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Abstract We present in this paper a novel collaborative filtering based scheme for
evaluating the QoS of large scale Web services. The proposed scheme automates
the process of assessing the QoS of a priori unknown service providers and thus
facilitates service users in selecting services that best match their QoS requirements.
Most existing service selection approaches ignore the great diversity in the service
environment and assume that different users receive identical QoS from the same
service provider. This may lead to inappropriate selection decisions as the assumed
QoS may deviate significantly from the one actually received by the users. The
collaborative filtering based approach addresses this issue by taking the diversity
into account instead of uniformly applying the same QoS value to different users.
They predict a user’s QoS on an unknown service by exploiting the historical QoS
experience of similar users. Nevertheless, when only limited historical QoS data
is available, these approaches either fail to make any predictions or make very
poor ones. The cornerstone of the proposed QoS evaluation scheme is a Relational
Clustering basedModel (orRCM) that effectively addresses the data scarcity issue as
stated above. Experimental results on both real and synthetic datasets demonstrate
that the proposed scheme can more accurately predict the QoS on unknown service
providers. The efficient performance also makes it applicable to QoS evaluation for
large scale Web services.
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1 Introduction

Service computing is gaining momentum nowadays by offering an attractive para-
digm for various business organizations to deliver their functionalities. Within this
paradigm, the key functionalities are wrapped into Web services, which can be
programmatically accessed over the Web in a standard way. Many Web services
have been developed and deployed on the Web over the past few years. This trend
has been further expedited by the emergence of the cloud, which offers a powerful
and cost-effective platform to host a large number of Web services. While the ever
increasing number of Web services holds significant promise, a key challenge arises:
selecting a user desired service becomes nontrivial as users are easily overloaded by
a vast amount candidates.

Achieving the full potential of service computing requires the ability to efficiently
and accurately retrieve the services that meet users’ requirements. A user’s re-
quirements may cover both the functional and nonfunctional aspects of a service.
A number of Web service search engines have been developed that help users
locate services with their required functionality [4, 13, 23, 28]. Information re-
trieval [11, 19, 24] and semantic Web technologies [3, 20, 29] have been employed to
achievemore precise and reliable search results. QoS-aware service selection has also
received considerable attention as multiple service providers may compete to offer
the same functionality but with different QoS. As the number of services has gone far
beyond the reach of any manual search, plenty of algorithms have been developed
that can help users efficiently locate providers that best match their QoS preferences
[35, 37].

A key issue with most existing service selection approaches is that they ignore
the disparity of service users and do not differentiate the QoS delivered from the
same provider to different users. The QoS information is either obtained from the
service description of the provider or from some monitoring system. Nevertheless,
service providers may not always deliver according to their “promised” quality [30].
Furthermore, a user may access the service from an environment that is a very
different with the monitoring system in terms of location and network condition,
etc. [40]. Therefore, the actual QoS received by the user may deviate dramatically
from the one used by the service selection algorithms. As a result, these algorithms
will lead to inappropriate selection decisions.

Collaborative filtering techniques have been recently applied to service selec-
tion [16, 25, 39, 40]. Collaborative filtering aims to more accurately estimate the QoS
of unknown service providers by explicitly taking the user disparity into account.
Most existing collaborative filtering approaches fall into two categories: memory
based and model based. The memory based approaches can be further divided into
user based and item based approaches. The intuitive idea is to identify “similar” users
with a given active user and assign higher weights to these users when aggregating
their QoS values to predict unknown QoS. The similarity between two users is
measured based on the QoS values on the common services they have used. All
existing efforts that employed collaborative filtering for service selection fall into
the memory based category. A key issue with the memory based approach is data
sparsity. Since only users that have used the same services can be regarded as
“similar”, it may be difficult to identify sufficient number of users that are similar
to the active user from a very sparse QoS dataset. As a common service user may
only use a limited number of Web services, a typical QoS dataset is expected to be
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very sparse. In this regard, these approaches either fail to make any predictions or
make very poor ones, which is also confirmed by our empirical study on a real QoS
dataset.

In this paper, we propose a Relational Clustering based collaborative filtering
Model (or RCM) to predict the QoS of a priori unknown service providers. QoS
evaluation of unknown service providers is a key step toward accurately selecting
services that match users’ QoS preferences. Relational clustering leverages the
interaction information between the two participating entities, i.e., users and services.
More specifically, the historical QoS data is denoted by a relation matrix, where each
row represents a user, each column represents a service, and each entry signifies the
interaction information (i.e., QoS) between the user and the service. Based on the
available interaction information, users and services are divided into a set of user and
service clusters, respectively. Besides cluster coefficients, a second key component
resulted from relational clustering is a cluster interaction matrix (a.k.a. prototype
matrix) that captures the interactions between user and service clusters. As the
interactions between clusters of users and services are much more likely to occur
than the interactions between individual users and services, the proposed relational
clustering based model can more effectively deal with data sparsity. The unknown
QoS is finally obtained as the convex combination of the cluster interaction matrix.
It is worth to note that RCM does not aim to completely avoid the cold start issue
in collaborative filtering. Instead, due its relational clustering nature, RCM is less
sensitive to the sparsity of the datasets. This is critical for QoS evaluation as most
real-world QoS datasets are very sparse. We demonstrate the effectiveness of RCM
through an extensive experimental study and comparison with other collaborative
filtering techniques.

Our overall contribution is summarized as follows:

• We propose a novel relational clustering based model,RCM, which is applicable
to incomplete QoS data matrices, for accurate QoS evaluation.

• RCM is robust to very sparse data matrices due to its relational clustering
nature, which makes it especially suitable for QoS evaluation in the service
environment.

• We present the system architecture and use a case study to demonstrate how
RCM can be used in service selection.

• We conduct an extensive experimental study to assess the effectiveness and
efficiency of RCM.

The remainder of the paper is organized as follows. We provide an overview of
collaborative filtering and discuss how it can be used for Web service QoS evaluation
in Section 2. This helps set the stage for the discussion of the proposed relational
clustering basedmodel for QoS evaluation, which is detailed in Section 3.We present
the algorithm that constructs RCM in Section 4. We present the system architecture
and use a small scale case study to illustrate how the proposed RCM model helps
achieve personalized service selection in Section 5. We evaluate the effectiveness
and efficiency of the proposed model by using both real and synthetic datasets in
Section 6. We give an overview of related works and discuss the difference with the
proposed RCM in Section 7. We provide our concluding remarks and identify some
important future directions in Section 8.
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2 Preliminaries

In this section, we start by describing an illustrative example, which helps further
motivate the proposed research. We then provide an overview of collaborative
filtering techniques and discuss how to apply them to Web service QoS evaluation.

