
World Wide Web (2012) 15:485–515
DOI 10.1007/s11280-011-0145-1

Top-k answers for XML keyword queries

Khanh Nguyen · Jinli Cao

Received: 16 April 2011 / Revised: 5 September 2011 /
Accepted: 16 September 2011 / Published online: 12 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Searching XML data using keyword queries has attracted much attention
because it enables Web users to easily access XML data without having to learn
a structured query language or study possibly complex data schemas. Most of the
current approaches identify the meaningful results of a given keyword query based
on the semantics of lowest common ancestor (LCA) and its variants. However, given
the fact that LCA candidates are usually numerous and of low relevance to the users’
information need, how to effectively and efficiently identify the most relevant results
from a large number of LCA candidates is still a challenging and unresolved issue.
In this article, we introduce a novel semantics of relevant results based on mutual
information between the query keywords. Then, we introduce a novel approach for
identifying the relevant answers of a given query by adopting skyline semantics.
We also recommend three different ranking criteria for selecting the top-k relevant
results of the query. Efficient algorithms are proposed which rely on some provable
properties of the dominance relationship between result candidates to rapidly iden-
tify the top-k dominant results. Extensive experiments were conducted to evaluate
our approach and the results show that the proposed approach has a good perfor-
mance compared with other existing approaches in different data sets and evaluation
metrics.

K. Nguyen · J. Cao (B)
Department of Computer Science and Computer Engineering,
La Trobe University, Melbourne VIC 3086, Australia
e-mail: jinli@cs.latrobe.edu.au

K. Nguyen
e-mail: tk11nguyen@students.latrobe.edu.au

486 World Wide Web (2012) 15:485–515

Keywords XML data · keyword search · top-k answers · mutual information ·
skyline queries

1 Introduction

Extensible Markup Language (XML) has become a de facto standard for represent-
ing and exchanging data, resulting in the proliferation of XML documents distributed
over the internet. Traditionally, XML data are retrieved using query languages such
as XPath [39] and XQuery [40] or twig pattern queries [18, 34–36], where users have
to learn both data schemas and the query languages in order to effectively issue
queries. Since the data schemas and the query languages may be complex, searching
XML data using the XPath/XQuery languages is usually limited to advanced users.

Keyword searches have been widely accepted as a friendly mechanism to search
flat documents [13, 21] on the Internet and has been hugely successful with the
popularity of several web search engines such as Google, Yahoo!, Bing, etc,... Using
keyword searches for querying XML data also has attracted the attention of the
research community from both the fields of information retrieval (IR) and databases
in recent years because it can liberate users from the steep learning curve of query
languages and the schemas of XML data.

As a result, several approaches have been proposed to identify the relevant results
of keyword queries over XML data [7, 8, 12, 19, 23, 25, 26, 31, 32, 37, 38, 41]. The
most basic approach (or baseline approach) uses the lowest common ancestor (LCA)
semantics from graph theory [4] to identify the results of a given keyword query.
This approach returns search results consisting of all candidates (i.e., subtrees) which
contain at least one instance of the query keywords. However, the returned LCA
candidates are potentially numerous and of low relevance to the user’s information
need. Thus, how to identify the most relevant results from this potentially large
number of LCA candidates becomes a challenging and unresolved issue.

Recently, many proposals [8, 12, 19, 37] have been made to improve the precision
of the baseline approach. Most of them focus on identifying a set of meaningful
candidates from the LCA candidates using heuristic-based rules. The common idea
behind these proposals is to define a set of heuristic-based rules which a relevant
result has to satisfy. Then, the candidates which satisfy the heuristic-based rules will
be returned as the results of the query, while those candidates which violate the
the rules are filtered. Their approaches are intuitivel but very ad-hoc. It has been
experimentally proved by [24] that these approaches not only miss relevant results
(known as false negatives) but also return irrelevant results (known as false positives).

To improve the result quality of XML keyword queries, we believe that the
following requirements need to be addressed: (R1) effectively measuring the degree
of relevance of a candidate; (R2) providing an effective mechanism to identify the
most relevant results from a large number of candidates; and (R3) effectively ranking
the returned results in descending order of the degree of relevance to the query. In
this article, we introduce a novel approach to quantify the relevance of a candidate by
using the concept of mutual information for fulfilling requirement R1. We introduce
a new algorithm for selecting the most relevant results of a given keyword query
using the semantics of skyline queries [5, 6], which has been proven as an effective
mechanism to select the most relevant results from a large number of candidates,

World Wide Web (2012) 15:485–515 487

to satisfy requirement R2. Finally, we propose our three ranking criteria which
can effectively rank the returned results as the requirement of R3. Overall, the
contributions of this article are summarized as follows.

– Proposing a novel approach to evaluate how strong the relationship is between
the query keywords in a candidate, based on the mutual information concept
from information theory.

– Presenting a new semantics called dominance lowest common ancestor (DLCA)
of relevant results. An efficient algorithm is proposed for selecting DLCA
answers for a given keyword query from a potentially large number of query
candidates using the skyline semantics.

– Introducing different promising ranking criteria to recommend the top-k rele-
vant results and exploiting some important skyline properties to accelerate our
top-k ranking algorithms.

– Conducting extensive experiments were conducted to evaluate our approach.
The experimental results show that our approach outperforms other existing
approaches in a wide range of data sets and evaluation metrics.

The rest of this article is organized as follows. Section 2 presents preliminaries and
the related work. Section 3 introduces a novel approach for evaluating the relation-
ship between query keywords in a candidate using the concept of mutual information
from information theory. Section 4 defines DLCA semantics to identify relevant
results using skyline semantics. Section 5 introduces our three ranking criteria for
retrieving the top-k results. Efficient algorithms are developed in Section 6. Section 7
discusses experimental results and finally, the conclusions are given in Section 8.

2 Preliminaries and related work

2.1 Data model and query

In this article, we use the conventional labeled directed tree notation to represent
XML documents, which is formally defined as follows.

Definition 1 (XML data tree) An XML data tree is defined as T =< VT , ET >

where VT is a finite set of nodes, representing elements and attributes in the
corresponding XML document. Each node v ∈ VT is labeled with a tag λ(v). If v is a
leaf node, it has a content value val(v) that contains a list of keywords. We assume
that each node v has a unique id id(v); ET is set of directed edges where each edge
e(v1, v2) represents the parent-child relationship between two nodes v1, v2 ∈ VT .

Each subtree S = (VS, ES) of T is a tree such that VS ⊆ VT and ES ⊆ ET . For
example, Figure 1 illustrates an XML data tree that represents an excerpt of a
bibliographical database.

Definition 2 (Keyword query) A keyword query is a set of different terms, denoted
by Q = {k1, k2, . . . , kq}.

488 World Wide Web (2012) 15:485–515

proceeding

dblp

paper

author title year

paper

author title

cite

paper

author title year

paper

author title year

paper

author title year

demo

author title year

paper

author title year

proceeding

1

2

3

4 6 5 7

8

9 10 11 12 13

14

15 17 16

18

19

20 21 22

23

24 2625

27

28 29 30

“Jinli”

“Jinli”

“X
M

L
 Q

ue
ry

O

pt
im

iz
at

io
n”

“T
op

-k
 k

ey
w

or
d

 Q
ue

rie
s” “Liu”

“Zhang” “Wang” “Richard”

“Wenny”

“O
LA

P
 Q

ue
rie

s”

“M
ul

tim
ed

ia
 S

ea
rc

h”

“S
ky

lin
e

Q
ue

rie
s”

“D
at

ab
as

e”

“X
M

L
U

pd
at

e”

“2009”

Figure 1 Example XML data tree T.

In this article, we consider the AND-semantics for the query, which is popularly
used in the literature [7, 8, 12, 19, 23]. As a requirement of this semantics, a query
result must contain at least one occurrence of each term in the query.

Consider a keyword query Q = {k1, . . . , kq} consisting of q keywords and a
labeled XML tree T =< VT , ET > of an XML document D. We say that node v ∈ V
directly contains a keyword ki, denoted as contains(v, ki) if the keyword appears as
the label of the element or in the content of the element. We denote S1, . . . , Sq as
the sets of nodes such that Si = {v|v ∈ V and contains(v, ki)}, 1 ≤ i ≤ q.

Intuitively, the results of query Q contain a set of subtrees in T whose nodes
contain all the keywords of Q. The roots of the subtrees are identified using the
semantics of the lowest common ancestor. The lowest common ancestor of a set of
nodes V ′ = {v1, . . . , vq}(V ′ ⊂ V) is defined as the deepest node v in T which is an
ancestor of all nodes in V ′ and evaluated by a function lca(v1, . . . , vq).

We refer to such subtrees as the candidates of the query which is formally defined
as follows.

Definition 3 (Query candidates) A subtree ST is a candidate of query Q in the data
tree T if its leaf nodes contain at least one instance of each keyword in query Q. The
root of the candidate answer is the lowest common ancestor of its leaf nodes.

