
World Wide Web (2014) 17:59–83
DOI 10.1007/s11280-012-0191-3

Evaluating continuous top-k queries
over document streams

Weixiong Rao ·Lei Chen ·Shudong Chen ·
Sasu Tarkoma

Received: 18 January 2012 / Revised: 10 October 2012 /
Accepted: 29 October 2012 / Published online: 25 November 2012
© Springer Science+Business Media New York 2012

Abstract At the age of Web 2.0, Web content becomes live, and users would like
to automatically receive content of interest. Popular RSS subscription approach
cannot offer fine-grained filtering approach. In this paper, we propose a personalized
subscription approach over the live Web content. The document is represented by
pairs of terms and weights. Meanwhile, each user defines a top-k continuous query.
Based on an aggregation function to measure the relevance between a document
and a query, the user continuously receives the top-k most relevant documents
inside a sliding window. The challenge of the above subscription approach is the
high processing cost, especially when the number of queries is very large. Our basic
idea is to share evaluation results among queries. Based on the defined covering

Part of this work was done when the first author is currently affilicated with the Department
of Computer Science, University of Helsinki, Finland and visting at China R&D Center for
Internet of Things, Wuxi, China.

W. Rao (B) · L. Chen
Computer Science & Engineering Department,
Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China
e-mail: wxrao@cse.ust.hk

L. Chen
e-mail: leichen@cse.ust.hk

S. Chen
Institute of Microelectronics of Chinese, Academy of Sciences,
Beijing, China
e-mail: chenshudong@ciotc.org

S. Chen
China R&D Center for Internet of Things, Wuxi, China

S. Tarkoma
Department of Computer Science, University of Helsinki,
Helsinki, Finland
e-mail: sasu.tarkoma@cs.helsinki.fi

60 World Wide Web (2014) 17:59–83

relationship of queries, we identify the relations of aggregation scores of such queries
and develop a graph indexing structure (GIS) to maintain the queries. Next, based
on the GIS, we propose a document evaluation algorithm to share query results
among queries. After that, we re-use evaluation history documents, and design a
document indexing structure (DIS) to maintain the history documents. Finally, we
adopt a cost model-based approach to unify the approaches of using GIS and DIS.
The experimental results show that our solution outperforms the previous works
using the classic inverted list structure.

Keywords top-k query · information filtering ·web document streams

1 Introduction

At the age of Web 2.0, Web content becomes live. An example of such live content
is the blog posting every day. In July 2006, there were over 1.6 million blog postings
every day; the number of blogs worldwide was reported as 50 million and is doubled
every 6 months [19]. Given such live content (instead of static content), many users
nowadays would like to automatically receive content of interest with the help RSS
subscriptions. However, the RSS subscriptions only offer coarse content filtering
mechanism, typically treated as a topic-based filtering mechanism, and cannot meet
the requirement of personalized subscriptions. For example, subscribers have to
receive all articles posted by an subscribed RSS URL (e.g., associated with the news
channel of NY Times), no matter really interested or not.

To overcome the above coarse filtering mechanism, in this paper, we propose
a personalized subscription approach. Based on this approach, the document is
modeled by pairs of terms and weights. The weights indicate the importance of
the associated terms [15, 17, 26]. Meanwhile, each user defines a personalized top-
k continuous query, consisting of input terms. Based on an aggregation function
to measure the relevance between a document and a query, the user continuously
receives the top-k most relevant documents within a sliding window.

The challenge of the top-k query model above is the high processing cost,
especially when the number of queries is large, e.g., millions of queries. Two recent
works [7, 11] consider optimization problems to minimize the evaluation cost of
continuous queries over data stream systems. However, the queries in [7, 11], to-
gether with publish/subscribe systems [5], consist of boolean-based selective f iltering
predicates. That is, if and only if a publication item satisfies all predicates in a
query, the item is said to satisfy the query. Unfortunately, the techniques [7, 11]
developed for the boolean-based query cannot work for our problem. Specifically,
the studied top-k query model adopts an aggregation function, and any (document)
term, if having a non-zero weight, could contribute to the aggregation score. In
addition, the top-k query on data stream systems [4, 8] and the subspace-based
skyline approach [23] assume that data items and queries are associated with several
(and at most tens of) dimensions. For the studied Web documents and queries,
the overall semantic space involves millions of dimensions(i.e., the total number
of terms). Therefore, the solutions proposed in [4, 8, 23] cannot be applied to our
problem.

World Wide Web (2014) 17:59–83 61

In this paper, our general idea of reducing the processing cost is to share evaluation
results among queries. Specifically, we first define the covering relationship to identify
the relations of aggregation scores among queries. Next, we develop covering trees
to connect queries associated with the covering relations. In particular, instead of
maintaining a large number of covering trees, we merge all covering trees to form a
covering graph. Such a graph-based indexing structure, called GIS, uses the minimal
number of edges to connect all queries. The document evaluation algorithm then
benefits from the GIS to share the evaluation results with less evaluation cost.

Beyond GIS, we re-use the evaluation history to accelerate the evaluation of a
new incoming document. To this end, we build a document-based indexing structure
(i.e., DIS) to index the history documents. Finally, we adopt a cost model to unify the
approaches using GIS and DIS. To summarize, our contributions are as follow.

– We exploit the covering relationship of queries to share evaluation results. We
prove that the problem to build the covering graph with the minimal space cost
is NP-hard. The proposed algorithm achieves a constant approximation ratio
compared with the optimal result.

– We propose the evaluation algorithms using GIS and DIS, respectively. By a
cost model, we further develop a unified evaluation approach with the least
evaluation cost.

– Using real trace data sets, we verify that the proposed solution outperforms
two previous works including the classic SIFT solution [26] and recent COL
solution [6].

The rest of this paper is organized as follows. Section 2 first reviews related works.
Section 3 then gives the data model and states the proposed problem. Next, Section 4
defines the covering relationship. Section 5 reports the details of GIS, and Section 6
presents evaluation algorithms.After that, Section 7 reports the experimental results.
Finally, Section 8 concludes this paper.

2 Related work

We investigate the related work on information filtering (IF), publish/subscribe
(pub/sub), and data stream systems.

In the context of information retrieval (IR), IF removes redundant or unwanted
information from an information stream using (semi-) automated or computerized
methods prior to presenting them to users. The classic work SIFT [26] utilized the
inverted list to index continuous queries, which consist of terms and predefined
thresholds. InRoute [1] is another centralized online filtering system, with help of
inference networks to decide whether or not a document matches a query. [17]
adopted query conditions similar to [26] and focused on reducing the information
dissemination cost. Differing from these works adopting static thresholds, this paper
tackles continuous top-k queries. Moreover, as shown in our experiments, only the
inverted list (for example used by [26]), without exploiting query relations, is not
enough to achieve high efficiency when the number of queries is large.

In pub/sub systems, subscribers define subscription query conditions (comparable
to continuous queries) to declare their personal interests. Typically, a subscription
query consists of a conjunction of selective f ilters (i.e., predicates). If one specific

62 World Wide Web (2014) 17:59–83

filter is dissatisfied with a publication, then all queries containing such a predicate
are dissatisfied with the publication.1 Compared with these boolean-based selective
filtering model, the studied continuous top-k query involves an aggregation function,
and the techniques of pub/sub systems are inapplicable.

In addition, the content-based pub/sub [5, 14, 20] explored the relationships of
selective predicates and built various data structures (e.g., a dynamical R-tree [20])
to index subscription queries. However, these works are based on a low dimensional
data schema (such as < 20 dimensions). Moreover, these previous works utilize data
ranges or intervals of filters to define the overlapping or disjoint relationships. These
defined relationships are also inapplicable to the studied continuous top-k queries
that consist of query terms and adopt the aggregation function.

In the context of data streams, recent works [7, 11] adopted the boolean-based
query model, where a query consists of multiple filters. This model is similar to
the one in the content-based pub/sub. Both works focused on the optimal ordering
problem to minimize the evaluation cost, and proposed a greedy strategy to first
pick those filters associated with lower costs and then participate more queries.
In addition, [4] tackled the ad-hoc query over low dimensional data items. The
proposed techniques in [4] cannot be applied to our problem which is oriented for
unstructured documents having millions of keywords in the whole semantic space.
The subspace-based skyline approach [23] still considers the full dimensional space,
which is similarly inefficient for our studied problem involving millions of terms.

Next, similar to our studied problem, [9] and its extension [10] monitor a stream
of incoming documents for a set of users, who register their interests in the form of
continuous top-k queries within a sliding window. Compared with our work, there
exist significant differences as listed below. The Incremental Threshold Algorithm
(ITA) proposed by [9] and [10] is based on the traditional inverted lists of queries;
however, our solution leverages the developed covering trees and covering graphs.
Moreover, when every document comes, ITA needs nontrivial efforts to incremen-
tally maintain thresholds for the indexed queries. In our solution, the edges in the
developed covering trees and covering graphs directly indicate the relations of the
thresholds associated with endpoints of the edges. Thus we avoid the overhead to
maintain thresholds as ITA did, and have chance to save efforts during the query
processing.

