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Abstract With the rapid development of e-commerce over Internet, web services
have attracted much attention in recent years. Nowadays, enterprises are able to
outsource their internal business processes as services and make them accessible via
the Web. Then they can dynamically combine individual services to provide new
value-added services. With the increasing number of web services having equivalent
functionality, the binding procedure is driven by some non-functional, Quality of
Service (QoS) criteria, such as the money cost, response time, reputation, reliability
or a trade-off between them. Thus, an important problem is, given QoS constraints,
how to aggregate and leverage individual service’s QoS information to derive the
optimal QoS of the composite service. In this paper, we propose a novel QoS model
for performing flexible service selection. The key idea of the model is to relax
users’ QoS constraints and try to find the most possible services satisfying users’
QoS requirements. Based on the proposed QoS framework, we develop various
algorithms for making service selection on individual and composite services. We
also introduce a top-k ranking strategy to reflect a user’s personalized requirements.
Experimental evaluation shows the proposed QoS model is efficient and practical.
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1 Introduction

A web service is programmatically available application logic exposed over Internet.
It has a set of operations and data types. The current set of web service specifications
defines how to specify reusable operations through the Web-Service Description
Language(WSDL), how these operations can be discovered and reused through
the Universal Description, Discovery, and Integration(UDDI) API, and how the
requests to and responses from web-service operations can be transmitted through
the Simple Object Access Protocol API(SOAP). With the rapid development of
e-commerce over Internet, web services have attracted much attention in recent
years. Nowadays, enterprises are able to outsource their internal business processes
as services and make them accessible via the Web. Then they can combine individual
services into more complex, orchestrated services.

Recently, the process-based approach to web service composition has gained
considerable momentum and standardization [1]. In this scenario, a service compo-
sition can be regarded as a process model containing abstract service specifications,
without specifying actual services needed to be bound to the process model. With
the increasing number of web services having equivalent functionality, the binding
procedure is driven by some non-functional, Quality of Service (QoS) criteria, such as
the money cost, response time, reputation, reliability or a trade-off between them [6].
Thus, an important problem is, given QoS constraints, how to aggregate and leverage
individual services’ QoS information to derive the optimal QoS of the composite
service. Actually, dynamic binding of service compositions constitutes one of the
most interesting challenges for service-oriented architectures.

A lot of methods have been proposed to solve this problem, including linear
programming [28], reduction rules method [8], utility function strategy [26], CP-nets
[23] and AND/OR graph method [21], etc. However, most approaches only focus
on obtaining optimized service selection under user requirements and overlook user
preferences. As an example, consider a user who is searching for the postcode of a
given city. Table 1 gives a collection of candidate web services with the same function.
All these services can retrieve the postcode of a given city, although they have
different non-functional properties, e.g. Pri.(i.e. price($)), Res.(i.e. response time(s)),
Rep.(i.e. reputation score(points/100)) and Rel.(i.e. reliability probability). A typical
form of QoS query p issued by the user is Mθv, where M is a QoS metric, v is a
constant value, and θ is a comparison operator such as =, <, >, ≤ or ≥. Examples
are p1: price < $10, p2: response time < 11s, p3: reputation score ≥ 70 and p4:
reliable probability > 0.5, etc. These conditions can also be combined by an “AND”
operator, denoted as price < $10 AND response time < 11s AND reputation ≥ 70
AND reliability > 0.5, forming a QoS query vector p = (p1, p2, p3, p4). In order to
fulfil the user’s request, existing methods need to seek services satisfying all the four

Table 1 Sample web services.

Each web service provides the
same postcode information.

Web Quality of Service (QoS)
services Pri. Res. Rep. Rel.

s1 26 5 88 0.1
s2 14 10 70 0.9
s3 35 9 36 0.3
s4 5 1 90 0.6
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conditions above simultaneously and then return them. However, several problems
may arise when applying these techniques: firstly, these methods can not solve the
empty result problem. Since the user issues his requirements without knowing all the
detailed QoS properties of all available services, maybe there are no fully satisfying
services, i.e. services satisfying all the conditions at one time. In such cases, obviously
relaxing the user’s request and returning some approximate results is a much better
idea than just reporting an empty result; secondly, these methods lack flexibility
and the personalization problem has been overlooked. Depending on their context,
different users may have different preferences about the services they need. For
instance, a user may say service s2 is better than service s4, because although s2 is
more expensive than s4 and exceeds the user’s financial requirement a bit, it has much
better reliability, which is crucial to her because of her strict reliability requirements.
Similarly, another user running out of money prefers a cheaper service, while a
cautious user may prefer services with “excellent” reputation, etc. So, whether a
service is good or not in QoS depends on the user’s context and preference. It is
essential to model the user’s personalized preferences and requests.

In this paper, we present novel techniques to solve the challenges above, and
give experimental evidence that shows our methods are efficient and practical. In
particular, the main contributions of this paper are listed as follows:

1. We propose a novel QoS evaluation model for performing flexible and adaptable
service selection from the point of view of users. The key idea of the model is to
relax the user’s QoS constraints and try to find the most possible services which
meet the user’s QoS requirements.

2. Based on the proposed QoS framework, we develop various algorithms for
making service selection on individual and composite services, respectively.
We also introduce a top-k ranking strategy to reflect a user’s personalized
requirements.

3. We present the experimental result of a thorough evaluation. Experimental
evaluation shows the proposed QoS model is efficient and practical.

2 QoS computing model

In this section, we formulate the QoS computing model for individual services and
composite services, respectively.