For the keyword query Q = {k1, . . . , kq}, we can see that the number of candidates
of Q equals to |S1| × · · · × |Sq|, where |Si| the number of nodes in Si.

2.2 Identifying results for XML keyword queries

Based on the notion of lowest common ancestor (LCA) from graph theory [4, 14, 30],
there have been several approaches proposed to identify meaningful and relevant
results to XML keyword searches [8, 12, 19, 37].

The baseline approach is to return a search result consisting of all candidates.
However, the candidates of a given keyword query are potentially numerous and of

World Wide Web (2012) 15:485–515 489

low relevance to the user’s information need. In order to identify the most relevant
results from that potentially large number of LCA candidates, many proposals [8,
12, 19, 37] have been put forward to boost the precision of the baseline approach.
These approaches rely on heuristic-based approaches to identify a set of meaningful
candidates from the candidate set. The common idea behind these approaches is to
define a set of heuristic-based rules which a relevant result has to satisfy and to prune
those candidates which do not satisfy the defined rules.

Exclusive LCA (ELCA) [12] This semantics is very close to the semantics of the
lowest common ancestor. The set of ELCA nodes is the set of LCA nodes after
excluding any node v that is LCA of a set of nodes V ′ = {v1, . . . , vq} such that ∃vi ∈ V ′
that also belongs to the subtree of another node u that is also a descendant of v. This
semantics has a high recall but very low precision, which is a similar problem to the
LCA semantics.

Smallest LCA (SLCA) [37] The set of SLCA nodes, for instance, is the set of LCA
nodes if we exclude any LCA nodes that are ancestors of other LCA nodes. The
drawback of this approach is that the relationships between the query keywords
in the subtrees rooted at SLCA nodes were ignored. As a results, it can return
irrelevant results. In addition, this approach relies on the hierarchical (i.e., ances-
tor/descendant) relationship to filter out more general candidates (i.e., candidates
which are the ancestors of other candidates). Thus it may unsuccessfully prune
irrelevant results which do not have the ancestor/descendant relationship with the
other candidates.

XSEarch [8] is the first work which evaluates the relationship between the query
keywords in a candidate. Two nodes u and v containing the query keywords are
meaningfully related if their shortest connecting path does not have two distinct
nodes with the same label, except u and v. A subtree S is meaningful if it satisfies
the two following conditions: (i) S contains matches to all the query keywords; and
(ii) every two matches in S have to be meaningfully related (all-pair semantics) or
there exists a node in S such that all the other nodes in S must be meaningfully
related to it (star-semantics). However, this approach fails to recognize a weak (or
even meaningless) relationship between two nodes which do not have two distinct
nodes with the same label on their connecting path (i.e., node 20 and node 25 in the
data tree T illustrated in Figure 1).

In [19], a semantics called Compact Valuable LCA (CVLCA) has been introduced
to identify the results of keyword queries. A node u is called VLCA if the subtree S
rooted at u satisfies the star-semantics of XSEarch [8]. A node u is a CVLCA if it is
a VLCA node and u dominates every nodes in S, where u dominates a node v in S if
there does not exist another LCA node u’ which is a descendant of u and the subtree
rooted at u’ contains v. This approach faces the same problem as XSEarch [8].

Recently, Li et al. [22] proposed an approach called Meaningful LCA (MLCA) for
pruning irrelevant subtrees based on the structure of XML data, rather than using
node labels as XSEarch [8] and CVLCA [19]. Two nodes u and v are meaningfully
related if there does not exist node u′ (or v′) which has the same label with u (or v)
and lca(u′, v) (or lca(u, v′) is a descendant of lca(u, v)).

In summary, all of these approaches evaluate the relevance of a candidate in
a boolean manner. It means that a candidate is considered a relevant result if it

490 World Wide Web (2012) 15:485–515

satisfies a set of pre-defined heuristics rules. Otherwise, it is considered an irrelevant
result. However, keyword queries are frequently short and ambiguous in terms of
expressing the user’s search intention, thus it is difficult (sometimes impossible) to
exactly conclude if a candidate is a relevant result or an irrelevant result. With that
observation, we believe that a quantitative approach for quantitatively evaluating the
relevance degree of a candidate is more appropriate.

Some approaches [20] have been proposed to quantitatively measure the rele-
vance level of a candidate by using the length of the paths connecting its leaf nodes.
However, there are many cases where the correlation between two pairs of nodes is
significantly different while their path length is the same and vice versa. To more
effectively measure the correlation between two nodes in a query candidate, we
adopt the concept of mutual information from information theory [9] which has been
successfully used in mining the meaningful correlation between the attributes of a
relation. The details of the approach will be introduced in Section 3.

In addition, in order to effectively identify a set of relevant results from a
potentially large number of candidates of a given keyword query, we employ the
semantics of skyline queries.

2.3 Skyline semantics

Multi-object optimization has been widely studied in the literature, initially as the
maximum vector problem [17] and more recently as skyline queries [5]. Given a set of
points in a d-dimension space. The skyline is defined as the subset containing those
points that are not dominated by any other points, whereas point pi dominates point
pj if pi is better than or equal to pj in all the dimensions and strictly better in at
least one dimension. Thus, the best answer for such a query exists in the skyline.
However, how to apply the skyline semantics to the scenario of keyword queries on
XML database is an interesting and unresolved problem.

Skyline queries have received much attention in recent years. Consequently,
several algorithms have been proposed [3, 5, 6, 16, 33]. BNL [5] is a straightforward
skyline algorithm. This algorithm iterates over the data set to compare each point
with every other point, and reports the points that are not dominated by any
other points. SFS [6] improves the efficiency of BNL by pre-sorting the input
according to a monotone ranking function to reduce the number of dominance tests
required. SaLSa [3] proposes an additional modification so that the computation
may terminate before scanning the whole data set. These algorithms are generic,
in the sense that they do not require any specialized data indexes to compute the
skyline, and can therefore be applied even when the points are the results of some
other operations. Although our work adapts the basic techniques underlying these
methods, they are not directly applicable to our problem, as these approaches do not
deal with ranking issues.

Some other algorithms rely on the existence of appropriate indexes, such as B+-
tree or R-tree to speed-up skyline computations [16, 33]. Note that these approaches
only apply to static data, where the overhead for building the indexes is amortized
across multiple queries. In our setting, the underlying data (or returned candidates)
are highly dependent on the submitted query. In this case, building indexes at query
time is very expensive, thus these approaches are not applicable to our problem.

World Wide Web (2012) 15:485–515 491

3 Measuring the relationship between two nodes in a data tree

In this section, we review the concept of mutual information (MI) and its related
concepts. The adaptation of this concept for measuring the meaningful relationship
between two nodes in an XML data tree will be discussed in detail.

3.1 Concepts of mutual information

Entropy and mutual information are two of the central concepts in information
theory [9]. Entropy is a measure of the uncertainty of a random variable, while MI
quantify the mutual dependence of two random variables.

Entropy Let x be a discrete random variable that takes value vx from the set dom(x)

with a probability distribution function p(vx). The entropy of x is defined as follows.

H(x) = −
∑

vx∈dom(x)

p(vx) log p(vx)

The conditional entropy of a random variable y given another variable x, referred
to as the entropy of y conditional on x, denoted as H(y|x), is defined as follows.

H(y|x) = −
∑

vy∈dom(y)

∑

vx∈dom(x)

p(vx, vy) log p(vy|vx)

where p(vx, vy) is the joint probability of (x = vx) and (y = vy); p(vy|vx) is the
conditional probability of (y = vy) given that (x = vx).

Mutual information The mutual information of two random variables is a quantity
that measures the mutual dependence of the two variables. Formally, given two dis-
crete random variables x and y, their mutual information can be defined as follows.

I(x; y) =
∑

vy∈dom(y)

∑

vx∈dom(x)

p(vx, vy) log
p(vx, vy)

p(vx)p(vy)

where p(vx, vy) is the joint probability of (x = vx) and (y = vy); p(vx) and p(vy) are
the probability of (x = vx) and (y = vy) respectively.

The mutual information has some properties. Detailed proofs of the properties
can be found in [9].

Property 1 I(x; y) = H(x) − H(x|y) = H(y) − H(y|x).

Property 1 gives an important interpretation of the mutual information. It indi-
cates that the information that y tells us about x is the reduction in the uncertainty
of x given the knowledge of y, and similarly, for the information that x tells us about
y. The greater the value of the mutual information of the two variables x and y, the
more information x and y tell us about each other.

492 World Wide Web (2012) 15:485–515

Property 2 I(x; y) = I(y; x).

Property 2 suggests that the mutual information is symmetric, which means the
amount of information x tells about y is the same as y tells about x.

Property 3 I(x; y) ≥ 0.

Property 3 gives the lower bound for the mutual information. When I(x; y) = 0,
we have p(vx, vy) = p(vx)p(vy) for every possible value of x and y, which means that
x and y are independent, then knowing x does not give any information about y and
vice versa, so their mutual information is zero.

