
World Wide Web (2013) 16:195–218
DOI 10.1007/s11280-012-0168-2

Finding email correspondents in online social networks

Yi Cui · Jian Pei · Guanting Tang · Wo-Shun Luk ·
Daxin Jiang · Ming Hua

Received: 31 October 2011 / Revised: 2 May 2012 /
Accepted: 8 May 2012 / Published online: 2 June 2012
© Springer Science+Business Media, LLC 2012

Abstract Email correspondents play an important role in many people’s social
networks. Finding email correspondents in social networks accurately, though may
seem to be straightforward at a first glance, is challenging. Most of the existing online
social networking sites recommend possible matches by comparing the information
of email accounts and social network profiles, such as display names and email
addresses. However, as shown empirically in this paper, such methods may not
be effective in practice. To the best of our knowledge, this problem has not been
carefully and thoroughly addressed in research. In this paper, we systematically
investigate the problem and develop a practical data mining approach. We find that
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using only the profiles or the graph structures is far from effective. Our method
utilizes the similarity between email accounts and social network user profiles, and
at the same time explores the similarity between the email communication network
and the social network under investigation. We demonstrate the effectiveness of our
method using two real data sets on emails and Facebook.

Keywords email mining · social network mining · recommendation systems · string
matching · graph matching

1 Introduction

Many people use emails everyday. Emails and the social network formed by email
correspondents play an important role in many people’s social life. Therefore, many
online social networks [19], such as Facebook, LinkedIn, and Twitter, associate users
with their emails in one way or another. For example, Facebook uses email addresses
as user-ids. Moreover, some online social networks are trying to integrate multiple
messaging channels, including SMS, chat, email, and messages. Users can send and
receive messages through whatever medium or device preferred by or convenient to
them. Recently, Facebook is providing an @facebook.com email address to every
user so that a user can share with her friends over email no matter they are on
Facebook or not.

One interesting and important task is to find a user’s email correspondents in a
target online social network, such as Facebook. For the sake of simplicity, hereafter
we use the term social networks to refer to online social networks.

Example 1 (Motivation) Figure 1a shows some of Ada’s email contacts. Two con-
tacts are linked by an edge if they two are involved together in an email. Ada is
a member of a social network, shown in Figure 1b. The problem addressed in this
paper is how Ada can find her email contacts in the social network.

Ada may add Doe as her friend in the social network, and thus an edge is added in
Figure 1. Suppose Ada does not know her other email contacts’ account information
in the social network. How can she find her other email contacts, such as Cathy and
William, in the social network?

The task of finding a user’s email correspondents in a social network may seem to
be easy at a first glance. A straightforward solution is to search the user profiles
in a social network using email account information, such as display names and
email addresses. Many online social networking sites provide such functionalities,

(b) Some of Ada’s friends in a social network

Ada (ada@mail.net)

Doe (doe@mail.net)

William (william@work.gov)

(a) Some of Ada’s email contacts

Cathy (cathy@joke.org)

Ada (ada@mail.net)

Doe (doe@mail.net)

Super gamer (bill@noname.net)

Kathy (kathy@cool.net)

Figure 1 A motivation example, where the accounts Cathy and Kathy, William and Super gamer,
respectively, are owned by the same persons.



World Wide Web (2013) 16:195–218 197

such as “find friends” in Facebook and “search for someone by name” in LinkedIn.
Facebook also provides a contact import function, which searches for Facebook
accounts whose associated email matches an input email exactly.

Example 2 (Motivation cont’d) In our motivation example (Figure 1), Ada may use
the user profile search function of the social network to search for her email contacts.
For example, by searching for “Cathy”, a good search function may recommend
“Kathy” as a possible match since the two names are very similar. However, the
function may not be able to match the account “Super gamer” in the social network
with the email contact “William”.

It is well recognized that matching only based on profiles is far from satisfactory to
solve the problem of finding email corespondents in social networks. Our empirical
study on two real data sets shows that using profiles only the matching accuracy is
lower than 30% (Section 6.3 and Figure 5). There are at least two major difficulties.

First, a contact may use different email addresses in email communication and
social networks. Many users may have multiple email addresses. One may use a
private email address for most of the email communication, and use another public
email address, such as one from a free Web-based email service (e.g., hotmail
and gmail), as her public email address. In such a case, searching using a contact’s
private email address cannot find her correctly in a social network where she registers
using her public email address.

Second, one may think searching using names is reliable. However, a popular
name may be used by many people. Moreover, one may not use her real name in
a social network. Instead, she may use her nickname to register in a social network,
or even use multiple nicknames for multiple accounts. Consequently, the results from
searching using names, though providing some candidate matches, may still contain
much ambiguity and need resolution.

The task of finding email correspondents in social networks is important not only
for individual users but also for social networking sites. First, it is a critical function-
ality to attract users. If a user can easily find her correspondents in a social network,
she may be better engaged into the social network, and more communication traffic
between her and her friends may be migrated to the social network. Second, it is a
critical functionality to facilitate the integration of multiple messaging channels. This
is particularly important for both social networking and email service providers. For
example, there are some add-on applications that can let Microsoft Outlook users
to keep connected with their email correspondents’ Facebook statuses. Last but not
least, finding email correspondents in a social network is an instance of mapping
users in two social networks, since the email communication network itself indeed
is a social network. This is an interesting and challenging problem for many social
network service providers, since an effective solution to this problem definitely helps
those service providers to gain more users and communication traffic volume.

