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Abstract Most recently, uncertain graph data begin attracting significant interests
of database research community, because uncertainty is the intrinsic property of
the real-world and data are more suitable to be modeled as graphs in numbers of
applications, e.g. social network analysis, PPI networks in biology, and road network
monitoring. Meanwhile, as one of the basic query operators, aggregate nearest
neighbor (ANN) query retrieves a data entity whose aggregate distance, e.g. sum,
max, to the given query data entities is smaller than those of other data entities in a
database. ANN query on both certain graph data and high dimensional data has been
well studied by previous work. However, existing ANN query processing approaches
cannot handle the situation of uncertain graphs, because topological structures of
an uncertain graph may vary in different possible worlds. Motivated by this, we
propose the aggregate nearest neighbor query in uncertain graphs (UG-ANN) in
this paper. First of all, we give the formal definition of UG-ANN query and the basic
UG-ANN query algorithm. After that, to improve the efficiency of UG-ANN query
processing, we develop two kinds of pruning approaches, i.e. structural pruning and
instance pruning. The structural pruning takes advantages the monotonicity of the
aggregate distance to derive the upper and lower bounds of the aggregate distance
for reducing the graph size. Whereas, the instance pruning decreases the number of
possible worlds to be checked in the searching tree. Comprehensive experimental
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results on real-world data sets demonstrate that the proposed method significantly
improves the efficiency of the UG-ANN query processing.

Keywords Uncertain graph ·Aggregate nearest neighbor ·Query processing

1 Introduction

Aggregate nearest neighbor (ANN) query [15, 17, 22] is one of the most useful
operators for analyzing networks and graph data, e.g. social networks [19], traffic
networks [22], and biology networks [2]. ANN query aims to find a data point whose
aggregate distance to a set of query points is minimum. Formally, given a data set S, a
query Q ⊆ S and a distance metric d(·, ·), the ANN query retrieves a data point p ∈ S
such that ∀p′ ∈ S \ {p}, fq∈Qd(p, q) ≤ fq∈Qd(p′, q) holds, where f is an aggregate
function, e.g., max, sum [17]. ANN query has proved itself useful in numbers of
real-world applications. Take the social network as an example, vertices represent
people and edges describe the familiarity between two persons. Given a community
composed of several persons in the social network, we want to find the leader/center
of the community. Using all people in a community as the query, ANN query gets
the person whose (sum) distances to all members in the community are minimum.
And the person may be the leader of the community.

Another typical scenario is the multi-example image query [25] in the content-
based image retrieval (CBIR) system. If a user wants to retrieve an image related
to the concept of sunset, a common solution adapts the query-by-example style. In
detail, the user is demanded to give several photos about sunset as the query. The
multi-example image query gets the image which minimizes the sum of distances to
all query images in the image collection.

Most recently, research in uncertain graphs [19, 23, 26] is becoming popular,
because (1) uncertainty is the intrinsic property of real-world data, which is usually
generated by measurement error, periodical sampling [18] and data transmission
delay [6] etc; (2) data in numbers of applications are preferred to be modeled as
graphs, e.g. social network [3, 19], traffic network [5, 11, 22] and protein-protein

Figure 1 Aggregate nearest neighbor query on a undirected, weighted graph G. p0 ∼ p5 are vertices
of G. The weight of each edge is represented by a series of possible values with probabilities
(in form of value[probability]). Especially, weight = ∞ indicates the edge will be absent sometimes.
The default aggregate function is max. Vertices p2 and p3 are selected as the ANN query vertices
(drawn with solid circle)
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interactions (PPI) network [2]. Take the scenario of anti-pirate missions as a concrete
example. The nautical charts can be modeled as an uncertain graph as shown in
Figure 1. Locations such as anchorages and harbors are vertices (p0 ∼ p5) and sea
lanes connecting locations are represented as edges (e0 ∼ e8). The edge weight wi

reveals the time cost of traveling through the sea lane ei. Usually, variances on
weather condition and sea condition make the time costs uncertain. We classify this
kind of uncertainty as weight uncertainty in which the weighted value associated with
an edge is non-deterministic. Weight uncertainty affects distances among vertices,
but cannot change the topological structure of a graph. To describe the weight
uncertainty, we model the weight of an edge as a random variable, rather than
a single value. For example, we can have the prior knowledge that the weight of
edge e0 is 2.5 with probability 0.2 or 3.0 with probability 0.8 in the uncertain graph
shown in Figure 1.1 Notice that some sea lanes may be closed or not available
sometimes because of extreme weather events. Accordingly, the corresponding edge
in an uncertain graph will be absent with a certain probability, which we call edge
existence uncertainty. Considering this kind of uncertainty, we use the notion wi = ∞
to describe the random event of edge ei being absent. For instance, one of the weight
values of the edge e5 is ∞ with probability 0.1 in Figure 1. In other words, there is no
edge between vertices p1 and p4 with probability 0.1.

Another motivating example is that a couple of friends who live in different places
in a city want to get together for a meeting. In this case, the road network can be
modeled as an uncertain graph where the vertexes are places in the city and edges
denote the roads connecting different places. The weight on each edge is the time cost
estimated by the current traffic condition and the historical date. The estimated time
cost may not be accurate and can be modeled as a random variable. In general, the
uncertain graph model is an effective tool to describe highly dynamic networks (e.g.
Web and social networks [14]) whose links between vertices change rapidly over time.

The two sources of uncertainty (i.e. weight and edge existence uncertainty)
challenge the traditional ANN query processing approaches on both practicality and
effectiveness. To explain the influence of uncertainty on ANN query, let us go back
to the anti-pirate example. In the escorting mission, a warship always escorts several
merchantmen or tankers simultaneously. And the escorted ships may be located in
different locations, e.g. p2 and p3 in Figure 1. In order to protect merchantmen and
tankers against being hijacked, the warship prefers to move to a location where it can
rush to any escorted ship as soon as possible. The selection of mooring location is a
typical application of ANN query. However, the traditional ANN definition cannot
apply to the uncertain graph directly, because the uncertainty on graph structure
leads to a variation on ANN result as shown in Example 1.

Example 1 As shown in Figure 2, I0
G and I1

G are two certain graphs derived from the
uncertain graph G given in Figure 1. Weights of all edges are determined and labeled
on edges. Suppose the query vertices are Q = {q0, q1} = {p2, p3}. We use the shortest

1Following the previous work [1, 10, 12, 20, 21, 24], we only discuss the discrete random variants
(DRV) case in this paper because of the following reasons: (1) The probability density function
(PDF) of real-world data can hardly be captured accurately; (2) The real-world uncertain data do
not always follow any existence probability distributions, e.g. Gaussian distribution. (3) Sampling
is often utilized to obtain the distribution of random data in reality, which discretizes continuous
random variables.
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Figure 2 Two certain graphs (I0
G and I1

G) derived from the uncertain graph G. The aggregate function
is max. Taking {p2, p3} as the query set Q, the ANN vertex in each certain graph is drwan with dashed
circle

path distance between two vertices as the distance and the aggregate function is max.
In I0

G , the aggregate distance between p0 and Q (max{1.7, 2.0} = 2.0) is smaller than
the aggregate distances of other vertices. Therefore, the ANN result is p0 (drawn
with dashed circle). In I1

G , the weights of e2 and e8 changes to 2.2 and 2.5, respectively.
Thus, the ANN query on I1

G retrieves p1, because the aggregate distance between p1

and Q (max{1.8, 2.1} = 2.1) is the smallest one in those of all vertices.