Property 4 I(x; x) = H(x).

Property 4 states that the mutual information of x with itself is the entropy of x.
Thus, entropy is also called self-information.

Property 5 I(x; y) ≤ H(x) and I(x; y) ≤ H(y)

Property 5 indicates that the mutual information of two variables is bounded by
the minimum of their entropy.

3.2 Evaluating node relationship

Different from the existing work which evaluates the relationship between two nodes
using some intuitively heuristics-based rules, in this article, the relationship between
two nodes in a data tree is measured by adapting the mutual information concept
which has been successfully used in mining the correlation between the attributes of
a database relation.

Since it is common for XML data tree to contain nodes with the same label
in different contexts, we use prefix label paths to denote node types. A prefix
label path is a sequence of element names that appear in the path from the
root to the node in question. We identify each node in the data tree by its
node type. For example, the prefix label path of node 4 in data tree T shown
in Figure 1 is dblp/proceeding/paper/author. A prefix label path can have
many occurrences in the XML data tree. We called all occurrences of a prefix
label path in the data tree “node instances”. It is obvious that all instances of
a node type have the same prefix label path. Each instance has a value which
is a set of keywords directly contained in that instance. Consider data tree T in
Figure 1, for instance, prefix label path dblp/proceeding/paper/author has
five instances 4, 11, 15, 20 and 28 which have values “Jinli”, “Liu”, “Zhang”,
“Wang” and “Richard”, respectively. We call a set of distinct values of all in-
stances of prefix label path u the value domain of u, denoted as dom(u). We have,
for instance dom(dblp/proceeding/paper/author)={“Jinli”, “Liu”, “Zhang”,
“Wang”, “Richard”}. Each prefix label path can take a value from its value domain
with a specific probability.

World Wide Web (2012) 15:485–515 493

Probability The probability of a node u getting value vu from dom(u) in the
data tree T can be defined as the number of instances with the value vu

over the total number of instances of u in the data tree T. For example,
node dblp/proceeding/paper/author takes value “Jinli” with the probability
p(dblp/proceeding/paper/author=“Jinli”) = 1/5.

Join probability Due to the hierarchical structure of XML data, any two nodes
in an XML tree can be joined at different node levels which leads to different
joint distribution between the two nodes. Considering the data tree T shown in
Figure 1, for instance, two nodes dblp/proceeding/paper/author and dblp/
proceeding/paper/title can be joined at node dblp/proceeding/paper,
through their instances 4 and 5, but they also can be joined at node
dblp/proceeding, through their instances 4 and 12. In this article, we
refer to a node c at which two nodes u and v joined as the context node
of u and v. We define p(vu, vv|c) is the join probability of node u getting
the value vu and node v getting the value vv when they join at the context
node c. For example, p(dblp/proceeding/paper/author=“Jinli”, dblp/
proceeding/paper/title=“XML update” | dblp/proceeding/paper) =
1/5. Similarly, p(dblp/proceeding/paper/author=“Jinli”, dblp/proceeding/
paper/title=“multimedia search” | dblp/proceeding) = 1/8. The join
probability of nodes dblp/proceeding/paper/author and dblp/
proceeding/paper/title at the context nodes dblp/proceeding/paper)
and dblp/proceeding in XML data tree T in Figure 1 is shown in Tables 1 and 2
respectively, where the first column of the tables represent value domain of node
dblp/proceeding/paper/author and the first row of the tables represent the
value domain of node dblp/proceeding/paper/title. We use the ‘−’ sign to
indicate that the join probability is equal to zero.

From the definitions of probability and join probability, we adaptively define the
mutual information of two nodes u and v at the context node c in an XML data tree
as follows.

Definition 4 (Mutual information of two nodes) Let u and v be two nodes which join
at the context node c in an XML data tree. The mutual information of u and v at the
context node c is defined as:

I(u; v|c) =
∑

vu∈dom(u)

∑

vv∈dom(v)

p(vu, vv|c) log
p(vu, vv|c)
p(vu)p(vv)

Table 1 Join probability of two nodes dblp/proceeding/paper/author and dblp/
proceeding/paper/title at their context node dblp/proceeding/paper.

XML update Top-K keyword queries Multimedia search Databases Skyline queries

Jinli 1/5 − − − −
Liu 1/5 − − −
Zhang − − 1/5 − −
Wang − − − 1/5 −
Richard − − − − 1/5

494 World Wide Web (2012) 15:485–515

Table 2 Join probability of two nodes dblp/proceeding/paper/author and dblp/
proceeding/paper/title at their context node dblp/proceeding.

XML update Top-K keyword queries Multimedia search Databases Skyline queries

Jinli − 1/8 1/8 − −
Liu 1/8 − 1/8 − −
Zhang 1/8 1/8 − − −
Wang − − − − 1/8
Richard − − − 1/8 −

where p(vu) and p(vv) are the probability of (u = vu) and (v = vv) respectively;
p(vu, vv|c) is the join probability of u = vu and v = vv at the context node c.

The higher value of the mutual information between two nodes in a data
tree indicates their stronger relationship. For example, from the join proba-
bility shown in Table 1, we can calculate the mutual information of nodes
dblp/proceeding/paper/author and dblp/proceeding/paper/title at
their context node dblp/proceeding/paper as

I(dblp/proceeding/paper/author;dblp/proceeding/paper/title
|dblp/proceeding/paper)

= (1/5) log
1/5

(1/5)(1/5)
+ (1/5) log

1/5
(1/5)(1/5)

+ (1/5) log
1/5

(1/5)(1/5)

+ (1/5) log
1/5

(1/5)(1/5)
+ (1/5) log

1/5
(1/5)(1/5)

= log
1/5

(1/5)(1/5)
= log 5 = 0.70

Similarly, from the join probability shown in Table 2, we have the mutual infor-
mation of nodes dblp/proceeding/paper/author and dblp/proceeding/
paper/title at the context node dblp/proceeding calculated as

I(dblp/proceeding/paper/author;dblp/proceeding/paper/title
|dblp/proceeding)

= (1/8) log
1/8

(1/5)(1/5)
+ (1/8) log

1/8
(1/5)(1/5)

+ (1/8) log
1/8

(1/5)(1/5)

+ (1/8) log
1/8

(1/5)(1/5)
+ (1/8) log

1/8
(1/5)(1/5)

+ (1/8) log
1/8

(1/5)(1/5)

+ (1/8) log
1/8

(1/5)(1/5)
+ (1/8) log

1/8
(1/5)(1/5)

= log
1/8

(1/5)(1/5)
= log

25
8

= 0.49

This example indicates that the mutual information of two nodes in different contexts
can be varied. More specifically, we can see that the mutual information between
the title and author(s) in the context of a paper is much higher than the mutual
information between the title and author(s) of two different papers (or in the context
of a proceeding).

Although the MI serves as a good measure to quantify how closely two nodes are
related to each other, the scale of the MI values does not fall in a unique range, as
shown by Property 5. Property 5 indicates that the MI of two nodes can be bounded

World Wide Web (2012) 15:485–515 495

by the minimum of their entropy. Since the entropy of different nodes varies greatly,
the value of MI also varies for different pairs of nodes. To apply MI to our problem,
we require a unified scale for measuring MI among a global set of nodes. For this
purpose, we measure the relationship between two nodes as their normalized mutual
information, which is formally defined as follows.

Definition 5 (Node relationship) Let u and v be two nodes which join at the context
node c in an XML data tree. The relationship between two nodes u and v at the
context node c is defined as:

rel(u; v|c) = I(u; v|c)
max{H(u), H(v)} (1)

where H(u) and H(v) are the entropy of two nodes u and v respectively, and they
are calculated in the same way as the entropy of a random variable.

The higher value of rel(u; v|c) indicates a stronger relationship between the
two nodes u and v at their context node c. For example, the entropy of two nodes
dblp/proceeding/paper/author and dblp/proceeding/paper/title is
calculated as follows:

H(dblp/proceeding/paper/author)

= −[(1/5) log(1/5) + (1/5) log(1/5)

(1/5) log(1/5) + (1/5) log(1/5) + (1/5) log(1/5)]
= − log(1/5) = log 5 = 0.70

H(dblp/proceeding/paper/title)

= −[(1/5) log(1/5) + (1/5) log(1/5)

(1/5) log(1/5) + (1/5) log(1/5) + (1/5) log(1/5)]
= − log(1/5) = log 5 = 0.70

Then, the relationship between nodes dblp/proceeding/paper/author and
dblp/proceeding/paper/title at the context node dblp/proceeding/
paper is

rel(dblp/proceeding/paper/author;dblp/proceeding/paper/title
|dblp/proceeding/paper) = 0.70

0.70
= 1.0

Similarly,

rel(dblp/proceeding/paper/author;dblp/proceeding/paper/tile
|dblp/proceeding) = 0.49

0.70
= 0.7

Lemma 1 The relationship between any two nodes u and v at any context node c in an
XML data tree is always in range of [0, 1].

