
World Wide Web (2011) 14:465–494
DOI 10.1007/s11280-011-0125-5

Distributed processing of continuous sliding-window
k-NN queries for data stream filtering

Krešimir Pripužić · Ivana Podnar Žarko · Karl Aberer

Received: 15 May 2010 / Revised: 15 November 2010 /
Accepted: 25 February 2011 / Published online: 24 March 2011
© Springer Science+Business Media, LLC 2011

Abstract A sliding-window k-NN query (k-NN/w query) continuously monitors
incoming data stream objects within a sliding window to identify k closest objects
to a query. It enables effective filtering of data objects streaming in at high rates
from potentially distributed sources, and offers means to control the rate of object
insertions into result streams. Therefore k-NN/w processing systems may be regarded
as one of the prospective solutions for the information overload problem in appli-
cations that require processing of structured data in real-time, such as the Sensor
Web. Existing k-NN/w processing systems are mainly centralized and cannot cope
with multiple data streams, where data sources are scattered over the Internet. In
this paper, we propose a solution for distributed continuous k-NN/w processing of
structured data from distributed streams. We define a k-NN/w processing model
for such setting, and design a distributed k-NN/w processing system on top of the
Content-Addressable Network (CAN) overlay. An extensive evaluation using both
real and synthetic data sets demonstrates the feasibility of the proposed solution
because it balances the load among the peers, while the messaging overhead within
the P2P network remains reasonable. Moreover, our results clearly show the solution
is scalable for an increasing number of queries and peers.

Keywords k nearest neighbor queries · sliding windows · data streams ·
peer-to-peer system

K. Pripužić (B) · I. Podnar Žarko
Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia
e-mail: kresimir.pripuzic@fer.hr

I. Podnar Žarko
e-mail: ivana.podnar@fer.hr

K. Aberer
School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne,
EPFL IC IIF LSIR, Station 14, 1015 Lausanne, Switzerland
e-mail: karl.aberer@epfl.ch



466 World Wide Web (2011) 14:465–494

1 Introduction

Nowadays, there is an emerging need for data stream filtering systems that are able to
process huge amounts of continuously generated data stemming from heterogeneous
sources dispersed over the Web. Such data has to be processed and delivered to
end users in real-time, while data filtering is a crucial processing step to prevent
information overload. The requirements of data filtering services have been iden-
tified even 15 years ago [3]: Such systems need to be effective in supplying users
with useful information in a timely fashion, and need to handle large throughput
of data publications for a large number of queries. The listed requirements pose
a serious problem for emerging Internet-scale systems such as the Sensor Web
[2]. The vision of a Sensor Web interconnecting millions of sensors placed in the
environment to collect data from its surroundings is becoming a reality because a
number of relevant projects are underway, such as sensor-based monitoring of air
and water quality for pollution warning. The ongoing standardization efforts, e.g.,
the OGC’s Sensor Web Enablement initiative [8] is designing standard models and
schema for encoding sensor measurements along with a suite of protocols to handle
sensor data in real-time. In particular, it specifies protocols for requesting, filtering,
and retrieving sensor measurements, and for subscribing to specific sensor alerts.
Such protocols need efficient techniques for processing sensor data in real-time: We
put forward continuous processing of top-k queries over data streams as a viable
technique for effective filtering of streaming objects in environments such as the
Sensor Web.

In this paper, we study a particular type of continuous top-k queries which monitor
k-nearest neighbor data objects over sliding windows (k-NN/w queries) to find
the k nearest objects to a given query point continuously over time. Such queries
are encountered in, for example, Geographic Information Systems (GIS) to find
k-NN objects with respect to a given point in space while continuously monitoring
incoming objects. Sliding windows are used in application domains that regard recent
data objects as more important than older ones, and restrict the temporal scope of
query processing in the absence of explicit deletions of data objects [20]. They are
commonly defined as either the number of most recent data stream objects (count-
based windows), or time intervals (time-based windows). The parameter k defines
the number of matching data objects by restricting it to k nearest objects within a
sliding window of size w, and therefore controls the rate of data object insertions
into the output data stream. Note that since only k nearest objects within the window
are inserted into an output stream, a k-NN/w data stream processor performs data
filtering.