Surprisingly, the problem of finding email correspondents in social networks has
not been carefully and thoroughly addressed in research. In this paper, we tackle the
problem from a practical data mining angle, and make several contributions. First,
through an empirical study on two real data sets, we find that using only profiles or
graph structures is far from effective to find email correspondents in social networks.
Second, we develop a practical method, which not only utilizes the similarity between
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email accounts and social network user profiles, but also explores the similarity
between the email communication network and the social network. Last, we evaluate
our methods using real data sets. Empirically, we show that only when both the
profile similarity and graph similarity are considered, good accuracy can be obtained.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem and present the framework of our solution. Section 3, we briefly review
the related work. We discuss the profile similarity in Section 4, and develop the
neighborhood based similarity and the computation methods in Section 5. We report
an empirical evaluation in Section 6, and conclude the paper in Section 7.

2 Problem formulation and framework

In this section, we first formulate the problem of finding email correspondents in
social networks. Then, we decompose the problem and present the framework of
our solution.

2.1 Problem formulation

We consider email communication. For each email account, we assume that there
is a profile. Typically, the profile of an email account in practice contains the email
address and optionally the display name. The email communication can be modeled
as an email network GM(VM, EM), where VM is a set of email accounts, and for two
accounts u and v, (u, v) ∈ EM is an edge if u and v are involved together in at least
one email. Here, an email account u is involved in an email if u appears in the from,
to, or cc fields of the email. For the sake of simplicity, we consider an email network
only as an undirected, unweighted, simple graph in this paper.

For an account u ∈ VM, an account v ∈ VM is called an email correspondent or a
contact, of u if (u, v) ∈ EM. Denote by Cu = {v|(u, v) ∈ EM} the set of u’s contacts.

We also consider a social network GN = (VN, EN) among people, where VN is a
set of accounts in the network, and EN is a set of edges between accounts. Again, for
the sake of simplicity, we assume that GN is an undirected, unweighted, simple graph.
Each account in the social network also has a profile, which contains information like
name, email address, gender, and location. To keep our discussion simple, we assume
that each person has at most one account in a social network. We will discuss how
this assumption can be removed easily in Section 7.

The people in the email graph and those in the social network may overlap.
That is, some people may participate in both networks. Formally, we assume that
there exists a ground truth (universal social) network G = (V, E), which captures all
relationships among all people. Every person has one and only one vertex in G.

Thus, there exists a mapping f : VM → V from the email accounts to their owners,
such that for any email accounts u, v ∈ VM, if (u, v) ∈ EM, then either ( f (u), f (v)) ∈
E, i.e., u and v are connected in the ground truth network, or f (u) = f (v), i.e., u and
v belong to the same person. The mapping f in general is many-to-one, since one
person may have multiple email addresses.

Analogously, there exists a mapping g : VN → V from the social network accounts
to their owners, such that for any social network accounts u, v ∈ VN , if (u, v) ∈ EN ,
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then ( f (u), f (v)) ∈ E. In general, the ground truth network G and the mappings f
and g may not be obtainable.

The problem of finding email correspondents in social networks is to find a
mapping h : VM → VN such that for any u ∈ VM and v ∈ VN , h(u) = v if f (u) = g(v).
That is, h maps an email account u to a social network account v if both u and v be-
long to the same person. Technically, we define the mapping from VM to VN because
the owner of a social network account may have more than one email account.

To tackle the problem of finding email correspondents in social networks, we need
to assume the email network and the social network being available. However, in
many cases this assumption cannot be met due to the privacy preservation constraint.
To make our study practical, we focus on the personal view version of the problem,
which only finds the mapping h for the set of contacts Cu with respect to a given
email account u, assuming h(u), i.e., the social network account corresponding to u,
is given. By focusing on the personal view version of the problem, we only have to
assume that all emails involving a given account are available, and only the neighbors
of a social network account are searched. This is practically achievable. The personal
view version of the problem does not share the emails of an account with any other
party, and can be run on the user side, such as an email client. Thus, the privacy of
the email account is not breached.

A solution to the personal view version of the problem can be directly employed
by email clients like Outlook, or email service providers like hotmail and gmail. We
also assume that our method can crawl the neighborhood of an social network user,
or part of it. This assumption is practical since many social networks do allow such
crawling in one way or another.

Straightforwardly, our method can be extended to tackle the general problem
of finding email correspondents in social networks, such as the situation where a
social network and an email provider have some business agreement in place. We
will discuss this issue in Section 7.

In this paper, instead of computing the mapping h directly, we will develop a top-k
recommendation solution. That is, for each email contact u, we provide up to k social
network accounts that are most likely owned by the email address owner, where k
is a user-specified parameter. This design decision responds to the practical need in
existing social networking sites where more often than not a user is offered a list of
recommendations.

2.2 The framework of our solution

As discussed in Section 2.1, we have two types of information in finding email
correspondents.

Prof ile information We have the profiles in both the email network and the social
network. Therefore, we can match the email accounts and social network accounts
according to the profile information. We call this the profile matching problem, which
will be discussed in Section 4.

Graph information We have the email network and the social network themselves
as graphs. Heuristically, if two persons communicate well by email, they may have a
good chance to be connected in a social network. Thus, we can compare the email
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graph and the social network graph to identify possible matching. We call this the
graph matching problem, which will be discussed in Section 5.

As to be reported in our empirical study (Section 6.3), using only profile informa-
tion or graph information can only lead to poor accuracies, less than 30% and 10%,
respectively.

Our method integrates profile similarity and graph matching similarity iteratively.
The framework of our method has the following two iterative steps.