0 ≤ rel(u; v|c) ≤ 1

496 World Wide Web (2012) 15:485–515

Proof From Property 3 we have I(u; v|c) ≥ 0, thus rel(u; v|c) = I(u;v|c)
max{H(u),H(v)} ≥ 0.

Furthermore, Property 5 gives us I(x; y|c) ≤ H(x) and I(x; y|c) ≤ H(y). Thus, we
have rel(u; v|c) = I(u;v|c)

max{H(u),H(v)} ≤ 1 	

4 Dominance lowest common ancestor (DLCA)

To select relevant answers from a potentially huge number of LCA-based candidates,
we propose a new semantics called DLCA (Dominance LCA). Before giving the
formal definition of DLCA semantics, we introduce the dominance relationship
between LCA-based candidates.

4.1 Dominance relationship

Rather than identifying query candidates using their root nodes, we represent
those candidates as subtrees, as in [15]. Specifically, given a keyword query Q =
{k1, . . . , kq}, a candidate S of Q is represented as S(nlca, {n1; . . . ; nq}) where each ni

is a leaf node which contains the term ki and nlca is the lowest common ancestor
of {n1; . . . ; nm}, bearing in mind that each node in the candidate is identified by its
identifier which is encoded as a Dewey code in this article.

Dewey coding is based on the Dewey Decimal Classification developed for
general knowledge classification [28]. With Dewey coding, each node is assigned a
vector that represents the path from the trees root to the node. Each component of
the path represents the local order of an ancestor node, as illustrated in Figure 2.
We selected to encode the nodes’ identifiers using the Dewey code because it is
very useful in representing the hierarchical relationships between tree nodes which
are a key to calculate the lowest common ancestor between any two nodes. In
addition, we can easily find the corresponding label path of node from its Dewey
code. For example, we consider the sample data tree T2 in Figure 2 where each node
is identified by its Dewey code. Given a node’s id [0.1.0.0], we can easily find the
corresponding label path of this node which is n1/n3/n4/n5. We name ID2LP(id) to
be a function which takes a Dewey code id as an input and returns its corresponding
label path.

Figure 2 Sampe data tree T2.

n2 [0.0]

n2 [0]

n3 [0.1]

n4 [0.1.0]

n5 [0.1.0.0] n7 [0.1.1.0]

n6 [0.1.1]

n8 [0.1.1.1]

k1 k2 k3

n9 [0.2]

World Wide Web (2012) 15:485–515 497

Since it is possible that each keyword of the query can have more than one
occurrence in a subtree candidate S(nlca, {n1; . . . ; nm}), for every keyword ki in the
query, we calculate the set Li = {ni|val(ni) contains keyword ki (1 ≤ i ≤ m)}.

We calculate the relationship of any two keywords ki and kj in the candidate
subtree S as follows.

rel(ki, kj) = max
ni∈Li,nj∈Lj∧i< j

{rel(ID2LP(ni);ID2LP(nj)|ID2LP(lca(ni, nj)))} (2)

where ID2LP(ni) is a function which returns the corresponding type of node having
Dewey code ni and rel(ID2LP(ni);ID2LP(nj)|ID2LP(lca(ni, nj))) is calculated by
Formula (1) which measures the relationship between nodes having Dewey codes ni

and nj at their lowest common ancestor.
In other words, the relationship between two keywords ki and kj in a candidate

is evaluated as the maximum relationship between two nodes containing the two
keywords in that candidate.

For example, we consider a query Q = {k1, k2, k3} and a data tree T2. There is only
one candidate subtree of Q rooted at n3[0.1] in the tree T2 and it can be represented
as S(0.1, {0.1.0.0; 0.1.1.0; 0.1.1.1}). We can calculate the relationship between the
query keywords in candidate S as,

rel(k1, k2) = rel(ID2LP(0.1.0.0);ID2LP(0.1.1.0)|ID2LP(0.1))

= rel(n1/n3/n4/n5; n1/n3/n6/n7|n1/n3)

rel(k1, k3) = rel(ID2LP(0.1.0.0);ID2LP(0.1.1.1)|ID2LP(0.1))

= rel(n1/n3/n4/n5; n1/n3/n6/n8|n1/n3)

rel(k2, k3) = rel(ID2LP(0.1.1.0);ID2LP(0.1.1.1)|ID2LP(0.1.1))

= rel(n1/n3/n6/n7; n1/n3/n6/n8|n1/n3/n6)

Given a keyword query Q = {k1, . . . , kq} we calculate the relationship of each pair
of the query keywords in a candidate subtree S and store them in a vector DS which
we refer to as the keyword relationship vector in this article.

DS = [rel(ki, kj)|ki, kj ∈ Q ∧ (i < j)]
Since there are a total of C2

q two-keyword combinations from a set of
q keywords {k1, . . . , kq}, vector DS contains C2

q elements, denoted as |DS| =
C2

q. For example, the keyword relationship vector corresponding to candidate
S(0.1, {0.1.0.0, 0.1.1.0, 0.1.1.1}) of the query Q = {k1, k2, k3} contains C2

3 = 3!
2!(3−1)! =

3 elements: DS = [rel(k1, k2),rel(k1, k3),rel(k2, k3)].
Let DS and D′

S be two keyword relationship vectors of two candidates S and S′,
respectively. We define the dominance relationship between candidates S and S′ as
follows.

Definition 6 (Dominance) Let S and S′ be two candidate answers of Q over an XML
database T. S′ dominates S, denoted as S′ � S if the two following conditions hold:

– ∀i(1 ≤ i ≤ d)DS[i] ≤ DS′ [i], and
– ∃ j(1 ≤ j ≤ d)DS[j] < DS′ [j]

498 World Wide Web (2012) 15:485–515

where d is the length of keyword relationship vectors of S and S′ (d = |DS| = |DS′ | =
C2

q). The DS[i] is the i-th element in vector DS.

In words, candidate S′ dominates candidate S if the relationship between every
pair of query keywords in candidate S′ is at least as strong as the relationship between
that pair of query keywords in candidate S. Consequently, candidate S′ is more
relevant to query Q than candidate S if S′ � S.

4.2 Retrieving DLCA answers

From the definition of the dominance relationship defined in Definition 6, we define
a set of DLCA answers for a given keyword query as follows.

Definition 7 (Dominant LCA) Given a set of candidates C (Q, T) of a query Q in an
XML data tree T, candidate S ∈ C (Q, T) is called a DLCA candidate if there does
not exist any other candidate S′ ∈ C (Q, T) such that S′ dominates S.

Definition 8 (Query result) The results of a keyword query Q in a data tree T is a
set of all DLCA candidates of Q in the data tree T.

In the next section, we will propose three different ranking scores for identifying
the top-k most meaningful candidates of Q which rely on our defined dominance
relationship.

5 Top-k answers

We observe that the DLCA answers can vary with different queries. However, when
searching for information, users are usually interested in the top-k answers which
should be sorted in the descending order of their relevance degrees to the users’
information need. In this section, we define three ranking functions that will be used
to identify the top-k results for a keyword-based search over XML data. Our ranking
functions exploit several different aspects of the dominance relationship between
query candidates to rank their relevance degree to the query.

Given C (Q, T) is a set of candidates of query Q in an XML database T, we
measure the degree of relevance of a candidate based on the three following ranking
scores.

5.1 Dominating score

Given a candidate answer S, we define the dominating score of S as follows.

scoredg(S) = |{S′ ∈ C (Q, T)|S � S′}| (3)

The dominating score of a candidate scoredg(S) indicates the number of other
candidates that S dominates. A candidate is more relevant if it dominates as many
other candidates as possible. Thus, a higher dominating score of candidate S indicates
S is more relevant to the query.

World Wide Web (2012) 15:485–515 499

Lemma 2 Let S ∈ C (Q, T) and S′ ∈ C (Q, T) be two candidates of query Q in an
XML data tree T. If S � S′, then scoredg(S) ≥ scoredg(S′).

Proof This lemma can be proved by using the transitive property of the dominance
relationship. Specifically, for any two candidates S ∈ C (Q, T) and S ∈ C (Q, T), if
S � S′, then ∀Si ∈ C (Q, T)|S′ � Si, we have S � Si. Therefore, |{Si ∈ C (Q, T)|S �
Si}| ≥ |{Si ∈ C (Q, T)|S′ � Si}|, or scoredg(S) ≥ scoredg(S′) 	

Lemma 2 guarantees that if candidate S dominates candidate S′, then S will be
ranked higher than S′ in the returned top k results.

5.2 Dominated score

Given a candidate answer S, we define the dominated score of S as follows.

scoredd(S) = |{S′ ∈ C (Q, T)|S′ � S}| (4)

The dominated score of candidate S, scoredd(S), indicates the number of other
candidates can dominate S. Thus, the lower the dominated score of candidate S, the
more meaningful to the query it is. In other words, candidate S is more relevant if it
is dominated by as few other candidates as possible.