The above example illustrates the uncertainty of the ANN results caused by the
weight uncertainty in a graph. Previous work on ANN query processing, which
handle certain graphs [22], certain multi-dimensional data [17] and uncertain multi-
dimensional data [13], cannot work on uncertain graphs directly. This situation
motivates us to exploit the semantics of aggregate nearest neighbor query in uncertain
graphs (UG-ANN) and the corresponding query processing approach for answering
the UG-ANN efficiently.

Contribution We focus on the aggregate nearest neighbor query in uncertain graphs
in this paper. To the best of our knowledge, this is the first work addressing the
aggregate nearest neighbor query in uncertain graphs. The primary contributions of
this paper are summarized as follows.

– We formalize the problem of aggregate nearest neighbor query in uncertain
graphs and propose a novel aggregate nearest neighbor query, i.e. Most-
Prob ug-ann, and its two variants, i.e. Top-k ug-ann and Threshold ug-ann
(Section 2).

– We propose a basic UG-ANN query framework which enables pruning methods
to improve the efficiency of query processing (Section 3.1).

– We develop a structural pruning method, removing vertices and edges which
are not involved in the UG-ANN query from the original uncertain graph
(Section 3.2). The efficiency of UG-ANN query is benefited from the reduction
of graph size.

– We present an instance pruning method which decreases the number of instances
in the searching tree (Section 3.3).
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– We conduct comprehensive experiments on real datasets. Experimental results
show the optimized query algorithms with pruning methods significantly improve
the efficiency of UG-ANN query processing (Section 4).

Organization The rest of this paper is organized as follows. We give some basic
concepts and formalize the problem of aggregate nearest neighbor query in uncertain
graphs in Section 2. In Section 3, we propose the UG-ANN query processing
approaches, including the brute-force algorithm and the structural and instance
pruning methods. Experimental results are discussed in Section 4. We review the
related work in Section 5. Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we give some concepts and definitions concerning about the uncertain
graph. Firstly, we propose a novel uncertain graph model which is able to reveal both
weight uncertainty and edge existence uncertainty. Secondly, the concept of uncer-
tain graph instance is given to bridge the gap between uncertain and certain graphs.
Thirdly, we discuss the distance metrics in uncertain graph instances, i.e. shortest path
distance and aggregate path distance. Finally, we formalize the problem of aggregate
nearest neighbor query in uncertain graphs.

2.1 Uncertain graph

Uncertain graph model The uncertain graph, denoted as G, considered in this paper
is an undirected, weighted graph, which is defined as a 3-tuple,

G := (V, E, �) , (1)

where V is the set of vertices, V = {v1, v2, . . . , vn}, |V| = n. E is the set of edges,
E = {e1, e2, . . . , em}, |E| = m. � is the function mapping an edge to a random
variable, � : E → RVc, where RVc is the set of random variables. For convenience,
�(ei) is also denoted as ωi. The notation ωi = x j (x j ∈ R and j = 1, 2, . . . , s) denotes
the weight of edge ei equals to x j, reflecting the weight uncertainty. To describe the
existence uncertainty of edges, we use the notion ωi = ∞ to represent the random
event that edge ei is absent.

An uncertain graph can derive a series of certain graphs, or we call possible
instances of uncertain graph, by determining weights on all edges. Please note that the
possible instance of uncertain graph we used in this paper is the same as the possible
world [7].

Possible instance of uncertain graph Given an uncertain graph G(V, E, �), a
possible instance of uncertain graph (or instance for short), denoted as IG , is defined
as a 3-tuple,

IG := (V, E, W) , (2)

where V, E are the same as those of uncertain graphs. W is the weight function,
W : E → R. For simplicity, W(ei) is also denoted as wi. I} ∈ G represents the instance
IG is derived from the uncertain graph G.
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For each instance IG ∈ G, there is an existence probability associated with IG . We
use the notion ∃ IG to refer to the event that IG exists among all instances derived from
G. Therefore, Pr(∃ IG) denotes the existence probability of IG , Pr(∃ IG) ∈ [0, 1]. For
convenience, we also use Pr(IG) to represent the existence probability of IG in the
rest of this paper. The existence probability of IG is calculated as

Pr(IG) =
|E|∏

i=1

Pr(ωi = wi) , (3)

where ωi = wi represents the random event that the weight of ei equals wi. We can
enumerate all instances if the weight of edge is a discrete random variable. Suppose
I1
G, I2

G, . . . , Ic
G represent all instances derived from G, where c is the number of

instances derived from G. Therefore,
∑c

i=1 Pr(Ii
G) = 1 holds.

Distance metric We can adopt the well-established definition of shortest path dis-
tance [22] and aggregate distance [17] in instances derived from an uncertain graph,
because these instances are certain graphs.

Given two vertices vi and v j in an instance IG , if there exists a path connecting
vi and v j, the length of the path is calculated by summing up all weighted values of
edges on the path. The shortest path, denoted as vi � v j, is the path whose length is
minimum in all paths between vi and v j. Furthermore, we use Evi�v j(IG) to denote
the set of edges on vi � v j in IG . Then, the shortest path distance between vi and v j

in an instance (IG) is defined as the length of the shortest path between vi and v j,
denoted as dvi�v j(IG). Especially, dvi�v j(IG) = ∞, if there is no path connecting vi

and v j in IG .

Definition 1 (Aggregate path distance) Given an instance IG ∈ G, a set of query
vertices Q ⊆ V and a vertex v ∈ V, the aggregate path distance of v, denoted as
dα(v, Q, IG), is defined as the aggregation (e.g. sum, max, min2) of the shortest path
distances between v and all vertices in Q. Formally,

dα(v, Q, IG) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
q∈Q

dv�q(IG) (sum) ,

max
q∈Q

dv�q(IG) (max) ,

min
q∈Q

dv�q(IG) (min) .

(4)

Specifically, dα(v, Q, IG) = ∞ with the aggregation function max or sum iff ∃q ∈ Q
such that there does not exist a path from v to q in IG . On the contrary, the aggregate
distance is always 0 when the aggregate function is min.

Each edge on the shortest paths from a vertex v to the query Q in IG is called an
on-path edge in IG . We use Eα

v (IG, Q) to denote the set of all on-path edges from v

to Q in IG , i.e. Eα
v (IG, Q) = ⋃

q∈Q Ev�q(IG).

2We do not detail the ANN query processing with the aggregate function min in this
paper, because any query vertex q ∈ Q is trivially an ANN vertex with the aggregate
distance dα(q, Q, IG) = 0.
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Example 2 Consider I0
G (ref. to Figure 2) in Example 1. The shortest path from

p4 to p3 is e5e4, Ep4�p3(I0
G) = {e4, e5} and dp4�p3(I0

G) = 1.8 + 1.8 = 3.6. Taking
{p2, p3} as query vertices Q, the aggregate path distance (max) from p4 to Q is
dα(p4, Q, I0

G) = max {dp4�p2(I0
G), dp4�p3(I0

G)} = max{3.9, 3.6} = 3.9. Eα
p4

(I0
G, Q) =⋃

q∈{p2,p3} Ep4�q(I0
G) = {e3, e5} ⋃ {e4, e5} = {e3, e4, e5}.

2.2 Problem definition

In this subsection, we formalize the problem of UG-ANN and give a practical
form of the UG-ANN query. First of all, based on the uncertain graph model and
the aggregate path distance, we introduce the aggregate nearest neighbor query to
instances.