The prof ile-based similarity search step For each contact whose social network
account u to be found, we search the social network using u’s email account profile
information, such as the email address and display name. Here, we assume that
the social network GN provides a search function. This step is built directly on the
existing services available in many social networks. For each candidate returned
by the social network search function, we calculate a similarity score between the
contact and the possible match, which is called the prof ile similarity.

The graph-based similarity search step We extract the email communication graph
of the contacts and the neighborhood subgraph of the possible matches obtained in
the profile-based similarity search step. Then, we match the two graphs and derive a
graph similarity between a contact and each possible match.

Our method can achieve an accuracy of about 50%, which is substantially higher
than those by the profile-only or graph-only methods.

3 Related work

In general, our study is related to the existing work on email mining, string similarity
measures, and graph matching. Limited by space, we only review the related work
briefly in this section.

3.1 Email mining

Emails are one of the most popular communication ways nowadays. Emails and the
email communication networks carry both the text messages people pass on to each
other and the implicit social information, such as the email account owner’s friends
and the topics they often discussed.

Many techniques have been used in email mining. For example, Pal [20] and
Carvalho and Cohen [6] applied clustering, natural language processing and text
mining techniques to group email recipients. Balamurugan et al. [2] and Sahami
et al. [23] used classification methods to detect spam emails.

Many applications have been developed based on email mining, particularly the
email social networks. For example, Roth et al. [22] suggested friends based on
an implicit social graph built on email senders, receivers and interactions. Their
study led to two interesting Gmail Labs features on contact suggestions. As another
example, in the context of a “personal email social network” on people’s email
accounts, Yoo et al. [29] tackled the email overloading problem using the importance
of email messages according to the email senders’ priorities. A sender’s priority is
calculated based on three features: the social clusters that the sender belongs to in
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the social network, the social importance that is the sender’s centrality level in the
social network, and the importance propagation level in the range from 1 to 5.

Most of the previous studies on email mining focus on emails themselves, such as
mining email elements like senders, receivers, and textual contents. Different from
those studies, our study tackles a novel problem, mapping email correspondents and
social network accounts.

3.2 String similarity measure

Measuring similarity between strings is a well studied problem, and has been widely
used in information retrieval. Many methods have been proposed to capture the
similarities between strings. For example, the Hamming distance [12] counts the
total number of different characters between two equal length strings. The Jaccard
similarity coefficient [21] is given by the size of the intersection over the size of the
union of two sets. It can be extended to strings. The Dice similarity [10] and the
overlap similarity [17] are related to the Jaccard similarity coefficient.

Many applications use one measure or a combination of multiple measures to
decide the similarity between strings or documents. For example, Michelson and
Knoblock [18] employed a score that combines the Jaro–Winkler similarity [28],
the Jaccard similarity [21] and some others to determine the best candidate from
a collection of reference sets matching a post that is essentially a piece of text.
Cohen et al. [8] compared the performance of different string similarities and their
possible combinations for the task of matching names and records, including the
Jaccard similarity, the Jaro–Winkler similarity, the Jaro similarity [14], and some
others. Elmagarmid et al. [11] surveyed different types of string similarity measures
on strings when they are applied to duplicate record detection.

In our study, we adopt two similarity measures for strings based on the nature of
our problem. We use their combinations in matching profiles.

3.3 Graph matching

As a fundamental problem in pattern recognition, graph matching [5] has numerous
applications in various areas, such as web search, semantic networks, computer
vision, and biological networks. There are a wide spectrum of graph matching
algorithms with different characteristics. Bunke [4] presented a systematic survey.

Cordella et al. [9] and Ullmann [25] proposed subgraph matching algorithms
based on tree search. Almohamad and Duffuaa [1] suggested a linear programming
approach to the weighted graph matching problem. Van Wyk et al. [26] presented a
graph matching algorithm from the functional interpolation theory point of view.

Based on the intuition that two vertices in two graphs are similar if the vertices in
their neighborhoods are similar, Blondel et al. [3] introduced a similarity measure for
vertices on directed graphs. The directed graphs are represented in their adjacency
matrices. A stable similarity matrix X can be obtained by iteratively updating the
equation

X ← BX AT + BT X A,
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where A and B are the adjacency matrices of the graphs, respectively, and all entries
of the similarity matri X are initialized to 1. This measure was extended to address
interests from different aspects.

From the point of view of vertices, in addition to the similarity between the con-
nected neighborhoods, Heymans and Singh [13] considered positive flows from the
non-directly connected neighborhoods and penalized flows from the “mismatched”
neighborhoods as well. Let IB be a matrix of all ones and with the same dimension-
ality as B. The similarity matrix X [30] is computed by

X ← BX AT + BT X A

+ (IB − B)X(IA − A)T + (IB − B)T X(IA − A)

− BX(IA − A)T − BT X(IA − A)

− (IB − B)X AT − (IB − B)T X A

In the above formula, the items BX AT + BT X A add the scores from the connected
neighbors; the items (IB − B)X(IA − A)T + (IB − B)T X(IA − A) add the scores
from the non-directly connected neighbors; and items BX(IA − A)T − BT)X(IA −
A) and (IB − B)X AT − (IB − B)T X A subtract the scores from the mismatched
neighbors.

From the point of view of edges, Zager and Verghese [31] brought forward a
“vertex-edge” score by using a linear iterative updating framework between vertex
similarity and edge similarity.