Lemma 3 Let S ∈ C (Q, T) and S′ ∈ C (Q, T) be two candidates of query Q in an
XML data tree T. If S � S′, then scoredd(S) ≤ scoredd(S′).

Proof This lemma can be proved in a similar manner as Lemma 3. For any two
candidates S ∈ C (Q, T) and S′ ∈ C (Q, T), if S � S′, then ∀Si ∈ C (Q, T)|Si � S,
we have Si � S′. Therefore, |{Si ∈ C (Q, T)|Si � S}| ≤ |{Si ∈ C (Q, T)|Si � S′}|, or
scoredd(S) ≤ scoredd(S′) 	

Lemma 3 guarantees that if candidate S dominates candidate S′, then S should be
ranked higher than S′ in the returned top k results.

5.3 Dominance score

Given a candidate answer S, we define the dominance score of S as:

scored(S) = αscoredg(S) − (1 − α)scoredd(S), (5)

where α(0 ≤ α ≤ 1) is a tunable parameter. We set α = 0.5 if we weight scoredg(S)

as important as scoredd(S); α > 0.5 if we consider scoredg(S) as more important;
otherwise α < 0.5 we weigh scoredg(S) as less important.

The dominance score scored(S) measures the relevance degree of a candidate
answer S by considering both dominating and dominated scores. A candidate S is
more relevant if it dominates as many other candidates as possible and is dominated
by as few other candidates as possible. Thus, a higher dominance score of a candidate
indicates that it is a more relevant answer.

Lemma 4 Let S ∈ C (Q, T) and S′ ∈ C (Q, T) be two candidates of query Q in an
XML data tree T. If S � S′, then scored(S) ≥ scored(S′).

500 World Wide Web (2012) 15:485–515

Proof Since S� S′, from Lemma 2 and 3, we have scoredg(S)≥scoredgS′
and scoredd(S) ≤ scoredS′. Thus, for ∀α ∈ [0, 1], we have

(
αscoredg(S)−

(1 − α)scoredd(S))≥(
αscoredg(S′)−(1−α)scoredd(S′)

)
, or scored(S)≥scored(S′) 	

Lemma 4 guarantees that if candidate S dominates candidate S′, then S should be
ranked higher than S′ in the returned top k results.

6 Algorithms for retrieving top-k results

In this section, we introduce our algorithms to identify relevant results and the top-
k answers, based on skyline semantics according to the aforementioned ranking
criteria. To obtain the set of LCA-based candidates of a given keyword query, as
other approaches in the literature [37, 38, 41], we adopt the inverted indexes. These
indexes are built offline at the time we parsed the XML database. Specifically,
let Q = {k1, . . . , kq} be a given keyword query and ILi be the inverted list of
keyword ki. Each entry in the inverted list ILi is the Dewey code of the node
containing the keyword ki. The set C of candidates of query Q can be defined
as C = {lca(n1, nq)|n1 ∈ IL1, . . . , nq ∈ ILq}, where lca(n1, . . . , nq) is an operation
which returns the lowest common ancestor of {n1, . . . , nq}. The keyword relationship
vector of each candidate is concurrently computed during the process of candidate
generation. The generated candidates are stored in a list ordered by the values of
their keyword relationship vectors. The detailed explanations will be in the following
subsections.

Algorithm 1 Naïve algorithm for selecting top-k answers

The naïve algorithm for identifying the top-k desired results corresponding to
their dominated scores (similarly, dominating and dominance scores) is illustrated in
Algorithm 1. This algorithm iterates through each candidate in the candidate set and
calculates its score by performing pairwise dominance checks between that candidate
and all other candidates in the set (lines 2–6). The result set is updated depending on
the result of the score comparison between the new candidate and the current k−th
candidate in the current top-k results (lines 7–13).

World Wide Web (2012) 15:485–515 501

The drawback of this algorithm is that its computational cost is extremely high
because regardless the value of k, it needs to iterates through each candidate in
the candidate set and calculates the score of each candidate by performing the
pairwise dominance checks between the candidate with all other candidates in the
set. This means that no matter what the value of k is, it exhaustively performs all
pairwise dominance tests amongst candidates. For example, given a set of candidates
in Table 3, in order to identify the top-3 results, we need to calculate the score of
each candidate Si(1 ≤ i ≤ 10) by iterating over 9 other candidates and doing pairwise
dominance checks. Therefore, it takes 10 × 9 = 90 pairwise dominance checks. In
general, in order to calculate the score of a candidate in a set of n candidates, we
need to do pairwise dominance checks between that candidate and (n − 1) other
candidates in the set.

Definition 9 (Search space) Let C (Q, T) be a set of candidates of query Q in an
XML database T. The search space of candidate S ∈ C (Q, T) can be defined as the
set of candidates in C (Q, T) on which pairwise comparisons need to be performed
to calculate the score of candidate S.

From the naïve algorithm, we can see that the number of candidates in the search
space to calculate the score of one candidate is (n − 1). Now, we delve into some
useful properties of dominance relationships in order to (i) reduce the number of
pairwise comparisons between candidates which need to be performed to calculate
a dominated (reps. dominating) score of a candidate and (ii) design a stopping
condition so that the algorithm can stop earlier without exhaustively scanning all
candidates to retrieve the top-k answers.

Property 1 Let F() be a function of any candidate S, F(S) = ∑d
i=1 DS[i], where d =

|DS|. If S′ � S, then F(S′) > F(S).

Proof We have S′ � S, thus (i) ∀i(1 ≤ i ≤ d)DS[i] ≤ DS′ [i], and (ii) ∃ j(1 ≤ j ≤
d)DS[j] < DS′ [j] (from Definition 6). From (i) and (ii), we have

∑d
i=1 D′

S[i] >∑d
i=1 DS[i], which in turn gives us F(S′) > F(S) 	

This property indicates that we can reduce the search space for computing
dominated (or dominating) scores by using the sorted list L in descending order of

Table 3 A sample set of
2-dimension candidates.

D1 D2

S1 0.95 0.9
S2 0.15 0.5
S3 0.1 0.95
S4 0.5 0.4
S5 0.8 0.8
S6 0.9 0.4
S7 0.4 0.4
S8 0.3 0.2
S9 0.7 0.6
S10 0.3 0.3

502 World Wide Web (2012) 15:485–515

F() values, as shown in Figure 3. That is, search space for scoredd(Si) can be limited to
the candidates in the sublist LB (i.e., a set of candidates which have smaller F() values
than of the value of F(Si)). Similarly, the search space for computing scoredg(Si) can
be limited to the candidates in LA (i.e., a set of candidates which have smaller F()

values than the F(Si) value in the list L).
For example, given a list of candidates which are sorted in descending order of

their F() values as shown in Figure 4, the number of dominance tests to calculate the
dominated scores of candidates Si(1 ≤ Si ≤ 10) is given in Figure 5. We can see that
the total number of dominance checks being performed to calculate the dominated
sores of all the candidates is 0 + 7 + 4 + 5 + 1 + 2 + 6 + 7 + 3 + 9 = 44. Thus, we can
save up to 90 − 44 = 46 dominance checks to calculate the dominated scores of the
candidates by using Property 1.

Property 2 Let M() be a function of any candidate S, M(S) = maxd
i=1{DS[i]}, where

d = |DS|. If mind
i=1{DS′ [i]} > M(S) for two candidates S and S′, then S′ � S as well

as all candidates with M() values smaller than M() value of S.

Proof We have mind
i=1{DS′ [i]} > maxd

i=1{DS[i]}, thus ∀i ∈ [1..d], D′
S[i] > DS[i] which

gives us S′ � S. 	

Property 2 in combination with Lemmas 3 and 2 provide a termination condition.
Assuming Sk is the current k-th candidate and S is the next candidate being processed
and we select M(S) = maxd

i=1{DS[i]}, if mind
i=1{DSk [i]} ≥ M(S)}, then the algorithm

can be safely terminated.
For example, given a set of candidates shown in Figure 7, we assume that candi-

date S5 is the current k-th candidate and S9 is the next candidate being processed.
We have min2

i=1{DS5 [i]} = 0.8, while max2
i=1{DS9 [i]} = 0.7 (Figure 6). Thus, the algo-

rithm can be safely terminated without the need to consider the other candidates
S2, S4, S7, S8, S10.

6.1 Top-k dominated algorithm (TKDD)

The goal of TKDD is to efficiently find, for each candidate, the number of other
candidates which dominate it, avoiding exhaustive pairwise comparisons between the
candidates. After k results have been retrieved, we use the score of the k-th result as
a maximum threshold. The candidates whose dominated scores exceed the threshold
are pruned. In addition, it guarantees the safe termination of the algorithm if the
scores of all remaining candidates exceed the threshold.

More specifically, the TKDD proceeds in the following four steps: (i) Initialization
(line 1): the result set R and minValue are initialized; (ii) Termination condition

L = { S1, . . . , Si −1}

L B

Si {Si+ 1, . . . , Sn}

L A

Figure 3 Search spaces LA and LB to calculate scoredd(Si) and scoredg(Si) respectively from a list
L of candidates sorted in descending order of F() values.