Definition 2 (ANN in certain graph) Given an uncertain graph G, an instance IG ∈ G,
a set of query vertices Q ⊆ V, the vertex v ∈ V is defined as the aggregate nearest
neighbor (ANN) w.r.t. Q in IG iff ∀v′ ∈ V \ {v}, dα(v, Q, IG) ≤ dα(v′, Q, IG).

The set of all aggregate nearest neighbor vertices w.r.t. Q in IG is de-
noted as ANN(IG, Q). Formally, ANN(IG, Q) := {v | ∀v′ ∈ V \ {v}, dα(v, Q, IG) ≤
dα(v′, Q, IG)}.

The ANN results may vary w.r.t. the same query Q in different instances derived
from G, as shown in Example 1. For a vertex v which is the ANN vertex in IG , it has
a chance to be selected as an ANN vertex in G. In other words, the probability of v

being an ANN vertex in G is greater than 0. Therefore, we define a vertex v as the
ANN in uncertain graph w.r.t. a query Q if v is the ANN vertex w.r.t. Q in at least
one instance derived from G.

Definition 3 (ANN in uncertain graph) Given an uncertain graph G, a set of query
vertices Q ⊆ V, a vertex v ∈ V is defined as the aggregate nearest neighbor in
uncertain graph (UG-ANN) w.r.t. Q in G iff ∃ IG ∈ G such that v ∈ ANN(IG, Q).

We use UG-ANN(G, Q) to denote the set of all UG-ANN w.r.t. Q in G. Formally,
UG-ANN(G, Q) := ⋃

IG∈G ANN(IG , Q). Consider G in Figure 1, we have {p0, p1} ⊆
UG-ANN(G, Q), because p0 ∈ ANN(I0

G, Q) and p1 ∈ ANN(I1
G, Q) as shown in

Example 1. The event “v is a UG-ANN vertex w.r.t. Q in G” is a probability
event, because the weights of edges are random variables. We use the notion v ∈
UG-ANN(G, Q) to represent the above event. The probability of v being a UG-ANN
vertex (or we call the ANN probability of v) is denoted as Pr(v ∈ UG-ANN(G, Q)).

Notice that, sometimes, the number of UG-ANN vertices is large and the ANN
probabilities of some UG-ANN vertices may be very low. However, users may be
more interested in or have to choose one vertex as the result in some scenarios. The
vertex is expected to have the largest ANN probability. Therefore, we propose the
Most-Prob UG-ANN query.

Definition 4 (Most-Prob UG-ANN) Given an uncertain graph G, a set of query
vertices Q ⊆ V, the Most-Probability UG-ANN query, denoted as Most-Prob UG-
ANN, finds the vertex v ∈ V with the largest ANN probability.
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Calculation of ANN probabilities is different according to the types of random
variables we used to model edge weights in uncertain graph, i.e. continuous random
variable (CRV) and discrete random variable (DRV).

In the DRV case, the ANN probability of v is calculated as the sum of the
existence probabilities of instances in which v is the ANN vertex. Formally,

Pr(v � UG-ANN(G, Q)) =
c∑

i=1

(Pr(Ii
G) | v ∈ ANN(Ii

G, Q)) , (5)

where c is the number of instances derived from G. The following example illustrates
how the Most-Prob UG-ANN query works.

Example 3 Consider the uncertain graph G shown in Figure 1. Query vertices
Q = {p2, p3} and the aggregate function is max. After enumerating all instances
derived from G and accumulating the probabilities of ANN vertices, we get the ANN
probabilities of all vertices in G as shown in Table 1. Pr(p1 � UG-ANN(G, Q)) =
0.65 and Pr(p0 � UG-ANN(G, Q)) = 0.35. Therefore, the result of Most-Prob UG-
ANN query w.r.t. Q in G is p1.

2.3 Variants of UG-ANN queries

Except for the Most-Prob UG-ANN query, we propose two variants of UG-ANN
queries, i.e. top-k UG-ANN query and threshold UG-ANN query, to meet the need
of real-world applications. Please note that the algorithms proposed in this paper can
answer all of the above UG-ANN queries and we just give the version of algorithms
processing the Most-Prob UG-ANN query.

Definition 5 (Top-k UG-ANN) Given an uncertain graph G, a set of query vertices
Q ⊆ V and a user preferred integer k, the top-k UG-ANN query, denoted as k-
UG-ANN, finds k vertices {vs1 , vs2 , . . . , vsk} ⊆ V with the largest ANN probabilities,
0 ≤ s1, s2, . . . , sk < |V|.

The set of all top-k UG-ANN vertices is represented by k-UG-ANN(G, Q).
Formally, ∀v′ ∈ V\ k-UG-ANN(G, Q) and ∀v ∈ k-UG-ANN(G, Q), Pr(v �
UG-ANN(G)) ≥ Pr(v′ � UG-ANN(G)). The following example illustrates the top-
k UG-ANN query on an uncertain graph with k = 2.

Example 4 Consider the uncertain graph G shown in Figure 1. p2 and p3 are selected
as query vertices and the aggregate function is max. After enumerating all instances
derived from G and accumulating the probabilities of ANN vertices, we get the
ANN probabilities of all vertices in G as shown in Table 1. Top-k UG-ANN query
retrieves k vertices which have the largest ANN probability. In this case of k = 2, p0

Table 1 ANN probabilities of vertices in G (ref. to Figure 1)

Vertex p0 p1 p2 p3 p4 p5 p6 p7 p8

ANN prob. 0.35 0.65 0 0 0 0 0 0 0
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and p1 have the largest ANN probabilities. Specifically, Pr(p1 � UG-ANN(G, Q)) =
0.65 and Pr(p0 � UG-ANN(G, Q)) = 0.35. Therefore, the result of top-2 UG-ANN
query w.r.t. Q in G is {p0, p1}.

An alternative ANN query requirement is that the user wants to get the ANN
vertices with a preferred confidence. Thus, we develop the threshold UG-ANN query
to enable user to assign a probability threshold for ANN query.

Definition 6 (Threshold UG-ANN) Given an uncertain graph G, a set of query
vertices Q ⊆ V and a user preferred threshold ε ( 0 < ε ≤ 1), the threshold UG-
ANN query, denoted as ε-UG-ANN, finds all vertices v ∈ Q whose ANN probability
is larger than or equal to ε. Formally,

ε-UG-ANN(G, Q) := {v | Pr(v � UG-ANN(G, Q)) ≥ ε} . (6)

Again, we use the uncertain graph G shown in Figure 1 to illustrate the probabilis-
tic threshold UG-ANN query.

Example 5 Consider the uncertain graph G and query vertices Q depicted in
Figure 1. The aggregate function is max. The user preferred threshold ε = 0.5.
According to Table 1, ε-UG-ANN(G, Q) = {p1}, because Pr(p1 � UG-ANN(G,
Q)) = 0.65 > 0.5.

3 UG-ANN query processing

In this section, we present the UG-ANN query processing algorithms. First of all,
the brute-force algorithm for UG-ANN query, called BF-UG-ANN, is given. After
that, a structural pruning algorithm is proposed to reduce the computational costs
of enumerating uncertain graph instances. Besides, a UG-ANN candidate filtering is
used during the structural pruning. Finally, an instance pruning algorithm is proposed
to remove instances in which ANN queries are not necessary to be executed. Table 2
summarizes the frequent used notations in the remainder of this paper.

