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Abstract The Internet of Things (IoT) represents the future technology trend of sensing,
computing, and communication. Under the Wisdom Web of Things (W2T) vision, the next-
generation Internet will promote harmonious interaction among humans, computers, and
things. Current research on IoT is primarily conducted from the perspective of identifying,
connecting, and managing objects. In this paper, however, we attempt to enhance the IoT
with intelligence and awareness under the W2T vision. By exploring the various interactions
between humans and the IoT, we extract the “embedded” intelligence about individual,
environment, and society, which can augment existing IoT systems with user, ambient, and
social awareness. The characteristics, major applications, research issues, the reference
architecture, as well as our ongoing efforts to embedded intelligence are also presented
and discussed.
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1 Introduction

The Internet of Things (IoT) refers to the emerging trend of augmenting physical objects and
devices with sensing, computing, and communication capabilities, connecting them to form
a network and making use of the collective effect of the networked objects. Earlier
networked objects include surveillance cameras mounted in the city environments and
sensor-equipped everyday artifacts (e.g., goods with RFID tags) in diverse smart spaces.
The emerging categories of IoT devices tend to be mobile, which include wearable sensors
(e.g., pedometers, biosensors), sensor-enhanced mobile phones (e.g., the iPhone), and smart
vehicles (vehicles equipped with sensing devices, such as GPS devices).

Several emerging technologies have contributed to the proliferation of IoT in recent
years. Radio Frequency Identification (RFID), Near Field Communication (NFC) and
Wireless Sensor and Actuator Networks (WSAN) have developed as atomic components
of IoT, enabling auto-identification and interconnection of objects [3, 39, 42]. Service-
oriented computing [7, 11] and the Semantic Web [32, 38] technologies facilitate the
development of applications and sharing of legacy information. They work at the middle-
ware layer of IoT systems to hide the details of different technologies in IoT infrastructures.
Cloud computing enables developers to offload services to backend servers, providing
unprecedented scale and additional resources for computing over large-scale sensor data
obtained from widely deployed IoT devices [54, 55]. The Web of Things (WoT) integrate
Web and sensing technologies together by reusing existing Web standards (e.g., URI, HTTP,
REST) so as to extend the eco-system of smart objects and enrich the contents provided to
users [24].

So far the main research efforts on IoT have been conducted primarily from the perspec-
tive of managing objects and resources, ranging from object identification/networking, data
access, to object control. This paper, however, attempts to enhance the IoT from the
perspective of extracting intelligence and knowledge leveraging the interaction of human
and objects. Instead of focusing on connecting and managing smart objects, we emphasize
on bringing awareness and enhancing intelligence to the IoT system by analyzing the
interactions between humans and smart objects (e.g., passing by street cameras, carrying
mobile phones, and commuting in smart vehicles). In [61], Zhong et al. propose the Wisdom
Web of Things (W2T) vision, which represents a holistic intelligence methodology for
realizing harmonious interaction among humans, computers, and things in the hyper world.
The hyper world is a combination of the social world, the physical world, and the cyber
world. Our work is under this pioneering vision, and particularly studies the harmonious
interaction between human and IoT devices in the coming hyper world. To implement the
W2T vision, W2T further presents the “things-data-knowledge-services-human-things” data
cycle. Our study focuses on human-IoT interaction data processing, majorly falling into the
“data to knowledge/intelligence” transformation stage in the W2T data cycle. We investigate
different ways of human-IoT interaction, and explore different kinds of knowledge and
intelligence that can be extracted from the historical interaction data.

More specifically, we aims to study how the IoT reveals high-level knowledge about
individuals (e.g., user A’s preferences), groups of people (e.g., the relationship between users
A and B), and society (e.g., hotspots or areas of unrest in a city) by analyzing the digital
traces (e.g., video captured, call logs, GPS trajectories) left by people while interacting with
the IoT. High-level knowledge cannot be obtained directly from IoT devices; instead, it is
derived indirectly from raw sensing data using advanced data mining and machine learning
techniques. We call the knowledge learned from human-IoT interaction “embedded intelli-
gence (EI),” which refers to the knowledge about human life, ambient dynamics, and social
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connection/interaction. A considerable variety of innovative applications can be enabled by
EI-enhanced IoT, in areas such as real-world search, social networking, enterprise manage-
ment, community sensing, intelligent transportation, and so on. We use a simple scenario to
illustrate concrete ideas about EI in the IoT.

The scenario places itself in the context of an urban environment. Chen is a
university student in Beijing. He lives a little far from the campus and usually travels
to the university by bike or public transportation. The mobile phone has become his
personal companion, enabling him to connect with his friends anytime, anywhere.
Taking advantage of the capability of existing IoT (or pre-EI) systems, we can
determine where Chen is, who he has encountered, and where the next bus is. All
this information can be retrieved from sensor readings in GPS and Bluetooth logs. By
analyzing the collected digital traces to extract EI from the IoT (i.e., in the post-EI
era), however, we can infer high-level knowledge about Chen and the community. His
activity (e.g., walking on the street), his interests (e.g., points of interest learned from
his location trails), his relationship with others (predicting which encounter may be
his friend), and the traffic dynamics in the city (e.g., detecting hotspots and traffic
jams in Beijing using citywide vehicle and mobile phone data), among others, can be
deduced. Advanced human-centric services can be enabled using the derived EI
information, such as traffic planning and friend recommendation.