Y ← BT
S X AS + BT

T X AT

X ← BSY AT
S + BTY AT

T

where X is still the vertex similarity matrix, Y is the edge similarity matrix, AS is the
edge-source matrix of graph A, and AT is the edge-terminus matrix of graph A. If
expanding the coupled X and Y updating formulations, X turns out to be irrelative
to edges.

X ← BX AT + BT X A

+ DBS X DAS + DBT X DAT ,

where DBS and DBT are the diagonal matrices with the i-th diagonal entry equal to
the out-degree and in-degree, respectively, of vertex i.

Many applications use graph matching. For example, Blondel et al. [3] used a
similarity score to extract synonyms automatically. Saux and Bunke [24] proposed
a graph matching based classifier for image processing.

The idea of graph similarity in this paper is inspired by [3, 13, 15]. As verified
by our experimental results on the real data sets (Section 6.4), applying the state-
of-the-art graph matching methods directly to our problem does not achieve good
performance. Thus, we have to develop our own graph matching method.

4 Profile matching

We discuss the profile matching problem in this section. To measure the similarity
between an email contact’s profile and a social network account’s profile, we can
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calculate the similarity based on the names and the email addresses of the two
profiles. As names and email addresses are typically text strings, this can be achieved
by adopting some existing similarity measures on strings.

User names and email addresses are often short strings. There are two kinds of
similarity that we need to capture: the similarity of two strings without considering
the possible substring relation, and the similarity of a string a substring of the
other string. We consider two popularly used measures, namely the Jaro–Winkler
similarity and the overlap similarity, to address those two situations, respectively.

The Jaro–Winkler similarity [28] is a similarity measure good for short strings. It
is widely used in record linkage and duplicate detection.

For a string s, denote by s[i] (i > 0) the i-th character in s. Consider two strings
s1 and s2. Two characters s1[i] and s2[ j] are regarded matched if s1[i] = s2[ j] and

|i − j| ≤
⌊

max(|s1|,|s2|)
2

⌋
− 1. Let m be the number of matching characters between s1

and s2. Let s′
1 (s′

2) be the list of matched characters in s1 (s2) in the sequence order of s1

(s2). For example, let s1 =“abcd” and s2 =“baec”. Then, s′
1 =“abd” and s′

2 =“bac”.
Apparently, s′

1 and s′
2 have the same length m. The number of transpositions t is

the number of positions i such that s′
1[i] �= s′

2[i] (1 ≤ i ≤ m) divided by 2, rounding
down. Then, the Jaro distance [14] is defined as

JaroScore(s1, s2) = 1

3

(
m
|s1| + m

|s2| + m − t
m

)
.

The Jaro–Winkler similarity is a variant of the Jaro distance, which favors strings
sharing a common prefix. Specifically, the Jaro–Winkler similarity is defined as

JWScore(s1, s2) = JaroScore(s1, s2) + (l · p · (1 − JaroScore(s1, s2))),

where l is the length of the common prefix between s1 and s2, up to a maximum of
4, and p is a scaling factor that determines the amount of adjustment towards the
common prefixes. Typically, p is set to 0.1.

It is easy to see that the Jaro–Winkler similarity is normalized. A similarity value
of 0 means no similarity at all, and a value of 1 means an exact match.

Example 3 (Jaro–Winkler similarity) Consider two strings “martha” and
“marhta”. We have JaroScore(martha,marhta) = 1

3 × (
6
6 + 6

6 + 6−1
6

) = 0.944,
and JWScore(martha,marhta) = 0.944 + (3 × 0.1 × (1 − 0.944)) = 0.961.

We consider the Jaro–Winkler similarity because it has been shown effective in
detecting duplicate or almost duplicate names in record linkage. We also empirically
test some other similarity measures for this purpose, such as the string version of the
Dice similarity [10]. Their effectiveness on the real data sets are close to but weaker
than that of Jaro–Winkler similarity.

The overlap similarity [17] is a commonly used string similarity measure. It returns
a high score when one string is the substring of the other one.

Technically, given two strings s1 and s2, the overlap similarity is defined as

OvlpScore(s1, s2) = |bigram(s1) ∩ bigram(s2)|
min(|bigram(s1)|, |bigram(s2)|) ,

where for a string s, bigram(s) = {s[i]s[i + 1]|1 ≤ i < |s|} is the set of bigrams [16] in s.
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Example 4 (Overlap similarity) Consider strings “marh” and “marhta”. It can be
verified that OvlpScore(marh,marhta) = 1.00.

The overlap similarity ranges from 0 to 1. A value 0 means two strings are not
similar at all; while a value 1 means either two strings are identical or one string is a
substring of the other one. We consider the overlap similarity because it is capable
of capturing the similarity between a string and its substrings.

The two similarity measures have different strengths. In our method, we integrate
them by affine combination to achieve a profile similarity score. Please note that both
similarity measures are in the range of 0 to 1, and the larger the similarity value, the
more similar two strings are.

We define the profile similarity between two strings s1 and s2, which can both be
email addresses, display names, or any other corresponding attributes in email and
social network profiles, as

Prof Sim(s1, s2) = α · JWScore(s1, s2) + (1 − α) · OvlpScore(s1, s2), (1)

where 0 ≤ α ≤ 1. We learn the parameter value for α empirically using a set of
training data, as described in Section 6.3.

5 Graph matching

Profile matching can identify email correspondents in a social network only if the
correspondents provide the same or very similar information in both the email
profiles and the social network profiles. If a correspondent uses different email
addresses and/or names in the profiles, profile matching may not work well.