2.1 An illustrative example

Consider five (5) example services and five (5) users who have invoked some of these
services. Assume that the active user is seeking a service with a high availability.
Table 1 gives the historical QoS data on availability from these users. φ means that
the user has not invoked the corresponding service, so no QoS data is recorded.
Assume that there are two services, service2 and service4, which provide the user
desired functionality. Since they may offer different availability, the task is to select
a service with a higher availability.

The first important observation that we make from the historical QoS data is that
different users may receive dramatically different QoS from the same service. For
example, the availability of service1 varies from 0.75 to 0.98 across the five different
users. As discussed in Section 1, this may be caused by the differences of the location
and network condition of the users. For example, all users except for user3 perceived
a high availability from service1. By taking a closer look at user3, we find out that
it also perceived a relatively low availability from other services, (e.g., service2 and
service3). In this case, it is highly probable that this user comes from a computing
environment with an unstable network. This observation also implies that applying
a uniform QoS value (obtained from the service description or a monitoring system)
to different users does not consider the disparity of users. Hence, using such QoS for
service selection may result in inappropriate selection decisions.

Collaborative filtering explicitly considers user disparity, which aims to accurately
predict the QoS of unknown service providers. It identifies users that have similar
QoS experiences with the active user and leverages the QoS they have perceived to
make predictions. For example, two users that are most similar to the active user
in Table 1 are user1 and user4. In particular, both user1 and the active user have
invoked service1 and service3 and perceived similar QoS from these two services.
Similarly, both user4 and the active user have invoked service1 and service5 and
perceived similar QoS from them. Since user1 and user4 have invoked service2 and
service4, respectively, we can use their QoS data to predict QoS that the active user
may receive from these two services.

A typical QoS dataset will be in a much larger scale, which includes many more
users and services. Therefore, more than one similar users will be identified. Multiple

Table 1 Historical QoS data
on availability.

service1 service2 service3 service4 service5

user1 0.95 0.8 0.8 φ φ

user2 0.98 0.96 φ 0.85 0.95
user3 0.75 0.75 0.72 φ φ

user4 0.93 φ φ 0.98 0.85
Active user 0.93 ? 0.82 ? 0.87
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QoS values are usually aggregated based on certain similarity functions (which will
be introduced next) to produce more accurate predictions.

2.2 Collaborative filtering for web service QoS evaluation

The illustrative example captures some intuitive ideas about how collaborative
filtering can be applied to QoS evaluation. A central component of collaborative
filtering is to identify users who have similar QoS experiences with the active user.
Pearson Correlation Coefficient is one of the most widely used similarity functions
by existing collaborative filtering systems. More specifically, the similarity between
two users i and j can be calculated using Pearson Correlation Coefficient as:

sim(i, j) =
∑

k(vi,k − vi)(v j,k − v j)
√∑

k(vi,k − vi)2
∑

k(v j,k − v j)2
(1)

where vi,k denotes the QoS value that user i received from service k, vi denotes the
average QoS that user i received from all the services s/he has invoked, and the
summation is over all the services that have been invoked by both i and j. sim(i, j)
gives a value in [−1, 1], where a positive value implies that i and j are correlated, 0
implies independent. a negative value implies anti-correlated.

Assume that we want to predict the QoS that an active user i may receive from
an unknown service provider p. The first step is to identify the set of users that have
invoked p. We then compute the similarity between these users and the active user
using (1) and identify similar users. This can be achieved by setting a threshold value,
say δ. A user j is regarded as a similar user only when sim(i, j) ≥ δ. After all similar
users are identified, the QoS can be predicted as:

vi,p = vi +
∑

j∈Si
sim(i, j)(v j,p − v j)

∑
j∈Si

sim(i, j)
(2)

where Si denotes the set of similar users of i, i.e., Si = { j|sim(i, j) ≥ δ}.
The above approach is also known as user based collaborative filtering. The item

based approach follows a very similar idea but identifies services that deliver similar
QoS as the unknown service provider p. Then, these similar services’ QoS behavior
will be leveraged to make the prediction. More specifically, using Pearson Correla-
tion Coefficient, the similarity between two services p and q can be calculated as:

sim(p,q) =
∑

l(vl,p − vp)(vl,q − vq)
√∑

l(vl,p − v p)2
∑

l(vl,q − vq)2
(3)

where v p denotes the average QoS that service p delivered to all the users who have
invoked p and the summation is over all the users that have invoked by both p and
q. The prediction can be made similarly as in (2):

vi,p = v p +
∑

q∈Up
sim(p,q)(vi,q − vq)

∑
q∈Up

sim(p,q)
(4)
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where Up denotes the set of similar services of p, i.e., Up = {q|sim(p,q) ≥ δ′} and δ′
is a threshold value. Some hybrid approaches may also be exploited, which combine
both the user based and item based approaches. For example, a hybrid collaborative
filtering method is presented in [40] that integrates prediction values specified in (2)
and (4) using the prediction confidence as weights.

Apart from Pearson Correlation Coefficient, cosine similarity is another widely
used similarity measure in existing collaborative filtering systems. In particular, each
user i is modeled as a vector vi ∈ Rn, where the p-th component vi,p denote the QoS
that user i received from service p and vi,p is set to 0 if i has not invoked p. The
similarity between users i and j can be calculated as:

sim(i, j) = vi · v j

||vi|| ||v j|| =
∑

k vi,kv j,k
√∑

k v
2
i,k

∑
k v

2
j,k

(5)

where ||vi|| is the Euclidean norm of vector vi. Once the similarity is computed, (2)
and (4) can be used to make QoS predictions.

3 The relational clustering based model for QoS evaluation

We present our relational clustering based collaborative filtering model in this sec-
tion. As can be seen from Section 2, collaborative filtering relies on the identification
of users who have similar QoS experiences with the active user and uses their QoS
behavior to make the prediction. The similarity of users is essentially decided by
their interaction result (i.e., QoS) with different services. Relational clustering, which
follows a similar rationale, also exploits the interaction information to determine
similarity of participating entities (e.g., users or services). Instead of identifying
similar users (or services) for each given user (or service), relational clustering seeks a
global structure that partition users and services into a set of user and service clusters,
respectively. This enables us to approximate the interaction behavior (i.e., QoS)
between individual users and services though a convex combination of the interaction
between user and service clusters.