Consider, for example, the following motivating scenarios. (1) A large number of
wireless sensor networks are placed along the coast of the Adriatic sea, which is well-
known for its indented coastline and numerous islands, to monitor the quality of the
sea water in real-time. Environmental scientists would like to identify and monitor up
to ten sites with the largest pollution readings over the course of a single day, so that
special teams may be alerted to investigate on-site causes of pollution. They may also
identify ten sensors closest to a particular location measuring the largest pollution
levels over time. Note that the top-10 readings would be provided on, e.g., hourly
bases. (2) Sensor Web technology is used to monitor smart grids for efficient energy
supply and distribution which integrates renewable energy sources, e.g. numerous



World Wide Web (2011) 14:465–494 467

solar panels over a large region. As power grids are highly interrelated, it is vital to
monitor them in real-time. Power grid operators would like to monitor over time 100
sites with the largest or the lowest power production by using solar panel current and
voltage readings so that they identify power grid hot-spots. (3) The last scenario is
not from the Sensor Web domain, but can also benefit from a k-NN/w processing
solution over structured data. Consider an “auction site super-network” spanning
over many online auction sites. This network enables a user to define his/her ideal
product of interest, and to receive, e.g., top-10 offers within the course of a day that
are the most similar to his/her ideal product.

The listed motivating scenarios require a solution for k-NN/w processing which
spans over distributed data sources generating streams of structured data at high
rates. Two types of systems can be applied for the implementation of k-NN/w
processing: data stream processing systems (DSPSs), and publish/subscribe systems.
DSPS are designed for effective and efficient data filtering by executing continuous
queries over data streams [22]. Publish/subscribe systems process subscriptions,
i.e. continuous queries, in distributed environments to find matching publications,
i.e. data objects, published by heterogeneous and distributed data sources [30].
The major challenges arising in continuous real-time processing of data streams
are related to transmission, real-time computation, and storage of data objects.
Centralized DSPSs are able to cope with the latter two challenges, but in case of
high streaming rates and highly distributed data sources, the transmission of objects
to a centralized stream processor becomes the major bottleneck of the whole system.
On the contrary, in distributed DSPSs, queries are distributed over several network
nodes acting as data stream processors, which then share the processing load and
perform processing close to data sources. Due to this fact, distributed DSPS are
able to cope with higher rate of streaming data objects compared to centralized
solutions, but are also much harder to design and build. Publish/subscribe systems are
efficient for distributed processing mainly because of rather simple stateless query
definitions.

Although k-NN/w processing has been a particularly active research area in the
last years [4, 14, 20], existing works assume a centralized setting. This paper presents
the first step towards the challenging problem of distributed k-NN/w processing by
combining the distributed nature of publish/subscribe systems with efficient data
stream processing. Our system is composed of a network of processing nodes, where
each node performs k-NN/w processing over a subset of queries and data objects.
Queries and data objects are assigned to responsible nodes using the underlaying
CAN network. Each k-NN/w processing node implements one of our original
centralized algorithms for efficient top-k/w processing over data streams which is
available in [26]. The main contributions are summarized as follows:

1. We present a formal model for processing k-NN/w queries over certain data
streams. The k-NN/w processing model regards the processing engine as a
black-box, and discusses distribution-related issues such as query and object
propagation.

2. We propose a distributed peer-to-peer k-NN/w processing system that is built on
top of the CAN structured overlay [27], and design protocols for query and data
processing, and node joins, departures, and failures.



468 World Wide Web (2011) 14:465–494

3. We present results of an extensive experimental evaluation clearly showing the
proposed solution is scalable for increasing number of queries and peers, while
the messaging overhead remains low.