There are several closely related research areas that are interleaving with EI, i.e.,
ubiquitous intelligence [37], brain informatics [58, 62], Web intelligence [59, 60],
social computing [52], and reality mining [16, 17]. Compared to EI, ubiquitous
intelligence highlights the context-awareness feature of individual objects, it does
not target at the study of aggregated intelligence (e.g., social interaction patterns)
from large-scale objects. Brain informatics also studies human behaviours, leveraging
various powerful techniques, such as fMRI, eye tracking, and EEG [62]. EI, however,
aims to understand human behaviours from their daily interaction with smart objects.
Both Web intelligence and social computing devote to Web data understanding, but
the latter one focuses on the analysis of human interaction and social behaviours from
social websites. Comparing with them, EI addresses the understanding of human
behaviours in the physical world. While reality mining studies the relationship be-
tween people, EI extends its scope from social tie measurement to individual and
urban sensing. Further, instead of using merely mobile phones for reality mining, EI
aggregates the information from various IoT devices, including static infrastructure,
mobile phones, vehicles, and so on. This paper attempts to depict a picture about EI
under the W2T vision. More specifically, it aims to:

& present the categories of IoT devices that EI is embedded into and the characteristics of
EI;

& illustrate the major benefits of EI in everyday life and analyze the major research
challenges faced by the scientific community;

& propose a reference architecture about how to derive EI in IoT systems and describe our
ongoing practice to EI.

Our work on EI is particularly useful to understand the importance of information
processing and intelligence extraction in the W2T data cycle. The definition and usage of
EI is human-centric, demonstrating the harmonious-interaction view over human, com-
puters, and things in W2T. We also study how the extracted knowledge and intelligence of
EI can bring to the existing IoT systems in terms of awareness, and how they will nurture
novel W2T applications.
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2 Embedded intelligence: a research overview

The terminology “embedded intelligence” is not new. It was used early by Schoitsch et al. in
2006 [48], where embedded intelligence is characterized to span the gap between sensor
networks and applications in smart environments (e.g., autonomous systems, assistant living
systems, personal robots). The term also appeared in Jedermann et al.’s work [29], by
exploring the advantages of introducing RFID-enhanced objects in logistics. Comparing
with them, the “meaning” of embedded intelligence (EI) is refined and extended from two
aspects in our work: (1) EI is a human-centric concept, aiming to understand human
behaviours from their daily interaction with smart objects; (2) with the prevalence of mobile
and wearable devices, the scope of EI goes beyond individual smart environments to large-
scale community and urban environments, and many novel applications are enabled (e.g.,
urban planning, community sensing).

Research on extracting EI (i.e., harvesting knowledge about human behaviors, ambient
dynamics, and social interaction) from the digital traces of human-IoT interaction is still in
its infancy. Although there is still not a clear definition that addresses this research direction
in the IoT community, the initial form of EI has already been explored in several categories
of IoT devices. This section presents an overview of related research on EI as explored in six
typical sources, with each source corresponding to a traditional or emerging category of IoT
device.

2.1 Surveillance cameras

A surveillance camera forms part of a static sensing infrastructure, which is an early type of
static sensor that is widely deployed in urban environments (e.g., public or critical spots in
the city). We use the surveillance camera as an example to illustrate how a network of static
sensors can sense human activity or interaction.

Ongoing human activities within an area can be determined by analyzing the scenes captured
by a fixed surveillance camera at a certain location. For example, Saxena et al. [47] developed a
video-based system that recognizes crowd behaviors (e.g., fighting, street passing) in public
places. By analyzing interpersonal interaction patterns, researchers have also studied the social
relationship among co-located people. For example, Ding and Yilmaz [14] determined how to
identify groups and distinguish the leaders of each group from video sequences. The authors
used two statistical learning methods to derive the affinity between individuals.

The combined power of surveillance cameras widely deployed and networked in a city
can help solve a series of social challenges, such as traffic forecasting and public safety
protection. For instance, Memphis in the US uses the CRUSH system, developed by IBM, to
monitor the hotspots around the city and predict crimes (http://www.memphispolice.org/).
CRUSH works using a series of crime patterns learned from historical crimes and arrest data,
in combination with other factors such as weather forecasts, economic indicators, and
information on events, such as paydays and concerts.

2.2 Smart indoor artefacts

With the development of wireless sensing techniques, widely available inexpensive and tiny
sensors (e.g., RFID tags) are deployed to enhance the performance of everyday objects (i.e.,
smart artifacts [49], such as smart tables, smart cups, etc.) in daily living environments.
Because many of our daily activities involve interaction with everyday objects, human
activity becomes an important high-level context that can be learned from human-artifact
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interaction. When only one smart artifact is used, we can detect simple activities relevant to
that object. For instance, in the MediaCup project [6], cup-specific human activities, such as
drinking and water adding, can be recognized by interpreting the data from a sensor-
equipped cup. By contrast, when a collection of smart artifacts is deployed in a smart
environment, more complex human activities can be detected by referring to interactions
with a series of objects. For example, Philipose et al. [45] have explored HMM techniques to
recognize tens of household activities (such as preparing food, washing clothes, etc.) by
analyzing people’s use-trails of a number of RFID-equipped indoor objects. The mined
human activity information is beneficial to society, especially in the healthcare and eldercare
domains. However, smart-artifact based activity recognition is restricted to closed-
instrumented environments [28].

2.3 Wearable sensors

The defect of indoor smart artifacts is remedied with the presence of wearable sensors (e.g.,
accelerometers, pedometers, microphones). Wearable sensors are worn on different parts of
the human body to enable human-centric sensing anytime, anywhere. The sensors extract a
number of high-level contexts, such as human activity, daily routines, and social situations,
about sensor wearers. Bao et al. [5] developed classifiers for detecting physical activities
(e.g., sitting still, standing, walking), which are detected from the data acquired by five small
accelerometers worn on different parts of the body. Instead of using classifiers to recognize a
predefined set of activities, some researchers have attempted to find unknown activity
patterns (i.e., discovery of routines) without any predefined models or assumptions. For
instance, in [28], a topic model-based approach is proposed to identify daily routines, such
as shopping or commuting, from the raw sensing data collected by body-worn accelerom-
eters. Wearable sensors that detect the social situations of users (e.g., having a meeting,
having coffee with friends) have also been explored [30].