2.1 Computing model for individual services

2.1.1 QoS metrics

Many QoS metrics have been proposed in the literature. Typical criteria include
response time, throughput, price, reputation, reliability, transactional properties and
security, etc. In this paper, we only consider four basic metrics, which are almost
available for all web services [15]: price, duration, reputation and reliability.

1. Price. This is the amount of money that a service requester has to pay for
executing a task. The task may be either an element web service or a composite
web service. Users can get execution price via online advertisement or inquiry
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entry available through service providers. Given a service s, we use price(s) to
denote the price for executing s.

2. Duration. The execution duration measures the response time from the submis-
sion of a request to the receiving of the response. The average response time can
be estimated based on observation of past executions. Given a service s, we use
duration(s) to denote its execution duration.

3. Reputation. The reputation of a service s reflects its trustworthiness. It mainly
depends on usage evaluation carried out by end users. Usually, users are given a
range, for example from 1 point to 100 points, to rank a web service. We define
the reputation of service s as the average ranking given by users, denoted as
reputation(s).

4. Reliability. The reliability of a service is the probability that the service
can successfully complete within a time limit. Its value is computed from
past invocations history. We use reliability(s) to describe the reliability of a
service s.

Given the QoS metrics above, the quality of a web service s is defined as
a four-dimensional vector: q(s) = (price(s), duration(s), reputation(s), reliability(s)).
Let S = {s1, s2, ..., sn} be a group of web services with the same functional
properties. For each service si ∈ S, its quality vector is represented as q(si) =
(qi(1), qi(2), qi(3), qi(4)), corresponding to price, duration, reputation and reliability
in order. Given a user’s QoS constraints, our algorithms aim to determine the best
services in S satisfying the user’s requirement. It is worth noting that although the
number of metrics criteria is limited in this paper, our model is extensible. New metric
factors can be easily added without fundamentally changing the algorithms for QoS
computation. As the quality of a web service s is represented as a four-dimensional
vector, we will use dimension and metric interchangeably in the remainder of the
paper.

2.1.2 Normalization of QoS values

The QoS metrics proposed in Section 2.1.1 are not consistent with each other. As we
can see, the higher the value of price or duration is, the lower the quality; whereas
the higher the reputation or reliability is, the better the quality is. In order to provide
a uniform representation of QoS metrics, we need to normalize QoS values before
we do QoS computation. Suppose we have the quality vectors for all services ∈ S.
For each service si’s quality vector q(si) = (qi(1), qi(2), qi(3), qi(4))(1 ≤ i ≤ n), we
normalize its values to obtain q′(si) = (q′

i(1), q′
i(2), q′

i(3), q′
i(4)), where

q′
i( j) = q j

max − qi( j)

q j
max − q j

min

, j = price(1), duration(2) (1)

q′
i( j) = qi( j) − q j

min

q j
max − q j

min

, j = reputation(3), reliability(4) (2)

In the equations above, we can safely assume q j
max �= q j

min, where qi( j) is the QoS of
si on metric j, q j

max = Max{qi( j)}, 1 ≤ i ≤ n and q j
min = Min{qi( j)}, 1 ≤ i ≤ n. When a

user needs to find services satisfying his or her quality requirements, for consistency,
it is also needed to include the QoS query vector p in the normalization process, so
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we have q j
max = Max{{qi( j)|i = 1, 2, ..} ∪ {pj}}, 1 ≤ i ≤ n and q j

min = Min{{qi( j)|i =
1, 2, ..} ∪ {pj}}, 1 ≤ i ≤ n.

Example 1 Suppose there are four web services in S and that their values of QoS
metrics are given in Table 1. We also assume that a user’s QoS query vector is p =
(p1, p2, p3, p4), where p1 is price < $10, p2 is response time < 8s, p3 is reputation >

50, and p4 is reliability > 0.7. Using (1) and (2), we have the normalized Table 2.

After normalization, the quality on each metric is monotonic increasing with its
corresponding metric value, i.e. the greater the QoS value on one metric is, the
better the quality of the service on the metric. So, users only need to issue a QoS
query vector using one form: M > v, where M is a QoS metric and v is a constant
value related to M. For instance, the query vector p in example 1 can be converted
into p′ = (p′

1, p′
2, p′

3, p′
4), where p′

1 is price > 0.8, p′
2 is response time > 0.2, p′

3 is
reputation > 0.3, and p′

4 is reliability > 0.8.

2.1.3 Answering a user’s QoS query

In this section, we focus on how to return desirable services from a group of services
S with the same function, given a QoS query. Before giving the definition of query
result, we first define the quality difference of a user’s QoS query p with regard to a
service si’s quality vector q(si) as follows:

Definition 1 Suppose p = (p1, p2, p3, p4) is a four-dimensional QoS query vector,
such that pk is of the form of Mk > vk ,where k ∈ {1, 2, 3, 4}, Mk ∈ {price, duration,

reputation, reliability}, and vk is the QoS value of Mk. q(si) = (qi(1), qi(2),

qi(3), qi(4)) is an individual service si’s quality vector, where qi(1), qi(2), qi(3) and
qi(4) is the QoS value on price, duration, reputation and reliability, respectively. Let
δik = vk − qi(k)(k = 1, 2, 3, 4). We say D(p, q(si)) = (δi1, δi2, δi3, δi4) is the individual
quality dif ference between the user’s QoS query vector p and the individual service
si’s quality vector q(si).

Based on the monotonic increasing property of each QoS metric, it is straightfor-
ward to draw the following property:

Property 1 The less δik is, the better the quality of service si on metric k.