The paper is organized as follows. In Section 2 we give a survey of related work
in the field of DSPSs and distributed publish/subscribe systems. Section 3 presents a
formal k-NN/w data stream processing model. In Section 4 we briefly present our
centralized k-NN/w processing algorithms as they are the building blocks of the
distributed engine. Section 5 presents D-ZaLaPS,1 a distributed DSPS supporting
k-NN/w queries. In Section 6 we analyze results of an extensive experimental
evaluation and conclude the paper with Section 7.

2 Related work

The processing of continuous sliding-window top-k queries (top-k/w processing)
over data streams has attracted considerable attention in recent years due to its
potential application in many different areas such as environmental monitoring using
wireless sensor networks, information filtering, computer and telephone network
monitoring, financial and stock trade monitoring, etc. All current works on top-
k/w processing [4, 9, 11, 13, 14, 18–20, 25, 26, 33] assume centralized processing
at a single network node and thus differ significantly from the distributed k-NN/w
processing approach we present in this paper. These works can be classified in
two categories: deterministic approaches [4, 9, 11, 18–20, 26] which produce correct
results to defined queries, and probabilistic approaches [13, 14, 26] which generate
errors and thus produce approximate results, but are in general more efficient and
require less memory than the deterministic approaches. Furthermore, as a top-k/w
query continuously identifies k best-ranked data objects in the query window with
respect to an arbitrary scoring function, we can additionally classify these works
according to whether distance [4, 14, 20], aggregation [9, 18, 33] or relevance [11, 19]
scoring function is assumed. Following this categorization, k-NN/w queries are top-
k/w queries with distance scoring functions. Hereafter we list the most relevant
papers dealing with centralized top-k/w and k-NN/w processing.

In our previous works [25, 26], we present a probabilistic and deterministic
algorithm for efficient centralized processing of generic top-k/w queries. A generic
top-k/w query may define any of the three possible categories of scoring functions. It
is important to mention that our probabilistic algorithm assumes the random-order
data stream model, in which any permutation of streaming objects is equally likely
to appear in a data stream. Recently, this model has attracted a lot of attention as
it often describes real-world applications much better than the worst-case model
[6, 7, 10, 13]. Although in this paper we extend and apply our previously developed
centralized algorithms, this paper significantly differs from our previous work since
it focuses on distributed processing of k-NN/w queries.

1Zagreb–Lausanne distributed top-k/w publish/subscribe system supporting distance scoring
functions.



World Wide Web (2011) 14:465–494 469

The first paper addressing the problem of deterministic top-k/w processing is [18].
It presents two algorithms named skyband monitoring algorithm (SMA) and top-
k monitoring algorithm (TMA) for processing of top-k/w queries with aggregation
scoring functions. In contrast to our approach, the authors assume that all queries
are defined with the same sliding window size, while all data objects in the current
window are stored in memory of the centralized processor. In their subsequent paper
[20], the same group of authors present CPM and SNN which are similar to TMA and
SMA, and are developed for the problem of k-NN/w monitoring. The algorithms
index queries in the regular grid such that the score of k-th ranked object is used as
an indexing threshold. We find the algorithms costly for a distributed environment
since they perform periodical k-NN computations from scratch which could generate
too much network traffic.

Another work relevant to ours is [4], which proposes an algorithm for continuous
k-NN monitoring over data streams with limited memory. This paper is the first
that introduces a recent buffer to avoid inserting less relevant data objects to the
query data structure. The query filter, called the approximate skyline, is based on
the presented algorithm and uses the score of an object with rank k in the filter
as a threshold for indexing in a regular grid. This approach is most relevant to our
deterministic implementation and could be used as a building block of our distributed
system. However, it relies on a different type of a query filter which is less efficient
than the probabilistic filter.