After that, the recent work [6] overcomes the performance issue of [9] and [10]
caused by profile indexing and result maintenance. By maintaining inverted lists of
profiles, the main idea of [6] is to enable early stopping during the top-k processing
and then to avoid processing all profiles in the inverted lists. The Completely
Ordered Lists (COL)-based profile selection needs nontrivial cost to maintain the
completely sorted lists all the time. For improvement, the Partially Ordered Lists
(POL)-based profile selection does not keep complete order and maintains entries
ordered only with regard to a number of boundaries. Differing from [6], we even
avoid processing the whole inverted lists of some terms and our experiment shows
that the proposed solutions use less cost than [6] does.

1Disjunction of selective filters can be intuitively treated as the union ofmultiple queries. Then each of those queries
is still applicable for the claim that all filters are evaluated to be true.

World Wide Web (2014) 17:59–83 63

Finally, our previous works [12, 13, 16, 18] designed solutions for distributed
settings (such as DHTs [12, 13] and clusters of commodity machines [16]) to reduce
the network traffic and parallel throughput. This paper instead designs solutions for
a main-memory setting.

3 Preliminaries

In this section, we first introduce the data model (Section 3.1), define the problem
(Section 3.2), and finally give the solution framework (Section 3.3). Figure 1 summa-
rizes the main symbols and associated meanings in the paper.

3.1 Data model

We consider the model of the append-only document stream. That is, fresh docu-
ments are continuously appended to the end of the stream (e.g., RSS aggregators
periodically download fresh articles posted in RSS feeds). After preprocessing, each
document d is associated with |d| pairs of 〈t j, s(t j,d)〉, where |d| is the number
of distinct document terms (or features) in d. The term score, denoted by s(t j,d),
represents the importance or weight of t j in d. Typically, s(t j, d) is pre-computed
by the term frequency * inverse document frequency (t f ∗ id f) scheme, frequently
used in IR domain. For other content like videos and photos, we can similarly assign
the scores or weights to attributes or features pertaining to such content. Next, we

normalize the term score by ns(t j,d) = s(t j, d)/
√∑|d|

j=1 s
2(t j, d). Moreover, we assume

each document d is associated with an expiration time expt(d), because only those
unexpired documents are meaningful to users.

End users subscribe to their interested content by issuing a long-running query q,
which is composed by |q| query terms t j (1 ≤ j ≤ |q|), and a top-k number, denoted
by k(q). Following the classic Vector SpaceModel (VSM) in the IR context, we adopt

Symbol Meaning

qi , tj and d a query, term, and document
s (t j , d) , ns (t j , d) score of term t j in d , normalized score of t j in d
k (q) , Kj ,K top-k number defined by q, maximal top-k number

among all queries containing t j , and maximal top-k
number among all queries

S(d, q) ,TS (q) ,TE (q) relevance score between d and q, threshold of relevance
score of q, and threshold of expiration time of q

(q) set of queries, set of documents, top-k documents of q
inside sliding window.
Covering tree, covering graph, and set of all distinct
terms in
covering tree rooted at a root query referred by term
t j , the queries that use the documents containing t j as
their top-k results

j j

Figure 1 Used symbols and the meanings.

64 World Wide Web (2014) 17:59–83

the following aggregation function tomeasure the relevance between document d and
query q:

S(d,q) =
|q|∑
j=1

ns(t j, d) (1)

In the equation above, if a query term t j ∈ q appears in d, then the term score
ns(t j,d) contributes to the relevance score S(d,q). Otherwise, if t j does not appear
in d, we intuitively treat ns(t j,d) = 0 with no contribution to S(d,q). For a given q, a
larger S(d,q) indicates that the document d is more similar to q and has more chance
to become a top-k result of q. If the query q is exactly same to the document d,
we have S(d,q) = 1. Instead, if q and d do not contain any common term, we have
S(d,q) = 0.

Given (1) to compute S(d,q), our task is to report the top-k most relevant
documents pertaining to each query q among all valid documents (i.e., those un-
expired documents) inside a sliding window w. Window w can be two versions: a
counter window w contains the most recent documents, and time-based window w

contains all documents that arrives within a fixed time period covering the most
recent timestamps. For convenience, our implementation considers the counter-
based window.

Suppose query q is currently associated with the top-k documents dn (1 ≤ n ≤ k)
inside the sliding window w. We denote those documents by Dk(q). The documents
insideDk(q) are associated with sorted relevance scores S(d1, q) ≥ ... ≥ S(dk,q). The
minimal relevance score S(dk, q) is treated as the threshold of relevance scores of
query q, denoted by TS(q). Meanwhile, dn becomes expired after the expiration time
expt(dn). Similar to TS(q), we define a threshold of the expiration time, TE(q), as the
minimal one among all expiration times expt(dn) of the documents inside Dk(q).

Now, a query q is associated with two thresholds TS(q) and TE(q), and we have
three states pertaining to an incoming document d:

– If S(d,q) > TS(q) holds, d becomes a new top-k result of q, and is inserted
to Dk(q). Meanwhile, dk is dropped from Dk(q). Also, TS(q) and TE(q) are
updated, if necessary.

– If both S(d,q) ≤ TS(q) and expt(d) > TE(q) hold, d is a top-k candidate of q
(but not inserted to Dk(q));

– If both S(d,q) ≤ TS(q) and expt(d) ≤ TE(q) hold, d will never become a top-k
result of q;

We use Figure 2 to illustrate the data model above. For each document d, the
horizontal length indicates its expiration period (the moment of its right endpoint
is the expiration time expt(d)), and the vertical height indicates the relevance score

Figure 2 Continuous top-k
query model with k = 2.

World Wide Web (2014) 17:59–83 65

with a given query q. At time 0, for query q, Dk(q) contains documents d1 and d2

with TS(q) = S(d2,q) = 2 and TE(q) = exp(d2) = 4. Next at time 2, due to S(d3,q)
> TS(q), the new document d3 replaces d2 and becomes a new top-k document.
Meanwhile TS(q) and TE(q) are updated with TS(q) = 4 and TE(q) = 6. At time
5, because of S(d4, q) ≤ TS(q) and expt(d4) > TS(q), d4 is kept as a top-k candidate,
such that at time 6, d3 is expired and d4 becomes a new top-k result.

3.2 Problem statement

We state that the scheme to answer the continuous top-k query should meet the
following requirements.

1. Function Requirement: the desirable scheme should correctly report the top-k
documents of query q, and no top-k results are falsely missed.

2. Eff iciency Requirement: the evaluation cost of the proposed scheme, measured
by the evaluation time, should be low.

3. Overhead Requirement: the space cost to index queries is minimized. In this
paper, we mainly consider the case that queries are maintained in main memory.
Nevertheless, the proposed scheme can also be used for the other scenarios (e.g.,
queries are stored on disk-based file systems or databases).

Since both queries and documents in the proposed problem consist of terms, one
possible approach is following the classic work [26] to index queries by an inverted
list. That is, a directory maintains all distinct terms appearing in queries. Each term
in the directory refers to a posting list which consists of all queries containing such a
term. However, there is little chance for the inverted list to share evaluation results
among queries, because the queries inside a posting list share only the associated
term. Thus, the document evaluation algorithm has to scan all queries inside the
posting list, incurring high evaluation cost. Instead, an ideal scheme evaluates a
document d only with those queries which really need d as their top-k result, instead
of all queries (because some of them do not need d).

On the other hand, to share evaluation results among queries, content-based
pub/sub systems leverage relations of filters (comparable to queries in this paper),
such as overlapping, disjoint, etc. to index subscriptions with various data struc-
tures [2, 20]. In this paper, based on such a general idea, we define the covering
relations over queries to share evaluation results.

3.3 Solution framework

There are three main components in the solution framework. First, query index:
we index all queries by a graph-based indexing structure, i.e., GIS. The GIS is built
based on the defined covering relationship among queries. Those queries associated
with covering relations can share the evaluation results. We present the covering
relationship and the GIS in Sections 4 and 5, respectively. After that, for a new
incoming document d, we use the GIS to evaluate d, and decide whether or not d
is a top-k result/candidate of an indexed query q (Section 6.1).

Second, document index: beyond GIS, in Section 6.2, we further utilize the
evaluation history to accelerate the evaluation, and index those already evaluated
documents by a document indexing structure (DIS). Based on a cost model-based

66 World Wide Web (2014) 17:59–83

approach, we propose a unified solution to minimize the overall evaluation cost in
Section 6.3.