2.4 Mobile phones

Although wearable sensors are portable and promising, they are still not widely used as
“personal companions” in daily life. Things change with the proliferation of sensor-
enhanced mobile phones, in which a number of sensors, such as GPS receivers, Blue-
tooth/Wi-Fi, accelerometers, ambient light, and cameras, are embedded. With these sensors,
phones can track movements (of users) in the physical world, monitor preferences, track
Internet content consumption, and so on. The huge volume of multi-modal data collected
from the daily use of smart phones provides unprecedented opportunities to study individual/
social contexts and ambient dynamics.

& Human activity. As one particular type of wearable/portable device, a mobile phone
sensing system can easily be incorporated with a human activity recognition method, as
demonstrated by the CenceMe application on the iPhone [10].

& Space semantics. Locating a person in the physical world using GPS-equipped mobile
phones is easy. However, a GPS does not work indoors. Instead of deploying cumber-
some sensing infrastructure (e.g., ultrasonic sensors [27], RFID tags [56]) to enable
indoor positioning, researchers have investigated a simple mobile phone-based method
to identify in which type of space a user is located. For example, SurroundSense uses a
combination of sensed ambient light, sound, and video data from mobile phones to
predict the semantics (e.g., bookstore, restaurant) of user location [4].
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& Social relationships. By logging various aspects of physical interactions and communi-
cation among people (e.g., co-location, conversations, call logs) and mining user behav-
ioral patterns (e.g., places of interest), mobile phones can be used to analyze and predict
social relationships among people. For example, the Reality Mining project of MIT can
infer 95 % of friendships on the basis of observational data from mobile phones [17].

& Human mobility patterns. Observing and modeling human movement in urban environ-
ments are essential for the planning and management of urban facilities and services.
However, a key difficulty confronting urban planners and social scientists includes the
challenge and cost of obtaining large-scale and real-world observational data on human
movement. The massive volume of sensing data collected from mobile phones, however,
paves the way for studying large-scale human movement patterns (e.g., where people
often go at 9:00 pm in Tokyo). For example, an interesting study based on the monitor-
ing of 100,000 mobile phone users, conducted by Northeastern University in US,
revealed that human movement has a high degree of spatio-temporal regularity [21].

& Ambient contexts. The nomadic and in-situ nature of mobile phone sensing provides a
new opportunity for ambient context sensing (e.g., air quality level of a street). For
example, the BikeNet application measures several metrics to provide a holistic picture
of cyclist experience, including the CO2 level along a bike path [18].

2.5 Smart vehicles and smart cards

Along with the rapid development of mobile phone sensing systems, the prevalence of
sensor-enhanced vehicles (e.g., GPS) and smart cards used in public transportation systems
opens another window for understanding the pulse of a city. Liu et al. [35] reported the use
of multiple real-time data sources (GPS data from taxis and smart card data from buses) to
understand daily urban mobility patterns and traffic dynamics (e.g., hotspot detection).
Morency et al. [41] investigated the spatio-temporal dynamics (e.g., examining the effects
of weather on transit demand) of public transit networks, leveraging the 10 month bus
boarding records collected from a city in Canada.

3 Characterization of embedded intelligence

Each of the above-mentioned sensing sources has strengths and limitations in capturing the
full spectrum of EI. To exploit the rich intelligence embedded in the IoT and support diverse
applications, heterogeneous sensing sources with different capabilities should be aggregated
to extract the distinct dimensions of EI. This section begins with a characterization of diverse
IoT sources in terms of sensing style and coverage. We then present three different interac-
tion schemes between humans and the IoT. We also elaborate on how these interaction
schemes lead to the three dimensions of EI.

3.1 Diversity on sensing style and coverage

In terms of the relationship between IoT devices and human community, we identify two
distinct styles of smart object sensing (Figure 1).

– Object-centric (third-person) style. Smart objects belonging to this type are deployed in
the real world. They can detect the changes in their physical status as well as changes in
the surrounding environment. This sensing style does not link a sensing device to a
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particular person; the device observes the world changes within its range of perception like
third-person observers. Surveillance cameras and smart indoor artifacts belong to this type.

– Human-centric (first-person) style. Smart objects belonging to this type serve as personal
companions (e.g., worn on or attached to the human body, carrying human when they
travel). Its placement or location in relation to the user enables the object to share the first-
person perspective of the user, and continuously senses user contexts, such as his/her
physical activities, daily encounters, and location trails, as well as the situation in which he
is immersed. All the other types of IoT devices presented in Section 2, such as wearable
sensors, mobile phones, smart vehicles, and smart cards, belong to this category.

In addition to sensing style diversity, heterogeneous sensing sources also differ from one
another in terms of coverage capability. The word “coverage” has two meanings: geograph-
ical coverage (geo-coverage) and logical coverage.

– Geo-coverage pertains to the area covered by a sensing device. Object-centric sensing
devices are usually restricted to specific areas. For example, surveillance cameras are
installed in a critical spot for small-area monitoring. Human-centric devices break through
coverage boundaries by extending the coverage to the scale of a town or city. For example,
vehicles and smart cards can predict human mobility patterns in an urban area.

– Logical coverage, in simple terms, stitches together geo-coverage observations along
multiple abstract dimensions: spatial, temporal, social, and so on. Figure 1 shows that
although diverse categories of IoT devices have shared features, they also possess
distinct strengths with respect to the logical/semantic data (e.g., human activities, space
semantics) that can be learned from them (detailed in Section 2). Wearable and mobile
sensors have the largest logical coverage among the referred sensing sources.