Table 2 Frequent used notations

Symbol Description

G The uncertain graph
IG A possible instance of uncertain graph G
ωi The random variable representing the weight of ei in G
wi The deterministic weight of ei in IG
ANN(IG , Q) The set of ANN vertices in IG w.r.t. the query Q
UG-ANN(G, Q) The set of UG-ANN vertices w.r.t. Q in G
Imin
G , Imax

G The min-weighted (max-weighted) instance
Dα

min, Dα
max The minimal (maximal) aggregate distance

v � u The shortest path from vertex v to vertex u
dv�u(IG) The shortest path distance between v and u in IG
dα(v, Q, IG) The aggregate distance from v to Q in IG
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3.1 Brute-force algorithm

A brute-force approach (called BF-UG-ANN) of processing the UG-ANN query is
to enumerate all instances derived from an uncertain graph G. For each instance IG ,
we find the ANN vertices vANN , calculate the existence probability Pr(IG) according
to (5), and add the existence probability to the ANN probabilities of vANN . Detailed
steps of the BF-UG-ANN algorithm are given in Algorithm 1.

Algorithm 1 BF-UG-ANN(G, Q)

Firstly, the ANN probabilities of all vertices in G are set to 0 (line 1 in
Algorithm 1). And then, all instances derived from G are enumerated to calculate the
ANN vertex and the ANN probability (line 2–7). In detail, for each instance IG , the
existence probability Pr(IG) is calculated according to (3) (line 3). And the Dijkstra’s
algorithm [8] based ANN query approach is utilized for searching the ANN vertex,
say v (line 5). We then increase the ANN probability of v by Pr(IG) (line 7). Finally,
the probability of all vertices is obtained and we can get the vertex with the largest
ANN probability (line 8).

The computational cost of the BF-UG-ANN algorithm is expensive, because
all instances derived from G have to be enumerated. Specifically, the number of
instances is O(S|E|), where S is the maximal number of distinct weight values on
an edge. For each instance, it takes O(|V|2 lg |V| + |V| · |E|) time to find the ANN
vertex, if the Fibonacci heap [9] is used for computing the aggregation distance.
Therefore, the time complexity of the BF-UG-ANN algorithm is O(S|E|(|V|2 lg |V| +
|V| · |E|)).

3.2 Structural pruning

3.2.1 Subgraph extraction

The high time cost of BF-UG-ANN is caused by instance enumeration. The num-
ber of instances increases exponentially with the number of edges. To improve
the efficiency of UG-ANN query processing, an effective optimization method is
subgraph extraction, i.e. removing edges and vertices which are far from the query
vertices.

The first problem is to decide whether removing a vertex or an edge will affect
the UG-ANN query result. Assume the uncertain graph G ′ is generated by removing
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a vertex v (or an edge e) from an uncertain graph G. If the UG-ANN vertices and
their ANN probabilities in G are the same as those in G ′, the query result cannot be
affected and the vertex/edge pruning operation is safe. Notice that the paths from the
ANN vertex to each query vertex construct a tree which we call an ANN path tree.
The root of the ANN path tree is the ANN vertex in the instance. A vertex (or an
edge) will not affect the UG-ANN query result if it is not in any ANN path trees of
an instance. In other words, given an uncertain graph G and a set of query vertices
Q, we can remove a vertex v (or an edge e) from G without affecting the UG-ANN
query result if �I ∈ G such that v (or e) is in the ANN path tree of I.

The above rule provides a solution of pruning vertices and edges. However, given
a vertex v or an edge e, it is still difficult to determine whether we can remove it
safely without enumerating all instances derived from G. Fortunately, some criteria
are helpful to identify some edges and vertices which can be removed safely. First of
all, we introduce some lemmas to help pave the way for addressing the vertex and
edge pruning criteria.

Lemma 1 (Monotonicity of aggregate distance) Given an uncertain graph G and
an instance IG ∈ G, I′G is an instance generated from IG by removing one edge or
increasing the weight value of one edge. The aggregate distance of the vertex v in IG is
not greater than that of I′G . Formally, dα(v, Q, IG) ≤ dα(v, Q, I′G).

Proof If a vertex v is not connected with all query vertices in the instance IG , it
cannot reach the query vertex in the instance I′G . Thus, dα(v, Q, IG) = dα(v, Q, I′G) =
∞. Otherwise, there exist paths between vertex v and each query vertex q ∈ Q. For
an edge e ∈ E in IG , there are two conditions: (i) e is not on the aggregate path, and
(ii) e is on the paths between v and Q.

In case (i), removing e or increasing the weight of e will not affect the aggregate
path from v to Q. Thus, we have dα(v, Q, IG) = dα(v, Q, I′G).

In case (ii), if I′G is obtained by removing edge e from IG , the original aggregate
path will disconnect. Without loss of generality, we assume e is on the shortest path
between v and the query vertex q ∈ Q, denoted as v � q, in IG . In I′G , there are two
relations between v and q, i.e., (ii-a) v and q are disconnected and (ii-b) there is a
path between v and q.

– In case (ii-a), the new aggregate distance of v is dα(v, Q, I′G) = ∞, thus
dα(v, Q, IG) < dα(v, Q, I′G).

– In case (ii-b), the shortest path between v and q in I′G is present in IG . The
inequity dv�q(IG) ≤ dv�q(I′G) holds, otherwise v � q is not the shortest path
in IG .

As all cases mentioned above, the lemma is immediate. 
�

Lemma 1 reveals the fact that, for a vertex v, the aggregate distance between v and
the query vertices increases monotonically when the edge weight in the uncertain
graph increases.

Among all instances derived from G, an instance is called a min-weighted instance,
denoted as Imin

G , if the weight of each edge e is the minimum among all possible values.
Formally, ∀IG(V, E, W) �= Imin

G (V, E, W ′) and ∀ei ∈ E, w′
i ≤ wi holds. Similarly, an
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instance is called max-weighted instance, denoted as Imax
G , if the weight of each edge

e is the maximum among all possible values. Figure 3 illustrates the min-weighted
instance and max-weighted instance derived from G. For a vertex v, the aggregate
distances between v and Q in all instances can be bounded by the aggregate distances
in the min-weighted instance and the max-weighted instance.

Lemma 2 For each vertex v, the aggregate distance w.r.t. Q in any instance IG , denoted
as dα(v, Q, IG), is bounded by the minimum aggregate distance dα(v, Q, Imin

G ) and the
maximum aggregate distance dα(v, Q, Imax

G ). Formally,

dα(v, Q, Imin
G ) ≤ dα(v, Q, IG) ≤ dα(v, Q, Imax

G ) . (7)

The aggregate distances of the ANN vertex in Imin
G and Imax

G are denoted as the
minimal ANN distance (Dα

min) and maximal ANN distance (Dα
max) respectively. We

have the following lemma.

Lemma 3 Given an instance IG ∈ G and a set of query vertices Q, the aggregate
distance of the ANN vertex vANN w.r.t. Q is bounded by Dα

min and Dα
max. Formally,

Dα
min ≤ dα(vANN, Q, IG) ≤ Dα

max . (8)

Based on the above lemmas, we can obtain the criteria for identifying removable
vertices and edges.

Figure 3 An example of min-weighted instance (top left) and max-weighted instance (top right). The
aggregate function is max and aggregate distances between each vertex and query vertices {p2, p3}
(drawn with solid circle) are listed in the table (bottom). The maximal ANN distance Dα

max is 2.1
(marked with asterisk)
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Theorem 1 Given an uncertain graph G and a query vertex set Q ⊆ V, a vertex v ∈ V
can be removed safely if ∃ q ∈ Q such that the shortest path distance from v to q in Imin

G
is larger than Dα

max, i.e., dv�q(Imin
G ) > Dα

max.