World Wide Web (2012) 15:485–515 503

Candidate S1 S5 S6 S9 S3 S4 S7 S2 S8 S10

F() = Σ 2
i= 1 Di 1.85 1.6 1.3 1.3 1.05 0.9 0.8 0.65 0.5 0.5

Figure 4 A list of candidates sorted in descending order of F() values.

Candidate S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

No. of dominance checks 0 7 4 5 1 2 6 7 3 9

Figure 5 The number of dominance checks to calculate the dominated scores of the candidates.

Candidate S1 S3 S6 S5 S9 S4 S2 S7 S8 S10

M () = max2
i= 1{Di} 0.95 0.95 0.9 0.8 0.7 0.5 0.5 0.4 0.3 0.3

Figure 6 A list of candidates sorted in descending order of their M() values.

Figure 7 Example of a
stopping condition.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

1

S
7

S
4

S
8

S
2

S
3

S
6

S
10

S
k
=S

5
S

9

504 World Wide Web (2012) 15:485–515

Algorithm 2 TKDD

(lines 4–6): If the M() value of the current candidate S does not exceed the minimum
value of the current k-th candidate in R, the result set R is returned and the
algorithm terminates; (iii) Dominance checks (lines 7–10): the pairwise dominance
check between S and every other candidate S′ in the search space of S takes place.
The dominated score of S is increased by 1 every time it is dominated by another
candidate; (iv) Result updates (lines 11–17): if k results exist and the dominated score
of the k-th candidate is larger than the current candidate’s score, the k-th candidate is
removed and the current candidate is inserted into R; otherwise if less than k results
exist in R, it inserts the current candidate into R. Finally, if the size of R is k, the
threshold minValue is updated (lines 18–21).

6.2 Top-k dominating algorithm (TKDG)

The aim of the TKDG algorithm is to retrieve the top-k results that dominate
the larger number of other candidates. This is a more challenging task compared
to that of TKDD, for the following reason. Let pos(S) be the position of the
currently examined candidate S in the list L of candidates sorted in descending
order of F() values. To calculate scoredd(S), TKDD may perform a number of
pos(S) dominance tests on those candidates whose F() values ≤ F(S). However,
to calculate scoredg(S), TKDG may perform (|L| − pos (S)) tests on those
candidates whose F() values ≥ F (S). As the top relevant results are usually located
in the top of L (i.e., pos(S) � |L|), it implies that posS � (|L| − pos(S)). Thus,
the search space of the TKDG algorithm is significantly larger than that of TKDD.

World Wide Web (2012) 15:485–515 505

Algorithm 3 TKDG

Let S′ be a currently examined candidate. S′ can dominate at most (|L|− pos(S))
candidates. Thus, if (|L|− pos(S)) ≤ scoredg(Sk), where Sk is the k-th result in
R, the algorithm terminates.

Specifically, the TKDG algorithm (Algorithm 3) proceeds in the following steps:
(i) Initialization (line 1): the result set is initialized; (ii) Stopping condition (lines 3–
8): if there are already k candidates in the result set and the dominating score of
the k-th candidate is equal or greater than (|L| − pos(S)), the algorithm terminates;
(iii) Dominance tests (lines 9–14): the pairwise dominance test between the currently
examined candidate and each other candidate in the search space will be performed.
Concurrently, the dominating score of the candidate is calculated; (iv) Updating the
result set (lines 15–23): if there are already k results in the result set, the k-th candidate
from the result set is replaced by the new candidate if its dominating score is less than
the current candidate’s score. Otherwise, if less than k results exist in R, it inserts the
new candidate into R.

6.3 Top-k dominance algorithm (TKD)

A naive approach can be processed in two steps: (i) calculating the dominating and
dominated scores of each candidate and (ii) then applying the Threshold Algo-
rithm (TA) [11] over these two ranking dimensions to select the top-k candidates.
However, this approach may be not efficient because it needs to calculate the
dominating and dominated scores for all candidates. Let Rdg and Rdd be the lists
of candidates which are sorted in the descending order of dominating and dominated
scores, respectively. Let Ui and Vi be two candidates at position i in Rdg and Rdd

506 World Wide Web (2012) 15:485–515

Figure 8 An illustration of the
stopping point for the TA
algorithm.

Top-k TKDG TKDD

1 1 V1

2 2 V2

… …

i i Vi

…

…

… …

n

U

U

U

Un Vn

respectively. Assume Sk is the current top-k result, it has been proved [11] that the
TA algorithm can be safely terminated if,

scored(Sk) ≥ αscoredg(Ui) − (1 − α)scoredd(Vi)

Thus, rather than calculating the dominating and dominated scores of all n
candidates in advance, we can progressively calculate these scores of candidates until
we find the safe stopping point for the TA algorithm, as demonstrated in Figure 8.

7 Experimental evaluation

We have designed and performed a set of experiments to evaluate the search perfor-
mance of our approach. In this section, we analyze the results of our experiments
to compare the search quality and efficiency of our approach and some existing
approaches.

7.1 Experimental setup

The experiments were performed on a Pentium 4 3.2GHz computer running Win-
dows XP Professional, with 2GB of main memory. All approaches were implemented
in Java. We used Oracle Berkeley DB 11g [29] as a tool for storing and managing the
data indexes used in the experiments.

Data sets We tested three XML data sets: DBLP Computer Science Bibliography
(877 MB) [10], Mondial (1 MB) [27], and Auction (36.7 MB) [1]. DBLP Computer
Science Bibliography is a list of bibliographic information on major computer science
journals and proceedings. Mondial is a world geographic database integrated from
the CIA World Factbook, the International Atlas, and the TERRA database among
other sources. Auction is a synthetic benchmark data set generated by the XML
Generator from XMark using the default DTD.

Query sets We asked a group of students to submit 50 different keyword queries to
search on each data set. Each query contains a set of search keywords and a short de-
scription which indicates the user’s search intension corresponding to the query. The
required short description of each query is necessary to identify the user’s intension
of the query. We observed that even searching on a specific domain (i.e., on each of
the three specific data sets in our case), keyword queries are sometimes ambiguous

World Wide Web (2012) 15:485–515 507

in terms of expressing the user’s search intention. As a result, it is sometimes hard to
identify the relevant results of these queries, which is a prerequisite for us to evaluate
the performance of our approach and other approaches.

7.2 Search quality

We compared the search quality of our proposed DLCA approach with other
existing approaches, including ELCA [12], SLCA [37], XSEarch [8], CVLCA [19],
MLCA [22] and XReal [23]. The quality was measured in three popular metrics in
information retrieval [2]: precision (P), recall (R) and F-measure.

To compute precision and recall, we manually reformulated the keyword queries
into schema-aware XQuery queries, based on the schemas of data sets and the
descriptions of the keyword queries. We took the results of these corresponding
transformed queries as a baseline, then computed the precision and recall of the
given queries according to the baseline as follows. Given a keyword query Q and its
corresponding transformed XQuery XQ, the accurate result set of Q, i.e., the result
of XQ, is denoted as relevant results, and the approximate result set, i.e., the result of
a specified algorithm on Q, is denoted as retrieved results. Accordingly, we can define
the precision and recall of this algorithm as follows.

The precision is a fraction of retrieved results that are relevant to the search:

P = |{relevant results} ∩ {retrieved results}|
|{retrieved results}|

The recall is a fraction of the relevant results that are successfully retrieved by the
search system:

R = |{relevant results} ∩ {retrieved results}|
|{relevant results}|

The F-measure shows the trade-off between the precision and recall and is
computed as:

F-measure = (1 + β2)PR
β2 P + R

where β = 1 weights precision and recall equally; β < 1 emphasizes precision, while
β > 1 focuses on recall.

We can see that the relevant results of each keyword query need to be obtained
before we can calculate the above evaluation metrics. To obtain these relevant
results of the tested queries, we manually formed the corresponding schema-aware
XQuery [40] queries of the keyword queries, with the help of the users’ described
search intention accompanied by the queries. The relevant results of each query were
then used as the ground truth for evaluating the performance of our approach and
other existing approaches.

We conducted experiments with the same set of 50 keyword queries by employing
different approaches and we measured the precision and recall of each approach as
the average of precision and recall values of all the tested queries.

The comparisons of precision and recall of our approach with other approaches in
the three different data sets are shown in Tables 4, 5 and 6.

508 World Wide Web (2012) 15:485–515

Table 4 Precision and recall of queries on DBLP data.

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Precision 0.523 0.733 0.640 0.688 0.720 0.733 0.934
Recall 1 0.647 0.941 0.911 0.923 0.647 0.941

Precision We can see that our approach outperforms all the other approaches in
terms of precision on all the tested data sets. More importantly, the precision of
DLCA is over 90% in all the data sets, which indicates that the results returned by
our approach are highly relevant to the users’ queries. Specifically, Table 4 illustrates
that DLCA returns results with 93% of precision, which is over 20% higher than
XReal when tested on DBLP data set. In the Mondial and Auction data sets, our
approach has precision of 95% and 90% respectively (as shown in Tables 5 and 6).