3.2 Three dimensions of embedded intelligence

Various IoT devices are weaved deeply into the fabric of everyday life. The diverse features
of these devices present unprecedented opportunities to understand the aspects of interaction

Figure 1 Diversity in sensing style and coverage of distinct IoT devices.

World Wide Web (2013) 16:399–420 405



between humans and real-world entities. We characterize these interactions as human-object,
human-environment, and human-human interactions. These interaction patterns can be
further elaborated into the three distinct dimensions of EI, namely, user awareness, ambient
awareness, and social awareness (as illustrated in Figure 2). We characterize the attributes of
the three dimensions as follows.

& User awareness refers to the ability to understand personal contexts and behavioral
patterns. Examples include human location, human activity, and daily routine patterns.

& Ambient awareness concerns status information on a particular space, which ranges from
a small space to a citywide area. Examples include space semantics (i.e., the logical type
of a place, such as a restaurant), ambient contexts, and traffic dynamics (e.g., traffic
jams, hotspots).

& Social awareness goes beyond personal contexts and extends to group and community
levels. The objective is to reveal the patterns of social interaction (e.g., group detection,
friendship prediction, situation reasoning), human mobility, etc.

The three dimensions of EI function at distinct scales. At the micro-scale, the aggregated
power of the dimensions improves the quality of human life by anticipating user needs and
environmental changes. At the macro-scale, these dimensions provide real time decision
support for crowds, social scientists, and urban managers. As a new research area, the
semantic data (high-level contexts, patterns, etc.) covered by the three EI dimensions are
expected to expand (going far beyond the eight types summarized in Figure 1) in the coming
years.

In W2T, harmonious symbiosis among humans, computers, and things in the hyper world
is the major concern. Our work is under the W2T vision, and from the view of W2T data

Figure 2 Three dimensions of EI.
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cycle, EI fits into the “data to knowledge/intelligence” transformation stage. In W2T, “data”
is considered as the bridge to connect cyber, social and physical worlds. Data is also crucial
for EI, where the hidden intelligence are mined from the “data” collected in human-IoT
interactions. EI can be viewed as a significant research direction under the W2T framework,
with the aim of exploring the characteristics, technologies, and potential challenges of
intelligence extraction from large-scale human-IoT interaction, to enable novel and intelli-
gent W2T applications. In the following sections, we will further present the EI enabled
application areas as well as the challenges faced by it.

4 Application areas

In addition to traditional IoT application areas, such as transportation and logistics, health-
care, and smart environments, among others, EI has the potential to significantly enhance
IoT systems, at least in the following application domains.

4.1 Real-world search

The increasing number of embedded sensor nodes connected to the Internet enables the
observation of an ever-increasing proportion of real-world entities (i.e., people, places,
events) via a standard Web browser. Previous studies have focused on searching the location
of entities in small-scale and indoor environments. For instance, a search system called
MAX was built for human-centric, on-demand searching and location of physical items with
the RFID tags [56] in smart homes.

Real-world search is now moving from merely location reporting to high-level human
context extraction and retrieval. As envisioned by Google researchers in Nature magazine
[43], search contents in the future will cover histories of social interactions with colleagues or
friends, and track city hotspots from GPS devices. Google initiated this practice with its real-
time traffic condition service [22]. Sense Networks Inc. (http://www.sensenetworks.com/) has
also conducted interesting work. Citysense [44], a mobile application developed by this
company, supports real-time discovery of hotspots in urban areas.

4.2 Lifelogging

Human memory is fallible. Most people often find the details around what they have done
and what they have to do difficult to recall. The failure to remember is a serious inconve-
nience and negatively influences well-being and performance in the workplace. With the
advent of wearable and mobile devices in recent years, numerous digital lifelogging systems
that aim to augment human memory through suitable means to capture, store, and access
daily experiences (e.g., meeting friends on the road, having lunch in a restaurant) have been
developed. Microsoft’s MyLifeBits [20] is a pioneering lifelogging project, dedicated to
capturing the complete human experience through a wearable camera and an audio recorder.
Cyber-I [36] aims to build a counterpart of each person in the cyber world that can
intelligently process individual experience data and help people in need. The complete
capture of people’s lives can bring much noisy data that may never be retrieved, thereby
increasing user effort in data retrieval. Thus, lifelogging system designers now focus on the
capture of selected scenes that are important to users. For example, the Social Contact
Manager (SCM) that our group developed is a scene-specific lifelogging system [26]. It can
capture the social interaction contexts (using mobile phones) between a person and his/her
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contacts, and support associative retrieval of the contacts in name-slipping situations using
auto-gathered contextual cues (e.g., when/where/with whom was the contact met).

4.3 Mobile social networking

Forging social connections with others is the core of what makes us human. Mobile social
networking (MSN) aims to improve social connectivity in physical communities by lever-
aging the information detected by mobile devices. Social Serendipity is one of the earliest
MSN studies, in which matching interests among nearby people who do not know one
another are indicated as a cue for informal, face-to-face interactions [15]. The CenceMe
project exploits off-the-shelf smart phones to automatically infer human activity (e.g.,
walking on the street, dancing at a party with friends), and then shares this information
through social network portals (e.g., Facebook) [10]. Li et al. [34] proposed a friend
recommendation approach that mines similarities among users (e.g., points of interest) on
the basis of their location histories, collected from GPS-equipped mobile phones.

4.4 Enterprise computing

Deploying and using smart objects in enterprises facilitate communication and collaboration
among co-located or non-co-located employees. The use of smart objects can help us
understand organizational and societal behaviors in enterprises. For example, the SixthSense
project of Microsoft [46] uses RFID-tagged objects/devices to infer a range of enterprise
intelligence, such as the interaction and association between people and workplaces. The
collected data are then used for enterprise services, such as automatic bookings of confer-
ence rooms. Ara et al. [2] used specially designed work badges to study the relationship
between productivity and interpersonal interactions in a workplace.