3.1 Problem formulation and notations

Under relational clustering, the historical QoS data is modeled as a relational matrix
Xm×n, which captures the interaction information between m users and n services.
Subscripts are used to denote the sizes of matrices (e.g.,Xm×n means a matrix withm
rows and n columns). Each entry X(i, j) ∈ X represents the QoS that user i received
from service j. The i-th row of X, denoted by X(i, :), corresponds to the i-th user
while the j-th column of X, denoted by X(:, j), corresponds to the j-th service. Since
X contains missing entries, we use O to denote indices of observed QoS entries,
i.e., O = {(i, j)|X(i, j) is an observed QoS entry}. Further, X2

O = ∑
(i, j)∈O X2(i, j) is

the sum of the square of all observed QoS entries in X.
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Table 2 Notations. Notation Description

X A matrix
O A set
X′ The transpose of matrix X
X(i, j) The element at the i-th row and j-th column

of matrix X
X(i, :) The i-th row of matrix X
X(:, j) The j-th column of matrix X
Rp The p-th cluster
x j A column vector

Based on the above setting and notations (Table 2), we formally formulate the
problem as follows:

Definition 1 Given a relational matrix Xm×n and two positive integer values k and
l, relational clustering seeks an asymmetric convex encoding of matrix Xm×n by
optimizing the following objective function:

min
R∈Rm×k+ ,R1=1
C∈Rn×l

+ ,C1=1

(Xm×n −Rm×kPk×lC′
l×n)

2
O (6)

where 1 is a vector of 1’s,C′ is the transpose ofC, andR ∈ R
m×k
+ means that all entries

in R are nonnegative.

In order to prove some important properties of the proposed model, we first
transform the objective function in (6) into a different format. We define O as
an indicator matrix, where O(i, j) is 1 if X(i, j) is an observed QoS entry and 0
if otherwise. Hence, solving (6) is equivalent to solving the following objective
function:

min
R∈Rm×k+ ,R1=1
C∈Rn×l+ ,C1=1

∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2 (7)

where ||A|| =
√∑

ijA2(i, j) is matrix norm and ◦ is entry-wise product (or the Schur

product) of two matrices of the same dimensions.

3.2 User and service clustering

We have claimed that the asymmetric convex encoding of matrix X has the effect
of clustering the rows and columns of X into a set of row and column clusters,
respectively. It has been shown in [10], with an orthogonal constraint, performing
nonnegative factorization on a complete matrix is equivalent to K-means clustering.
We follow a similar rationale but apply it to an incomplete relational matrix X in
order to demonstrate the connection of the proposed model with clustering. In order
to show this, we first make a modification on the constraint of the objective function
in (7). That is, instead of having R1 = 1 and C1 = 1, we enforce an orthogonal



40 World Wide Web (2014) 17:33–57

constraint on R and C: R′R = I and C′C = I to make C and R the following cluster
indicator matrices.

C( j,q) =

⎧
⎪⎪⎨

⎪⎪⎩

1
√|Cq|

if x j ∈ Cq

0 otherwise

(8)

R(i, p) =

⎧
⎪⎪⎨

⎪⎪⎩

1
√|Rp|

if xi ∈ Rp

0 otherwise

(9)

whereCq and Rp denote the q-th and p-th column and row clusters, respectively.We
then generalize result to the original convex encoding constraint.

We first show that optimizing the following objective function is equivalent to
performing K-mean clustering on the columns of an incomplete relational matrix X.

min
C∈Rn×l

+ ,C′C=I
JC = ∥

∥Om×n ◦ (Xm×n − Sm×lC′
l×n)

∥
∥2 (10)

where S = RP. In order to do this, we need to further enforce a row normalization
on C, which gives

∑l
q=1 C̃( j,q) = 1 where C̃ = Cdiag(

√|C1|...√|Cl|). Accordingly, S

will be updated to S̃ = Sdiag−1(
√|C1|...√|Cl|) to ensure that SC′ =S̃C̃′. Hence, we

can reformulate JC as follows:

JC =
n∑

j=1

∥
∥
∥
∥
∥
∥
o j ◦ [x j −

l∑

q=1

C̃( j,q)s̃q]
∥
∥
∥
∥
∥
∥

2

(11)

=
n∑

j=1

∥
∥
∥
∥
∥
∥

l∑

q=1

C̃( j,q)[o j ◦ (x j − s̃q)]
∥
∥
∥
∥
∥
∥

2

(12)

=
n∑

j=1

l∑

q=1

C̃( j,q)
∥
∥o j ◦ (x j − s̃q)

∥
∥2 (13)

=
l∑

q=1

∑

x j∈Cq

∥
∥o j ◦ (x j − s̃q)

∥
∥2 (14)

where o j is the j-th column ofO and s̃q is the q-th column of S̃. From (11) to (12), we
use the fact that

∑l
q=1 C̃( j,q) = 1. Since there is only one non-zero element in each

row of C̃( j,q), we have C̃( j,q) = 0 or 1. This gives C̃2( j,q) = C̃( j,q), which leads (12)
to (13).
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K-means clustering minimizes (14), via which s̃q will converge to the centroid of
clusterCq. Next, we show that minimizing JC does lead s̃q to the centroid of clusterCq

JC =
∑

(i, j)∈O
[X(i, j)− SC′(i, j)]2 (15)

=
∑

i, j

O(i, j)[X(i, j)− SC′(i, j)]2 (16)

= Tr[(O′ ◦ (X− SC′)′)(O ◦ (X− SC′))] (17)

= Tr[(O′ ◦ (X− SC′)′)(X− SC′)] (18)

= Tr[X′(O ◦X)− 2S′(O ◦X)C+ S′(O ◦ (SC′))C] (19)

From (17) to (18), we use the following lemma.

Lemma 1

Tr(O ◦ A)′(O ◦ A) = Tr(O′ ◦ A′)A = TrA′(O ◦ A) (20)

In order to minimize JC , we take the partial derivative of JC with respect to S, which
gives

∂ JC
∂S

= −2(O ◦X)C+ 2(O ◦ (SC′))C (21)

= −2(O ◦ (−X+ SC′))C (22)

Setting ∂ JC
∂S = 0 gives −X+ SC′ = 0. Multiplying both sides by C and using the fact

that C′C = I lead to S = XC. This gives

S̃ = Sdiag−1(
√|C1|...

√|Cl|) (23)

= XCdiag−1(
√|C1|...