Recall The results from Tables 4–6 indicate that DLCA can achieve high recall
from 93% to 94% in all three tested data sets. The ELCA approach has very high
recall in all data sets, however it has very low precision. This is because as discussed
in Section 2, ELCA employs a similar semantics with the baseline approach which
returns almost all candidate results without evaluating the relationship between
query keywords. Other three approaches XSEarch, CVLCA and MLCA have similar
recall values to our approach, but these approaches achieve much lower precision.

F-measure The overall performance of DLCA and the other approaches are mea-
sured by the F-measure metric which is a trade-off between the precision and recall
metrics. In our experiments, we measured the F-measure with β = 0.5, 1.0 and 2.0.
From Figures 9, 10 and 11, we can see that the overall performance of DLCA
outperforms the other approaches in all tested data sets.

7.3 Quality of top-k answers

To evaluate the effectiveness of our ranking criteria, we employ the following
standard evaluation metrics from the field of information retrieval [2].

– Mean Average Precision (MAP): for a single information need, Average Preci-
sion is the average of the precision value obtained for the set of top documents
existing after each relevant document is retrieved, and this value is then averaged
over information needs. That is, if the set of relevant documents for an informa-
tion need Q ∈ Q is d1, . . . , dmj and R jk is the set of ranked retrieval results from
the top result until you get to document dk, then

MAP(Q) = 1
|Q|

|Q|∑

j=1

1
mj

mj∑

k=1

Precision(R jk)

Table 5 Precision and recall of queries on Mondial data.

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Precision 0.503 0.712 0.635 0.670 0.712 0.721 0.922
Recall 1 0.624 0.943 0.910 0.903 0.647 0.939

World Wide Web (2012) 15:485–515 509

Table 6 Precision and recall of queries on Auction data.

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Precision 0.478 0.706 0.623 0.64 0.699 0.703 0.901
Recall 1 0.650 0.931 0.920 0.907 0.650 0.931

– R-Precision (R-prec): R-Precision is the precision after R documents have been
retrieved, where R is the number of relevant documents for the query.

– bpref: bpref computes a preference relation of whether the judged relevant
documents are retrieved ahead of the judged irrelevant documents. Thus, it is
based on the relative ranks of judged documents only. The bpref measure is
defined as:

bpref = 1
R

∑

r

(
1 − |n ranked higher than r|

min(R, N)

)

where R is the number of judged relevant documents, N is the number of judged
irrelevant documents, r is a relevant retrieved document, and n is a member of
the first R irrelevant retrieved documents.

– Reciprocal Rank (R-rank): measures (the inverse of) the rank of the top relevant
document.

– Precision at N (P@N): measures the precision after N documents have been
retrieved.

We compared the performance of our three ranking algorithms TKDD, TKDG
and TKD corresponding to our three proposed ranking criteria. Regarding the
TKD algorithm, we studied the effect of parameter α (see Section 5) considering
three variations, denoted TKD-α, for α = 0.5, 1.0 and 2.0. We evaluated a set of 20
randomly selected queries with a various number of keywords in each of the three
data sets described in Section 7.1. In order to obtain ranked lists of relevant results
of these queries, we manually reformulated the keyword queries into schema-aware

0.5 1.0 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

F
−m

ea
su

re

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Figure 9 Overall result quality on DBLP data.

510 World Wide Web (2012) 15:485–515

0.5 1.0 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

F
−m

ea
su

re

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Figure 10 Overall result quality on Mondial data.

XQuery queries basing on the schemas of data sets. We took the results of each
transformed query as its relevant results, then these results are ranked using user
studies. The ranked lists of the relevant results are used as ground truths for
evaluating the ranking quality of the approaches.

The average values of the evaluation metrics are recorded in Table 7. The
experimental results in Table 7 show that TKDG has better performance than TKDD
in most of the evaluation metrics. We observed that some candidates, even though
dominated by a small number of other candidates, were not evaluated as relevant
results in the returned results. The performance of TKD is dependent on the selected
values of α parameter. In our experiments, we found that TKD-0.25 outperforms the
other variations in most of evaluation metrics.

0.5 1.0 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

F
−m

ea
su

re

ELCA SLCA XSEarch CVLCA MLCA XReal DLCA

Figure 11 Overall result quality on Auction data.

World Wide Web (2012) 15:485–515 511

Table 7 Comparisons on ranking effectiveness of the algorithms.

MAP R-prec bpref R-rank P@1 P@5 P@10

TKDD 0.87 0.83 0.75 0.86 0.89 0.87 0.81
TKDG 0.85 0.82 0.79 0.87 0.92 0.89 0.84
TKD-0.25 0.84 0.80 0.79 0.86 0.91 0.91 0.86
TKD-0.5 0.86 0.82 0.76 0.86 0.90 0.87 0.82
TKD-0.75 0.87 0.85 0.73 0.88 0.88 0.85 0.80
XRank 0.67 0.75 0.61 0.71 0.69 0.68 0.65
XSEarch 0.70 0.77 0.63 0.68 0.73 0.68 0.66

More importantly, all our ranking algorithms can identify the top-10 results at
a precision from 80% to 85%. The mean average precision of these algorithms is
approximately 85% and we can even achieve higher precision if we select a suitable
α value which maximizes the balance between the two dominated and dominating
scores. Proposing a method which can automatically find a suitable value of α

parameter to maximize the precision of TKD is interesting and is proposed as our
future work.

7.4 Query processing time for identifying DLCA answers

We compared the query processing time of our approach with the existing ap-
proaches using a different number of keywords. The number of keywords ranged
from two to ten keywords. For each query length, we selected 10 different queries
with various keyword frequencies. The query processing time corresponding to each
query length is measured as the average processing time of the queries with that
length. Figure 12 illustrates the processing time of our approach in comparison to
the other approaches. We can see that the processing time of the DLCA approach
is higher than that of the other approaches. This is because the DLCA approach
performs the skyline semantics over the query candidates to identify relevant results.
This causes a higher processing time of the DLCA semantics, compared with the
heuristics-based semantics of the other approaches. In contrast, we can see from the
previous section that our approach outperforms the other approaches in terms of the
result quality.

7.5 Efficiency of Top-k algorithms

We evaluate the cost for returning top-k results of our three ranking functions. We
tested the effects of two parameters: the number of candidates being processed and
the number k of returned results.

7.5.1 Ef fectiveness of stopping conditions

The aim of this experiment is to evaluate the effectiveness of the stopping conditions
on the reduction in the number of pairwise comparisons between candidates that
need to be performed for calculating a dominated (or dominating) score of a
candidate. We compared our top-k algorithms with the “improved” naive algorithms
which are the variants of the top-k algorithms but without using the stopping
conditions. We tested ten queries with various keyword lengths in each data set. For

512 World Wide Web (2012) 15:485–515

Figure 12 Processing time for
retrieving results of the
approaches vs. different
number of keywords.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

Number of keywords

T
im

e
(m

se
cs

)

DLCA
MLCA
CVLCA
XSEarch
ELCA
XReal
SLCA

each query, we selected a set of 5,000 candidates. For those queries which have less
than that number of candidate results, we repeatedly made a replica of the candidates
until we obtained at least the required number of candidates. Then, we randomly
selected 5,000 candidates from the duplicated set. The reduction in the number of
pairwise tests is measured as the average reduction of all the tested queries.

Figure 13 shows the effectiveness of the stopping conditions on the reduction in
the pairwise tests that need to be performed for calculating the score of a candidate,
compared with the “improved” naive algorithm. The result indicates that the TKDD
has the highest reduction in the pairwise comparisons. The main reason is because
the top relevant results mostly locate at the top of the F() list, which results in a low
number of comparison for computing the dominated score of a candidate. In contrast,
this can cause a higher number of pairwise tests for computing the corresponding
dominating score of a candidate. Consequently, the TKDG has a lower reduction.

Figure 13 Effectiveness of the
stopping conditions on the
reduction in the number of
pairwise comparisons.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Top-k

R
ed

uc
tio

n
on

 p
ai

rw
is

e
co

m
pa

ris
on

s
(%

)

TKDD
TKD
TKDG

World Wide Web (2012) 15:485–515 513

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

Number of candidates (x1000)

T
im

e
(m

se
c)

TKD
TKDG
TKDD

(a) Effect of number of candidates

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Top−k

T
im

e
(m

se
c)

TKD
TKDG
TKDD

(b) Effect of number of selected results

Figure 14 Ranking efficiency of TKDD, TKDG and TKD algorithms.

This reduction of the TKD is approximately the average on the reduction of the
TKDD and TKDG algorithms.