Proof We prove the theorem by contradiction. Assume a vertex v cannot be re-
moved safely and ∃ q ∈ Q such that dv�q(Imin

G ) > Dα
max. Therefore, ∃ IG ∈ G such that

v is on the ANN path in IG . The ANN vertex in IG is denoted as v′. And ∃ q ∈ Q such
that v is on the shortest path from v′ to q, which indicates that dv′�q(IG) ≥ dv�q(IG)

holds. Thus, we have dv′�q(IG) ≥ dv�q(IG) ≥ dv�q(Imin
G ) > Dα

max. According to the
definition of aggregate distance, dα(v′, Q, IG) = maxq′∈Q(dv′�q′(IG)) ≥ dv′�q(IG). So
dα(v′, Q, IG) > Dα

max and vertex v′ is not an ANN vertex in IG (Lemma 3), which is
contradict to the assumption. 
�

Corollary 1 An edge e ∈ E can be removed safely if at least one of its adjacent vertices
can be removed safely.

Example 6 illustrates how to prune vertices and edges based on Theorem 1 and
Corollary 1.

Example 6 Consider the uncertain graph G in Figure 1. The min-weighted instance
Imin
G and the max-weighted instance Imax

G are shown in Figure 3. And we get the
maximum ANN distance Dα

max = 2.1. After that, we calculate the shortest path
distances between query vertices and all vertices as illustrated in Figure 4. For p0 ∼
p2, the shortest path distances to query vertex p2 are 1.7, 1.9 and 0, which are smaller
than Dα

max. Thus, p0 ∼ p2 cannot be pruned. Besides, we are not able to prune p3

because dp3�p3 = 0 < Dα
max. p4 can be pruned safely because dp4�p2 = 3.7 > Dα

max
and dp4�p3 = 3.3 > Dα

max. Similar to p4, p5 should also be pruned. After removing

Figure 4 An example of structural pruning. The set of query vertices Q = {p2, p3} (drawn with solid
circle) and the aggregation function is max
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p4, p5 and their adjacent edges (i.e. e5 ∼ e8), we get the subgraph G ′ as shown in
Figure 4.

3.2.2 UG-ANN candidate filtering

Not all vertices in the subgraph are possible to be the ANN vertex in an instance.
Because a vertex may be on the ANN path in some instances but is not an ANN
vertex in any instance. Therefore, the computational costs of examining whether
those vertices are ANN should be reduced. For example, in Figure 4, p2 and p3 in
subgraph G ′ are not ANN vertices in any instance according to the ANN probabilities
shown in Table 1, i.e., p2 and p3 are definitely not UG-ANN vertices. The following
theorem is proposed for identifying candidates of UG-ANN vertices.

Theorem 2 Given an uncertain graph G and a set of query vertices Q, a vertex v ∈ V
cannot be the UG-ANN vertex (i.e. Pr(v ∈ UG-ANN(Q,G)) = 0) if dα(v, Q, Imin

G ) >

Dα
max.

Proof With the Lemma 3, this theorem is immediate. 
�

The above theorem requires for the exact aggregate distance of each vertex. For
roughly pruning vertices which are not able to be UG-ANN, the following corollary
is more practical.

Corollary 2 Given a vertex v ∈ V in an uncertain graph G and suppose q ∈ Q is the
nearest query vertex to v. The vertex v cannot be the UG-ANN vertex in any instance
(i.e. Pr(v ∈ UG-ANN(Q,G)) = 0) if

{
dv�q(IG) > Dα

max, the aggregate function is max

dv�q(IG) >
Dα

max
|Q| , the aggregate function is sum

Example 7 After structural pruning in Example 6, the pruned uncertain graph G ′
consists of 4 vertices, i.e. p0 ∼ p3, (ref. to Figure 4). As illustrated in Figure 3, the
minimal aggregate distances of p0 ∼ p3 are 2.0, 1.9, 3.4, 3.4 respectively. Therefore,
we conclude that p2 and p3 cannot be ANN vertices in any instance according to
Theorem 2. Because dα(p2, Q, Imin

G ) = 3.4 > Dα
max and dα(p3, Q, Imin

G ) = 3.4 > Dα
max.

Now the UG-ANN candidate set is {p0, p1}. We only need to check the aggregation
distances of p0 and p1 for finding the ANN vertex in all instances.

3.2.3 Structural pruning algorithm

Based on the above discussion, we propose the structural pruning algorithm,
called Stru-Prun, which achieves both subgraph extraction and UG-ANN candidate
f iltering simultaneously. Inputs of the Stru-Prun algorithm are the uncertain graph
G and the set of query vertices Q. Stru-Prun is based on the Dijkstra’s algorithm [8],
but it follows a concurrent expansion style. Detailed steps of the structural pruning
algorithm is depicted in Algorithm 2.

Initially, we construct Imax
G and execute the ANN query on it to find the ANN

vertex v with the maximal ANN distance Dα
max (line 1–3 in Algorithm 2). We then

construct Imin
G from G and create a priority queue S of vertices w.r.t. the shortest path



World Wide Web (2014) 17:161–188 175

Algorithm 2 Stru-Prun(G, Q)

distance (line 4–5). The key of vertex v in S represents the shortest path distance from
v to the query vertex q which has the shortest distance from v in all query vertices.
The vertex with the smallest key is in front of S and should be popped first. S is
initialized as empty. We push all query vertices to S with key 0 and other vertices
with key ∞ (line 6–7). Besides, we create two vertices sets Vs and Vc to record
vertices preserved in the subgraph and the candidate UG-ANN vertices respectively
(line 8–9).

The expansion procedure from the query vertices is then invoked, which follows
the style of the Dijkstra’s algorithm (line 10–18). In detail, the vertex v with the
minimal key is popped from S in each iteration (line 11). If the key of v is larger
than Dα

max, both v and the remaining vertices in S should be pruned according to
Theorem 1, and then the expansion is terminated (line 12). Otherwise, v is a vertex
in the subgraph, so v is added to Vs (line 13) and we further check whether v is a
UG-ANN candidate according to Corollary 2 (line 14–15). After that, we update the
keys of vertices adjacent to v as part of the standard Dijkstra’s algorithm (line 16–18).
Specifically, for each vertex v′ adjacent to v via edge e in Imin

G , the key of v′ is updated
to v.key + wi if v′.key > v.key + wi. If S �= ∅, the expansion continues by handling
the vertex in S with the minimal key.

After the iteration, we extract the induced subgraph [4] G ′ from G according to
the subgraph vertices Vs. The outputs of the Stru-Prun algorithm are the subgraph
G ′ and the set of UG-ANN candidates Vc.

Now we discuss the complexity analysis of the Stru-Prun algorithm. The ANN
query on IGmax (line 2 in Algorithm 2) takes O(|V|2lg|V| + |V||E|) time, and
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expansion (line 10–18) takes O(|V|lg|V| + |E|) because it adopts the expansion
similar with the Dijkstra’s algorithm. Therefore, the time complexity of Stru-Prun
is O(|V|2lg|V| + |V||E|).

3.3 Instance pruning

The structural pruning reduces the number of vertices and edges by extracting
a subgraph from the original uncertain graph. Thus, the efficiency of UG-ANN
query processing is improved. However, enumerating all instances derived from the
uncertain subgraph is still expensive. For example, the subgraph G ′ in Figure 4 is
composed of 5 edges (i.e. e0 ∼ e4). There are 2 possible weight values for each edge.
Therefore, the number of instances derived from G ′ is 25 = 32. In other words, we
have to execute ANN queries 32 times to get the UG-ANN query result. However,
we observe that we do not need to check and execute ANN queries on all instances.