√|Cl|) (24)

i.e., s̃q = 1

|Cq|
∑

x j∈Cq

x j (25)

Equation (25) shows that minimizing JC indeed leads s̃q to the centroid of cluster
Cq. This also confirms that optimizing (10) is equivalent to performing K-means
clustering on the columns of X. Similarly, we can demonstrate that optimizing the
following objective function is equivalent to performing K-mean clustering on the
rows of an incomplete relational matrix X.

min
R∈Rm×k+ ,R′R=I

JR = ‖Om×n ◦ (Xm×n −Rm×kUk×n)‖2 (26)

whereU = PC′. Therefore, solving a modified version of the objective function in (7)
(i.e., with orthogonal constraint on R and C) is equivalent to clustering the columns
and rows of an incomplete relational matrix X.
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We now generalize result to the original objective function in (7). We define C̃ =
Cdiag(

√|C1|...√|Cl|) and R̃ = Rdiag(
√|R1|...√|Rk|), where Cj and Ri denote the j-

th and i-th column and row cluster, respectively. Accordingly, P will be updated to

P̃ = diag−1(
√|R1|...

√|Rk|)Pdiag−1(
√|C1|...

√|Cl|)
to ensure that RPC′ = R̃P̃C̃′. This gives

∑l
q=1 C̃( j,q) = 1 and

∑k
p=1 R̃(i, p) = 1 with

each row of C̃ and R̃ only having one non-zero element, respectively. We now relax
the constraint by allowing each row of C̃ and R̃ to have multiple non-zero elements.
This leads to the original constraints in (7), i.e., C̃1 = 1 and R̃1 = 1. Hence, solving
(7) is equivalent to simultaneously clustering the rows and columns of an incomplete
relational matrix X, where soft cluster membership is allowed. Entry C̃( j,q) ∈ C̃(or
R̃(i, p) ∈ R̃) denotes the probability of column j (or row i) belongs to the q-th (or the
p-th) column (or row) cluster.

3.3 QoS estimation

Besides the cluster indicator matrices R and C, another key component of the model
is the prototype matrix P. An entry P(p,q) ∈ P captures the interaction between the
p-th row cluster and the q-th column cluster. As each row of the relational matrix
X corresponds to a user and each column corresponds to a service, P captures the
interactions between the user clusters and service clusters. Hence, the QoS that
a user i will receive from an unknown service j can approximated by the convex
combination of the cluster interaction matrix P:

X(i, j) =
k∑

p=1

l∑

q=1

R(i, p)P(p,q)C( j,q) (27)

As the interaction between a user cluster and a service cluster is much more likely to
occur than the interaction between individual users and services, the proposedmodel
can more effectively hand the scarcity of the QoS data. Our experimental result
clearly justify the effectiveness of the proposed model in QoS prediction especially
when the QoS data is very scarce.

4 RCM construction

We present algorithms that efficiently solve the objective function given by (7).
This will lead to the optimal cluster indicator matrices R and C as well as the
cluster interaction matrix P. These matrices will then be used to estimate the QoS of
unknown services by following (27). In order to deal with the constraints, we convert
them into two penalty terms and update (7) as:

min
R∈Rm×k+ C∈Rn×l+

J(R,P,C)

J(R,P,C) = ∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2

+ λR||R1− 1||2 + λC||C1− 1||2 (28)
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where λR, λC > 0. As can be seen, when P and C are fixed, J(R,P,C) is a convex
function of R. Similarly, when P and R are fixed, J(R,P,C) is a convex on C; when
R and C are fixed, J(R,P,C) is convex on P. This property allows us to exploit an
iterative algorithm that updates R,P,C in turn to optimize objective function (28).
In each iteration, the three matricesR,P,C are updated in turn. When one matrix is
updated, the other two are fixed.

A central component of the iterative algorithm is a set of auxiliary functions that
play a key role for updating the matrices in each iteration. An auxiliary function
forms the upper bound of the objective function based on the result obtained from
the previous iteration. Hence, a matrix is updated by minimizing its corresponding
auxiliary function. Auxiliary function was first introduced in [18]. In what follows, we
give its definition and describe the features that are key to the update rules employed
in our iterative algorithm.

Definition 2 Z (S,S′) is an auxiliary function of function J(S) if it satisfies the
following conditions for any S and S′: Z (S,S′) ≥ J(S); Z (S,S) = J(S).

Lemma 2 J is non-increasing under the following update rule if Z is an auxiliary
function of J:

X(t+1) = arg min
X

Z (X,X(t)) (29)

where X(t) and X(t+1) are matrix X at the t-th and (t + 1)-th iterations, respectively.

Proof

J(X(t)) = Z (X(t),X(t)) ≥ Z (X(t),X(t+1)) ≥ J(X(t+1))

�	

Lemma 3 Given a function J(R), which only contains terms in (R,P,C) that are
relevant to R:

J(R) = ∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2 + λR||R1− 1||2 (30)

The auxiliary function of J(R) is given by

Z (R, R̃)

=
∑

(i, j)∈O

[

X2(i, j)− 2
∑

pq

X(i, j)R̃(i, p)P(p,q)C( j,q)
(

1 + log
R(i, p)

R̃(i, p)

)

+
∑

pq

[R̃PC′](i, j)P(p,q)C( j,q)R
2(i, p)

R̃(i, p)

]

(31)

+ λR

∑

ip

(

[R̃1]iR
2(i, p)

R̃(i, p)

)

− λR

∑

ip

2R̃(i, p)
(

1 + log
R(i, p)

R̃(i, p)

)

+mλR (32)
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Proof We define

J(R)1 = ∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2 (33)

J(R)2 = λR||R1− 1||2 (34)

We derive Z (R, R̃) by identifying the upper bounds of J(R)1 and J(R)2, respectively.

J(R)1 =
∑

(i, j)∈O

(

X(i, j)−
∑

pq

R(i, p)P(p,q)C( j,q)

)2

(35)

≤
∑

(i, j)∈O

[
∑

pq

R̃(i, p)P(p,q)C( j,q)

[R̃PC′](i, j)

×
(

X(i, j)− [R̃PC′](i, j)
R̃(i, p)P(p,q)C( j,q)

R(i, p)P(p,q)C( j,q)

)2
⎤

⎦ (36)

=
∑

(i, j)∈O

(

X2(i, j)− 2
∑

pq

A(i, j)R(i, p)P(p,q)C( j,q)

+
∑

p,q

[R̃PC′](i, j)P(p,q)C( j,q)R(i, p)

R̃(i, p)

)

(37)

≤
∑

(i, j)∈O

[

X2(i, j)− 2
∑

pq

X(i, j)R̃(i, p)P(p,q)C( j,q)
(

1 + log
R(i, p)

R̃(i, p)

)

+
∑

pq

[R̃PC′](i, j)P(p,q)C( j,q)R
2(i, p)

R̃(i, p)

]

(38)

From (35) to (36), we use Jensen’s inequality and the convexity of the quadratic
function. From (37) to (38), we use inequality x ≥ 1 + log x,∀x > 0.