4.5 Urban planning

Understanding human movement in urban environments has direct implications for the
design of public transport systems (e.g., more precise bus scheduling, improved services
for public transport users), traffic forecasting (e.g., hotspot prediction), and route recom-
mendation (e.g., for transit-oriented urban development). A number of studies have extracted
citywide human mobility patterns using large-scale data from smart vehicles and mobile
phones. The Real Time Rome project of MIT uses aggregated data from buses and taxies to
better understand urban dynamics in real-time [9]. Liu et al. [35] reported that the spatio-
temporal patterns of taxi trips are essential for a more refined urban taxi system, which
enables the control of taxi supply according to travel demands in space and time.

4.6 Community sensing

Community sensing [31] pertains to the monitoring of large-scale phenomena (e.g., air
pollution map of a city) that cannot easily be measured by a single individual, but by the
active involvement of many citizens (during their daily commutes in the city). Community
sensing leverages the mobile nature of humans and the existing or emerging sensing
capabilities of mobile/wearable devices, such as sound sensors, air quality sensors, and so
on. For instance, the MIT Owl project [50] takes advantage of the network of smart phones
equipped with GPSs, compasses, and directional microphones to assess owl populations in a
huge region. By sensing the CO2 and noise levels along a cycling path, the Bikenet
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application enables multiple users to share and merge individually collected data to create
the pollution and noise maps of their city [18]. By analyzing the large number of geo-tagged
Twitter messages posted from GPS-equipped mobile devices, Lee et al. has proposed a
method to detect unusually crowded places (e.g., a fireworks festival in a park) [33].

5 Key challenges and concerns

Developing the potential benefits offered by EI poses a number of challenges and concerns,
many of which are motivated directly by the applications discussed earlier. In facilitating the
development of EI in IoT systems, a fundamental issue is the collection and management of
multi-modal data from different data sources. Other important issues include better use of
classifiers in terms of complex sensing contexts, as well as the privacy and economic
concerns raised by the detection and sharing of human daily experiences.

5.1 Sensing with human participation

EI can task deployed mobile sensing nodes (e.g., wearable/mobile devices, vehicles) to
contribute data for community use (i.e., community sensing in Section 4.6; real-world search
and urban planning applications also explore community sensing data). Compared with
traditional static, centrally controlled sensor networks, the involvement of mobile human
volunteers in gathering, analyzing, and sharing local knowledge in an interactive sensing
infrastructure raises new issues.

Human roles The roles people play in community sensing need clarification. An example is
whether they should be interrupted to control the status (e.g., acceptance, execution) of a
sensing task. Previous studies have proposed two different views. The participatory view
explicitly incorporates people into the task processing stage (e.g., deciding which application
request to accept, capturing and interpreting the data required) [8]. Conversely, the oppor-
tunistic view shifts the burden of users by automatically determining when the devices can
be used to satisfy application requests [10]. There are limitations to the two perspectives.
Purely participatory sensing places many demands on involved users, whereas the opportu-
nistic approach, although more autonomous, suffers from issues such as potential leak of
sensitive personal information and high computation costs incurred from decision making
(e.g., deciding whether the sampling condition is satisfied). Future work should involve
balancing the control load of users and computation load of mobile sensing nodes. Similar to
Ganti et al. [19], we envision future community sensing to span a wide spectrum of user
involvement, with participatory and opportunistic sensing at the two ends. The proportion of
human involvement, however, will depend on application requirements and device/network
capabilities.

Sensing task assignment and data sampling In community sensing, using mobile sensors
from a highly volatile swarm of sensing nodes can potentially provide coverage where no
static sensing infrastructure is available. Nevertheless, because of a potentially large popu-
lation of mobile nodes, a sensing task must identify which node(s) may accept a task. A set
of criteria should be considered in filtering irrelevant nodes: the specification of a required
region (e.g., a particular street) and time window, acceptance conditions (for a traffic-
condition capture task, only the phones out of user pockets and with good illumination
conditions can satisfy requirements), and termination conditions (e.g., sampling period).
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Some preliminary studies on these issues have already been initiated. For example, in [12], a
task description language called AnonyTL was proposed to specify the sample context for a
sensing task. However, improving the efficiency of the decision making process in task
assignment and data sampling necessitates further efforts.

5.2 Data collection and representation

As in EI-enhanced IoT systems, data producers can be very different in terms of modality
(static or mobile), resource capabilities, data quality (high or low), and sharing willingness.
Data consumers are also heterogeneous in terms of running environments (applications that
run locally or at community level remotely) and data needs (some need only high-level
context information, while others need raw sensor data). Heterogeneity brings forth several
challenges for data collection and management.

Architecture for data collection: centralized or self-supported IoT systems use heteroge-
neous sensors, in which some sensors may not have computing or storage resources while
others have relatively better functionalities. This situation gives rise to two distinct data
collection methods: The centralized method transports all sensor data to a resource-rich
backend server to perform data processing, whereas the self-supported method endows the
device itself with the ability of data processing. The Maui project [13] uses the centralized
method, which advocates the use of clouds for performing all data processing tasks while
building only a thin layer on the phone itself. The activity recognition tasks of CenceMe
[10], are performed on the phone (i.e., the self-supported method). Both approaches have
benefits as well as drawbacks, and present specific challenges and opportunities. For
example, the data from a group of users collected via the centralized approach offers
opportunities for group behavior or large-area dynamics extraction, but the cost associated
with the transport of sensor data is high. Although the self-supported approach presents the
advantage of providing more scalable solutions, it may affect the execution of other
applications in the device because of resource limitations. Future work should consider a
hybrid plan that considers the trade-off between the cost for on-the-phone computation and
that for wireless communication with backend servers.