Third, maintenance: when the document de ∈ Dk(q) is expired, we consider the
maintenance of the current top-k documents and DIS. Then, before new documents
come, we need to update Dk(q) and DIS to replace de with a valid top-k candidate
dc. We mainly follow [8], e.g., using the classic TA/NRA to find a candidate dc with
the top-1 largest relevance score pertaining to q.

In this paper, we mainly focus on the first two components. For the techniques
of updating expired top-k documents inside Dk(q), please refer to previous works,
e.g., [8].

4 Covering relationship

In this section, we develop the covering relationship of queries, based on which we
further define the covering tree of queries.

4.1 Covering relation

Definition 1 (Covering relationship) If the query terms in q are the superset of the
query terms in q′, we define q covers q′ (or q′ is covered by q), denoted by q 	 q′ or
q′
 q.

Based on Definition 1, we have the following lemmas.

Lemma 1 If q 	 q′ and q′ 	 q′′, then q 	 q′′.

Lemma 2 If q 	 q′, then S(d,q)≥ S(d,q′) holds for any d.

The lemmas above can be easily derived by following the definition of the
covering relationship. Note that the definition and lemmas above can be eas-
ily extended to more complicated score functions (instead of (1)). For example,
each t j ∈ q is associated with a preference weight pw(t j,q). We define S(d,q) =∑|q|

j=1 [ns(dt j,d) · pw(t j,q)]; then q 	 q′ holds if the condition pw(t j,q) ≥ pw(t j,q′)
is met for each t j ∈ {q,q′}. After that, the lemmas still work.

Lemma 1 indicates the transitive property of the covering relationship, and will
help define the covering tree. And Lemma 2 directly helps save the evaluation cost,
which is shown as follows.

– Suppose q covers any q′ ∈ Q where Q denotes a set of queries, and TSlb (Q) is
the minimal TS(q′) for any q′ ∈ Q. If S(d,q) ≤ TSlb (Q) is satisfied, then for any
q′ ∈ Q, the claim S(d,q′) ≤ TS(q′) holds, without spending cost to evaluate d
with q′.

– Alternatively, suppose q is covered by any q′ ∈ Q, and TSub (Q) is the maximal
TS(q′) for any q′ ∈ Q. If S(d,q) ≥ TSub (Q) is satisfied, then for any q′ ∈ Q, the
claim S(d,q′) ≥ TS(q′) holds, without spending cost to evaluate d with q′.

World Wide Web (2014) 17:59–83 67

Finally, in terms of TS(q), we have:

Lemma 3 Given q 	 q′, if q and q′ have the same top-k values, i.e., k(q) = k(q′), then
TS(q) ≥ TS(q′) holds.

Proof The correctness of Lemma 3 is shown as follows. Recall that the definition
of TS(q) is the k-th largest one among all relevance scores between q and incoming
documents. Since k(q) = k(q′), given q 	 q′, we denote the documents having the k-
th largest relevance score pertaining to q and q′ by dK and d′K, respectively. Thus,
S(dK, q) ≥ S(d′K,q

′)must be satisfied. Hence, Lemma 3 holds. ��

4.2 Covering tree

Definition 2 (Covering tree) A covering tree R connects a set of queries, such that
q 	 q′ holds for any query q pointing to its non-null child query q′.

Following the definition, we have the following lemma.

Lemma 4 Consider a query q ∈ R and any query q′ inside its subtree rooted at q. For
a document d, among all query terms t j ∈ q also appearing in d, S(d,q′) is no larger
than S(d,q), and no smaller than the minimal s(t j, d).

Proof Following Definition 2, q 	 q′ holds. This indicates that q′ contains at least
one query term of q. Otherwise, if none of query terms in q appear in q′, the statement
q 	 q′ is invalid. Now because query q′ contains at least one query term dt j ∈ q, we
have the lemma above. ��

Lemma 4 helps find the lower and upper bounds of S(d,q′), denoted by Slb(d,q′)
and Sub(d,q′), respectively. Moreover, along the path from q to q′ in R, due to
the transitive property, Slb(d,q′) and Sub(d,q′) become tighter, until Slb(d,q′) and
Sub(d,q′) is finally equal to S(d,q′). This property helps prune irrelevant documents
during the traversal ofR from the root to leaf nodes.

Next, we have the following lemma with respect to TS(q).

Lemma 5 For any q ∈ R and any q′ inside its subtree inR, if k(q) ≤ k(q′) is met, then
TS(q) ≥ TS(q′)must hold.

Following Lemma 5, we can find that for the root query q ∈ R and any other
query q′ ∈ R, TS(q) is the maximal one among all thresholds in R. Also, given the
root query q and a leaf query q′, for all queries q′′ inside the path from q to q′, the
associated score thresholds TS(q′′) are sorted in descending order.

Note that, Lemmas 3 and 5 require k(q) ≤ k(q′). In case that each query defines
its specific top-k number, Lemmas 3 and 5 may not hold. To ensure that Lemmas 3
and 5 work, a simple way is assuming each query defines the top-k number equal to
K, where K is the maximal one among all k(q) for any q ∈ R. Then, among received
top-K documents, each query further finds those really needed top-k documents.
However, one issue is that each query receives too many useless documents, incurring
high processing cost.

68 World Wide Web (2014) 17:59–83

For optimization, we adopt the following tuning process. Suppose q is the parent
of q′ in R; q and q′ respectively define the top-k numbers equal to k(q) and k(q′). If
k(q) ≤ k(q′), then the prerequisite of Lemma 5 holds; otherwise given k(q) > k(q′),
we assume that q′ also defines the top-k(q) number, such that among top-k(q)
documents, q′ can further find out those real top-k(q′) documents. By this approach,
only those queries inside the subtree rooted at the query q defining a top-k(q)
number, will use the number k(q) as their top-k numbers. This is helpful to overcome
the issue of the above simple approach where all queries in R use the maximal
number K as their top-k numbers.

5 Covering graph-based query index

In this section, we first give an overview of the covering graph in Section 5.1, and
then present the details to build the graph in Section 5.2.

5.1 Overview of query index

The graph-based indexing structure (in short, GIS) contains a directed graph G, and
a directory of query terms. In G, a vertex represents a query, and a directed link
indicates that the source query covers the destination query. For query q, if the
traversal of G starts from q, then the queries inside all traversal paths are covered
by q. Moreover, those queries covered by q are connected in the form of a covering
tree, which is rooted at q.

The motivation of maintaining a covering graph G, instead of explicitly maintain-
ing covering trees, is shown as follows. For a query q, it is possible for q to appear in
multiple covering trees. If we explicitly maintain such covering trees, the query q (or
the entry of q) is then maintained by multiple duplicate vertices, incurring redundant
space cost. Due to a large number (e.g., million) of queries, explicitly maintaining
covering trees obviously incurs non-trivial space cost. Instead, a covering graph G can
index all queries, such that query q is now maintained as a single vertex.

Besides less space cost, the graph G can reduce the evaluation cost. It is because
the proposed algorithmminimizes the number of edges of the graph G, much smaller
the number of edges maintained by the approach that explicitly maintains covering
trees. Thus, the evaluation of a document d over the graph G uses less traversal cost,
leading to a low evaluation time.

Finally, similar to an inverted list, GIS also maintains a directory. The terms in the
directory refer to root queries. Specifically, for a term t j, a referred root query must
contain t j. With the help of the directory, we find all those queries containing t j by
the traversal of G starting from those root queries referred by t j, without the traversal
of the whole graph G. Thus, the directory helps save evaluation cost.

5.2 Details of covering graph

We first formally state the problem to build the covering graph G in Section 5.2.1,
and then develop a greedy algorithm in Section 5.2.2.

World Wide Web (2014) 17:59–83 69

5.2.1 Problem statement

In this section, we formally define the covering graph G, which connects queries
associated with covering relations, and meets two requirements: (i) all queries are
connected to G with a minimal number of edges, and (ii) all queries containing any
query term t j are connected together to form covering graphs. Formally, given a
set of queries Q, we denote T to be the set of all distinct terms in Q. For a term
t j ∈ T (1 ≤ j ≤ |T |) and a query qi ∈ Q (1 ≤ i ≤ |Q|), if t j appears in qi, we define
I(i, j) = 1; otherwise, I(i, j) = 0. For all such i and j, we denote the set of all I(·) by
I. We want to build a set of edges E to connect the queries in Q by the following
problem.

Problem 1 (MIN_EDG) Given three sets Q, T , and I, we build the set E to satisfy
the two requirements above.

Theorem 1 MIN_EDG is NP-Hard.