7.5.2 Ef f iciency and scalability of top-k algorithms

We tested 10 queries with various keyword lengths in each data set. In default
scenarios, we tested on the set of 5,000 candidates and the number of results returned
was 30. For those queries which have less than the required number of candidate
results, we repeatedly made a replica of their candidates until we obtained at least
the required number of candidates. Then, we randomly selected the required number
of candidates from the duplicated set. The computational costs of our algorithms are
shown in Figure 14a and b. From Figure 14a we can see that when the number of
candidates increases, the processing time of all algorithms increases, but at different
trends. Specifically, TKDD is the most efficient method and it is less effected by the
increase of the number of candidates. As already discussed, TKDD is interested in
results that are dominated by as few other candidates as possible and these results
are usually located at the top of the sorted list of candidates; hence, it searches a
relatively small portion of the candidate list. However, the search space for TKDG
is much larger, so its delay is expected. Similarly, the lower performance of TKD
is mainly due to the impact of dominating score; therefore, it is reasonable that
its processing time rises at the similar trend as TKDG’s, with a small additional
overhead for calculating dominated score.

The result from Figure 14b shows that the processing time of TKDD is very
slightly affected by the increase of the number k of results being returned and it
can return 10 to 100 results from a set of 5,000 candidates in less than 1 s. The
processing time of TKDG algorithm is more strongly affected by the change of this
parameter, however it takes less than 2.5 s to return the top-100 results from a set of
5,000 candidates.

8 Conclusions

In this article, we have studied the problem of identifying the most relevant results
and the top-k relevant results for XML keyword queries. More specifically, we

514 World Wide Web (2012) 15:485–515

have addressed the three crucial requirements for effective XML keyword searches.
We have introduced a new method for evaluating the relationship between the
query keywords in a candidate using the mutual information concept and propose
a new DLCA semantics of keyword queries; we have proposed an approach for
selecting DLCA results from numerous candidates and three ranking criteria for
selecting the top-k relevant results based on the semantics of skyline queries. Some
proven properties have been obtained to accelerate our proposed algorithms. The
experiments were conducted to evaluate our approach and the experimental results
show that our approach outperforms the existing approaches in the tested data sets
and evaluation metrics.

References

1. Auction. http://monetdb.cwi.nl/xmark/auctions.xml
2. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (1999)
3. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans. Data-

base Syst. 33(4), 1–49 (2008). doi:10.1145/1412331.1412343
4. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common

ancestors in trees and directed acyclic graphs. J. Algorithms 57, 75–94 (2005)
5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th Inter-

national Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington,
DC, USA (2001)

6. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of 19th
International Conference on Data Engineering, vol. 717 (2003)

7. Cohen, S., Kanza, Y., Kimelfeld, B., Sagiv, Y.: Interconnection semantics for keyword search in
XML. In: CIKM ’05: Proceedings of the 14th ACM International Conference on Information
and Knowledge Management, pp. 389–396. ACM, New York, NY, USA (2005)

8. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: a semantic search engine for XML. In:
Proceedings of the 29th International Conference on Very Large Data Bases, pp. 45–56. VLDB
Endowment (2003)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York,
NY, USA (1991)

10. DBLP. dblp.uni-trier.de/xml/dblp.xml
11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings

of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 102–113. ACM, New York, NY, USA (2001)

12. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over
XML documents. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 16–27. ACM, New York, NY, USA (2003)

13. Han, S.K., Shin, D., Jung, J.Y., Park, J.: Exploring the relationship between keywords and feed
elements in blog post search. World Wide Web 12(4), 381–398 (2009)

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput.
13(2), 338–355 (1984)

15. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword proximity search in
XML trees. IEEE Trans. Knowl. Data Eng. 18, 525–539 (2006)

16. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for sky-
line queries. In: Proceedings of the 28th International Conference on Very Large Data Bases,
pp. 275–286. VLDB Endowment (2002)

17. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of the
ACM, pp. 469–476. ACM, New York, NY, USA (1975)

18. Lee, K.H., Whang, K.Y., Han, W.S.: Xmin: Minimizing tree pattern queries with minimality
guarantee. World Wide Web 13(3), 343–371 (2010)

19. Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable LCAs over XML
documents. In: Proceedings of the Sixteenth ACM Conference on Conference on Information
and Knowledge Management, pp. 31–40. ACM, New York, NY, USA (2007)

http://monetdb.cwi.nl/xmark/auctions.xml
http://doi.acm.org/10.1145/1412331.1412343
http://dblp.uni-trier.de/xml/dblp.xml

World Wide Web (2012) 15:485–515 515

20. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pp. 903–914. ACM, New York,
NY, USA (2008)

21. Li, L., Otsuka, S., Kitsuregawa, M.: Finding related search engine queries by web community
based query enrichment. World Wide Web 13(1), 121–142 (2010)

22. Li, Y., Yu, C., Jagadish, H.V.: Enabling schema-free XQuery with meaningful query focus.
VLDB J. 17(3), 355–377 (2008)

23. Liu, Z., Chen, Y.: Identifying meaningful return information for xml keyword search. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
pp. 329–340. ACM, New York, NY, USA (2007)

24. Liu, Z., Chen, Y.: Reasoning and identifying relevant matches for XML keyword search. In:
Proceedings of the 34th International Conference on Very Large Data Bases, pp. 921–932 (2008)

25. Liu, Z., Chen, Y.: Processing keyword search on XML: a survey. World Wide Web 14, 671–707
(2011)

26. Liu, Z., Walker, J., Chen, Y.: XSeek: a semantic XML search engine using keywords. In: Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, pp. 1330–1333. VLDB
Endowment (2007)

27. Mondial. http://www.cs.washington.edu/research/xmldatasets/data/mondial/mondial-3.0.xml
28. Online computer library center. Introduction to the Dewey Decimal Classification. http://www.

oclc.org/oclc/fp/about/about the ddc.htm
29. Oracle Berkeley DB. http://www.oracle.com/technology/products/berkeley-db/index.html.
30. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and paralleliza-

tion. SIAM J. Comput. 17(6), 1253–1262 (1988)
31. Shao, F., Guo, L., Botev, C., Bhaskar, A., Chettiar, M., Yang, F., Shanmugasundaram, J.:

Efficient keyword search over virtual xml views. In: VLDB ’07: Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, pp. 1057–1068. VLDB Endowment (2007)

32. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway slca-based keyword search in xml data. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 1043–1052. ACM, New York,
NY, USA (2007)

33. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB ’01: Pro-
ceedings of the 28th International Conference on Very Large Data Bases, pp. 301–310 (2001)

34. Wang, G., Ning, B., Yu, G.: Holistically stream-based processing xtwig queries. World Wide Web
11(4), 407–425 (2008)

35. Wang, J., Yu, J.X., Liu, C.: Independence of containing patterns property and its application in
tree pattern query rewriting using views. World Wide Web 12(1), 87–105 (2009)

36. Wu, X., Theodoratos, D., Souldatos, S., Dalamagas, T., Sellis, T.: Evaluation techniques for
generalized path pattern queries on xml data. World Wide Web 13(4), 441–474 (2010)

37. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml databases. In:
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,
pp. 527–538. ACM, New York, NY, USA (2005)

38. Xu, Y., Papakonstantinou, Y.: Efficient lca based keyword search in xml data. In: Proceedings
of the 11th International Conference on Extending Database Technology, pp. 535–546. ACM,
New York, NY, USA (2008)

39. XML Path Language (XPath). http://www.w3.org/tr/xpath/
40. XQuery: An XML Query Language. http://www.w3.org/tr/xquery/
41. Zhou, R., Liu, C., Li, J.: Fast elca computation for keyword queries on xml data. In: Proceedings

of the 13th International Conference on Extending Database Technoloy, pp. 549–560. ACM,
New York, NY, USA (2010)

http://www.cs.washington.edu/research/xmldatasets/data/mondial/mondial-3.0.xml
http://www.oclc.org/oclc/fp/about/about the ddc.htm
http://www.oclc.org/oclc/fp/about/about the ddc.htm
http://www.oracle.com/technology/products/berkeley-db/index.html.
http://www.w3.org/tr/xpath/
http://www.w3.org/tr/xquery/

	Top-k answers for XML keyword queries
	Abstract
	Introduction
	Preliminaries and related work
	Data model and query
	Identifying results for XML keyword queries
	Skyline semantics

	Measuring the relationship between two nodes in a data tree
	Concepts of mutual information
	Evaluating node relationship

	Dominance lowest common ancestor (DLCA)
	Dominance relationship
	Retrieving DLCA answers

	Top-k answers
	Dominating score
	Dominated score
	Dominance score

	Algorithms for retrieving top-k results
	Top-k dominated algorithm (TKDD)
	Top-k dominating algorithm (TKDG)
	Top-k dominance algorithm (TKD)

	Experimental evaluation
	Experimental setup
	Search quality
	Quality of top-k answers
	Query processing time for identifying DLCA answers
	Efficiency of Top-k algorithms
	Effectiveness of stopping conditions
	Efficiency and scalability of top-k algorithms

	Conclusions
	References