The paper [9] focuses on processing of ad-hoc top-k/w queries over data streams.
An ad-hoc query is interested in data objects that have appeared both before and
after the point in time of its activation. In order to perform efficient processing,
the paper introduces a geometrical representation of data objects that supports
processing using arrangements [12]. In our opinion, it would be very costly to
implement a distributed version of this approach since it maps each query to a
vertical ray shooting query in the dual plane which makes the indexing of queries
quite complicated.

The paper [14] presents a technique for the processing of e-approximate k-NN
queries over data streams. It partitions the attribute space using a regular grid such
that the maximum distance between any pair of points in a cell is at most e, and
keeps at most K ≥ k points per cell. The indexing of points is done using B-tree
and space-filling curves. Similarly to TMA and SMA, it would also be very costly to
implement a distributed version of this approach since it periodically performs k-NN
search.

The distributed k-NN/w processing solution that we present in this paper is built
on top of the CAN structured overlay [27]. Due to the specifics of k-NN/w queries,
which are interested in data objects that are closest to a query point, the CAN
overlay network is much better suited for this type of queries than the competing
overlay networks such as Chord [28] and P-Grid [1]. The most similar distributed
systems to the one that we present in this paper are [29, 30, 34] since they present
structured peer-to-peer publish/subscribe systems which are also built on top of the
CAN overlay network. However, when compared to the stateful top-k/w queries
in which we are interested in this paper, these approaches only support much
simpler stateless continuous queries defined as static subspaces of the given attribute
space.



470 World Wide Web (2011) 14:465–494

Distributed processing of top-k queries in structured peer-to-peer networks [5, 16,
17, 23, 31, 32] is also related to our work, but while we are interested in continuous
queries, these works focus on efficient processing of one-time queries.

3 Sliding-window k-NN processing model

Figure 1 sketches our sliding-window k-nearest neighbor (k-NN/w) processing sys-
tem. It is composed of a k-NN/w processor, which can be either centralized or
distributed, and a set of clients. Clients produce data objects which cannot change
after entering the processor, and activate and cancel their k-NN/w queries. The
processor accepts k-NN/w queries, and reports matching k-NN/w data objects to the
clients. We assume queries reference future data objects, i.e. objects entering the
system after query activation, and cannot reference past objects published before
query activation. Note that in this section we assume the processor is composed of a
single processing node to simplify definition of its functionality, while the distributed
implementation consisting of a network of k-NN/w processing nodes is presented
in Section 5. The processor memory stores both active queries and a set of data
objects from the input stream needed for k-NN/w processing. Each incoming data
object is seen only when entering the processing system unless it is explicitly stored
in memory. As the processing efficiency largely depends on the number of data
objects maintained in memory, the goal is to store the minimal set of stream objects
necessary for k-NN/w processing. Moreover, if we assume memory size is relatively
small compared to the size of data within the stream window, only a restrictive subset
of data objects can be maintained in memory.

In this section we first present a model for continuous k-NN/w processing which
forms the basis for k-NN/w system implementation. Without loss of generality,
the model is built assuming time-based sliding windows associated with continuous
queries, and may be extended in a straightforward manner to support count-based
sliding windows. Second, we provide a problem definition which identifies data
stream objects maintained in memory which are necessary for continuous k-NN/w
processing.

3.1 Model definition

We define a triple B = (C, O, Q), where C is a finite set of clients, O is a finite set
of data objects, and Q is a finite set of queries in a sliding-window k-NN query
processing system. B gives the structural view of a k-NN/w system and determines

Figure 1 k-NN/w processing
system.



World Wide Web (2011) 14:465–494 471

the boundaries of the system state space, because it defines the type and number of
entities that can exist in a system. A client c ∈ C may produce data objects from O,
and activate or cancel queries from Q.

We define data objects and queries in the k-NN/w system as points in a d-
dimensional Euclidean space.

Definition 1 (Point) A point p in a d-dimensional Euclidean space R
d is an ordered

d-tuple p = {v1, v2, . . . , vd}, where ∀i ∈ {1, 2, . . . , d} : vi ∈ R is the value of d-th coor-
dinate of p.

