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Figure 9 Accuracy comparisons of activation functions on WebKB
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Figure 10 Accuracy comparisons of activation functions on 20-Newsgroups
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(i.e. center and width), so it is rather difficult to tune the two parameters. Figure 11
shows a parameter tuned result on WebKB (dimensionality = 110), where μ means
the center, ς controls the width, and other parameters were fixed as mentioned
above. From the figure, we can see that the two parameters are both important for
the accuracy when the “radial” function is utilized.

On the other hand, Sigmoidal activation function has only one parameter to tune.
Figure 12 gives its parameter tuned result on WebKB (dimensionality = 110), where
α control the shape of the function, and other parameters were fixed as mentioned
above. It shows that the more simple tuned way might obtain comparable accuracy.

Figure 12 A parameter tuned
result while using “sigmoid”
function
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More similar results can be observed when the dimensionality was set to other
values or other datasets were used. Thus, an experimental suggestion is that the
Sigmoidal function should also be considered as a choice as activation function in
text categorization. Of course, different data distribution needs different nonlinear
transformation, the choice of activation functions is still an open problem. The reader
may refer to [28] for localized generalization error analysis of architecture selection.

5 Conclusions

This paper proposes a collaborative work method for fast text categorization. With a
modified non-negative matrix factorization algorithm, two transformation matrices
are obtained, one is to map documents from the high dimensional term space into a
low dimensional semantic subspace, the other is to map documents from the semantic
subspace into the class space. Based on these transformations, a linear classifier is
constructed, which has a very low time complexity. After that, most documents are
classified via the linear classifier, only a few of documents are classified via ELM
according to some given criteria. Extensive experimental results have shown that the
proposed approach achieves a good tradeoff between the accuracy and classification
speed. Especially, the collaborative work method obtains the best performance in
some cases, which implies some advantages about the combination of linear and
nonlinear transformations for classification.

For further study, we are trying to analyze the localized generalization error bound
of ELM and focus on the comparison of the prediction accuracy between ELM and
rule-based systems together with their refinements.
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