3.3.1 Observation

Consider the instance Imin
G ′ ∈ G ′ after structural pruning in Figure 5. The de-

fault aggregate function is max. p1 is the ANN vertex in Imin
G ′ , dα(p0, Q, Imin

G ′ ) =
max{1.9, 1.5} = 1.9. The on-path edges from p0 to Q is Eα

p0
(Imin

G ′ , Q) = {e3, e4} (drawn

with dashed circle). The set of non-on-path edges is defined as Ẽα
p0

(Imin
G ′ , Q) =

E \ Eα
p0

(Imin
G ′ , Q) = {e0, e1, e2}. For instances which are derived by increasing weights

of non-on-path edges (i.e., I1
G ′ ∼ I3

G ′ , I6
G ′ ∼ I9

G ′ in Figure 5), the ANN result is always
p1. Theorem 3 states the invariant of ANN vertex in a group of instances.

Theorem 3 Given a set of query vertices Q and an instance IG(V, E, W), the ANN
vertex is p and the on-path edges from p to Q is Eα

p(IG, Q). The ANN vertex in I′G is
the same as that in IG , if I′G satisf ies all the following conditions:

(1) ∀ e′k ∈ Eα
p(IG, Q), w′′

k = wk;

(2) ∀ e′k ∈ Ẽα
p(IG, Q), w′′

k ≥ wk;

(3) ∃ e′j ∈ Ẽα
p(IG, Q), w′′

k > wk.

Figure 5 An example of
instance pruning. I1

G′ ∼ I3
G′ and

I6
G′ ∼ I9

G′ are derived from Imin
G′

by increasing weights on
non-on-path edges (e0, e1 and
e2). The ANN vertex of those
instances are the same as the
ANN vertices in Imin

G′ , i.e. p1
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Proof We prove this theorem by contradiction. Assume the vertices p is the ANN
vertex in IG w.r.t. Q and p is not the ANN vertex in I′G . There must exist a
vertex p′ �= p in G such that dα(p′, Q, I′G) < dα(p, Q, I′G). With Lemma 1, we have
dα(p, Q, IG) ≤ dα(p, Q, I′G). Thus, dα(pâĂŸ, Q, IG) < dα(p, Q, IG). In other words,
p is not the ANN vertex in IG which results in a contradiction. Hence the proof is
complete. 
�

Therefore, we need not execute ANN queries in these instances. Instead, we only
require to calculate the total existence probabilities of these instances (denoted as
PN(Q, Imin

G ′ )) and add PN(Q, Imin
G ′ ) to the ANN probability of p0. Calculation of the

total existence probability PN(Q, Imin
G ′ ) is shown as follows.

Given an instance IG ∈ G, we can find the ANN vertex v and the set of on-path
edges Eα

v (IG, Q). The total existence probability of instances derived from IG by
increasing weights of edges in Ẽα

v (IG, Q), denoted as PN(Q, IG), is calculated as

PN(Q, IG) = Pr(IG) · (1 − ∏
ei∈Ẽα

v (IG ,Q) Pr(ωi < wi))
∏

ei∈Ẽα
v (IG ,Q) Pr(ωi = wi)

− Pr(IG) , (9)

where wi is the weight value of ei in IG . Practically, we need to calculate the Pr(IG) +
PN(Q, IG) during the instance pruning and it can be achieved by calculating the first
item on the RHS of (9).

3.3.2 Instance pruning algorithm

The above observation motivates us to design an instance pruning algorithm, called
Inst-Prun. Inputs of the Inst-Prun algorithm are an uncertain graph G and a set of
query vertices Q. Detailed steps of the Inst-Prun algorithm are given as Algorithm 3.

To begin with, the ANN probability of each vertex in G is set to 0, and the min-
weighted instance Imin

G is constructed as the current instance IG for checking (line 1–2
in Algorithm 3).

We then check the instance IG and the instances which are derived by increasing
the edge weight recursively using the function Check-Instance. For the instance IG ,
we calculate the ANN vertex v, the on-path edges Eα

v (IG, Q) by the certain ANN
query (line 1 in Function Check-Instance). For edges which are on the shortest
paths, we calculate the total existence probability PN(Q, IG) according to (9) and add
PN(Q, IG) + Pr(IG) to the ANN probability of v (line 2–3). For each on-path edge
e, we increase the weight on e to the next value among all possible weight values
for constructing a new instance I′G (line 6–8). And we call Check-Instance on I′G
recursively to find ANN vertices in I′G and its descendants instances in the searching
tree (line 9).

After the recursive searching, we get ANN probability of each vertex and find the
vertex with the largest ANN probability (line 4 in Algorithm 3).

One instance may be checked redundantly, e.g., I6
G ′ can be derived from Imin

G ′ by
increasing e3 and then e4, or increasing e4 and then e3. Thus, we introduce a rule
during the instance enumeration as follows. For an instance IG which is derived
from another instance by increasing the weight on e, IG can only derive instances by
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Algorithm 3 Inst-Prun(G, Q)

increasing the on-path edge whose id is smaller than the id of e. Example 8 shows how
the Inst-Prun algorithm works.

Example 8 Recall the uncertain graph G ′ in Example 6. Figure 6 illustrates how the
Inst-Prun algorithm prunes instances and gets UG-ANN result. ANN probabilities
of all vertices are initiated as 0. The min-weighted instance Imin

G ′ is the root of
the searching tree. Pr(Imin

G ′ ) = 0.2 × 0.6 × 0.5 × 0.3 × 0.2 = 0.0036. p1 is the ANN
vertex in Imin

G ′ and Eα
p1

(Imin
G ′ , Q) = {e3, e4}. e0 ∼ e2 are not on the shortest paths,

then p1 is the ANN vertex of instances generated from Imin
G by increasing weights

of e0, e1, e2. According to (9), the total existence probability of those instances is

PN(Q, Imin
G ′ ) = Pr(Imin

G′ ) × (1−Pr(ω0<2.5)Pr(ω1<1.7)Pr(ω2<2.0))

Pr(ω0=2.5)Pr(ω1=1.7)Pr(ω2=2.0)
− Pr(IG ′) = 0.0036×(1−0×0×0)

0.2×0.6×0.5 −
Pr(IG ′) = 0.06 − Pr(IG ′). Pr(p1 ∈ UG-ANN(Q,G ′)) = PN(Q, Imin

G ′ ) + Pr(IG ′) =
0.06. There are two edges e3, e4 in Eα

p1
(Imin

G ′ , Q) and we can generate instances by
increasing weights of e3 and e4 respectively. By increasing weight of e3 to 2.1, we get
I1
G ′ with existence probability Pr(I1

G ′) = 0.0084 (ref. to Figure 6). The ANN query is
executed in I1

G ′ and p0 is the ANN vertex. The ANN probability of p0 is updated
to 0.0084. I1

G ′ can generate instances by increasing weights of e1 or e2, because
Eα

p0
(I1

G ′ , Q) = {e1, e2} and the ids of e1, e2 are smaller than e3. The search process goes
recursively until there is no valid edge to increase. Note that I5

G ′ only has one child
I6
G ′ in the searching tree in Figure 6. Because I5

G ′ is generated by increasing weight of
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Figure 6 An example of the Inst-Prun algorithm. For each instance, the ANN vertex is drawn with
dashed circle, query vertices are drawn with solid circle, the newly updated weight is marked with ↑,
and the on-path edges are emphasized with thick line

e4 and Eα
p1

(I5
G ′ , Q) = {e3, e4}. Therefore, only the weight of e3 can be increased in I5

G ′ .
According to the searching tree illustrated in Figure 6, the total number of instances
where ANN queries should be executed after instance pruning is 10. Compared with
the 32 instances, Inst-Prun reduces the number of instances significantly.