In order to describe the quality of service si relative to a query vector p, by Property 1,
we say that si satisfies p strictly if ∀k ∈ {1, 2, 3, 4}, δik ≤ 0. si is said not to satisfy
p strictly if ∃k ∈ {1, 2, 3, 4}, δik > 0. Generally, ∀i �= j, D(p, q(si)) �= D(p, q(s j)),

Table 2 Normalization of QoS
values of services in Table 1.

Web Quality of Service (QoS)
services Pri. Res. Rep. Rel.

p > 0.8 > 0.2 > 0.3 > 0.8
s1 0.3 0.6 0.9 0
s2 0.7 0 0.6 1
s3 0 0.1 0 0.3
s4 1 1 1 0.6
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which means service si may be better or worse than s j on some metrics. But, how
can we compare these two services as a whole? To formally describe this kind
of relationship, we employ dominance checking between the individual quality
dif ference of p with regard to different services in S.

Definition 2 Given a QoS query vector p and two services si, sj ∈ S, if the value
of D(p, q(si)) on each dimension is not larger than that of D(p, q(sj)) and strictly
smaller on at least one dimension, then we say service si dominates service sj with
respect to the query vector p, denoted as si 
 sj. In other words, we can say service si

is better than service sj.

For example, consider the running example in Table 2. According to definition
1, we have D(p, q(s1)) = (0.5,−0.4, −0.6, 0.8), D(p, q(s2)) = (0.1, 0.2,−0.3,−0.2),
D(p, q(s3))=(0.8, 0.1, 0.3, 0.5), and D(p, q(s4))=(−0.2,−0.8, −0.7, 0.2). D(p, q(s4))

is smaller than D(p, q(s3)) and D(p, q(s1)) on every dimension, but its fourth metric
is larger than D(p, q(s2)). Hence, s4 
 s1 and s4 
 s3.

Definition 3 The query result of a QoS query vector p on a group of services S,
denoted as R(p, S), is the set of all the services ∈ S, each of which is not dominated
by any other service ∈ S.

In the example in Table 2, since s4 
 s1 and s4 
 s3, we can say s1 and s3 /∈ R(p, S).
Also, s2 is not dominated by any other service in S. Thus the query result of p on S
is R(p, S) = {s2, s4}.

Furthermore, it is very common that different users may have different prefer-
ences for some metrics. We can specify a weight for each metric to adjust the query
results, satisfying users’ dynamic and personalized QoS requirements.

The goal of our task is to find QoS query results for individual services and
composite services. However, as the number of available services increases, the cost
of finding query results will be large. How to develop efficient methods to return
satisfying results is the central problem. We will discuss various algorithms to achieve
this in later sections. In the next section, we give the QoS computing model for
composite services.

2.2 Computing model for composite services

A composite service is actually a business process integrating necessary individual
services. So, the quality metrics for individual services are also applied to composite
services. The QoS metric value of a composite service is determined by the QoS
metric values of its individual services, and the workflow pattern capturing the
control flow and dependencies between individual services. There are more than
twenty different patterns [20] through which individual services can be integrated
to form a composite service, but only four basic workflow patterns among them are
essential: sequential, for defining an execution order; parallel, for parallel routing;
switch, for conditional routing; and while, for looping. Figure 1 shows these four basic
workflow patterns. Each pattern contains some nodes, which are also called tasks in
this paper. We deal with the sequential workflow pattern first. Later we will see its
computing methods with QoS can also be applied to the other three patterns.
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Figure 1 Workflow patterns.

S1 S3S2

(a) sequential

S1 S4

S2

(c) conditional

S3

p 1

p 2

p 1+p 2=1  (0<p 1, p 2<1)

S

(d) while

n

S loops n times

S1 S4

S2

(b) parallel

S3

2.2.1 Sequential composition model

Now let us see how to compute the QoS metric values of a sequential composite
service s with the running pattern like Figure 1a. Using the same quality metrics as
individual services, the aggregation functions for s are given as below:

1. Price. The price of s is the sum of each of its individual service si’s price. Formally,

we have price(s) =
n∑

i=1
price(si).

2. Duration. The duration of s is the sum of each of its individual service si’s

duration; that is duration(s) =
n∑

i=1
duration(si).

3. Reputation. The reputation of s is the average of each of its individual service si’s

reputation point, denoted as reputation(s) = (
n∑

i=1
reputation(si))/n. In this paper,

we map reputation(s) × n to reputation′(s), thus the function above becomes

reputation′(s) =
n∑

i=1
reputation(si).

4. Reliability. The reliability of s is the probability product of each of its indi-

vidual service si’s reliability probability: reliability(s) =
n∏

i=1
reliability(si). We use

the logarithmic function ln(x) to linearize this function. Let ln reliability(s) =
ln

n∏

i=1
reliability(si), and reliability′(si) = ln reliability(si), then we have a lin-

ear aggregation function to compute the reliability of s: reliability′(s) =
n∑

i=1
reliability′(si).

Using the aggregation functions above, the quality of a sequential composite service

s can be unified as q(s) =
n∑

i=1
q(si). Here s and si have been mapped and linearized.



670 World Wide Web (2012) 15:663–684

2.2.2 General composition model

Besides sequential structures, real-world composite services often have loop opera-
tions, conditional operations, and parallel operations to run services simultaneously.
These operations can be converted into sequential model according to a group of
rules similar to [12, 27] and [28]:

1. We unfold a loop operation to a sequential structure by cloning the cyclic nodes
n times, where n is the looping count of the loop structure.

2. Both conditional and parallel operations contain multiple branches. Each of the
branches can be regarded as an independent sequential operation.

(a) For a conditional operation, since only one branch is executed with a
probability p at runtime, we calculate its QoS value by averaging the QoS
values of all its branches.