J(R)2 = λR

m∑

i=1

⎛

⎝
k∑

p=1

R(i, p)− 1

⎞

⎠

2

(39)

= λR

m∑

i=1

⎛

⎝
k∑

p=1

R̃(i, p)

[R̃1]i
−

k∑

p=1

R̃(i, p)

[R̃1]i
[R̃1]i
R̃(i, p)

R(i, p)

⎞

⎠

2

(40)

≤ λR

m∑

i=1

k∑

p=1

R̃(i, p)

[R̃1]i

(
[R̃1]i
Ũ(i, p)

R(i, p)− 1

)2

(41)



World Wide Web (2014) 17:33–57 45

= λR

m∑

i=1

k∑

p=1

(
[R̃1]i
R̃(i, p)

U2(i, p)− 2R̃(i, p)
R(i, p)

R̃(i, p)

)

+mλR (42)

≤ λR

∑

ip

(

[R̃1]iR
2(i, p)

R̃(i, p)

)

− λR

∑

ip

2R̃(i, p)
(

1 + log
R(i, p)

R̃(i, p)

)

+mλR (43)

Similarly, we also use Jensen’s inequality, the convexity of the quadratic function,
and inequality x ≥ 1 + log x, ∀x > 0 in the above derivations.

Putting J(R)1 and J(R)2 together gives Z (R, R̃) ≥ J(R) and Z (R̃, R̃) = J(R̃).
Thus, Z (R, R̃) is an auxiliary function of J(R). �	

Based on the auxiliary function, the update strategy can be detailed as follows.
Assume that R̃ is the result obtained from the t-th iteration and we want to compute
an updated R in the (t + 1)-th iteration. We know that Z (R, R̃) forms the upper
bound of J(R) through the proof of Lemma 3. The idea is to compute R̃′ that
minimizes Z (R, R̃), i.e., R̃′ = arg minR Z (R, R̃). We then use R̃′ to update R.

Theorem 1 The objective function J(R) decreases monotonically under the following
update rule:

R(i, p) = R̃(i, p)
[ [O ◦XCP′](i, p)+ λR

[(O ◦ (R̃PC))CP′ + λRR̃E](i, p)
] 1

2

(44)

Proof In order to minimize Z (R, R̃), we take the derivative of Z (R, R̃) with respect
to R(i, p), which gives

∂Z (R, R̃)

∂R(i, p)
= R̃(i, p)

R(i, p)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

j

(i, j)∈O

∑

q

−2X(i, j)P(p,q)C( j,q)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+R(i, p)

R̃(i, p)

⎛

⎜
⎜
⎜
⎜
⎝

∑

j

(i, j)∈O

∑

q

2[R̃PC′](i, j)P(p,q)C( j,q)

⎞

⎟
⎟
⎟
⎟
⎠

+2λR[R̃E](i, p)R(i, p)

R̃(i, p)
− 2λR

R̃(i, p)
R(i, p)
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Set ∂Z (R,R̃)

∂R(i,p) = 0 and formulate the above function in matrix form, we get

0 = − 2[O ◦XCP′](i, p) R̃(i, p)
R(i, p)

+ 2[O ◦ (R̃PC′)P(p,q)C( j,q)](i, p)R(i, p)

R̃(i, p)

+ 2λR[R̃E](i, p)R(i, p)

R̃(i, p)
− 2λR

R̃(i, p)
R(i, p)

Solving the above equation leads to the update rule given in (44). Furthermore, if
we take the second order derivative of Z (R, R̃) with respect to R(i, p), we get the
Hessian matrix for Z (R, R̃):

∂2Z (R, R̃)

∂R(i, p)∂R(x, y)
= δixδpy

(
2[O ◦XCP′](i, p)R̃(i, p)+ 2λRR̃(i, p)

R2(i, p)

+ 2[O ◦ (R̃PC′)P(p,q)C( j,q)](i, p)+ 2λR[R̃E](i, p)
R̃(i, p)

)

where δij = 1 when i = j and 0 otherwise. It is straightforward to verify that the
Hessian matrix is a diagonal matrix with positive diagonal elements. Since the
Hessian is positive definite, the above derivation guarantees to converge to the
global minimum of Z (R, R̃). In another word, we indeed update R, which minimizes
Z (R, R̃). �	

Following the same rationale, we can prove the following two theorems.

Theorem 2 Given a function J(C), which only contains terms in (R,P,C) that are
relevant to C:

J(C) = ∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2 + λC||C1− 1||2 (45)

The objective function J(C) decreases monotonically under the following update rule:

C( j,q) = C̃( j,q)

[
[(O ◦X)′RP]( j,q)+ λC

[(O ◦ (RPC̃))′RP+ λCC̃E]( j,q)

] 1
2

(46)

Theorem 3 Given a function J(P), which only contains terms in (R,P,C) that are
relevant to P:

J(C) = ∥
∥Om×n ◦ (Xm×n −Rm×kPk×lC′

l×n)
∥
∥2 (47)

The objective function J(P) decreases monotonically under the following update rule:

P(p,q) = P̃(p,q)

[
[R′(O ◦X)C](p,q)

[R′(O ◦ (R ˜PC′))C](p,q)

] 1
2

(48)

Built upon the update rules derived above, Algorithm 1 gives the details of
constructing the RCMmodel.
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Algorithm 1 RCM construction.
Input: Historical QoS data formated as a relational matrix X.
Output: User and service cluster indicator matrices R and C; Cluster interaction
matrix P.
1: Initialize matrices R,C,P, and maxIter.
2: for all i ∈ [1, maxIter] do

3: P(p,q) = P(p,q)
[ [R′(O ◦X)C](p,q)
[R′(O ◦ (RPC′))C](p,q)

] 1
2

4: R(i, p) = R(i, p)
[ [O ◦XCP′](i, p)+ λR

[(O ◦ (RPC))CP′ + λRRE](i, p)
] 1

2

5: C( j,q) = C( j,q)

[
[(O ◦X)′RP]( j,q)+ λC

[(O ◦ (RPC̃))′RP+ λCCE]( j,q)

] 1
2

6: end for

5 System architecture and case study

We present the system architecture that supports the RCM based service selection.
We will also use a small scale case study to illustrate how the proposed RCM model
helps achieve personalized service selection.