Standards for communication and knowledge representation Leveraging the sum of data
from widely deployed sensors is a key enabler of EI. However, accessing data from
distinct IoT devices can be a technical challenge. Sensors come from different plat-
forms vary in bandwidth capabilities, connectivity to the Internet (e.g., constant,
intermittent, or affected by a firewall), and connection methods (3G, WiMax, etc.);
the sensors might have different access interfaces. To hide much of this complexity,
there should better be a standard approach that can provide a uniform interface for
collecting, sharing, and querying sensory data from IoT devices. Some efforts are
ongoing. For example, the OGC Sensor Web Enablement (SWE) [51] is devoted to
building a unique framework of open standards (e.g., XML, Web Service, IEEE 1451)
for exploiting Internet-connected sensors of all types. Similarly, the SenseWeb project
[23] of Microsoft presents an infrastructure for shared sensing using standardized web
service APIs. The unified method for representing the high-level contexts extracted
from raw sensing data is another important factor. A shared semantic framework
should be introduced to facilitate EI representation and retrieval, as demonstrated in
ontology-based studies [25, 53].
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5.3 Uncertainty handling

The sensed data from IoT systems have many sources of uncertainty, which may influence
the accuracy of subsequent data processing. For instance, embedded sensors can be broken
or may report error data, and the sensing environment may generate a considerable volume
of noisy data. Taking RFID-based human activity recognition for example [45], if several
RFID-equipped objects are placed close to each other, the RFID-reader worn on the human
body can detect them simultaneously, consequently affecting the final recognition result.
Although the detection and recovery aspects of faults or failures in challenging environments
are critical to many IoT applications, little research has been done on these issues.

The involvement of human participation in community sensing also brings forth certain
uncertainties to EI extraction. For example, anonymous participants may send incorrect or
even fake data to a data center. The lack of control over ensuring source validity and
information accuracy can lead to data credibility issues. Therefore, trust maintenance and
abnormal detection methods should be developed to determine the trustworthiness and
quality of collected data.

5.4 Learning complexity and model selection

Understanding the individual and group behaviors in gathered IoT data necessitates the
exploration of a set of classifiers. However, many real-world issues arise when data
processing task takes place out of controlled lab settings and is governed by uncontrolled
users.

Lack of a common model Humans behave in idiosyncratic ways under a variety of unstruc-
tured environments. It is therefore difficult to train a generic classification model that works
well in different contexts. For example, a person can walk with his/her mobile phone in hand
or in his/her pocket, which may affect recognition accuracy when a common activity
recognition model is used. In this context, training different classifiers that work in varied
contexts (or even work for different users) is a more efficient approach. However, learning
from data requires labeling; given the large number of behaviors to be recognized, the
diverse contexts to be considered, and the fact that end users are lay persons, it is impractical
to expect much labeled data. The importation of mature semi-supervised or evolvable
learning techniques is a promising solution to this problem (we call it the sparse data
labeling problem). Leveraging user collaboration/sharing in the data labeling process also
hold promise for reducing training time and labeling effort, as demonstrated in [40].

Complexity and ambiguity The accurate extraction of EI information is challenging because
of the complexity of daily settings. Successful research on human activity recognition, for
example, has thus far focused on recognizing simple individual/group activities in lab
environments. Many new challenges, however, emerge in uncontrolled environments. First,
people can engage in several activities simultaneously in the same place. For example, a
person can answer a phone call while walking with a friend along a street. Little effort has
been devoted to recognizing such concurrent activities. Second, similar situations or even
the exact one can be interpreted differently. Various interpretations lead to ambiguity and
system inconsistency. For example, “picking up the wallet” can be classified under several
activities, such as “leaving home” and “cleaning.” A group of co-located phones can
compute different inference results about a social situation, such as “in a party” or “in a
meeting,” because of slight environmental differences.
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Other than the issues raised by the complex nature of individual or group activities,
understanding and predicting human behavior and interaction at the community level can be
facilitated by the findings of recent social science and physical studies. For example, patterns
such as power-law/small world topology have been found in networks that range from
friendships in school to co-authorship networks in the sciences [1, 42]. Other techniques and
models about large-scale network systems should also be exploited in future EI research,
such as random graph theory, scale-free networks, and so on.

5.5 Privacy concerns

The sharing of personal data in applications (e.g., contributing data to community services, such
as citywide pollution monitoring) can raise significant privacy concerns, with information (e.g.,
location, point of interests) being sensitive and vulnerable to privacy attacks. The new security
challenge introduced here is the protection of the privacy of participants while allowing their
devices to reliably contribute data to community-scale applications. Some researchers have
focused on using data anonymization techniques to conceal the identity of users when they
contribute data. However, anonymity is sometimes insufficient because attackers can still link
the identity of the contributor to the reported data. For example, a report containing the house
where a sensor reading was taken can leak information about the identity of the homeowner.
Researchers have started using k-anonymity and spatio-temporal cloaking [10] to address this
problem. Nevertheless, protecting privacy should not be limited to technical solutions, but
should encompass initiating debates and proposing considerations about policies and regula-
tions toward a common understanding of the rights of users to control and use their data.

5.6 Economic concerns

EI offers immense potential to consumers and service providers. However, for these innovations to
evolve from ideas to tangible products for the mass market, many commercial issues require
resolution. In data sharing among peers (e.g., for the data collected from personal devices for a
community sensing purpose), the development of a solid economic model is highly important.
This issue is evenmore critical when the devices (e.g., mobile phones, wearable sensors) have very
limited resources, such as energy and storage capacity. Although enforcing cooperation and social
connection can be the catalyst for this paradigm, additional strategies for incentives and reputation
for data contributors are needed. Some ideas from the economic-relevant solutions devised in
traditional P2P platforms and ad hoc networking systems can aid the resolution of this issue.