Proof We prove the theorem by showing that the classic set-cover problem is a
special case of MIN_EDG. Consider an instance of set-cover decision problem
(U ,S, c) which consists of a universe set U and a collection of S of subsets of U .
The set-cover problem is to determine whether or not there is a set cover C ⊆ S of
size |C| = c such that

⊔
s∈C = U , which is used to construct an instance of MIN_EDG

as follows. We create |T |(= |U |) terms that correspond to the elements of U in an
one-to-one manner. Also, we create |Q|(= |S|) queries w.r.t the elements of S. For
each query qi with 1 ≤ i ≤ |Q|, we define its terms based on the elements of the
corresponding subset s ∈ S: qi contains term t j, if and only if s includes an element
u ∈ U that corresponds to t j. Finally, we take |E | = r.

Consider a covering graph G, such that for any t j ∈ T , all queries containing t j are
connected together. Denote N (qi) to be the neighbors of qi in G: N (qi={ql|e(i, l) =
1,with 1 ≤ l ≤ |Q|}. Consider C = {s|s ∈ S corresponds to ql ∈ N (qi)}. Now, we will
prove that there exists a query index related to this instance of MIN_EDG if and
only if there exists a set cover related to the instance of the set cover problem by
considering two following cases.

First, suppose there is a set cover with |C| = c. We consider a covering graph G
where all queries except a specific one qi are connected with each other, and qi is
only connected with N (qi) which corresponds to C. Clearly, for every term t j, there
is a query ql ∈ N (qi) satisfying I(i, l) = 1, because otherwise

⊔
s∈C = U is invalid.

Hence, all queries containing t j are connected.
Second, as the reverse case, suppose there is a covering graph G satisfying

(i) |E | ≤ g, and (ii) for any t j ∈ T , all queries containing t j are connected. Due
to |E | ≤ g, there must exist one specific query qi satisfying |N (qi)| ≤ d. Consider
C = {s|s ∈ S, s corresponds to ql ∈ N (qi)}. Recall that ∀t j ∈ T , there must exist ql �=
qi ∈ Q satisfying I(i, l) = 1, because

⊔
s∈C = U is valid. Thus, ∀t j ∈ T , there must

exist ql ∈ N (qi) satisfying I(i, l) = 1 because otherwise qi is disconnected from those
other queries containing t j. Hence,

⊔
s∈C = U is satisfied, and C is the set cover. And

|C| = |N (qi)| ≤ c = g is satisfied. ��

70 World Wide Web (2014) 17:59–83

5.2.2 Greedy algorithm

Since MIN_EDG is NP-hard, we develop a greedy algorithm to build the covering
graph G, achieving a constant approximation ratio O(|q|max) compared with the
optimal solution, where |q|max is the maximal number of terms per query.

The intuition of the proposed greedy algorithm is as follows. In Figure 3b, query
q2 covers (or points to) 4 queries (q1, q3, q4 and q5), and q6 covers 3 queries
(q3, q4 and q5). Based on the proposed greedy algorithm, in Figure 3c, q2 points
to only two queries (q1 and q4), and q6 points to only one query q4. Connecting
two queries ensures that the source query covers the destination query with the
largest covering weight, i.e., the number of query terms inside both the source and
destination queries (we will show the meaning of the covering weight very soon).
Also, a pair of connected queries are associated with a covering weight at least equal
to 1. Meanwhile, all queries must be resolved. A resolved query q means that for
each t j ∈ q, q appears inside at least one covering tree with its root query referred
by t j, such that the traversal starting from the root queries referred by t j can find q.
Since each time the greedy algorithm adds query q to a covering tree by the largest
covering weight, there are potentials to add q into all covering trees that q should
appear in (due to the second requirement) with the smallest number of edges (due
to the first requirement).

We define the covering weight as follows. For any two queries qi and ql associated
with the covering relationship (we assume qi covers ql), we define the covering weight
w(i, l) to be the number of terms inside both qi and ql . The weight w(i, l) indicates
how fast a pair of queries is added to G. Note that, if qi and ql have the exactly same
terms, we can treated both as a single virtual query. It makes sense because the same
terms of qi and ql indicate that they have the same relevance scores for any document
d. Then, computing the relevance score between d and either of them correctly finds
the relevance for both queries.

The general idea of Algorithm 1 is as follows. We first consider all potential edges
to connect any two queries qi and ql associated with the covering relation having a
weightw(i, l) ≥ 1. Among such potential edges, we select a minimal number of edges
to all vertexes (i.e., all queries). In this algorithm, we use a heap structure to maintain
the all potential edges and the weights. For every t j in each qi ∈ Q, we use a set Gij

to incrementally track the queries that will be added to the same covering tree as the
query qi. For a specific query qi containing |qi| terms, we create the number |qi| of
such sets. For the all queries inQ, we create totally the number

∑|Q|
i=1 |qi| of such sets.

Now, let us show the details of Algorithm 1. First, line 1 initiates the covering
graph G by adding all queries as vertices of G. Then, lines 2–3 initiate an empty subset
Gij for every term t j appearing in each query qi ∈ Q (we will gradually add more

Figure 3 a 6 queries;
b covering graph with all
potential edges; c covering
graph with minimal number
of edges.

World Wide Web (2014) 17:59–83 71

queries to Gij via the while loop and all queries inside Gij are finally connected as a
covering tree). Next, lines 4–5 first add all potential edges to the maximal heapH as
soon as their associated weights are larger than zero.

After the initialization above, the while loop (lines 6–16) ensures that every query
qi is resolved or all items in H are processed. A resolved query qi means that for all
terms t j ∈ qi, qi is inside the associated set Gij, i.e., qi should be inside the number
|qi| of the sets Gij. Inside the while loop, each iteration fetches from H a head pair
〈i, l〉, which is associated with the current largest weight w(i, l). Line 8 then creates a
directed edge qi → ql if qi covers ql (otherwise ql → qi if ql covers qi). Next for each
term t j commonly appearing in both qi and ql, we add the query qi into the set Gij

w.r.t the query qi and the term t j, if qi is not inside the set Gij (resp. add ql into the
set Glj w.r.t the query ql and the term t j if ql not inside the set Glj).

After that, we need to consider the member queries qi′ ∈ Gij and ql′ ∈ Glj if the
associated weightw(i′, l′) > 0. If the new directed edge line 8 leads to a directed cycle
between qi′ and ql′ , i.e., qi′ 	 ql′ (or ql′ 	 qi′), lines 11–12 update the weight w(i′, l′),
if the pair 〈i, l〉 (plus the associated weight w(i′, l′)) is still inside the heap H. The
update leads to the original weight minus one by removing the effect of the common
term t j in line 9. This update makes sense because the new edge qi → ql in line 8
ensures that ql′ is reachable from qi′ (or qi′ is reachable from ql′). If the new value of
the weight w(i′, l′) becomes zero, this pair 〈i, l〉 will be removed from the heapH.

In lines 13–14, for the query qi′ ∈ Gij and the term t j, there exists a corresponding
set Gi′ j (resp. for the query ql′ ∈ Glj, we have a set Gl′ j). This is because lines 2–3
create a set Gij for every t j ∈ qi. Then we need to update the set Gi′ j by the merged

72 World Wide Web (2014) 17:59–83

result of Gij and Glj. After that, in line 15, if the resolving condition of qi holds, then
qi is marked by the resolved state (similar situation occurs for ql).

Finally, lines 17–18 focus on the post-processing task. For each query term t j ∈ Q,
the term t j maintained by the directory of GIS refers to all root queries containing t j.

Running example Let us show a running example of Algorithm 1 as follows.
Figure 3b shows the graph with all potential edges (i.e., all pairs of queries associated
with the covering relation are connected), where the label of each edge indicates
common terms of two endpoint queries. First, the heap H maintains 9 candidate
edges that are shown in Figure 3b. Each subset Gij is initiated with an empty set.
When the pair 〈2, 1〉 with the highest weight w(2, 1) = 3 is first fetched from H, the
edge q2 → q1 is added to G.

Next, during the for loop (lines 9–14), for each of the three terms q1 ∩ q2 =
{B,C,D} (say term B), we make the following process. First, the query q1 is added
into the setG1B w.r.t the query q1 and the term B (and q2 is to G2B w.r.t the query q2

and the term B). After that, lines 11–12, for the query qi′ ∈ Gij and ql′ ∈ Glj having
the weight w(i′, l′) > 0, need to update the covering weight. Given t j = B,qi = q1

and qi′ = q2, we have G1B = {q1}, G2B = {q2}. Because the weight w(1, 2) = 3, we
follow line 13 to update weight by w(1, 2) = 3 − 1 = 2. Next, line 14 updates the sets
G1B = {q1, q2}, G2B = {q1,q2}. After running the two other terms {C, D} in line 9,
we have the weight w(1, 2) = 0, G1C = {q1,q2}, G2C = {q1,q2}, G1D = {q1,q2}, and
G2D = {q1,q2}. Up to now, q1 is resolved.

Next, 〈2, 4〉 is fetched fromH, and the edge q2 → q4 is added to G. We update the
weight w(2, 4) and all subsets involving q2 and q4; both q2 and q4 are resolved. After
that, similar situation occurs when 〈6, 4〉 is fetched fromH.