5.1 System architecture

Figure 1 shows the system architecture. The key components and how they interact
with each other are elaborated as follows:

• Service Discovery: This component accepts users’ service requests and identifies
a set of services, all of which satisfy users’ functional requirements. Existing
service discovery approaches that exploit information retrieval techniques and
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Figure 1 System architecture of RCM based service selection.



48 World Wide Web (2014) 17:33–57

semantic Web technologies can be used to locate services with matching func-
tionalities.

• QoS Prediction: This component exploits the proposed RCM model to accu-
rately predict the QoS of a priori unknown service providers that compete to
offer user desired functionalities.

• Service Selection: This component selects the service with the best user desired
quality based on the QoS predicted by the RCM model. Existing efforts on QoS
aware service selection can be exploited to perform the selection and return the
best service to the users.

• QoSCollection: This component collects historical QoS information from service
users or software clients deployed on a distributed platform, such as Platnet Lab.
The QoS information is exploited by the proposed RCM model to make QoS
predictions.

The historical QoS data can be collected via two complementary strategies. The
first strategy is to deploy a set of software clients on distributed platforms, such
as PlanetLab, to simulate actual service users. These software clients automatically
invoke services and return the QoS data obtained from the invocations. Similar
approaches have been adopted in existing systems, such as WSRec in [40]. The
second strategy requires user participation. The feedback collection mechanisms
used by existing recommendation systems, such as Amazon and Netflix, will shed
light on QoS collection from actual service users. Furthermore, privacy-preserving
collaborative filtering techniques, such as randomized perturbation [21], can be
leveraged to ensure that the private information of service users is protected while
sharing their QoS data.

5.2 Case study

In what follows, we use a QoS data sample obtained from a real-world QoS
collection [40] to perform a small scale case study. The purpose is to demonstrate the
effectiveness of the proposed RCM model and how it can help achieve personalized
service selection. It is worth to note that the prediction accuracy and the scalability
of the RCM model will be formally evaluated via an extensive empirical study in
Section 6.

Consider a QoS dataset that records the response times (in seconds) of eight users
on six Web services. Since each user may have only invoked a limited set of services,
some QoS entries are missing. Based on the proposed RCM model, the QoS data is
denoted by a matrix, which is given by

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.1432 1.4335 0.4225 0.7802 0.0705 null
0.1322 1.4155 0.4313 0.7624 0.0605 2.3237
0.1406 1.4672 null 0.8169 0.0658 2.2844
null 1.4288 0.4565 0.7841 0.0636 2.1715
0.6033 2.1097 0.7734 0.9246 0.6292 2.3656
0.6946 0.1922 0.3856 0.6215 0.6125 2.1733
null 0.1590 null 0.5662 0.6707 null
0.7114 0.1568 null 0.6071 0.6480 2.1382

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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where each row denotes a user, each column denotes a service, null signifies missing
values. Consider that a user u7 (i.e., the 7-th row in X) wants to request a service
with the fastest response time. There are three candidate services, corresponding to
columns 1, 3 and 6 in matrixX, all of which provide the functionality required by the
user. Manually selecting a service would require the user to study the APIs of all the
candidate services, develop customized software client for each candidate, and then
make the service calls. In practice, the number of candidate services is in a much
larger scale, which makes a manual process as above prohibitively expensive.

The proposed RCMmodel automatically predicts the QoS of previously unknown
services. Applying RCM on X, we obtain three low-rank matrices:

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.4536 0.1006
0.4542 0.2081
0.4732 0.1952
0.4457 0.1967
0.5879 0.2116
0.0000 0.5332
0.0000 0.5467
0.0000 0.5279

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, P =
(

0.499 25.181
17.464 2.318

)

, C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0762 0.0000
0.0008 0.1255
0.0362 0.0324
0.0569 0.0489
0.0661 0.0000
0.2191 0.1123

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Plugging R,P, and C into (27), RCM provides the predictions of the missing QoS
entires in X. In particular, the response times for the three candidate services are
estimated as: 0.7273, 0.3869, and 2.2342 s, respectively. These are pretty close to
the actual response times, which are 0.6524, 0.3516, and 2.2144 s, respectively. More
importantly, the estimations preserve the relative order of the actual response times,
which is critical for service selection. It is also worth to note that RCM discovers
the cluster structures of users and services. For example, the first five users belong
to the first user cluster and the last three users belong to the second user cluster.
This is because in the first five rows of R, the first column is larger than the second
column. While in the last three rows of R, the second column is larger than the first
column.

Finally, the estimated QoS is then sent to the service selection component as
shown in the system architecture (see Figure 1), which will return the best candidate
service to the user. In this way, the proposed RCM model plays a central role
in turning a tedious and time consuming manual process into a fully automatic
procedure that achieves accurate service selection decisions.

6 Empirical study

In this section, we present our empirical study that evaluates the proposed RCM
for Web services QoS evaluation. We use both real-world and synthetic QoS data
to assess its effectiveness and efficiency. We implement the classical collaborative
filtering based approaches as described in Section 2 and apply them to the QoS
datasets. We also compare our model with recently developed service recommen-
dation approaches.
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6.1 QoS datasets

Real QoS dataset We use the real-world QoS dataset created by WSRec [40]. In
WSRec, a list of 21,197 publicly available Web services are obtained by crawling
leading service provider websites, portal websites that publish publicly available
Web services, and service search engines. The actual working services are less
due to authentication restriction, permanent invocation failure, or extremely long
processing duration. One hundred Web services are randomly selected from the
working services. The providers of these selected services are across over 20 counties.
The Planet-Lab wide area network has been exploited for QoS data collection.
150 computer nodes distributed in more than 20 countries are used to invoke the
selected Web services. Over 1.5 millions Web service invocations are executed and
the test results are collected. The averaged results for two QoS parameters are made
available: Round-Trip Time (RTT) and failure rate. RTT records the time period
between sending a request and receiving a response whereas failure-rate presents
the probability that a request is correctly responded within certain amount of time.
Limited by space, we focus on evaluating the RTT for unknown Web services in our
experiments. The exactly same rationale can be applied to the evaluation of failure
rate. Table 3 shows some sample data from the real QoS dataset. The first column
gives the ip addresses of the compute nodes of Planet-Lab. The first row gives the
ids of the randomly selected services. The sample data clearly demonstrates that
the RTTs from the same provider may vary dramatically over different users (i.e.,
compute nodes).

Synthetic QoS dataset In addition to the real QoS data, we also generate some larger
sized random data matrices in order to evaluate the efficiency and scalability of the
proposed approach.