Definition 2 (Data object) Let po be a point in a d-dimensional Euclidean space
R

d, let co ∈ C be a client, and let tA
o be a point in time. We define a triple o =

{po, co, tA
o } ∈ O as a data object produced by client co at tA

o .

An object has an associated time of appearance tA
o denoting a point in time when

object o appears in the system. We assume the object content is certain, and its
content and time of appearance do not change after entering the system. We further
assume data objects are assigned unique tA

o when entering the processing system such
that all objects can be ordered by their time of appearance. This is indeed true for
a single processing node which can assign unique timestamps to incoming objects,
while this assumption does not hold in a distributed setting. However, the assumption
is further relaxed in a distributed setting such that each processing node needs to
assign unique timestamps only to its incoming data objects, while timestamps need
not be unique over the entire processing network.

Hereafter we identify the characteristics of k-NN/w queries supported by the k-
NN/w system. Each query is defined as a point in a d-dimensional Euclidean space
associated with two parameters, the size of the time-based sliding window w, and
parameter k—the number of k-NN objects from the query window. Furthermore, as
queries are continuous, they have a predefined time of activation and cancellation.

Definition 3 (Sliding-window k-NN query) Let pq be a point in a d-dimensional
Euclidean space R

d, let kq ∈ N and wq ∈ R
+, let tA

q and tC
q be two points in

time such that tA
q < tC

q , and let cq ∈ C be a client. We define a sextuple q =
{pq, cq, kq, wq, tA

q , tC
q } ∈ Q as a continuous k-NN query over time-based sliding win-

dow of size wq defined by client cq.

A query is associated with time of appearance tA
o denoting a point in time when q

enters the processing system, and time of cancellation tC
o . Analogously to objects,

we assume implicit timestamps for queries which are assigned by the processing
nodes. Of course, the transmission of queries and data objects to processing nodes
introduces certain latency compared to the time of creation at the source nodes.
However, we can provide correctness guaranties regarding the resulting data set
by tolerating bounded query/object propagation times, as it is commonly done in
distributed implementations.

Depending on the time of object appearance, and the time of query activation and
cancellation, an object is either valid or invalid for a query.



472 World Wide Web (2011) 14:465–494

Definition 4 (Valid data objects for a query) Let q ∈ Q be a k-NN/w query. We
define the set of valid data objects Vq ⊆ O for q as

Vq
def= {o : (o ∈ O) ∧ (tA

q < tA
o ≤ tC

q )}. (1)

In other words, a data object is valid for a query if the object appears during the
period of time when the query is active.

The following definition specifies the set of data objects within the query window
at t. Note that queries use different window sizes, and therefore data objects within
the windows of different queries are also different at a point in time.

Definition 5 (Data objects in a query window) Let q ∈ Q be a k-NN/w query, let t
be a point in time when q is active. We define the set of data objects in the query
window Wq(t) ⊆ O of q at t as follows:

Wq(t)
def= {o : (o ∈ Vq) ∧ [tA

o < t ≤ (tA
o + wq)]}. (2)

In other words, a data object is within the query window at a point in time t, if
the object is valid for the query, and less than wq time units have passed since its
appearance. We are therefore supporting queries referencing future data objects. We
denote a point in time when o is dropped from the query window by tD

o such that
tD
o = tA

o + wq.
In addition to ordering objects by their time of appearance, objects may also be

ordered based on their content. Thus we define a scoring function for calculating
object-specific scores which enables object ranking with respect to a query.

Definition 6 (Scoring function) We define the scoring function u : Q × O �→ R as
follows

u(q, o) = d(pq, po) =
√
√
√
√

d
∑

i=1

(vi − υi)2, (3)

where q ∈ Q, o ∈ O, and pq = {υ1, υ2, . . . , υd} and po = {v1, v2, . . . , vd} are elements
from a d-dimensional Euclidean space R

d.