Since the three queries (q3, q5 and q6) are still unresolved andH is not empty, we
need to fetch more pairs fromH. First, suppose 〈4, 5〉 is fetched fromH, and the edge
q4 → q5 is added to G. We update the subsets G5A and G5C and the weights w(4, 5).
Then, q5 is resolved. Next, 〈2, 5〉 is fetched from H. However, the edge q2 → q5 will
not be added to G, because the if condition of line 8 is not met. That is, for terms
A and C, the query q2 has already been added to G2A and G2C, and q5 has already
added toG5A andG5C. Similarly, the edge q4 → q3 is added to G, but the edges q2 →
q3, q6 → q5, and q6 → q3 are not. Thus, we get the covering graph G of Figure 3c.

Theorem 2 The running time of Algorithm 1 is O((|Q| · |q| − |T |)× log(|Q| × |q|)),
where |T | and |Q| are the total number of distinct terms and queries, respectively; |q|
is the average number of terms per query.

Proof We assume that for a given term t j, the number of queries containing contain-
ing t j is Qj. In terms of each root query containing term t j, Algorithm 1 connects
all those queries covered by such a root query as a covering tree without cycles, and
connects all queries containing t j as a forest without cycles. This is because line 8
ensures that qi (or ql) cannot be reachable from ql (or qi), and thus avoids cycles.

For each query term t j, the forest pertaining to t j contains Qj queries and (Qj − 1)
edges. Meanwhile, each iteration of the while loop adds only one edge. Thus,
(Qj − 1) iterations are required to ensure that Qj queries are connected to the forest.
Since the total number of distinct terms is |T |, the total number of iterations, which
connect |Q| queries to at most |T | forests, is ∑|T |

j=1 (Qj − 1). Here,
∑|T |

j=1 (Qj − 1) can

World Wide Web (2014) 17:59–83 73

be further rewritten as
∑|Q|

j=1 |qi| − |T | = |Q| · |q| − |T |, where |qi| is the number of
terms in qi, and |q| is the average number of terms per query.

Inside the while loop, the cost of each iteration is dominated by fetching the
head item (line 10), and updating the weights of pairs in heap H (lines 14–15).
Given the implementation of Fibonacci heap, the amortized cost of each iteration
is O(log(|Q| × |q|)).

In addition, the initiation of the Fibonacci heap H and insertion of all none-zero
pairs intoH incur the amortized cost of O(|Q| × |q|).

Thus, the overall cost is O((|Q| · |q| − |T |)× log(|Q| × |q|)). ��

Theorem 3 Compared with the optimal solution, Algorithm 1 has an approximation
of at most |q|max, where |q|max is the largest number of terms per query.

Proof The proof is similar to the one of the approximation ratio of the set cover
problem. First, the goal of MIN_EDG is to ensure that for each term t j inside any
query qi ∈ Q, qi, together with other queries that also contain t j, is added to a forest
pertaining to t j. It indicates that each query qi is associated with at least one link to
meet the goal ofMIN_EDG; otherwise, qi is disconnected from the forest. Next, each
iteration can only connect only two queries by adding a single edge. This holds even
for an optimal solution.

Now, in terms of any query qi, we are interested in the number of iterations (and
equally the number of edges) required to connect qi with other queries. Recall that,
Algorithm 1 connects qi with another query (i.e., query ql in line 10) per iteration. In
the worst case, for each iteration, only one term commonly appears in both qi and ql.
Thus, at most |qi| iterations (edges) are used to connect qi with other queries.

Consider that |q|max is the largest number of terms contained per query. For any
query qi, Algorithm 1 requires at most |q|max folds of iterations (or edges) compared
with the optimal solution. Hence, Algorithm 1 is valid. ��

6 Document evaluation algorithm

Incoming documents are processed by the first-come and first-evaluate manner, such
that users can receive fresh documents as early as possible. We first use GIS to
evaluate the documents (Section 6.1). Next, we design a document-based indexing
structure (DIS) to accelerate the document evaluation (Section 6.2), and develop a
cost model-based approach to minimize the overall evaluation cost (Section 6.3).

6.1 Evaluating documents with GIS

Recall that only those terms appearing in both d and q contribute to S(d,q). Thus,
for each document term t j ∈ d (1 ≤ j ≤ |d|), we use the directory of GIS to check
whether or not there exist root queries containing t j. If true, we retrieve the root
queries referred by t j, and evaluate d with those queries inside the covering tree
rooted at such root queries (we denote such covering trees by R j). Otherwise, the
evaluation with respect to t j is unnecessary.

Since the term t j might refer to root queries, there exist multiple associated
covering trees, and all queries containing t j must appear in such covering trees. To

74 World Wide Web (2014) 17:59–83

evaluate d with all queries containing t j, a simple approach is to pick all the covering
trees and then evaluate dwith the queries inside all such trees. Instead, we notice that
a query might appear in multiple covering trees. Thus, we propose an algorithm to
choose only a subset of such covering trees and all queries containing t j must appear
in such chosen covering trees with no false dismissal. In this way, we can reduce the
evaluation cost.

6.1.1 Evaluating queries inside covering trees

We first show how to evaluate d with queries inside a covering tree R j. Consider a
query q ∈ R j and any query q′ inside the subtree rooted at q. By Lemmas 4 and 5,
we have two rules to save the evaluation cost:

– Rule 1: If Slb (d,q′) ≥ TS(q) is met, then for any query q′ inside the subtree
rooted at q, S(d,q′) ≥ TS(q′) holds, indicating that d is the top-k document of q′.

– Rule 2: If S(d,q) < TSlb (R j) is met, then for any query q′ inside the subtree
rooted at q, S(d,q′) < TS(q′) holds, indicating that d is not the top-k document
of q′.

Given the rules above, the evaluation of d with all queries inside R j can start
from the associated root query by the breadth first algorithm to traverse the graph G.
During the traversal, if either of the above rules occurs, we directly determinate that
d is (or not) the top-k result of all queries q′ inside the subtree rooted at the current
query q, and then terminate the traversal. Obviously, the rules above help reduce the
evaluation cost.

6.1.2 Minimizing evaluation cost of GIS

Formally, we assume there exist |d|′ root queries and covering trees that are referred
by all terms t j ∈ d. Instead of choosing all such covering trees, we propose to
optimally choose a subset of such trees to evaluate, meanwhile all queries containing
the terms t j are found with no false dismissals. We denote this problem to optimally
choose covering trees by the MCT (i.e., short name of a minimal evaluation cost
associated with chosen covering trees).

Theorem 4 MCT is NP-hard.

Proof The proof of this theorem can be easily reduced from the set-cover problem by
treating common terms associated with any edge in G as a universal element U , and
each query, consisting of those terms, as the subset s ∈ S. Then, MCT is equivalent to
find the minimal number of evaluated queries C ⊆ S to ensure that all edges, which
can next find the connected queries, are found. ��

Since MCT is NP-hard, we follow the set-cover greedy algorithm. The key of
the set-cover greedy algorithm is the parameter c j which measures the average
evaluation cost per query inR j. Based on the set-cover greedy algorithm, we choose
a covering tree R j having the currently smallest c j, and evaluate d with the queries
inside the chosen R j. The process of choosing covering trees is repeated, until all
queries containing any t j ∈ d are evaluated.

World Wide Web (2014) 17:59–83 75

Now, we give the details to compute c j as follows. Suppose that a covering tree
R j contains |R| j queries. If no query in R j needs d as their top-k document, then
it is unnecessary to evaluate d with the queries in R j; otherwise, the evaluation is
needed. Thus, for queries qi (1 ≤ i ≤ |R| j) inR j, we are interested in whether or not
S(d,qi) > TS(qi) holds, even before d is really evaluated with qi.

Given |R| j queries in R j, we sum the all relevance scores with the docu-

ment d, i.e.,
∑|R| j

i′=1 S(d,qi′), and the all thresholds, i.e.,
∑|R| j

i′=1 TS(q′i). After that, if∑|R| j
i′=1 S(d,qi′) >

∑|R| j
i′=1 TS(q′i) holds, there exists at least one query qi satisfying

S(d,qi) > TS(qi).

Until now, we measure the ratio c j by c j =
∑|R| j

i′=1 S(d,qi′)
∑|R| j

i′=1 TS(q′i)
, which is then helpful to

determine the benefit of evaluating dwith queries inR j and whether dmight become
a top-k result of the queries in R j. Obviously, a larger c j indicates more chance of
those queries qi satisfying S(d,qi) > TS(qi).