6 A reference embedded intelligence architecture

Based on the elaboration and discussion of EI, we propose a reference architecture to
illustrate the key functional blocks of an EI-enhanced IoT system. It is intended to be the
starting point that advances this new research area. We are also practicing the key ideas of
the reference architecture in our ongoing EI related projects, which will then be presented.

6.1 The EI architecture

Figure 3 shows the proposed architecture, which consists of five layers: sensing and local
processing, data collection infrastructure, data aggregation and intelligence extraction,
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knowledge sharing, and applications. Instead of a purely centralized or self-supported
method, a Hybrid Data Processing (HDP) solution is provided. We allow part of data
processing tasks performed in smart objects to achieve local perception (e.g., recog-
nizing personal activity on a mobile phone); local-reasoning results (sometimes raw
sensor data) are transmitted to backend servers for group/community knowledge
discovery (e.g., hotspot detection in a city) and information sharing (e.g., sharing
current user activity with friends). The HDP solution significantly reduces the com-
munication cost between clients and backend servers, and increases the resilience of
the entire network. Our solution is similar to the split-design strategy used in the
Darwin system, which advocates the splitting of data processing tasks in mobile
phone sensing [40].

Layer-1: Sensing and local processing The first layer is a physical layer. Various everyday
objects and devices connect themselves to large networks. They sense and record changes in
the environment, as well as transmit raw sensor data or locally processed data (e.g., high-
level features or micro-contexts) to backend servers.

Layer-2: Data collection infrastructure The second layer gathers data from trusted sensor
nodes and provides privacy-preserving mechanisms for data contributors. The following
components are involved:

& Sensor gateway. This component provides a standard approach (e.g., the web service
techniques used in the SWE [51] and SenseWeb [23]) to data collection from various
smart objects. The purpose of the gateway is to provide a uniform interface to all
components (e.g., data processing and application components) above it. It also handles
sampling optimism from smart devices.

Figure 3 A reference EI architecture.
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& Privacy manager. Privacy is a major concern for personal data sharing. This layer
provides data anonymization and privacy protection mechanisms before data are re-
leased and processed.

& Trust maintainer. A trust model is incorporated to ensure the trustworthiness and quality
of data sources.

& Task manager. This component is significant to enable community sensing. It can
analyze a sensing task from an application requester and assign it to the correct human
contributor in terms of specified requirements, such as time window, location, and
acceptance condition (see Section 5.1 for details).

Layer-3: Data aggregation and intelligence extraction This layer applies diverse machine
learning and logic-based inference techniques to transform the collected low-level, single-
modality sensing data into the expected intelligence. The focus is to mine the frequent data
patterns to derive the three dimensions of EI at an integrated level.

Layer-4: Knowledge sharing The extracted knowledge can be shared and retrieved by
authorized application entities. This layer employs semantic web and ontology techniques
to enable unified knowledge representation, sharing, and retrieval (i.e., query and
subscription).

Layer-5: Application layer This layer includes a variety of potential applications and
services enabled by EI-enhanced IoT systems. We will present some of the applications
we have developed in the next subsection.

6.2 Ongoing projects and performance evaluation

The aim of EI is to augment existing IoTwith user awareness, ambient awareness, and social
awareness. We’ve developed a number of applications in the ongoing projects, which
demonstrate the EI concept and practice the key ideas incorporated in the reference archi-
tecture. These applications also demonstrate the key concept of W2T, leveraging the data
from the hyper world to realize organic amalgamation and harmonious symbiosis among
humans, computers and things.

A. The Smart Campus
The university campus is a typical socially-active environment. To assist and

enhance social interaction among students and staffs, we have designed and imple-
mented a Smart Campus prototype [57] based on the EI reference architecture, under a
collaboration project with Microsoft Research Aisa. The smart campus aims to benefit
the social interaction with the introduction of participatory sensing (see Section 5.1)
and mobile social networking (see Section 4.3). We have implemented two typical
applications: Where2Study and I-Sensing.

The main purpose of Where2Study is to find a suitable place to study by using
Wi-Fi positioning technology. It not only presents the navigation map of a
building to help students find classrooms (Figure 4a), but also shows the status
of all classrooms (full or free seats available), as shown in Figure 4b. Further-
more, Where2Study is also a mobile social networking application, which sup-
ports students to query the status and locate their friends in the university
campus.
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People are often interested in the information about a place while they are not
there. For instance, Bob is in the library and wonders whether the tennis court is
occupied. I-Sensing is a campus-scale information sharing system based on
participatory sensing, which allows users to share the status of public infra-
structures in a university campus, such as play yards, libraries, coffee shops,
and so on. Once a user posts a space-query to I-Sensing, the task manager (in
Layer 2 of the reference architecture, RA for short) of I-Sensing will deliver the
sensing task to a selected number of “observers” who are locating near that space
(based on their GPS readings). Local observers can answer the query by either
authoring text messages or simply taking pictures (as shown in Figure 4c). To
encourage users to participant in more social interactions, social competition is
also incorporated (see Figure 4d). In the future, we will analyze the interaction
data from I-Sensing and estimate inter-personal relations (e.g., based on their
common point of interests, such as tennis court) and recommend friends to
university users.

A technical summary of the Smart Campus applications are given in Table 1.
In short, by leveraging the mobile and static sensing devices in the campus, the
EI-enhanced IoT will provide university users with ambient and social awareness.