In this section, we explore the graph matching approach to identifying email
correspondents in a social network. We first present a universal connection heuristic.
Then, we formulate the graph matching problem, present our approach with the
proof of the convergence, and integrate our graph matching approach with the profile
matching approach.

5.1 The universal connection heuristic

Heuristically, if two persons communicate well by email, likely they may be con-
nected in a social network, and vice versa. We call this the universal connection
heuristic.

Example 5 (The universal connection heuristic) Consider our motivation example in
Figure 1 again. Suppose Doe and Cathy in the email network are matched with Doe
and Kathy in the social network by profile matching.

By searching the neighbors in the social network (Figure 1b), we find that Doe and
Kathy have a common neighbor “Super gamer”. Interestingly, Doe and Cathy in the
email network (Figure 1a) also have a common neighbor, “William”. Heuristically,
“William” in the email network and “Super gamer” in the social network may belong
to the same person. In other words, we may map email correspondent “William” to
social network account “Super gamer”.
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According to the universal connection heuristic, comparing the email network and
the social network may provide us some hints in finding email correspondents in the
social network.

5.2 The graph matching problem

Using all emails sent by and to a given user u, we can obtain the set of u’s
contacts. Moreover, by analyzing the sent-to and cc fields of the emails, we can
build connections between u’s contacts. The u’s email contact graph is a graph
Gu = (Cu, Eu), where Cu is the set of u’s contacts, and (v1, v2) ∈ Eu if (1) v1 = u
or v2 = u; or (2) there is an email sent by or to u where both v1 and v2 are recipients.
Here, an email address is a recipient if the address is listed in either the sent-to
field or the cc field.

For email address u and all of u’s contacts, we search the social network GN

using their profiles, and obtain a set of social network accounts VCu that are possible
matches. By visiting the pages of those accounts, we can also know their friends
in the social network. Let Vu = VCu ∪ {v|v is a friend of w,w ∈ VCu} be the set of
accounts in the social network that are either possible matches of u and u’s contacts,
or their friends in the social network. We can construct a social network subgraph
SNu = (Vu, Eu) on Vu such that for v1, v2 ∈ Vu, (v1, v2) ∈ Eu if v1 and v2 are friends
in the social network, i.e., (v1, v2) ∈ GN , and at least one of v1 and v2 is in VCu .

Now, the problem of finding email correspondents using graph matching is to find,
for each email address v ∈ Cu, the social network accounts in Vu that most likely
belong to the owner of v.

One may think that we can find some isomorphic subgraphs between Gu and SNu

to solve the problem. However, this is infeasible in practice, since it is not necessary
that two persons exchanging emails are also connected in the social network, or vice
versa. A method based on isomorphic subgraphs assumes a too strong assumption of
the completeness and consistency of the information in the email contact graph and
the social network.

Under the universal connection heuristic, a vertex v1 in Gu and a vertex v2 in SNu

are similar if many neighbors of v1 in Gu can find similar peers in the neighbors of v2

in SNu, and vice versa. We formulate this idea as follows.
Let S be a |Cu| × |Vu| matrix such that sv,w is the graph matching similarity

between vertex v ∈ Cu and w ∈ Vu. Initially, we set

S(0) =

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎦ (2)

Let A and B be the adjacency matrices of graphs Gu and SNu, respectively. Let
fiter be a function that refines the graph matching similarity. Then, we iteratively
evaluate S by

S(i+1) = fiter(A, B, S(i)) (3)

The iteration continues until the graph matching similarity matrix converges.
The similar framework of evaluating a similarity matrix has been used in may

previous studies. For example, Blondel et al. [3] used S(i+1) = AS(i) B. Their method
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is simple, however, assigns very high similarity scores to vertices of high degree [7].
In addition, their method can only be applied to directed graphs. In the case of
undirected graphs, the similarity matrix S converges to a matrix of rank 1. That is,
S+∞ = I · JT , where I and J are both column vectors. Clearly, it cannot be used to
solve our problem. Next, we will develop a function fiter for our problem.

5.3 Computing graph matching similarity

Fuzzy Jaccard similarity [27] can measure the similarity between two disjoint sets of
vertices in a graph. For two disjoint sets of vertices T1 and T2 in a graph, the fuzzy
Jaccard similarity is defined as

F J(T1, T2) = F IT1,T2

|T1| + |T2| − F IT1,T2

(4)

Here, Fuzzy Intersection (F I) is a value determined by the maximum weighted
bipartite matching between T1 and T2.

Let m be any bipartite matching and define m(x, y) = 1 if and only if (x, y) is
covered by m or m(x, y) = 0 otherwise. For example, in the bipartite G in Figure 2,
there are multiple possible matchings. Two are shown in the same figure. In bipar-
tite matching m1, m1(a, x) = 1 and m1(b , y) = 1. m1(a, y) = m1(b , x) = m1(c, x) =
m1(c, y) = 0.

The fuzzy intersection can thus be computed as

F IT1,T2 =
∑

x∈T1,y∈T2

weight(x, y)M(x, y),

where weight(x, y) is the weight of edge (x, y) and M is the maximum weighted
bipartite matching, or

M = arg max
m

∑
x∈T1,y∈T2

weight(x, y)m(x, y)

Let weight(x, y) be the similarity score between vertex x and y, that is,
weight(x, y) = sx,y. Since sx,y ∈ [0, 1], we have 0 ≤ F IT1,T2 ≤ min(|T1|, |T2|).

We can rewrite (4) as

F J(T1, T2) =

∑
x∈T1,y∈T2

sx,y M(x, y)

|T1| + |T2| − ∑
x∈T1,y∈T2

sx,y M(x, y)
(5)

The range of F J(T1, T2) is [0, 1].