To compute c j, we note that the denominator
∑|R| j

i′=1 TS(q′i) is irrelevant to the
document d, and pre-compute it before the document evaluation. After that, the key
to compute c j is

∑|R| j
i′=1 S(d,qi′), which is transformed as follows.

|R| j∑
i′=1

S(d,qi′) =
|R| j∑
i′=1

⎡
⎣

|qi′ |∑
j ′=1

s(t j ′ ,d)

⎤
⎦

=
|R| j∑
i′=1

⎡
⎣

|d|∑
j ′=1

s(t j ′ , d) · θi′ j ′
⎤
⎦

=
|d|∑
j ′=1

⎡
⎣

|R| j∑
i′=1

s(t j ′ , d) · θi′ j ′
⎤
⎦

=
|d|∑
j ′=1

⎡
⎣s(t j ′ ,d) ·

|R| j∑
i′=1

θi′ j ′

⎤
⎦

In the above transformation, we first define a binary coefficient θi′ j = 1 if the
document d contains the the term t j ∈ qi′ , and θi′ j = 0 otherwise. Based on the θi′ j,
we then transform

∑|qi′ |
j=1 s(t j, d) =

∑|d|
j=1 s(t j,d) · θi′ j where |d| is the number of terms

in d.
Now we denote |R| jj ′=∑|R| j

i′=1 θi′ j ′ , the number of queries in R j that contain a
term t j ′ ∈ d. The key observation of the above transformation is that we can easily
precomputed the value of |R| jj ′ before the document evaluation. Moreover, among
those queries in R j, if more queries contain t j ′ ∈ d, the value |R|ij ′/|R| j is larger.
Intuitively, |R|ij ′/|R| j indicates the popularity of the term t j ′ ∈ d inR j.

Now, before evaluating d, we can summarize queries inR j and precompute some

statistical results, e.g., |R|ij ′ . When d comes, we then compute the sum
∑|R| j

i′=1 S(d,qi′)
and c j, even without having the details of these queries. Given the values c j associ-
ated with all covering trees, we follow the set-cover greedy algorithm, and choose
covering trees with the currently least c j in order to minimize the overall document
evaluation cost.

76 World Wide Web (2014) 17:59–83

6.2 Evaluation with DIS

Differing from GIS, DIS re-uses previous evaluation results to accelerate the eval-
uation. The general idea of using DIS is shown as follows. With the help of DIS to
index those already evaluated documents, we measure whether or not an incoming
document d is similar to those indexed documents d′. If d′ is a top-k result of query
q, then d, if similar to d′, has the potentials to become a top-k result of q, too.

Based on the idea above, we need to (i) index those already evaluated documents
d′, and (ii) maintain a set of queries which use d′ as their top-k results by a vector.

First to index the already evaluated documents d′, we utilize an inverted list.
However, differing from the traditional approach, we do not add d′ to the posting lists
of all document terms t j ∈ d′. Instead, we add d′ to a small number of posting lists.
That is, for a document term t j ∈ d′, we denote Kj to be the maximal top-k number
among all queries containing the term t j. Next, we use the posting list of t j to index
the Kj documents d′ having the largest s(t j,d′) among all valid documents inside
the sliding window. Finally, we denote Q j to be the queries which use the indexed
documents in the posting list of t j as their top-k results, and index the queries by a
vector.

Given the above DIS, we evaluate each incoming document d as follows. In
order to find those indexed documents d′ that are similar to d, each term t j ∈ d, we
determine whether or not DIS has indexed the documents d′ in the posting list of t j
having the terms cores s(t j,d′) > s(t j, d). If true, we retrieve the queries in Q j, and
evaluate d with each query inQ j.

We note that the maintenance of DIS is needed in case that new documents come
and old document expired. For such maintenance, the previous work [8] provided
the 2-dimensional skyline approach to cover both the time expiration and relevance
score. In this case, once the expired documents are removed from the skyline, the
indexed documents in DIS are then removed, too.

6.3 A unified solution

Intuitively, GIS ensures that all queries can receive their needed top-k results with
no false dismissals, and DIS re-uses the previous results to accelerate the evaluation.
In this section, we unify both approaches to evaluate documents with minimal
evaluation cost and without false dismissals.2

We expect the unified solution spends less evaluation cost than the approach
using only GIS. Suppose term t j ∈ d appears in both the directory of GIS and the
inverted list of DIS. Recall that R j denotes the covering trees in GIS referred by
t j, and Q j denotes the queries that use the indexed documents in the posting lists
of t j as their top-k results. Suppose the cost of using GIS to evaluate queries in
R j is Cost(R j), and the cost of using DIS to evaluate queries in Q j is Cost(Q j).
Because the queries in Q j are only the subset of those in R j (i.e., Q j � R j), the
cost of the unified approach spends Cost(Q j)+Cost(R′

i), where Cost(R′
i) is the

cost to evaluate the remaining queries in R j except for those queries in Q j. To

2In the inverted list of DIS, Q j does not contain all queries containing t j. Thus, the approach of using DIS, though
accelerating the evaluation with queries q ∈ Q j, cannot guarantee an incoming document d is evaluated with all
queries that need d as their top-k result. It means d might be falsely missed for queries not inside Q j.

World Wide Web (2014) 17:59–83 77

ensure the unified approach outperforms the pure approach using GIS, the condition
Cost(Q j) ≤ Cost(R j)− Cost(R′

i) must hold.
To ensure the condition Cost(Q j) ≤ Cost(R j)− Cost(R′

i) holds, among the terms
t j ∈ d, we follow [17, 21] to select the ones having the top (e.g., p = 10 %) highest
term scores, and evaluate documents with queries in Q j. Meanwhile, we measure
the associated evaluation cost Cost(Q j) (e.g., the consumed time). Next, we continue
the evaluation of remaining queries in R j (i.e., R′

i), and measure its evaluation cost
Cost(R′

i). Based on the cost Cost(R′
i) and the numbers of queries in Q j and R′

i, we
approximate the cost Cost(R j). If Cost(Q j) ≤ Cost(R j)− Cost(R′

i) holds, then the
unified approach outperforms the pure approach using only GIS. In our experiment,
for p = 10 %, the experimental results verify that the unified approach outperforms
the pure GIS approach by folds of faster running time.

7 Experiments

We first show the used data sets (Section 7.1). Next, we compare our solution with
two counterparts in terms of the space cost and the evaluation cost (Sections 7.2
and 7.3).

We compare our approaches (i.e., the algorithm using only GIS and the unified
approach) with COL in [6] and SIFT [26]. We implemented all approaches based
on main memory-based indexes by Java 1.6. Documents are read from the local disk
as a stream to evaluate with indexed queries. All experiments are tested in a Linux
server with 4GB memory and Intel Xeon 3.00GHz CPU.

7.1 Data sets

We respectively describe the data sets used as queries and documents in Sec-
tions 7.1.1 and 7.1.2.

7.1.1 Query logs

Google Alerts and Microsoft Live Alerts provide input interfaces by which end
users subscribe to favorable documents via input keywords. Unfortunately, there
is no publicly available real data set about using keywords as continuous queries.
We note that there are difference between the search queries and the continuous
queries. Nevertheless, these search logs truly show behaviors of end users to use
keywords.Moreover, using search query logs as continuous queries is frequently used
in previous works [24, 25]. Thus, we use two real data sets of traditional search query
logs as our continuous queries.

We use two real query logs: (i) a trace log with 81.3 MB collected within four
months from a popular commercial search engine (in short commercial SE),
which is quite representative for the behaviors of end users in the real world;
(ii) a similar query log from www.search.com with size 1.27 MB (in short
search.com). Table 1 summarizes the parameters of both query logs. On aver-
age, the number of terms per query is 2.085 in search.com, and 2.843 in the
commercial SE; the largest number of terms per query in search.com is 11, and
that number in the commercial SE is 29. Furthermore, Figure 4a plots the number
of terms of two query logs, where the x-axis represents the number of terms, and the

78 World Wide Web (2014) 17:59–83

Table 1 Statistics of two query
logs.

Query parameter Search.com Commercial SE

Total num. of queries 81,497 4,000,000
Total num. of distinct terms 41,722 1,038,567
Avg. num. of terms per query 2.085 2.843
Max. num. of terms per query 11 29
Min. num. of terms per query 1 1

y-axis represents the percentage of queries with the corresponding number of terms.
For example, for the search.com trace, the percentages of queries consisting of 1,
2, 3, and 4 terms are 38.13, 33.09, 17.56, and 7.05 %; for the commercial SE trace,
the percentages of queries consisting of 1, 2, 3 and 4 terms are 31.33, 36.42, 17.56, and
7.39 %. For both data sets, the standard deviation values over the overall average
query length are 1.908 and 2.043, respectively. Both deviation values indicate that
most queries consist of around 2–3 terms. Clearly, Table 1 and Figure 4a indicate that
input queries in both trace files are typically composed of very few terms. Hence, if
these input queries are used as continuous queries, there are opportunities for our
proposed approaches to save the evaluation cost.