The scoring function is defined as the Euclidean distance between points rep-
resenting an object and query. Since we are interested in nearest neighbor points,
points with smaller scores are assigned with higher ranks with respect to the query.
The following definition specifies k-NN objects from the query window at t.

Definition 7 (k-NN objects in a query window) Let q ∈ Q be a k-NN/w query, and
let t be a point in time when q is active. We define the set of k-NN data objects in the
query window Tq(t) ⊆ Wq(t) for q at t as follows:

Tq(t)
def= {o : (o ∈ Wq(t)) ∧ (|Bq(o, Wq(t))| < kq)}, (4)

where Bq(o, Wq(t))
def= {o′ : (o′ ∈ Wq(t)) ∧ (u(q, o′) < u(q, o)} is the set of data ob-

jects from Wq(t) with better ranks for q than o at t.



World Wide Web (2011) 14:465–494 473

In other words, a data object o is a k-NN object for a query q at t if and only if
it is among kq best ranked objects, i.e. if po is among kq closest ponts to pq, within
the query window. The set of k-NN/w objects is continuously being updated because,
although object scores do not change over time, their rank with respect to the query
changes as new objects appear while others are dropped from the window. Next, we
define under which conditions a data object must be reported to a client as a result
object, and define a set that forms the correct answer to a k-NN/w query.

Definition 8 (Query result set) Let q ∈ Q be a k-NN/w query of a client cq ∈ C. We
define the query result set Rq ⊆ O for q as follows:

Rq
def= {o : (o ∈ O) ∧ ∃t(o ∈ Tq(t))}. (5)

The result set associated with a k-NN/w query q is deterministically correct if and
only if it contains all data objects from O that are k-NN objects in the query window
at any t, such that tA

q < t ≤ tC
q . Each data object o ∈ Rq has to be reported to client cq

with an active query q at a point in time tR
o when o becomes an element of Rq.

3.2 Problem statement

Let us now discuss when an object o becomes an element of Rq, i.e. the point in time
tR
o . According to Definition 7, an active object within a query window becomes a k-

NN query object when there are less than kq higher ranked objects within the query
window. This can happen under the following circumstances:

1. at tA
o when o enters the processor if and only if there are less than kq higher

ranked objects within the query window, and
2. at a later point in time tA

o < t ≤ tD
o when one of k-NN objects is dropped from

the query window and o has the highest rank among all other objects from the
window that are not within k-NN objects.

The implementation of the first scenario is quite straightforward: Each incoming
data object is compared against the list of current k-NN query objects, and, in case its
rank is higher than the rank of the last k-NN object, it is added into the query result
set. This requires continuous maintenance of k-NN objects in memory, because,
although these objects have already been inserted into the query result stream, they
are continuously compared to arriving objects. Additionally, we need to detect empty
slots in the k-NN list due to object droppings from the query window to implement
the second scenario.

The second scenario requires a more elaborate algorithm as it has already been
recognized in [4, 13, 20]: The processor needs to instantly fill the slot of a dropped
k-NN object with an object that currently has the best rank among non k-NN
objects within the query window. Therefore, the processor needs to store additional
candidate data objects in memory that have the potential to become k-NN objects.
A straightforward solution would store all data objects within the query window in
memory. However, since the number of objects in the query window can in general be
much larger than k, and as we assume that memory is limited, our goal is to minimize
the number of candidate objects maintained in memory.



474 World Wide Web (2011) 14:465–494

Let us discuss which data objects within the query window have the potential to
become k-NN/w objects in future. A data object dominates another object for a given
query if and only if the former object is more recent (i.e. younger) and has a higher
rank for the query than the latter object. It has already been shown that a data object
which is at a point in time dominated by k or more objects in the query window,
cannot become a k-NN/w object in the future for this query [4, 18, 20]. Therefore,
only those objects which are non-dominated (i.e. dominated by less than k objects)
at a point in time have potential to become k-NN/w objects in the future. According
to [24], the set of such data objects (at a point in time) is called k-skyband, while k-
skyline is a set of points that are dominated by k − 1 other points. The set of objects
within the k-skyband at a point in time contains all k-NN objects, and objects that
have the potential to become k-NN/w in future. Therefore, if a query k-skyband
is maintained in memory over time, it can be used to deterministically answer the
associated k-NN/w query.