(b) In parallel structures, all branches are executed simultaneously at runtime,
so we need to combine the QoS values of all branches. For price, reputation
and reliability metrics, all branch QoS values are summed up as the overall
QoS of the parallel operation; whereas for execution duration, the overall
QoS value is defined as the maximum QoS value of all branches on this
metric.

As an example, Figure 2 gives a composite service E with the four workflow patterns
above. S1 is followed by either S2 or S3 with a probability of p1 or p2; S5 is followed
by both S6 and S7 in a parallel way. S6 is iterated for at most n times. Using the same
notations as the sequential model, the overall duration and price of E are formulated
as follows:

dur(E) = dur(s1) + p1 ∗ dur(s2) + p2 ∗ dur(s3) + dur(s4)

+ dur(s5) + max (dur(s6) ∗ n, dur(s7)) + dur(s8) (3)

pri(E) = pri(s1) + p1 ∗ pri(s2) + p2 ∗ pri(s3)

+
∑

i=4,5,7,8

pri(si) + pri(s6) ∗ n (4)

Similar to price, the QoS value on reliability and reputation can be derived the same
way. We omit their equations here due to space limit.

S1 S4

S2

S3

p1

p2

n

S5 S8

S6

S7

sta r t e nd

Figure 2 Composite service example.
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2.2.3 Normalization

As we have seen in individual services, in order to provide consistent QoS metrics
for composite services, we need to normalize each of its individual service’s QoS
value before we do QoS computation, except that this time the normalization is
within all candidate groups of services instead of a single group. Suppose we have
a composite service C with k tasks in its execution flow. Each task is executed by
a service Sij(i = 1, 2, ..., k; j = 1, 2, ...) from service group Si(i = 1, 2, ..., k), which
consists of |Si| services having the same functionality as Sij. For each service Sij ∈ Si,
its quality vector q(Sij) is normalized by the two equations below:

q′
ij(m) = qm

max − qij(m)

qm
max − qm

min
, m = price, duration (5)

q′
ij(m) = qij(m) − qm

min

qm
max − qm

min
, m = reputation, reliability (6)

where qij(m) is the quality value of service Sij on metric m, qm
max = Max{qij(m)},

1 ≤ i ≤ k, j = 0, 1, ..., |Si| and qm
min = Min{qij(m)}, 1 ≤ i ≤ k, j = 0, 1, ..., |Si|.

Similar to individual services, we also include the user’s QoS query vector in
the normalization process. Before formally defining the QoS Query on composite
services, we give a running example first.

Example 2 Figure 1a shows a composite service with three sequential functions.
Each function is executed by an individual service Sij from service group Si(i =
1, 2, 3). The QoS metric values of all individual services in each service group are
shown in Table 3. Also, the QoS query vector for this composite service is given at
the first row, i.e. p = (p1, p2, p3, p4), where p1 is price > 0.8, p2 is response time
> 0.2, p3 is reputation > 0.3, and p4 is reliability > 0.8. Without loss of generality,
we assume all these values have been normalized and linearized, as shown in
Section 2.2.1.

2.2.4 Answering a user’s QoS query on composite services

Following the definition of QoS query result for individual services, in this section we
discuss how to return desirable services contributing to a composite service. In order
to simplify the problem, we need to give several definitions first.

Table 3 Example of
composite service.

Service Individual Quality of Service (QoS)
group service Pri. Res. Rep. Rel.

p > 0.8 > 0.2 > 0.3 > 0.8
S1 s11 0.8 0.2 0.3 0.8
S1 s12 0.3 0.6 0.9 0
S2 s21 0.7 0 0.6 1
S2 s22 0 0.1 0 0.3
S3 s31 1 1 1 0.6
S3 s32 0.9 0.1 0.2 0.7
S3 s33 0.4 0.3 0.5 0.2
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Definition 4 We assume Ci is a process with k tasks, each of which is executed by a
candidate service Sti

i from service group Si(i = 1, 2, ..., k). Then Ci = {St1
1 , St2

2 , ..., Sti
i ,

..., Stk
k } is called a composite service. We use C to denote the composite service set

containing all composite services.

Definition 5 Given a QoS query vector p = (p1, p2, p3, p4), where pk is of the
form of Mk > vk, k ∈ {1, 2, 3, 4}, Mk ∈ {price, duration, reputation, reliability} and vk

is the QoS value of Mk; and given the quality vector q(Ci) = (qi(1), qi(2), qi(3), qi(4))

of a composite service Ci, where qi(1), qi(2), qi(3) and qi(4) is the QoS value of Ci

on price, duration, reputation and reliability, respectively. Let δik = vk − qi(k)(k =
1, 2, 3, 4). We say D(p, q(Ci)) = (δi1, δi2, δi3, δi4) is the composite quality dif ference
between the user’s QoS query vector p and the composite service Ci’s quality
vector q(Ci).

Clearly, according to the definition and the aggregation functions proposed in
Section 2.2.1, we can conclude the composite quality difference between a user’s QoS
query vector p and a sequential composite service Ci’s quality vector q(Ci) can be
calculated as the sum of all the individual quality difference of p with regard to each
candidate service contributing to Ci. We formulate this as

D(p, q(Ci)) =
k∑

i=1

D
(

p, Sti
i

)
(7)

where Sti
i is the service from service group Si contributing to Ci.

Similar to individual services, the dominance relationship between composite
services is defined below:

Definition 6 Given a QoS query vector p and two services Ci, C j, if the value of
D(p, q(Ci)) on each dimension is not larger than that of D(p, q(C j)) and strictly
smaller on at least one dimension, then we say service Ci dominates service C j with
respect to the query vector p, denoted as Ci 
 C j.