Next, Figure 4b plots the statistics of the covering relations of the two traces,
where x -axis is the number of terms per query (i.e., the query length |q|) and y-
axis indicates the rate of the associated queries which are covered by other queries.
As shown in this figure, the queries with small length have more chance to be
covered. For example for |q| = 1, in the Search.com and commercial SE, 53.2
and 42.3 % queries are covered respectively, indicating that such queries are inside
the covering graph to save evaluation cost. On the overall, around 42.5 and 31.4 %
queries (including those root queries which are not covered by any other queries)
are added to the covering graph. We note that the remaining queries are isolated
from the covering graph. Fortunately, such queries are accessible with the help of
the directory structure of GIS, which are referred by the terms in the quires. In this
way, there is no significant degradation of the evaluation cost to access the isolated
queries.

7.1.2 Documents

We use two data sets (Table 2 summarizes the statistics for the test data sets):

(1) one based on Text Retrieval Conference (TREC) WT10G web corpus, a large
test set widely used in web retrieval research. The dataset contains around
10 gigabyte, 1.69 million web page documents and a set of queries (we mean

R
at

e
of

 c
ov

er
ed

 q
ue

rie
s

Num. of terms per query

Search.com
Commercial SE

(a) (b) (c) (d)

Figure 4 a Two query logs with short terms; b Statistics of covered queries; c TREC AP with large
articles; d TREC WT10G with short articles.

World Wide Web (2014) 17:59–83 79

Table 2 Statistics of the
TREC data sets.

Document parameter TREC WT10G TREC AP

Total num. of docs 1,692,096 1,050
Avg. num. of terms per doc 64.808 6,054.9
Max. num. of terms per doc 331 7,320
Min. num. of terms per doc 2 1,303
Total num. of terms 16,382 48,788
Avg. term frequency 130.31 619.48
Max. term frequency 210,089 1,050
Min. term frequency 1 1

the “title” field of a TREC topic as a query). The WT10g data was divided into
11,680 collections based on document URLs. Each collection on average has
144 documents with the smallest one having only 5 documents. The average
size of each document is 5.91KB. The data set was stemmed with the Porter
algorithm and common stop words such as “the”, “and”, etc. were removed
from the data set.

(2) one based on TREC AP: a text categorization task based on the Associated
Press articles used in the NIST TREC evaluations. Compared with TREC
WT10G data set, the TREC AP data set is composed of fewer (only 1,050)
articles but with a larger number of terms, on average 6054.9 per article.

By formula score(ti,d) = freqi,d
Maxl(freql,d)

· log N
ni
, we compute the score of each term in

both data sets. In this formula, freqi,d
Maxl(freql,d)

represents the value of term frequencies

(t f), and log N
ni

the inverse document frequencies (id f). In details, freqi,d is the
frequency of term t j in document d, and Maxl(freql,d) is the maximal term frequency
in d; ni is the number of documents containing t j across the whole data set, and N is
the total number of documents.

Though our experiments pre-compute score(ti,d) by the approach above, it has
shown that in IR scenarios it is enough to have an approximation of id f values [3].
This approximation is useful for our work in the scenario of a stream of documents.
Though it is an open problem to approximate id f in such a scenario [24], one possible
solution is to use the similar approximate solution as [22] to compute id f . After the
value of idf is ready, we can then easily compute score(ti, d).

For illustration, we use Figs. 4c–d to plot the term scores of four randomly chosen
documents from the TREC AP and WT10g data sets, respectively. Though the sam-
pled documents might not be enough to represent the entire data set, they are helpful
to give an intuition of the distribution of term scores in these documents. Clearly, the
skewed distribution of term scores in both ïňĄgures is useful for our solution: if the
queries containing the terms having high term scores, such queries have significantly
larger relevance scores and thresholds than those queries containing the terms having
low term scores. Thus, it makes sense to choose the document terms having the top
term scores during the unified evaluation (see Section 6.3).

7.2 Space cost of query indices

For the search.com traces, we use entries of this trace as queries, and index them
by the GIS and inverted list (both COL ad SIFT used the inverted list) respectively.

80 World Wide Web (2014) 17:59–83

Besides query terms, we randomly generate the top-k number within [1,K], where
K is a given maximal top-k number.

In terms of the space cost of both indices, we mainly use two metrics: (i) the total
number of edges, and (ii) the average number of edges per vertex, i.e., the average
degree per vertex. For GIS, queries are connected by treating queries as vertices.
Since the GIS is implemented by the adjacent list, the total number of edges directly
indicates the space cost of the GIS. Note that those root queries referred by each
query term, t j, in the directory of GIS are implemented as a vector, for fairness
we also consider those root queries use (Ri − 1) edges, where Ri is the size of such
vector. In the extreme case that none pair of queries are connected to form a covering
tree, the covering graph is actually an inverted list, and Ri is just equal to the size the
posting list pertaining to t j. For the inverted list, the total size of all posting lists
directly decides its space cost.

Figure 5a plots the total number of edges in the GIS and in the inverted list for the
search.com trace. When the number of queries grows, the total numbers of edges
of both approaches grow as well. However, since we propose to merge all covering
trees into the covering graph, the total number of edges in GIS is smaller than that
in the inverted list. For example, when the number of queries is 81479, the number
of edges in the inverted list is 2.16 folds of that in the GIS.

Next, Figure 5b plots the average degree per vertex of the GIS and the average
size per posting list for the search.com trace. In this figure, more queries lead to
higher average degrees for both approaches. When the number of queries is 81479,
for the inverted list, the average size per posting list is 3.29; for GIS, the average
degree per vertex is only 0.79 (smaller than 1). It is because some queries donot have
any covering relations and are isolated from the GIS (indicating the degree of such
queries is 0).

For the commercial SE trace, we plot the total number of edges and the average
degree per vertex in Figure 5c–d. This figure shares the similar trend as Figure 5a–b.
For example, when the total number of queries is 2 × 106, the number of edges in the
inverted list is 1.38 folds of that in the GIS, and the average degree per vertex in the
inverted list is 3.01 folds of that in the GIS. These numbers help save the evaluation
cost for the GIS and unified approach.

As a summary, GIS uses fewer edges to connect all queries than the inverted list
does. The fewer edges and degrees help GIS spend less cost to traverse the graph and
find indexed queries. Thus, GIS uses less cost to evaluate incoming documents with
indexed queries. The following experiments in terms of the running time will verify
the claim.

10e+0

10e+4

10e+5

10e+5

10e+5

 0 20000 40000 60000 80000

T
ot

al
 N

um
. o

f E
dg

es

Num. of Queries

Inverted List

GIS

 0

 1

 2

 3

 4

 5

 0 20000 40000 60000 80000

A
vg

. D
eg

re
e

pe
r

Q
ue

ry

Num. of Queries

Inverted List

GIS

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

0 1e+06 2e+06 3e+06 4e+06

T
ot

al
 N

um
. o

f E
dg

es

Num. of Queries

Inverted List

GIS

 0.01

 0.1

 1

 10

 100

 0 1e+06 2e+06 3e+06 4e+06

A
vg

. D
eg

re
e

pe
r

Q
ue

ry

Num. of Queries

Inverted List

GIS

(a) (b) (c) (d)

Figure 5 Index comparison. Search.com trace: (a) edges and (b) degree; Commercial SE trace:
(c) edges and (d) degree.

World Wide Web (2014) 17:59–83 81

7.3 Running time

To evaluate documents against indexed queries, we assume a counter-based window
with size W = 100, and |D| documents arrive at the system, and each document
is randomly assigned an expiration time within [0.0, 1.0]. For Search.com and
TREC AP trace, Figure 6 studies the effects of three parameters: (i) the number
of queries |Q|, (ii) the number of incoming document |D|, and (iii) the maximal top-
k number K. We study how these parameters affect the running time, and compare
our approach using GIS with the approach using the inverted list [26]. By default,
|Q|, |D|, and K are 81479, 100, and 10, respectively.

In Figure 6a, when the number of queries grows from 1000 to 81479, the running
time of all four approaches grows as well. That is, given more queries, both SIFT
and COL have to check the more posting lists (due to more number of terms that
commonly appear in the document and queries); the twoGIS approaches also have to
check more covering trees rooted at such common terms. Thus, more indexes lead to
higher running time. In addition, the COL still uses the inverted list structure. Thus,
a query Id could duplicately appear in multiple posting lists. Instead, the GIS avoids
the redundancy and reduces the traversal cost during the evaluation, and the GIS
approaches leverage covering trees to reduce the evaluation cost with less processing
time than COL.

Figure 6b shows that a larger number of new documents, i.e., |D|, can help reduce
the average evaluation cost per document for the four approaches. It is because for
a specific query q, more documents are published to evaluate with q, which leads to
a larger TS(q) (i.e., the top-k threshold of q). Since we fix the top-k number, more
documents are pruned, resulting in lower average evaluation cost per document for
all four approaches. In particular, we observe that the unified approach benefits more
from a larger value of |D|. For example, for |D| = 10, the running time of the unified
approach is 0.702 of the GIS approach. Instead for |D| = 1000, the running time of
the unified approach is around 0.3645 of the GIS approach.