Figure 2 Bipartite matching.
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Heuristically, two vertices are similar if their neighbors are similar. Therefore, an
intuitive solution to measure the similarity of two vertices is to compute the fuzzy
Jaccard similarity of their neighbors. Formally, let N(v) and N(w) be the sets of
neighbors of vertices v and w respectively. Using (5), we can define the similarity of
vertices sv,w as

sv,w = F J(N(v), N(w))

=

∑
x∈N(v),y∈N(w)

sx,y M(x, y)

|N(v)| + |N(w)| − ∑
x∈N(v),y∈N(w)

sx,y M(x, y)
(6)

In each iteration, we apply (6) to update each entry of the similarity matrix. We
rewrite (6) into an iterative form.

si+1
v,w = F Ji(N(v), N(w))

=

∑
x∈N(v),y∈N(w)

si
x,y Mi

v,w(x, y)

|N(v)| + |N(w)| − ∑
x∈N(v),y∈N(w)

si
x,y Mi

v,w(x, y)
, (7)

where Mi
v,w(·) denotes the maximum weighted bipartite matching between the

neighbor sets of vertices v and w at the ith iteration. Mi
v,w(x, y) = 1 if edge (x, y)

is in the maximum matching, and 0 otherwise. We prove that our iterative method
converges.

Theorem 1 (Convergence) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. For
each vertex pair (v,w), v ∈ V1, w ∈ V2, the sequence {si

v,w} (i = 1, 2, . . .) converges.

Proof We show by induction that the sequence {si
v,w} is non-increasing.

Basis According to (2), s0
v,w = 1. In the 1st iteration, the value of maximum

weighted bipartite matching for pair (v,w) equals the smaller size of neighbor sets
of v and w, since the initial similarity of every two vertices is 1. Thus, we have
s1
v,w = min(|N(v)|,|N(w)|)

max(|N(v)|,|N(w)|) ≤ 1 = s0
v,w.

Inductive step Assume that the sequence (si
v,w)k

i=0 is non-increasing. In other words,
sk

x,y ≤ sk−1
x,y for any pair (x, y). Then, we have

∑
x∈N(v),y∈N(w)

sk
x,y Mk

v,w(x, y) ≤
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk

v,w(x, y) (8)

Since Mk−1
v,w (·) is the maximum weighted matching in the (k − 1)th iteration, for

any matching mv,w(·),
∑

x∈N(v),y∈N(w)

sk−1
x,y mv,w(x, y) ≤

∑
x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y)
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Consequently, we have
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk

v,w(x, y) ≤
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y) (9)

Combining (8) and (9), we have
∑

x∈N(v),y∈N(w)

sk
x,y Mk

v,w(x, y) ≤
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y). (10)

Combining (7) and (10), we have sk+1
v,w ≤ sk

v,w.
Apparently, si

v,w ≥ 0 for any i > 0. Therefore, the non-increasing sequence {si
v,w}

has a lower bound 0. Thus, the sequence converges. �

For the sake of efficiency, we can conduct iterations until the changes in the graph
matching similarity matrix are all smaller than a user-specified threshold ε > 0 in the
last iteration. We will empirically evaluate the effect of ε in Section 6.6.

5.4 Integrating profile similarity and graph matching similarity

The profile similarity and the graph matching similarity capture different character-
istics of email and social network accounts. On the one hand, using profile similarity
only may lead to many false negatives. That is, if one provides different profile
information in the email and social network accounts, profile similarity cannot match
the two accounts. On the other hand, using graph matching similarity only may lead
to many false positives, since many small subgraphs in the email and social networks
may be similar to each other.

It is natural to use the affine combination of the two similarity scores to improve
the accuracy. Formally, for email account v and a social network account w, the
overall similarity between them is calculated by

Simi(v,w) = γ Prof Sim(v, w) + (1 − γ )si
v,w, (11)

where si
v,w is the graph matching similarity between v and w, and 0 ≤ γ ≤ 1, and

Sim is also a |Cu| × |Vu| matrix of the same size as S (in Section 5.2). As the
postprocessing, we normalize the graph matching similarity matrix such that for each
row in S, the sum of similarity scores equals 1. We learn the parameter value for γ

empirically using a set of training data, as discussed in Section 6.5.

6 Experimental results

In this section, we report an empirical study of our methods on two real data sets.
We first describe how the real data sets were collected, and how the evaluation was
conducted. Then, we report the effectiveness of profile matching, graph matching,
and our integrative method.

6.1 Real data set preparation

To test our methods, we need both email data and social network data about
individuals. However, it is very difficult to obtain such data. Since there are not
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sufficient and well accepted statistics about such data, synthetic data generated based
on some simple probabilistic models may not approach the reality, and thus may not
be reliable.

Luckily, two volunteers not among the authors of this paper agreed to let us
test our methods on their email and Facebook data. Under the agreement, the two
volunteers must be kept anonymous all the time, and no details about their specific
communication or friends can be disclosed. Only aggregate statistics can be reported
in this paper.

We call the two volunteers A and B hereafter. For each volunteer, we downloaded
all her emails and constructed an email network by creating a vertex for every contact
and linking two contacts by an edge if the two contacts are involved in an email. For
each contact, we used both the email address and the display name (if available) as
the email profile information.