For example, in Table 3, consider a QoS query vector p = {0.8, 0.2, 0.3, 0.8}
and two sequential composite services C1 = {s11, s21, s31}, C2 = {s12, s22, s33}. By
definition 5, we have D(p, q(C1)) = D(p, q(s11)) + D(p, q(s21)) + D(p, q(s31)) =
{−0.1,−0.6,−1, 0}, and D(p, q(C2)) = D(p, q(s12)) + D(p, q(s22)) + D(p, q(s33)) =
{1.7, 0.5,−0.5, 1.9}. D(p, q(C1)) is smaller than D(p, q(C2)) on every dimension, so
C1 
 C2. In other words, we can say C1 is better than C2 for satisfying the query
vector p.

Following the same way as definition 3, the computing model for composite
services is shown as follows:

Definition 7 The query result of a QoS query vector p on a composite service set C,
denoted as R(p, C), is the set of all the composite services ∈ C, each of which is not
dominated by any other composite service ∈ C.

In the example of Table 3, there are a total of 12 candidate composite services,
each with different composite quality difference with regard to query vector p. The
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number of possibilities goes up exponentially with an increasing number of service
groups. So, developing efficient algorithms for computing query result of p on a
composite service set is particularly challenging in our case. In this paper, we design
various algorithms to achieve this goal.

3 Algorithms for answering a user’s QoS query

In this section, we present different approaches of answering a user’s QoS query on
individual services and composite services, respectively.

3.1 Algorithms for QoS query on individual services

Recall the model we defined in Section 2.1.3. Our goal is to compute the query result
of a QoS query vector p on a group of services S, R(p, S), i.e., the set of all the
services ∈ S, each of which is not dominated by any other service ∈ S.

3.1.1 A naïve approach

A naïve strategy for the QoS query is to compute the individual quality difference of
every service in S and then, for each quality difference, make dominance checking
with all the other quality differences to find the satisfying services. However, the
naïve strategy is expensive since every two quality differences are compared. If we
consider the rapid increase of available services, the cost of the naïve approach would
be even more expensive.

3.1.2 The RC algorithm

Algorithm 1 The RC algorithm for QoS query on individual services

The main cost the naïve approach is the duplicate comparison between quality
differences. This algorithm, called Reduce Comparison (RC) approach, tries to
reduce the number of comparisons by using the comparing result already available.
It traverses all the services in S and maintains a set R to keep the satisfying services
obtained so far. For each service s, the RC algorithm checks if s is dominated by
a service in R with respect to the query vector p. We discard s if it is dominated;
otherwise we insert it to R and discard those services in R dominated by s. When all
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services in S have been traversed, the RC algorithm ends and returns R as the QoS
query result. Detailed steps of the RC algorithm are presented in Algorithm 1.

3.1.3 R-tree based RC algorithm (RRC)

The RC algorithm outperforms the naïve approach, as it avoids duplicate compar-
isons. However, the performance of RC algorithm may decrease as the number of
services in R increases. To overcome the problem, the R-tree based RC algorithm
(RRC) is proposed to facilitate the retrieval of services. Following most meth-
ods in the relevant references, we index the metric values of each quality vector
corresponding to each service in S. An intermediate entry Ei corresponds to the
minimum bounding rectangle (MBR) of a node Ni at the lower level, while a leaf
entry corresponds to a quality vector. The dominance relationship between services
can be easily determined by bound check similar to BBS algorithm in [17].

In the RRC algorithm, the maximum quality dif ference between p and a MBR, say
E (i.e., intermediate entry), denoted as Dmax(p, q(E)), equals to the quality distance
of its lower bound (e.g. the lower-left corner point in two dimensional space) quality
vector with respect to p, while the minimum quality dif ference between p and E,
denoted as Dmin(p, q(E)), equals to the quality distance of its upper bound (e.g. the
higher-right corner point in two dimension space) quality vector with respect to p.
We say a service s dominates a MBR E, if the following equation holds: D(p, q(s)) ≤
Dmin(p, q(E)), and the inequality is strict on at least one QoS metric, as in this case
service s must dominate all services in E.

Algorithm 2 The RRC algorithm for QoS query on individual services



World Wide Web (2012) 15:663–684 675

Based on the explanations above, we show how the algorithm works: it starts
with the root node of the R-tree and inserts all its entries in a stack. If an entry is
not dominated by the query quality vector p, then we expand it. That is to say it is
removed from the stack and all its children are inserted into the stack. This process
repeats until the stack is empty. Detailed steps of RRC algorithm are presented in
Algorithm 2. As our experiments verified, the RRC algorithm is efficient and its
performance is much better than RC.

3.2 Algorithms for QoS query on composite services

In this section, we propose methods to process the problem of QoS query on
composite services. Recall Definition 7 in Section 2.2.4. Now the goal is to compute
the query result of a QoS query vector p on a composite service set C, denoted as
R(p, C), i.e., the set of all the composite services ∈ C, each of which is not dominated
by any other composite service ∈ C.

3.2.1 Straightforward strategy

Suppose each composite service Ci ∈ C has k tasks in its execution flow. Each
task is executed by a candidate service Sti

i (i = 1, 2, ..., k) belonging to service group
Si(i = 1, 2, ..., k), the cardinality of which is |Si|. A straightforward strategy for
the QoS query on composite service set C is to enumerate all possible Ci =
{St1

1 , St2
2 , ..., Sti

i , ..., Stk
k } firstly and then compute their composite quality difference

with respect to p, and finally return R(p, C) by applying the proposed algorithms in
Section 3.1 on C. Clearly, each service in Si can contribute to Ci, so the total number

of composite services in C is
k∏

i=1
|Si|, which leads to much more expensive cost than

QoS queries on individual services. If the number of services in service groups or the
number of service groups increases, the cost of the straightforward strategy is even
more expensive.