Finally, Figure 6c shows the effect of the defined maximal top-k number. For both
approaches, a larger top-K number incurs higher running time because a larger top-
K number indicates lower thresholds TS(q). For example, for the top-K numbers
equal to 10, the running time per document used by the GIS approach is 22.32 ms;
for the top-K number equal to 50, the running time is 63.64. Similar situation occurs
for the other three approaches. Note that the unified approach benefits less from
a larger top-k number. For example, for K = 1, the average running timer of the

 0.1

 1

 10

 100

 1000

 0 20000 40000 60000 80000

T
im

e
(m

se
cs

)

Num. of Queries

SIFT

COL

GIS

Unified
 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

T
im

e
(m

se
c)

Num. of Documents

SIFT

COL

GIS

Unified
 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50

T
im

e
(m

se
cs

)

Topk Number

SIFT

COL

GIS

Unified

Figure 6 Running time for the search.com trace and TREC AP traces.

82 World Wide Web (2014) 17:59–83

10-3

10-2

10-1

100

101

102

 0 1e+06 2e+06 3e+06 4e+06

T
im

e
(m

se
cs

)

Num. of Queries

SIFT

COL

GIS

Unified 10-3

10-2

10-1

100

101

102

 0⋅100 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106

T
im

e
(m

se
c)

Num. of Documents

SIFT

COL

GIS

Unified

10-3

10-2

10-1

100

101

102

 0⋅100 1⋅101 2⋅101 3⋅101 4⋅101 5 ⋅101

T
im

e
(m

se
cs

)

Topk Number

SIFT

COL

GIS

Unified

Figure 7 Running time of the commercial trace and TREC WT10g.

unified approach is only 24.5 % of the GIS approach. When K becomes larger, such
as K = 50, the running time of the unified approach is 83.98 % of the GIS approach.

Next, we use commercial SE and TREC WT data sets and plot the associated
running time in Figure 7. In Figure 7a, larger number of queries (from 1,000 to 4*106)
also leads to larger running time. This is consist with Figure 6a. However, given
the same number of queries (e.g., 10,000), the running time of the GIS approach
is only 0.0603 ms per document, significantly smaller than the used time (8.538 ms
per document) in Figure 6a. It is because the average number of terms per document
for TRECWT is smaller than that for TREC AP (refers to Figure 1).

As shown in Figure 7b, when more new documents arrive per timestamp, the
running time of the four approach is reduced, which is similar to Figure 6b. However,
due to significantly larger number of documents used in this experiment than
Figure 6b, the average running time per document shown in this figure is much more
smaller than Figure 6b.

Finally, in Figure 7c, a larger top-K number leads to higher running time of the
approaches. Consistent with Figure 6c, the running time of SIFT and COL is larger
than that of the pure GIS approach. For example, for the top-K number equal to 100,
SIFT consumes 8.075 folds larger running time than the pure GIS approach.

8 Conclusion and future work

In this paper, we study the problem of continuous top-k queries over a stream of
documents. Given both queries and documents consisting of terms, previous works
heavily rely on the inverted list to index queries and evaluate documents. Instead, we
define the covering relation, and index queries by the covering graph. The proposed
document evaluation algorithm leverages the covering graph to share evaluation
results among queries. Our experiments based on real data sets show the proposed
solution can achieve much better evaluation results than the inverted list solutions
SIFT and COL. As future work, we consider two directions: (i) more semantical
data models (such as predicate-based query conditions) the corresponding solutions,
and (ii) more scalable and distributed solutions (e.g., on a cluster of commodity
machines). Finally, we note that there exist differences between search queries (used
in our experiments) and filtering queries. For example, the number of terms in
filtering queries is typically larger than the one in search queries. As an important
future work, we plan to collect filtering queries from real applications and then
evaluate the proposed algorithms based on such filtering queries.

World Wide Web (2014) 17:59–83 83

References

1. Callan, J.P.: Document filtering with inference networks. In: SIGIR, pp. 262–269 (1996)
2. Chandramouli, B., Phillips, J., Yang, J.: Value-based notification conditions in large-scale

publish/subscribe systems. In: VLDB, pp. 878–889 (2007)
3. Cuenca-Acuna, F.M., Nguyen, T.D.: Text-based content search and retrieval in ad-hoc p2p

communities. In: Networking Workshops, pp. 220–234 (2002)
4. Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc top-k query answering for data streams.

In: VLDB, pp. 183–194 (2007)
5. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filtering algorithms

and implementation for very fast publish/subscribe. In: SIGMOD Conference, pp. 115–126
(2001)

6. Haghani, P., Michel, S., Aberer, K.: The gist of everything new: personalized top-k processing
over web 2.0 streams. In: CIKM, pp. 489–498 (2010)

7. Liu, Z., S.P. 0002, Ranganathan, A., Yang, H.: Near-optimal algorithms for shared filter evalua-
tion in data stream systems. In: SIGMOD Conference, pp. 133–146 (2008)

8. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding
windows. In : SIGMOD Conference, pp. 635–646 (2006)

9. Mouratidis, k., Pang, h.: An incremental threshold method for continuous text search queries.
In: ICDE, pp. 1187–1190 (2009)

10. Mouratidis, K., Pang, H.: Efficient evaluation of continuous text search queries. IEEE Trans.
Knowl. Data Eng. 23(10), 1469–1482 (2011)

11. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared expen-
sive filters. In: PODS, pp. 215–224 (2007)

12. Rao, W., Chen, L.: A distributed full-text top-k document dissemination system in distributed
hash tables. World Wide Web 14(5–6), 545–572 (2011)

13. Rao, W., Chen, L.: Distributed top-k full-text content dissemination. Distributed and Parallel
Databases 30(3–4), 273–301 (2012)

14. Rao, W., Chen, L., Fu, A.W.: On efficient content matching in distributed pub/sub systems.
In: INFOCOM (2009)

15. Rao, W., Chen, L., Fu, A.W.C.: Stairs: towards efficient full-text filtering and dissemination in
dht environments. VLDB J. 20(6), 793–817 (2011)

16. Rao, W., Chen, L., Hui, P., Tarkoma, S.: Move: a large scale keyword-based content filtering and
dissemination system. In: ICDCS, pp. 445–454 (2012)

17. Rao, W., Fu, A.W.C., Chen, L., Chen, H.: Stairs: towards efficient full-text filtering and dissemi-
nation in a dht environment. In: ICDE (2009)

18. Rao, W., Vitenberg, R., Tarkoma, S.: Towards optimal keyword-based content dissemination in
dht-based p2p networks. In: Peer-to-Peer Computing, pp. 102–111 (2011)

19. Rose, I., Murty, R., Pietzuch, P.R., Ledlie, J., Roussopoulos,M.,Welsh,M.: Cobra: content-based
filtering and aggregation of blogs and rss feeds. In: NSDI (2007)

20. Bianchi, P.F.S., Datta, A.K., Gradinariu, M.: Stabilizing dynamic r-tree-based spatial filters.
In: ICDCS, pp. 447–457 (2007)

21. Tang, C., Dwarkadas, S.: Hybrid global-local indexing for efficient peer-to-peer information
retrieval. In: NSDI, pp. 211–224 (2004)

22. Tang, C., Xu, Z., Mahalingam, M.: Psearch: information retrieval in structured overlays.
In: HotNets-I (2002)

23. Tao, Y., Xiao, X., Pei, J.: Subsky: efficient computation of skylines in subspaces. In: ICDE00000,
p. 65 (2006)

24. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: Publish/subscribe functionality in IR environ-
ments using structured overlay networks. In: SIGIR, pp. 322–329 (2005)

25. Tryfonopoulos, C., Koubarakis, M., Drougas, Y.: Information filtering and query indexing for an
information retrieval model. ACM Trans. Inf. Syst. 27(2), 10:1–10:47 (2009)

26. Yan, T.W., Garcia-Molina, H.: The SIFT information dissemination system. ACM Trans.
Database Syst. 24(4), 529–565 (1999)

	Evaluating continuous top-bold0mu mumu kkunitskkkk queries over document streams
	Abstract
	Introduction
	Related work
	Preliminaries
	Data model
	Problem statement
	Solution framework

	Covering relationship
	Covering relation
	Covering tree

	Covering graph-based query index
	Overview of query index
	Details of covering graph
	Problem statement
	Greedy algorithm

	Document evaluation algorithm
	Evaluating documents with GIS
	Evaluating queries inside covering trees
	Minimizing evaluation cost of GIS

	Evaluation with DIS
	A unified solution

	Experiments
	Data sets
	Query logs
	Documents

	Space cost of query indices
	Running time

	Conclusion and future work
	References