To construct the social network for each volunteer, we used the emails of the
contacts to search Facebook. If no exact match was returned, we used the display
names to search again, and obtained the candidate matches. We only used the
Facebook accounts of such candidates, since the search results may contain Facebook
pages that have no specific users behind. Moreover, some popular names may return
hundreds or even thousands of Facebook accounts. In such cases, we selected the
first 50 of them. We then connected all returned accounts if they have friendship
relationship by visiting their personal Facebook pages. In the rest of this section,
we call the social network formed as such the Facebook network. Note that the
Facebook network graph may not be a connected graph.

The statistics of the two data sets, denoted by DA and DB, respectively, are
summarized in Table 1. While the Facebook networks contain the possible candidate
matches returned from searching Facebook using the display names, the common
vertices (VM ∩ VN) and the common edges (EM ∩ EN) were calculated according
to the ground truth provided by the volunteers. The statistics show that the a non-
trivial percentage of one’s email correspondents appear in the Facebook networks
(18.66% for A and 45.58% for B), but only a relatively smaller portion of email
correspondents are also connected in the Facebook networks (1.33% for DA and
15.73% for DB). This observation also demonstrates the task of finding email
correspondents in social networks is meaningful.

6.2 Evaluation method

We evaluated the effectiveness of profile matching, graph matching, and their combi-
nation. On each data set, we computed the similarity between an email contact in the
email network and a Facebook account in the Facebook network using the matching
method under test. For each email account that there is a corresponding Facebook

Table 1 The statistics of the two real data sets.

Email network Social network

|VM| |EM| |VN | |EN | |VM ∩ VN | |EM ∩ EN |
DA 2,439 180,524 7,575 440,325 455 2,392
DB 452 4,676 11,176 566,491 206 736
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account in the Facebook network, determined by the corresponding volunteer, we
used the top-k Facebook accounts in similarity as the matching result, where k is
called the answer set size. If the top-k results contain the correct Facebook account,
the matching is counted successful.

The matching accuracy (accuracy for short) is thus defined as the percentage
of successful matchings. We report the matching accuracy with respect to various
answer set size (k).

One challenge in evaluation is that even the volunteers do not know the complete
ground truth. In other words, the volunteers do not know exactly whether their email
contacts have Facebook accounts or not. The volunteers only can determine whether
whether a Facebook account belongs to an email contact based on the Facebook
personal page. Consequently, we cannot measure the recall of any methods.

All our experiments were conducted on an Apple Macbook Pro computer with a
2.4 GHz Intel Core 2 Duo CPU, 4 GB of 1066 MHz DDR3 SDRAM main memory,
running the 64 bit Mac OS X v10.6 Snow Leopard operating system. Our programs
were implemented in C++. By default, we set ε = 10−5 as the termination condition
in our iterative method.

6.3 Effectiveness of profile matching

In this subsection, we report the evaluation results of profile matching. There are
many string similarity measures that may be used for profile matching. This section
by no means tries to evaluate all or the best string similarity measures for our
problem. As discussed in Section 4, we use the Jaro–Winkler similarity and the
overlap similarity to address the similarity between two independent strings and that
between a string and its substrings, respectively. The evaluation here is to understand
whether the two similarity measures complement each other, and how the two can
be aggregated to form a profile similarity measure.

Figure 3 shows the matching accuracy of the two similarity measures with respect
to various answer set size on the two real data sets. On both data sets, the Jaro–
Winkler similarity outperforms the overlap similarity when the answer set size ranges
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Figure 3 The matching accuracy of the two string similarity measures.
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from 1 to 5. The accuracy of both methods are low, less than 30% on both data set
even when the answer set size k = 5. This clearly illustrates that profile matching
only is insufficient in tackling the problem of finding email correspondents in social
networks.

To understand how much the two similarity measures complement each other,
Figure 4 shows the Jaccard coefficient on the matching results of the two similarity
measures. The results indicate that the two similarity measures are in general
correlated. This also suggests that the effectiveness of profile matching may not be
very sensitive to the choice of specific string similarity measures.

To learn the parameter α in the profile similarity (1), we compute the matching
accuracy with respect to α, varying from 0 to 1 of step 0.1. Figure 5 shows the results.
For answer set size in the range from 1 to 5, the matching accuracy is the highest
when α = 0.8. Therefore, we set α = 0.8 by default.

6.4 Effectiveness of graph matching

In this subsection, we report the evaluation results of graph matching. We compare
the fuzzy Jaccard similarity (Section 5.3, denoted by FJ) and the state-of-the-art
graph matching methods developed by Blondel et al. [3] (denoted by BV), Zager
and Verghese [31] (denoted by ZV) and Heymans and Singh [13] (denoted by HS).

Figure 6 shows the results. The results clearly show that FJ outperforms the
existing graph matching methods significantly with respect to a wide range of answer
set size. In other words, our graph matching method is dramatically more effective
than the other general graph matching methods on the problem of finding email
correspondents in social networks.

However, the matching accuracy is still poor, less than 10% for all graph matching
methods tested. This is not surprising. There are many small subgraphs in the email
network and the Facebook network that are similar to each other if only the subgraph
structures are considered. This observation clearly shows that only graph matching
is ineffective either to tackle the problem of finding email correspondents in social
networks.
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Figure 4 The Jaccard coefficient between the two string similarity measures in profile matching.
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Figure 5 Profile similarity parameter tuning.

6.5 Effectiveness of integrating profile matching and graph matching

In Section 5.4, we developed an iterative method integrating profile matching and
graph matching. In this subsection, we report the evaluation results of this approach.