3.4 The complete UG-ANN algorithm

Algorithm 4 shows the complete UG-ANN algorithm with structural pruning and
instance pruning. The structural pruning method (Stru-Prun) reduces the size of G,
obtaining the query related subgraph G ′ and the set of UG-ANN candidate vertices
Vs (line 1). The instance pruning method (Inst-Prun) is then used to check the
instances in the searching tree while skipping the instances with the same UG-ANN
vertices (line 2). After the instance pruning, the ANN probabilities of each vertex
in G ′ are calculated and we can return the vertices which meet the need of different
query types, i.e. Most-Prob UG-ANN query, Top-k UG-ANN query and Threshold-
ε UG-ANN query (line 3–9).

4 Experimental evaluation

We evaluated the performance of the proposed pruning approaches for the UG-
ANN query via extensive experiments. All experiments were conducted on a PC with
Intelő Core 2 Duo T9400 CPU 2.53GHz processors, 4GB RAM, 160GB hard disk,



180 World Wide Web (2014) 17:161–188

Algorithm 4 Prun-UG-ANN(G, Q)

Table 3 Data sets of
real-world road networks

Name City |V| |E| |E|/|V|
SF San Francisco 174,956 223,000 1.275
CA California 21,048 29,693 1.411
NA North America 175,813 179,179 1.019

running Microsoft Windows Server 2003 32-bits version. Experimental programs
were implemented in C# and executed on Microsoft .Net framework 3.5 platform.

We used the US road network datasets3 to generate the uncertain graphs for
evaluation due to the lack of standard uncertain graph benchmarks with both weight
uncertainty and edge existence uncertainty. As shown in Table 3, the datasets are
composed of three road networks of cities or regions, i.e. San Francisco (SF),
California (CA) and North America (NA). The road networks are certain graphs
where vertices denote the locations and edge weights represent the length of road
between two adjacent locations. To simulate the traffic conditions, the time cost on
each edge was generated based on the original weight, because the time cost spent
on each road is approximately linear to the length of road. For an edge e whose
original weight is τ , we randomly generated s possible weight values w1 . . . ws from
a uniform distribution with mean τ and variance 0.1τ , s = 3 in our experiments. All
possible weight values shared the same probability, i.e., Pr(ω = wi) = 1/s, 1 ≤ i ≤ s.
The aggregate function we used in the following experiments was max, since the cases
with the aggregate function sum are very similar to the max cases.

4.1 Comparative study

First of all, we compared the performance of our UG-ANN query algorithms (SE,
SE-CF, and SE-CF-INST as shown in Table 4) with the brute-force algorithm (BF),
because, to the best of our knowledge, there is no work addressing the problem of
aggregate nearest neighbor query on uncertain graphs. Five vertices were randomly
selected from each uncertain graph as the query vertices. To vary the graph size, we
extracted a connected subgraph with a preferred vertex number from the original

3http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
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Table 4 Algorithms evaluated
in experiments

Algorithm Description

BF The brute-force algorithm without pruning
SE The algorithm with subgraph extraction (SE)
SE-CF The algorithm with both subgraph extraction

(SE) and candidate filtering (CF)
SE-CF-INST The algorithm with subgraph extraction (SE),

candidate filtering (CF) and instance pruning
(INST)

graph as the experimental graph. The extraction adopts the breadth-first search
style and starts from a random selected vertex. The average total response time of
query processing on SF, CA and NA are shown in Figure 7a, b and c, respectively.
Figure 7 validates that the brute-force algorithm suffers from high time complexity,
i.e., the query time grows exponentially as the size of graph increases. The brute-
force algorithm has to enumerate all instances in an uncertain graph and execute
the certain ANN query on each instance. The total response time of executing a
uncertain ANN query is exponential to the number of edges. On the other hand,
the UG-ANN query algorithms equipped with the structural pruning (SE, CF) and
instance pruning (INST) take very less time to process the query on the same
uncertain graph.

Note that the brute-force algorithm costs the smallest time when the number
of vertices |V| = 5, which means that all the vertexes in the uncertain graph are
selected as the query vertexes. The structural pruning method thus cannot remove
any vertexes, because the query related subgraph must contain all the query vertexes.
Meanwhile, for each vertex v ∈ V, dv�q = 0 < Dα

max (ref. to Corollary 2) and each
vertex may be the UG-ANN candidate. Finally, all the edges in the uncertain graph
are on-path edges in all instances, since all five vertexes are query vertexes and there
are very few edges (|E| = 4) connecting them. As a result, the query algorithms with
pruning methods have to run some extra procedures for the pruning methods and,
meanwhile, check all the instances as what the brute-force algorithm does.

Besides, we did not evaluate the brute-force approach in the following experi-
ments where the number of edges in an uncertain graph was larger than 100, because
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Figure 7 Comparative study between the brute force algorithm and algorithms with pruning
methods
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the processing time of the brute-force approach was intolerant (more than 106s when
|V| > 25).

4.2 Effects of graph size

In this set of experiments, we evaluated the scalability of the proposed UG-ANN
algorithm with pruning methods. We varied the vertices number from 1000 to 10, 000
at an interval of 1000 and fixed the number of query vertices to 5. The query process
was composed of two phases, i.e. structural pruning phase and searching phase.
The structural pruning phase contained the subgraph extraction and the candidate
filtering. Whereas, the instance pruning was integrated in the searching phase. And
we recorded not only the total response time of query processing but also the
structural pruning time and the searching time during query processing procedure.

Structural pruning time Figure 8 displays the time for structural pruning on uncer-
tain graphs with different sizes. It shows that the structural pruning time is superlin-
ear to the vertex number, because we need to compute the aggregate distances of all
vertices in Imin

G derived from G, and, for each vertex, the aggregate distance calcula-
tion takes O(|V|lgV + |E|) in the worst case. Moreover, the candidate filtering (CF)
only takes few extra steps according to Algorithm 2 (line 14–15). Thus, the pruning
time of the SE and SE-CF algorithms is approximately the same. Note that the time
for instance pruning was not evaluated in this set of experiments, because, different
from the structural pruning, the instance pruning goes along with the searching phase.

Searching time Figure 9 illustrates the searching time of UG-ANN queries on
each data set. Compared with the brute-force algorithm, subgraph extraction greatly
improves the efficiency of UG-ANN query processing so that it can handle uncertain
graphs with thousands of vertices and edges. Besides, the candidate filtering method
removes vertices from the possible ANN candidate sets and, therefore, the algorithm
with both subgraph extraction and candidate filtering (SE-CF) decreases the search-
ing time. Moreover, the SE-CF-INST algorithm achieves better performance when
the instance pruning is adopted, since instances located in sub-trees of the search tree
are pruned and we need not calculate the ANN vertices in those instances.
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Figure 8 Effects of graph size on structural pruning time
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Figure 9 Effects of graph size on searching time

Total response time Finally, the total response time of query processing, which
consists of pruning time and searching time, is reported in Figure 10. The SE-CF al-
gorithm performs better than the SE algorithm, whereas the SE-CF-INST algorithm
outperforms both the SE and SE-CF algorithms. The above results demonstrate the
effectiveness of the proposed pruning methods, i.e. structural pruning, candidate
filtering and instance pruning.