B. User Awareness with Mobile Phone Sensing
As described in Section 3.2, human activities (e.g., walking, sitting, in conversation),

user daily routines are important contexts in terms of user awareness. With the
prevalence of sensor-equipped mobile phones, awareness of user on mobile phones

Figure 4 Screenshots of Where2Study and ISensing.

Table 1 Technical summary of three EI applications.

Applications IoT devices Scope Intelligence
learned

Intelligence extraction
methods

Smart campus Mobile phones,
Wi-Fi receivers,

University Ambient contexts,
Social connection

Wi-Fi positioning

Campus Participatory sensing

User awareness Mobile phones Human-centric Human activity,
daily routines

Decision tree
(as the classifier)

Pervasive gaming Ultrasonic sensors,
Smart artefacts

Smart homes Human activity Rule-based reasoning
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(using accelerometer data) has become a hot research area. However, it is still a
challenge due to the constraints of resources on mobile phones, such as battery
limitation, computational load, and so on. To address these issues, we have proposed
a scalable user awareness algorithm based on the HDP strategy (refer to RA in
Section 6.1), whereby human contexts is derived from classifiers which execute in part
on the mobile clients and in part on the backend servers. In detail, to reduce commu-
nication cost, raw sensor readings are processed by lightweight feature extractors (time
features, frequency features) running on the phone, the extracted features are then
transmitted to backend servers for user activity recognition and routing mining.

To demonstrate the effectiveness of the HDP strategy, we developed the Activity
Recognition application on the Samsung i909 Android platform. Figure 5 (left) illus-
trates the data collection and training process of the application, while the classification
process is shown in Figure 5 (right). The battery lifetime is used as a metric to measure
the resilience of the system. Firstly, when all applications and sensors are turned off, the
battery lifetime is about 30 h. This value declines to 11.2 h (when the sampling
frequency is 10 Hz) when simply the built-in accelerometer is working (without
running the Activity Recognition application). We further measured the battery lifetime

Figure 5 Screenshots of the human activity recognition: training (left) and classification (right).

Figure 6 The battery lifetime under different data processing strategies.
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when 1) only feature extraction is executed on the phone and 2) both feature extraction
and the classifier (based on the decision tree algorithm) are executed on the phone. As
shown in Figure 6, when the classifier is mounted from the phone to the backend server,
the mobile phone battery lifetime increases from 6.3 h to around 10 h (10 Hz), which
indicates that the classifier consumes much higher power than feature extraction. This
result also indicates that the HDP strategy can improve the energy-conservation per-
formance of mobile phone sensing systems.

C. Pervasive Gaming
The development of IoT has propelled innovations on entertainment. Pervasive

gaming is one of its productions. By blending of real and virtual elements and enabling
users to physically interact with their surroundings during the play, people can become
fully involved in pervasive games and attain better gaming experience. We have
developed Treasure, a pervasive game playing in the context of people’s daily living
environments, which explores the interaction between human and smart indoor arte-
facts.

At the beginning of the game play, objects are hidden in different places of the
house. Different objects play different roles (e.g., a monster, the treasure-box, the guide)
in the game. When the players find a hidden-object (Figure 7a) or perform certain
activities (e.g., open a drawer), the relevant multimedia action is presented to transmit
information to the players (Figure 7b). Players need to hunt the ‘treasure’ to win the
game. It should be noted that this game has the networked play mode, where a player A
in a smart home can set a game in her house, and another player B can play the game
online from a remote house, by using rotatable cameras installed in smart homes
(Figure 7c). For example, B can prompt A to touch an object which might be the
“treasure-box”, as shown in Figure 7a.

Logic-based reasoning (in Layer 3 of RF) is used to extract high-level user contexts
(e.g., finding an object, opening a drawer) from human-object interaction. The extracted
contexts is represented in an ontology-based model (kept in a backend server), to
support context sharing among heterogeneous smart homes (in Layer 4 of RF). The
ontology is represented using the Semantic Web language OWL, and the inference rules

Figure 7 Screenshots of iFun play.

Table 2 Reasoning time in different scales of smart spaces.

Smart spaces Size of ontology Number of smart objects Number of rules Maximum reasoning time

Middle scale 2,000 triples 50 50 1.2 s

Large scale 3,000 triples 100 100 2.2 s
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are represented using the Semantic Web Rule Language (SWRL, http://www.w3.org/
Submission/SWRL/). Jess (http://www.jessrules.com/), a forward-chaining inference
engine is used to execute inference rules. Experiments have been conducted to evaluate
the performance of ontology-based context reasoning in different scaled smart spaces.
The test environment is a 1.0 GB RAM PC with P4/2.0 GHz. We used two different-
sized ontology and rule sets to evaluate the system scalability. The experiment results
are illustrated in Table 2. It is not difficult to conclude that logic-based reasoning is
affected by the ontology size and the number of rules applied. For most pervasive
applications, as their real-time requirement is not likely to be critical, a perceivable
delay (1 or 2 s) is acceptable. The system performance in large-scale smart spaces,
however, can be improved when applying high-performance processors.

7 Conclusion and implications for the future

The EI introduced in this paper is expected to augment existing IoT systems with user,
ambient, and social awareness under the grand W2T vision, and enable a wide range of
innovative applications. For the EI to be fully employed, numerous challenges remain to be
addressed. All these challenges present substantial research opportunities for academic
researchers, industrial technologists, and business strategists. We have also presented a
reference architecture and some of our ongoing practices, including the smart campus,
mobile phone sensing, and pervasive gaming on EI-enhanced IoT. However, the develop-
ment of EI presents both advantages and liabilities: although it connects people and makes
lives more convenient, it impinges on privacy as never before. The future of EI is, in some
ways, profoundly sobering, even as it promises infinite possibilities for business.
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