3.2.2 Locally pruning method

As we can see, the straightforward approach traverses all services in each service
group then combines traversed individual services to find qualifying composite
services, so the number of services in each service group is a key factor in the cost,
and it would be useful if we can reduce the number of services in service groups. To
achieve this, we need to identify and remove those services from each service group,
which are impossible to appear in the final query result R(p, C). In this section, the
locally pruning method(LPM) is developed to address this issue. The intuition behind
this approach is that a locally dominated service, i.e., it is dominated by some other
service in the same group, does not appear in R(p, C). This idea can be summarized
by the following heuristic:

Heuristic 1 Let Si be a group of services and Sti
i be an arbitrary service ∈ Si. Service

Sti
i can be safely pruned if there exists a service Sti′

i ∈ Si such that Sti′
i 
 Sti

i .

Proof According to the four different workflow patterns in Figure 1, we give the
proof separately.
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Firstly, assume Sti
i is selected to a sequential structure Ci = {St1

1 , St2
2 , ..., Sti

i , ..., Stk
k }

of a composite service in R(p, C). Now we modify Ci by replacing Sti
i with Sti′

i to
obtain another sequential structure C′

i = {St1
1 , St2

2 , ..., Sti′
i , ..., Stk

k }. According to (7),

we have D(p, q(Ci)) =
k∑

l=1
D(p, Stl

l ), and D(p, q(C′
i)) =

i−1∑

l=1
D(p, Stl

l )+D(p, Sti′
i ) +

k∑

l=i+1
D(p, Stl

l ).The dominance check between Ci and C′
i can be done using formula

D(p, q(C′
i)) − D(p, q(Ci)) = D(p, Sti′

i ) − D(p, Sti
i ). Note that Sti′

i 
 Sti
i , so the QoS

value of D(p, q(C′
i)) − D(p, q(Ci)) on each metric is not larger than zero and strictly

smaller on at least one metric. That is to say, the value of D(p, q(C′
i)) on each

dimension is not larger than that of D(p, q(Ci)) and strictly smaller on at least one
dimension. Therefore, C′

i dominates Ci and Ci can not appear in R(p, C), which is
contradictory to the fact that Ci ∈ R(p, C).

As for loop structures and conditional structures, as they can be converted into
linear sequential structures according to the conversion rules in Section 2.2.2, the
conclusion can be derived similarly.

Now we suppose Sti
i is selected to a parallel structure Ci of a composite service

in R(p, C). Since Ci’s QoS values on price, reliability and reputation can be accumu-
lated, effectively it can be regarded as a sequential structure and the deduction above
still applies. Therefore, we only need to prove the heuristic rule works on duration
metric as well. Without loss of generality, we suppose Ci only contains two service
groups Si and S j, where Si = {Sti′

i , Sti
i }, Sti′

i 
 Sti
i and S j = {Stj

j }. If dur(Stj
j ) ≤ dur(Sti′

i ),
then dur(Ci) is determined by Sti

i or Sti′
i , so service Sti

i can be safely pruned; if
dur(Stj

j ) ≥ dur(Sti
i ), then dur(Ci) is determined by Stj

j , thus clearly service Sti
i can

also be safely pruned; otherwise dur(Stj
j ) falls in between dur(Sti′

i ) and dur(Sti
i ) and

we have the dominance relationship between two compositions: {Sti′
i , Stj

j } 
 {Sti
i , Stj

j },
therefore, service Sti

i can be safely pruned, too. �


Algorithm 3 The LPM algorithm for QoS query on composite services
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Based on the heuristic rule above, now we consider how to find such Sti′
i s for

service group Si. For a service Sti′
i in Si, its ability to prune and exclude other services

from further consideration is determined by its own QoS value and the extent of the
distribution of the QoS values of services in Si. Suppose the value range on metric
k(k = 1, 2, 3, 4) is [ak, bk] in Si. Then the pruning ability of Sti′

i , denoted as PA(Sti′
i ),

is evaluated as PA(Sti′
i ) =

4∏

l=1
(bl − ql

ti′). We select the service from Si with the

maximum pruning ability, termed S∗
i to prune non-qualifying services. After pruning

non-qualifying services for each service group Si, the straightforward strategy is
applied to compute the query result R(p, C). Let S

′
i represent Si from which some

services have been pruned. The number of pruned services for Si is |Si| − |S′
i|.

Therefore, the total number of pruned composite services in C is
k∏

l=1
(|Sl| − |S′

l|).
Algorithm 3 shows the pseudo-code of the LPM algorithm.

It is important to point out that in the worst case the number of pruned services
|Si| − |S′

i| may equal to 0, which happens when none of candidate services are
dominated by one other service in the same service group, i.e. all candidate services
are skylines in the same group. In this special case, the LPM heuristics is invalid and
we use the RC and RRC algorithms to prune local services.

3.2.3 More pruning method

Algorithm 4 The MPM algorithm for QoS query on composite services

The More pruning method (MPM) also uses dominance checking to prune the
traversal space, and the idea of pruning also applies to MPM. However, unlike LPM,
which tries to find services in each service group that dominate other services, MPM
will instead aim to locate those services that are not dominated by any other one.
In this way, services can be further pruned from consideration. It is evident that the
pruning result for a service group returned by MPM equals the query result of QoS
query on the same service group. So, firstly we can use the proposed algorithms for
QoS query on individual services to perform pruning, then traverse the left services



678 World Wide Web (2012) 15:663–684

to find qualifying composite services. MPM calls the algorithm RRC to carry out
the further pruning procedure. Slightly modifying the LPM algorithm, the MPM
algorithm is shown in Algorithm 4.