6.2 Experiment settings

Data preprocessing The averagedRTT records obtained from the invocation results
of 150 computers on 100 services form a 150 × 100 relational matrix X. Since the
computers are used to simulate the users, each row in X corresponds to a user
and each column corresponds to a Web service. As a real-world QoS data may be
very sparse, we vary the sparsity of the relational matrix X from 80 % to 96 % by
randomly removing 80 % to 96 % RTT entries from the matrix. We apply the RCM
model to estimate the removed RTT entries and then compare the estimated value
with the true value to evaluate the prediction accuracy. To avoid that the clustering

Table 3 Sample RTT records
(ms).

Service ID 1 2 4 650 1015

12.108.127.136 4755.7 5875.6 4647.7 4779.8 4642.2
128.10.19.52 348.42 1010.2 278.5 574.4 280.6
128.112.139.80 1106.2 1482.7 579.5 2307.3 1006.7
128.113.226.235 293.9 1487.3 333.5 715.4 235.1
128.119.247.210 331.1 1219.6 297.9 601.0 215.8
128.135.11.149 349.2 1064.4 252.3 572.2 295.0
128.138.207.45 688.8 1255.7 415.6 635.2 457.5
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result is dominated by columns or rows with very large values, we perform a column
normalization on X before applyingRCM on it.

Effectiveness evaluation metric We use Mean Absolute Error (MAE) for model
effectiveness evaluation. MAE is a commonly exploited to test the quality of collab-
orative filtering algorithms:

MAE =
∑

(i, j)∈R

|X(i, j)− ∑k
p=1

∑l
q=1 R(i, p)P(p,q)C( j,q)|
|R| (49)

where R denotes the set of removed RTT entires. Since the RTT entries are
randomly removed, we run our algorithm 10 times and the averageMAE is reported.
Due to the sparsity of the QoS dataset, an algorithm may fail to provide any
estimation. This is commonly referred to as the cold start problem. Therefore, as
the second metric, we record the number of RTT entries that an algorithm fails to
make an estimation. This signifies the capacity of how an algorithm handles a very
sparse QoS dataset, which is quite common in practice.

Algorithm comparison We implement the classical collaborative filtering algo-
rithms as presented in Section 2 and apply them to the QoS datasets. We include
both Pearson Correlation Coefficient (referred to as PCC) and cosine similarity
(referred to as COS) as similarity measures. For PCC based similarity measure,
we implement both the user (referred to as u-PCC) and item (referred to as i-
PCC) based approaches. For COS based similarity measure, we implement the user
(referred to as u-COS) based approach. We also implement and compare our model
with the algorithm used in WSRec, which is a hybrid collaborative algorithm that
combines both user and item based approaches using their prediction accuracy as the
aggregation weights [40]. The key algorithms and their descriptions are summarized
in Table 4.

Parameter setting The objective function given in (28) shows that there are four
important parameters in the proposed CRM model: numbers of user and service
clusters (i.e., k and l), and two penalty terms (i.e., λR and λC) that are used to enforce
the convex encoding constraint. To simply the selection of parameters, we set k =
l and λR = λC. This will reduce the total number of parameters to 2. The hybrid
algorithm in WSRec uses a parameter λ to balance and combine results from user
based and item based collaborative filtering. We set λ to 0.1, which is the same value
used in the performance study of [40].

Table 4 Algorithm notations
and descriptions.

Algorithm Description

u-PCC User based collaborative filtering algorithm
i-PCC Item based collaborative filtering algorithm
u-COS Cosine similarity based collaborative

filtering algorithm
WSRec Hybrid collaborative filtering algorithm

used in WSRec [40]
RCM Relational clustering based collaborative

filtering scheme
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Table 5 Effectiveness evaluation on the real QoS dataset.

Evaluation metric MAE Number of no predictions

Data sparcity 80 % 84 % 88 % 92 % 96 % 80 % 84 % 88 % 92 % 96 %

u-PCC 0.0461 0.0521 0.0597 0.0752 0.0907 9.9 49.6 69.6 121 1441.1
i-PCC 0.0387 0.0410 0.0454 0.0522 0.0633 0 10 30 91.5 436
u-COS 0.0446 0.0484 0.0522 0.0599 0.0728 0 10 30 91.5 407
WSRec 0.0378 0.0399 0.0438 0.0504 0.0620 0 10 30 91.5 409.1
RCM 0.0379 0.0401 0.0429 0.0474 0.0478 0 0 0 0 0

6.3 Effectiveness evaluation

We evaluate the effectiveness of RCM by comparing it with other algorithms using
the two metrics stated above. ForRCM, we set k = l = 28 and λR = λC = 10. Table 5
summarizes the comparison results. For a sparsity ratio no greater than 84 %, the
MAE performances ofWSRec andRCM are almost the same. They both outperform
all other algorithms. With the increase of the sparsity ratio, RCM significantly
outperforms all other algorithms. For example, when the sparsity ratio is 96 %, the
MAE of the second best algorithm (i.e., WSRec) is more than 20 % worse than that
of RCM. The number of no predictions reflects how the algorithms handle the cold
start issue, which arises when the dataset is very sparse.RCM obviously outperforms
all other algorithms on this metric by successfully generating all predictions even for
very sparse datasets. In contrast, all other algorithms fail to make some predictions
when the sparsity ratio exceeds 84 %. All of them miss over 400 predictions when
the sparsity ratio is no less than 96 %.

We also investigate how the parameters of RCM affect its effectiveness. The left
chart of Figure 2 shows the effect of λR and λC. A key observation is that for less
sparse data, more strictly enforcing the convex encoding is beneficial. In contrast,
increasing the values of λR and λC may negatively affect the MAE performance for
very sparse data. This is because precise cluster structures can be discovered from
a less sparse data due to the presence of sufficient information. Convex encoding
helps improve accuracy of the cluster membership assignment (see Section 3 for
detail). Hence, the MAE performance can be improved accordingly. In contrast, the
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cluster structures may not be precise due to the lack of information for very sparse
datasets. Strictly enforcing the convex encoding constraint may lead to imprecise
cluster structures, which will decrease prediction accuracy.

The right chart of Figure 2 demonstrates how the MAE performance changes with
the number of clusters. For very sparse QoS data, increasing the number of clusters
benefits the MAE performance. With the increase of number of clusters, a large
number of small clusters are formed, where each cluster only consists of highly similar
users or services (based on the limited available information). This will be helpful
to reduce the prediction error. On the other hand, for less sparse data where more
information is present, it is possible to precisely discover cluster structures. In this
case, relatively larger clusters that include all relevant user and service information
help improve the prediction accuracy. For instance, with a sparsity ratio at 55 %,
the best MAE performance is reached when the number of clusters is 30. The
performance begins to decrease when further increasing the number of clusters.