4.3 Effects of query cardinality

In this set of experiments, we evaluated the efficiency of our algorithm against the
cardinality of query set. The workload was subgraphs with 10,000 vertices extracted
from the CA, NA and SF data sets respectively. The extraction method is the same
as that in the comparative study (Section 4.1). The query vertices were randomly
selected from the extracted graphs. We varied the number of query vertices from 1
to 5. Figure 11 shows the total response time of query processing on CA, NA and SF,
respectively. The total response time increases roughly as the size of query set grows.
More query vertices result in a potential larger subgraph after the structural pruning
and, therefore, decrease the performance of the structural pruning. Meanwhile, the
results demonstrate that the SE-CF algorithm has better performance than the SE
algorithm. And the SE-CF-INST algorithm has the best performance among all
algorithms.
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Figure 10 Effects of graph size on total response time
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Figure 11 Effects of query size on total response time

4.4 Structural pruning performance

To evaluate the pruning power of the proposed structural pruning method and the
candidate filtering method, we compute the vertex pruning rate and edge pruning
rate in the same setting as the experiment in Section 4.1. The vertex pruning rate,
denoted as rv , is defined as the ratio of the removed vertices number to the original
vertices number, i.e., rv = |Vrm|

|V| , where Vrm is the set of pruned vertices. Similarly, the
edge pruning rate, denoted as re, is defined as the ratio of the number of removed
edges to the number of original edges, i.e., re = |Erm|

|E| , where Erm is the set of edges
adjacent to pruned vertices.

Performance of subgraph extraction Figure 12 shows rv and re w.r.t. the graph size.
As shown in Figure 12a, most of vertices, i.e., more than 98 % vertices, are pruned
by the subgraph extraction. And Figure 12b shows that re is approximately the same
as rv , since edges adjacent to the removed vertices are removed during the structural
pruning phase.

Performance of candidate filtering In the same setting of the structural pruning
experiments, we evaluated the candidate filtering performance of our algorithm.
Candidate pruning is always executed after the structural pruning phrase and,
therefore, the candidate pruning rate is defined as the ratio of pruned vertices
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Figure 12 Effects of subgraph extraction in structural pruning
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Figure 13 Performance of
candidate filtering
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number to the number of vertices in the subgraph after the subgraph extraction.
Figure 13 depicts the candidate pruning rate w.r.t. the graph size. It validates that
only parts of vertices in the subgraph are UG-ANN candidate vertices and other
vertices are not necessary for aggregate distance computation.

4.5 Instance pruning performance

This set of experiments investigates the pruning capability of the proposed instance
pruning approach. To measure the effectiveness of instance pruning, we first used
the UG-ANN query algorithm with structural pruning (SE-CF) and got the number
of instances NS which the algorithm must enumerate and check. Based on the
SE-CF algorithm, the SE-CF-INST is developed by introducing the the instance
pruning approach. We recorded NSI , the number of instances which the SE-CF-
INST algorithm have to check. The performance of instance pruning is measured
by the instance pruning rate, denoted as rI . The instance pruning rate is defined
as rI = NS−NSI

NSI
. Figure 14 displays the instance pruning rates for uncertain graphs

with different sizes. The performance of instance pruning depends on both the query
vertices and the structure of the uncertain graphs. In our experiments, at least 60 % of

Figure 14 Performance of
instance pruning
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instances are pruned by the instance pruning during the UG-ANN query processing
phase. In some cases, more than 90 % of instances are avoided from executing the
ANN queries.

5 Related work

5.1 Aggregate nearest neighbor

Aggregate nearest neighbor (or group nearest neighbor) query processing [13, 15–
17, 22] is the most related topic to ours. Papadias et al. [16, 17] first proposed the
ANN query for multi-dimensional data. Three approaches, i.e. MQM, SPM and
MBM, were developed to accelerate the ANN search processing. All the approaches
employ the Euclidean distance in multi-dimension space. And the concepts of
centroid point and minimal bound rectangle (MBR) are utilized in SPM and MBM,
which is not suitable for vertices in graphs. Yiu et al. [22] noticed the fact that
spatial data were usually constrained by spatial network, so they developed three
methods, i.e. IER, TA and CE, for the ANN query in road network. All these
approaches take advantage of the Euclidean distance for lower bound estimation,
because vertices in road network are located with 2 or 3-dimensional coordinates.
The primary difference of problem studied in [22] from ours is that the graph is
certain, i.e., weights of edges are determined. Lian et al. [13] introduced the ANN
query to uncertain data in multi-dimensional space, called PGNN. The uncertain
data were modeled as a sphere region where a data point existed with a probability.
To reduce the search space, a spatial pruning approach and a probabilistic pruning
approach were proposed in [13]. The uncertain multi-dimensional data are quite
different from uncertain graphs. In multi-dimensional space, the locations of two
points are independent with each other. However, in uncertain graphs, the distances
between vertices are correlative because of the uncertainty of edge weights.

5.2 Uncertain graph

Uncertain graph management [19, 23, 26] is another field related to our work.
Zou et al. [26] investigated the problem of finding frequent subgraph patterns on
an uncertain graph database. The frequent subgraph pattern mining is based on
the expected support. For accelerating the mining process, the mining algorithm
called MUSE was designed to find an approximate set of frequent patterns. The
uncertain graph model of MUSE is different from ours, because MUSE only focuses
on existence uncertainty of edges. However, our uncertain graph model proposed
in this paper reveals both existence uncertainty and weight uncertainty of edges.
Potamias et al. [19] discusses the kNN search problem in an uncertain graph.
Different from our uncertain graph model, the uncertain graph model in [19] only
reflects the edge existence uncertainty. In other words, it can only describe whether
an edge is absent or not. Moreover, the uncertain graph defined in [19] is not a
weighted graph where the distance between two adjacent vertices is always 1. Based
on the uncertain graph model, three new distance metrics were proposed, i.e. median
distance, majority distance and expected reliable distance. For each distance metric,
the pruning algorithm was developed to reduce the search space. Most recently,
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Yuan et al. [23] studied the threshold-based uncertain subgraph query problem. It
aims to find the uncertain graphs whose subgraph isomorphic probability w.r.t the
query graph is larger than the user preferred threshold. Our work is different from
theirs in several aspects: (i) the query vertices of our problem are multiple and we
investigate the aggregate distance w.r.t. all query vertices. (ii) our algorithm is not
the approximate algorithm and is designed to find the exact answer.

6 Conclusion

Plenty of practical applications require aggregate nearest neighbor (ANN) query
in uncertain graphs. However, existing ANN query algorithms fail to handle the
uncertain graphs due to the uncertainty of edge weight. In this paper, we deal with
the problem of aggregate nearest neighbor in uncertain graphs (UG-ANN). Firstly,
we propose the uncertain graph model and formalize the problem of UG-ANN.
Secondly, a basic UG-ANN query processing algorithm is developed. Thirdly, we
propose several pruning methods to improve the efficiency of the UG-ANN query
processing. Finally, extensive experiments on real data sets demonstrate that our
pruning approach can improve the efficiency of UG-ANN query significantly.

In the future work, we plan to extend the proposed approach in two directions.
Firstly, the proposed optimization is very effective when the set of query vertices
is small compared to the uncertain graph, because the structural pruning limits the
search only to the neighborhoods of the query vertices. We are now interested in
the challenge that finding vertices that are close to a large portion of the graph.
Secondly, the uncertain graph model proposed in this work assumes the uncertainty
on edge weight and edge existence is independent between edges. The UG-ANN
query considering the correlation between edges in the uncertain graph is another
interesting future work.
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