4 Personalized service selection

Having shown QoS models and their corresponding computing algorithms for an-
swering a user’s QoS query on both individual services and composite services,
we know that our strategy can solve the empty result problem, as shown in the
introduction section, and can provide at least one result to satisfy the user’s QoS
requirement. But meanwhile, another problem appears: the number of services in
the query result may exceed the user’s requirement and sometime she or he does not
need all services in the query result. For example, a strict user may only needs fully
satisfying services; whereas a user running out of money prefers a relatively cheaper
service with other QoS metrics being satisfied approximately. So, a natural question
is how to select good or appropriate services from the returned query result to satisfy
the user’s personalized requirement. We categorize this question into two cases as
follows.

4.1 Selecting fully satisfying services

For a strict user requiring fully satisfying services, a question to ask is whether these
services are included in the returned query result or not. Actually, it is important to
point that the query result specified by definition 3 or definition 7 is consistent with
the user’s quality requirements. This fact can be derived from the following lemma.

Lemma 1 The query result of a QoS query vector p on a group of services S, R(p, S),
contains at least one fully satisfying service if such services exist.

Proof Suppose F is a set of all the fully satisfying services. Obviously, there exists a
service a ∈ F such that a is not dominated by any other service in F. If a /∈ R(p, S),
there must exist a non-fully satisfying service b ∈ R(p, S), such that b 
 a. So, by
definition 2 we conclude the value of D(p, b) on each dimension is not larger than
that of D(p, a)) and strictly smaller on at least one dimension, which is wrong
because all the dimension values of D(p, a) are strictly less than zero and at least
one dimension value of D(p, b) is larger than or equal to zero. �


Notice that not all fully satisfying services are contained in R(p, S), as there may
exist dominance relationship between them. By Lemma 1, we can simply select the
fully satisfying services in R(p, S) as the best answers for the strict user. Here we only
discussed the case of individual services. For composite services, slightly modifying
Lemma 1, we can obtain fully satisfying composite services similarly.

4.2 Top-k answers on out-of-range services

Since we try to obtain the query result using a relaxation method by computing the
quality dif ference, rather than seeking services satisfying all the four conditions at
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one time, our proposed models can still return services to answer a user’s QoS query,
even when no fully satisfying services are available. Reasonably, the user may only be
interested in part of the returned out-of-range services. However, different users may
have different preferences for one fixed metric, and even one user may have different
preference for different metrics. So, an important problem is how to compute the k
best out-of-range services.

In our models, the metrics are treated equally. In order to satisfy the user’s
personalized QoS requirements, we allow the user to specify a weight for each
metric to adjust the quality dif ference when she issues QoS queries. Specifically,
the quality difference of a service s with respect to a query vector p is modified as
D(p, q(s)) = (w1 × δ1, w2 × δ2, w3 × δ3, w4 × δ4), where wi(i = 1, 2, 3, 4) are weights
specifying the importance of the quality difference on each metric. Furthermore,
we define the user’s preference score for s as w1 × δ1 + w2 × δ2 + w3 × δ3 + w4 × δ4.
Thus, after the out-of-range service set R is available, we can select k services in R
with the k smallest preference scores to satisfy the user’s top-k requirement.

The step of finding the top-k answers can also be combined into the algorithms
for computing R(p, S) or R(p, C). To achieve this, we use a heap to store the k best
services obtained so far. When a new candidate service is available, we compute its
preference score and update the heap. For the limit of space, the detailed procedure
is omitted here.

5 Experiments

In this section, experiments are conducted to evaluate the performance of the
proposed algorithms. The experiments were implemented on a P4 Windows XP
machine with a 2 GHz Pentium IV and 512M main memory. Our experiments are
divided into two groups. Group 1 is for evaluating the performance of naïve , RC
and RRC algorithms for QoS query on individual services. Group 2 is for evaluating
the performance of algorithms for QoS query on composite services, including
straightforward method, LPM and MPM. We use the simulation approach in [27]
to study the performance of these algorithms. The comparisons of these algorithms
are done by running time (Figure 3).

We first evaluate the efficiency of algorithms running on individual services. As we
have seen, the two algorithms naïve and RC do not require index structure to carry
out queries but the RRC algorithm firstly needs to construct an R-tree to index all the
QoS vectors of a service group. Therefore, we need to investigate the performance of
constructing a R-tree for RRC algorithm and then compare the query performance
of these three algorithms. The result is shown in Figure 4.

For simulation, we generate a group of candidate services, the number of which
ranging from 1,000 to 5,000. Four quality values for each service are randomly
generated with a uniform distribution between [0, 1]. Figure 3a shows the result
of the three proposed methods as the number of services increases. The test result
shows RC is much better than the naïve method. The reason is that in the naïve
strategy every pair of services is compared without any pruning. RRC is faster than
RC, especially when the services are large. This is because RRC uses R-tree to index
all service quality vectors, and the number of comparisons is reduced largely with
its minimum bounding rectangles (MBRs). It is worth noting that when taking into
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Figure 3 Running time
comparisons on individual and
composite services.
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account the time spent in constructing the R-tree, RRC is slower than RC as building
a R-tree is a time consuming process. However, as once the service groups are
available they are relatively static and there are not much update or change involved,
the indexing process only needs to be done once. Considering service selections are
query operations in most cases, the RRC will achieve good performance once its
index has been available.