6.4 Efficiency evaluation

We evaluate the efficiency of RCM by comparing the CPU time with other algo-
rithms on both the real QoS data and the synthetic QoS data. The left chart in
Figure 3 shows the total CPU time spent for predicting all the missing RTT entries.
The efficiency of RCM is almost invariant with the number of predictions. Once
the model is constructed, the predictions can be computed instantly. Algorithm 1
efficiently constructs the RCM model from the real QoS data and makes all the
predictions by just using around 1 second. On the other hand, in all other algorithms,
for each test case, they need to first identify the similar users or services from a large
user or service space, and then exploits their QoS data to make the prediction. As the
sparsity ratio decreases, the number of missing entries increases accordingly. Hence,
the time spent for making all the predictions also increases.

We use the right chart to investigate how the algorithms scale with the size of
the relational matrix X. We construct a set of random relational matrices with the
number of entries varying from 104 to 106. We set the sparsity ratio at 90 % for
all the datasets. Since predicting all missing entries is computational very expensive
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for all other algorithms, we report the average time used for making predictions for a
single user on all services. ForRCM, we report total time used for model construction
and making predictions for all users. As can be seen, the CPU time used by RCM
increases linearly with the size of X. The time to construct RCM and use it to make
all the predictions is even less than the time used to make predictions for a single
user by WSRec and u-PCC. When the size of X becomes very large, we can train the
RCMmodel offline and then use it for efficient online prediction.

The time complexity of Algorithm 1 can be briefly analyzed as follows. The three
update rules used by the algorithm require matrix product. Based on the sizes of the
matrices involved, the time complexity of each update rule is bounded by O(mn(k+
l)). Assume that the algorithm needs r iterations to converge. The overall complexity
will be bounded by O(mn(k+ l)r).

7 Related work

Due to the ever increasing number of Web services, service selection techniques
have drawn considerable attention recently. Different from service search engines
(such as webservices.seekda.com) that retrieve services based on their functionality,
service selection provides a way to locate services with the best user desired quality
from a large number of functionally similar candidate services. Two pioneer efforts
devoted for quality based service selection are [34, 36]. In [36], a QoS model is
presented that includes a set of key quality parameters, such as latency, availability,
reliability, reputaion and so on. A linear programming based approach is exploited
to efficiently select the composite service with the best overall quality. The service
selection problem is tackled in [34] by using a combinatorial model and a graph
model. Efficient algorithms are then designed to select the services with the best
quality. Other optimization strategies, such as genetic algorithms [6, 33], have also
been explored towards selecting the global optimal services. When multiple QoS
parameters are involved in the selection process, a weighting mechanism is typically
exploited that integrates different QoS values into an objective function. Users have
to convert their preferences over different QoS aspects into numeric weights, which
forms a rather demanding task. Multi-Criteria Decision Making (or MCDM) has
been leveraged to attack this challenge [9, 17, 26]. Skyline analysis techniques, which
have been intensively investigated in database community, offer another effective
means to tackle multi-criteria service selection [2, 30–32].

Recent research discovered that different users may receive significantly distinct
QoS from the same service provider due to the disparity in their locations, network
conditions, development tools, and so on [25, 40]. This demands a personalized
approach in service selection. In personalized service selection, a service should be
selected based on the specific situation of a given user. The collaborative filtering
based techniques provide a promising solution to achieve personalized service
selection. Collaborative filtering is the backbone technology for most recommen-
dation systems nowadays [5, 7, 12, 14, 15]. It exploits the similarity between users’
experiences to predict user preference on unknown items.

Several proposals have been developed that aim to exploit collaborative filtering
to achieve personalized service selection [16, 25, 25, 39, 40, 40]. A user-based
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collaborative filtering approach is presented in [25] to predict the QoS of unknown
service providers for an active user. The predicted QoS values can then be used
to provide personalized service selection for the user. The QoS data is manually
collected from 28 volunteer users using 63 proxy servers located in different parts
of the world. WSRec improves [25] from two key aspects [40]. First, it proposes
a hybrid collaborative filtering approach that integrates both the user and item
based approaches to achieve better prediction accuracy. Second, it automates the
QoS data collection process by exploiting the Planet-Lab network. Jiang et. al
further differentiate user sensitive and user insensitive services and assign higher
weights to the sensitive ones when determining the similarity between users [16].
A user insensitive service is the one invoked by a large number of users whereas
a sensitive service is the one that has limited number of users. Another user based
approach is presented in [8], which is augmented by a region model that integrates
users’ geographical information to improve accuracy. In addition to the historical
QoS data, other types of user feedbacks are also used for personalized service
selection, including invocation frequency [22], user assigned ratings [1, 27], and query
histories [39].

All existing efforts as discussed above fall into the memory based collaborative
filtering scheme. Take the user based approach as an example. The underlying idea
is to identify similar users with the active user and use their QoS experience to make
the prediction. As users have to invoke a number of common Web services in order
to be considered as similar, the memory based scheme suffers the cold start problem.
Our empirical study showed that memory based collaborative filtering may fail to
make predictions when theQoS data becomes sparse. In contrast, the proposedRCM
approach falls into the model based scheme. It more effectively deals with the cold
start problem by building a global prototype matrix and predictions are made via
a convex combination of the prototype matrix. Some other collaborative filtering
models have also been developed, including latent factor models [7], Bayesian
models [38], aspect models [15], and so on. However, most of these approaches suffer
a high computational cost. In contrast, the efficient update rules exploited by RCM
guaranttee its good performance.

8 Conclusion and future work

We presentRCM, a collaborative filtering based scheme, for evaluating the QoS of a
priori unknown service providers. The proposed RCM advances the current service
computing research by enabling a model based approach for personalized service
selection. We exploit and extend the relational clustering model that leverages the
user-service interaction information to simultaneously construct a set of user and
service clusters. A prototype matrix is also obtained that captures the user-service
cluster interaction information. The convex constraint enables to predict the QoS
of an unknown service though a convex combination of the prototype matrix. Our
empirical study justifies the effectiveness of RCM on two important evaluation
metrics: MAE and the ability to handle the cold start problem. The experiment
results on the larger scale synthetic data show that RCM can be quickly constructed
through a set of efficient update rules.
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An important future direction is to investigate how to accommodate the changes
of the QoS data, which we expect to be common and frequent. The aim is to devise
an efficient strategy to update the model instead of completely reconstructing the
model whenever a change occurs.
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