First, we learn the value of parameter γ in (11). Similar to learning the value of
parameter α in profile matching, we compute the matching accuracy with respect to
γ , varying from 0 to 1 of step 0.1. Figure 7 shows the results. The results show that,
empirically in our cases, the best performance is achieved by setting γ = 0.5.

Figure 8 shows the matching accuracy of the integrated method. For the con-
venience of comparison, the figure also plots the accuracy of graph matching only
and profile matching only. The results clearly show that the integrated method can
achieve much better performance than graph matching only and profile matching
only. The accuracy of the integrated method is even higher than the sum of the
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Figure 6 The matching accuracy of the graph matching methods.
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Figure 7 The matching accuracy of the integrated method with respect to parameter γ .

accuracies of graph matching only and profile matching only. The results verify that
the integration of the two matching methods iteratively is effective.

One may think that the accuracy of about 50% even when k = 10 is not high.
Please note that the problem of finding email correspondents is very challenging.
In the traditional classification problems where the number of possible classes is
very small, some simple baseline methods such as random selection may already
give a not bad accuracy. For example, in a balanced two-class classification problem,
random selection can achieve an expected accuracy of 50%. However, if the problem
of finding email correspondents is treated as a classification problem, the number
of possible classes is the number of distinct users in the target social network, and
thus is often very large. Thus, the accuracy of about 50% is statistically significant
comparing to the random selection method. Our method here considers only email
account similarity and social network neighborhood similarity. If more information
is available, such as the dynamics of users, the accuracy may be improved further.
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Figure 8 Comparison of different matching algorithms.
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6.6 The Effect of ε and the runtime

As discussed at the end of Section 5.3, we use a parameter ε to control the
termination of our iterative method. Figure 9 shows the accuracy on the two data
sets with respect to ε. Please note that ε is plotted in logarithmic scale.

Clearly, the smaller the value of ε, the more accurate the results. However, the
marginal improvement of lowering down ε decreases exponentially.

The runtime cost of our method is composed of two parts: the cost of crawling the
social networks (Facebook in our experiments) and the cost of running the matching
algorithms presented in this paper. The cost of crawling the social networks varies
dramatically in different applications. For examples, on the one hand, if our method
was run in Facebook, then the crawling time is largely ignorable. On the other hand,
if one uses only one computer to crawl a social network that does not provide a
proper API, it may take much time in crawling.

Since the crawling problem is orthogonal to the algorithms developed in this
paper, we decided to focus on the runtime cost of the similarity computation. Thus,
we report here the runtime that does not count the crawling cost.

Figure 10 reports, with respect to ε, the runtime and the number of iterations of
our method on the two data sets. Again, ε is plotted in logarithmic scale. The results
clearly show that parameter ε can be used to control the tradeoff between accuracy
and efficiency.

In our experiments, we compute the huge matrix on the fly. It is known that matrix
multiplication is very time consuming. Our method can be sped up substantially by
distributed computing adopting similar techniques in many other matrix computation
problems. Moreover, to improve the online performance, one can precompute and
materialize the matrices. We leave this as a future work.

6.7 Distribution of similarity scores and selection using a similarity threshold

To investigate the distribution of similarity scores in the converged similarity matrix
computed by our method, we sort all the entries in the matrix in value descending
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Figure 9 Accuracy with respect to ε.
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Figure 10 Runtime and number of iterations.

order. The size of the similarity matrices for data sets DA and DB are 2,439 × 7,575 =
18,475,425 and 452 × 11,176 = 5,051,552, respectively. Since the scores are normal-
ized, in each matrix, the sum of similarity scores of all entries is always equal to 1.

Figure 11 shows the sum of the similarity scores with respect to the top l entries
when l varies from 1 to the total number of entries in the matrix. Figure 11a is in the
regular scale, and Figure 11b uses the logarithmic scale on the number of entries. As
shown, only a small number of entries have high similarity scores. The distribution
essentially follows the power law.

Naturally, one may think whether we can use a threshold on the similarity score to
make recommendations. That is, we only make recommendations for entries in the
similarity matrix whose values pass a user-specified similarity threshold. Figure 12
shows the results on the two real data sets. The results show that the accuracy reaches
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Figure 12 Accuracy of recommendation using similarity thresholds.

the peak on those two data sets when the threshold is set to between 0.5 × 10−5 and
1 × 10−5. When the threshold is low, many entries of low similarity lead to inaccurate
recommendation. When the threshold is set too high, many matching vertices may be
filtered out.

7 Conclusions and discussion

In this paper, we tackled a practical and interesting problem of finding email corre-
spondents in social networks. We considered two ways to tackle the problem. First,
we considered using profile similarity that can be computed using string similarity.
Second, we developed a novel graph matching similarity approach. Our experimental
results showed that neither profile matching nor graph matching individually can
solve the problem. Our integrated method can achieve much higher accuracy on the
real data sets.

Although we only discussed the personal view version of the problem, our solution
can be straightforwardly extended to tackle the general problem of finding email
correspondents in social networks, where it is assumed that the whole email network
and the social network are available. For the profile similarity computation, we can
compare the profile of each email account with that of each social network account.
For the graph matching similarity, we can use the two graphs to compute the graph
matching similarity matrix.

In this paper, we assumed that one person as only an account in a social network.
In practice, this assumption may not hold for some social networks. One idea to
break this assumption is to conduct “entity identification” in social networks, that
is, identifying multiple accounts that are owned by the same person. This is an
interesting problem for future study.

In general, this paper is one of the steps of our bigger project on mapping social
networks. It is interesting to explore how to carrying one’s friends in a social network
to many others.
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