Then, the algorithms for QoS query on composite services are evaluated. We
randomly construct 80 groups of services, each group having 100 candidate services.
The results of straightforward, LPM and MPM algorithms are shown in Figure 3b.
As can be seen, the straightforward method is the most expensive because it has to
traverse all services in each service group, which leads to the exponential increase of
running time. LPM performs much better, indicating that by pruning the number
of services in each group, the efficiency of finding qualifying composite services
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Figure 4 Running time of
building the R-tree for RRC.
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improves significantly. It is also can be seen that the performance of LPM is low
compared with MPM. This demonstrates pruning services of each service group as
many as possible is very beneficial. Although MPM spends time to compute QoS
query on each service group first, its performance is still good due to fact that the
number of services in each service group is a key factor in the cost.

Finally, we evaluate the performance of the method proposed to obtain the top-
k answers from the services contained in R(p, S). As the step of finding the top-k
answers can also be combined into the two algorithms, its performance is determined
by the number of returned services, as shown in Figure 5. It can be seen that as the
number of returned services in R(p, S) increases, the running time for calculating the
top-k personalized services goes up. Please note the experiment of top-k algorithm is
carried out based on the returned query result and its cost does not include the time
spent on calculating R(p, S).

Figure 5 Running time for
different size of returned
services.
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6 Related works

QoS-based web service selection is an active research area and has attracted many
researchers [3, 9, 18, 19]. A lot of methods are proposed in previous work, such as
workflow model, global planning strategy using linear programming [10], graph/tree
approach [2], QoS based selection of semantic web services, etc. In this section, we
briefly discuss the relationships between our work and existing methods.

Industrial standard specifications have been proposed to provide infrastructure
for web services composition. Among them BPEL4WS (Business Process Execution
Language for Web services) is the most widely used language for process-based
service composition [7, 29]. It describes the execution procedure and abstract process
of workflow. Other specifications include E-Flow, BPML, etc. However, these
specifications only provide some approaches to carry out local services selection in
dynamic environment, and QoS optimization is not supported. Our work is based on
these proposals and aims to provide a QoS-based and personalized services selection
model for the underlying workflow.

Besides industrial standards, many prototypes have been developed to assist in
services composition. In particular, SWORD uses a rule-based engine to realize a
composition by existing web services; SELF-SERVE proposes a declarative language
to carry out service composition based on state-chart. But these projects only focus
on planning or analyzing workflow process, and neither QoS criteria nor QoS
optimization issues are addressed.

QoS-based service selection could be considered a special case of the more
general problem of global optimization. [8] presents a QoS model, addressing time,
cost, and reliability dimensions. The model computes the quality of service for
workflows automatically based on QoS attributes of an atomic task. In [28], the QoS
of web services is computed using a muti-dimensional model, and the global QoS
optimization is solved by linear programming techniques. In [26], authors present a
QoS broker to maximize the user-defined utility value. In the broker, the optimized
services selection is modeled as the Multiple Choice Knapsack Problem and the
shorted path problem in graph theory. In [23], authors use an AND/OR tree structure
to model the service composition problem. The procedure of service composition is
implemented through tree traversal, and a heuristic-based search method is proposed
to retrieve composite services with top-k QoS values. Wang et al. [21] uses a
qualitative graphical representation of preference, CP-nets, to deal with services
selection in terms of user preferences. Wang et al. [22] proposed several heuristic
algorithms to decompose the general service composition request graph into service
composition request subgraphs with optimal structures. Authors in [9] describe a
new user centric service-oriented modeling approach which is featured by integrating
fuzzy technique to an Ideal Solution (TOPSIS) and Service Component Architecture
(SCA) to facilitate web service selection and composition and to effectively satisfy a
group of service consumers requirements. However, these approaches can not handle
the cases where there is no fully satisfying service available, and the personalization
issue is not discussed either.

Several works are related to QoS-based selection of semantic web services [16].
Specifically, DAML-S and ebXML provide well defined, computer-interpretable
semantics for web services. Wang et al. [24] describes a QoS model using the Web
Service Modeling Ontology. Also, the idea of QoS model extension have been
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presented by some researchers, such as [6, 13], etc. In [6], the extended QoS model
includes generic and domain or business specific criteria and allows users to express
their preferences. Jurca et al. [13] models web service configurations, associated
prices and preferences using utility function policy, and the optimal service selection
combines declarative logic-based matching rules with linear programming optimiza-
tion methods. However, these works do not solve the empty result problem either.
Furthermore, although users’ interest is concerned, it is only based on one preference
and thus infeasible for practical purpose. To the contrary, our model takes into
account all QoS criteria factors and a relaxation strategy is applied to describe users’
comprehensive preference.

Another area related to this paper is skyline query [5, 14, 17, 25], for example, [5]
proposed the skyline operator; [17] developed an optimal and progressive algorithm
for skyline queries; [14] introduced a skyline framework for defining the semantics
of selection and join queries on relational database. Inspired by these works, we use
a relaxation-based approach to perform QoS-based web service selection.

7 Conclusions

In this paper we studied the problem of service selection with QoS constraints.
A novel QoS model was proposed to perform flexible service selection. Based on
the presented model, we developed various algorithms for making service selection
on individual and composite services, respectively. We also introduced a top-k
ranking strategy to reflect a user’s personalized requirement. The performance of
the algorithms has been evaluated, showing the proposed QoS model is an efficient
and practical strategy to satisfy users’ QoS requirements. As part of on-going work,
we are interested in improving performance of the QoS query algorithms, as well
as investigating more complicated workflow patterns. We also plan to integrate
exception handling mechanism into our model during personalized service selection.
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