The aforementioned problem of continuous k-skyband maintenance is related to
the sliding-window k-NN processing model since it enables model implementation
by maintaining the minimal and deterministic set of candidate objects that may over
time be reported as k-NN/w objects. Efficient maintenance of a k-skyband over
time is a non-trivial task, both in case of a centralized and distributed processor
architecture. In the centralized architecture k-skyband maintenance is implemented
at a single node, while in the distributed case each processing node maintains k-
skybands for queries under their responsibility. Thus in the following section we
discuss the algorithms for efficient k-skyband maintenance at a single k-NN/w
processing node because it is the building block of our distributed k-NN/w processing
system introduced in Section 5.

4 Centralized sliding-window k-NN processing

In this section we briefly present two original centralized sliding-window top-k
processing algorithms that form the building blocks of our distributed system:
Relaxed Candidate Pruning Algorithm (RA) and Probabilistic Candidate Pruning
Algorithm (PA). RA is deterministic and is based on the maintenance of a relaxed k-
skyband with candidate k-NN/w objects. PA is probabilistic and uses a probabilistic
criterion to decide whether a newly appearing object has good chances to become
a k-NN object in future or not. A detailed presentation of RA and PA along with
a complexity analysis and extensive comparative evaluation is available in [26]. The
evaluation has been performed in a centralized settings using both synthetic and real
datasets, and has shown that RA and PA significantly outperform the competing
approaches for centralized sliding-window top-k processing, both in terms of memory
consumption and processing efficiency. Both algorithms are generic, i.e. they support
various sliding-window top-k queries using arbitrary scoring functions, however, in
this paper they have been tailored to the specific problem of k-NN/w processing.
Please note that RA can be applied to all types of data stream sources, while PA
performs best in case when data objects are generated according to the random-order
data stream model. RA generates correct results at the expense of increased memory
consumption and processing performance compared to PA, while PA may generate



World Wide Web (2011) 14:465–494 475

false positive or false negative matching objects with a controllable probability of
error.

Furthermore, we briefly outline Relaxed Candidate Pruning Algorithm with Prob-
abilistic Filter (RAPF), a more efficient version of RA which uses a probabilistic filter
for delaying the insertion of recent objects with low ranks into the relaxed k-skyband.
To simplify discussion, we present RA, PA, and RAPF with respect to a single
k-NN/w query q = {pq, kq, wq, tA

q , tC
q } and the associated k-skyband maintenance.

Finally, we discuss the implementation which supports multiple queries, and explain
the indexing of k-NN queries in a regular grid.

4.1 Relaxed candidate pruning algorithm (RA)

As previously stated, the problem of k-NN/w processing can be reduced to the
maintenance of a k-skyband containing non-dominated objects. According to our
experiments [26], continuous maintenance of a strict k-skyband produces large
processing overhead due to immediate pruning of dominated objects after each
object arrival. Therefore, RA applies lazy pruning and allows referencing of addi-
tional dominated data objects in memory in a relaxed k-skyband. RA periodically
prunes dominated objects from the relaxed k-skyband and improves the processing
performance, while memory consumption is slightly increased compared to the strict
k-skyband maintenance.

We represent the relaxed k-skyband in memory using two self-balancing binary
trees, top tree and candidate tree, as shown in Figure 2. Each object is associated
with two attributes: its score with respect to a query (written inside the square which
represents an object in Figure 2), and its time of appearance. The top tree stores
k-NN data objects from the current window, while the candidate tree stores other
non-dominated objects for the query. Additionally we use a time tree to sort objects
by their time of appearance to efficiently locate objects which are dropped from a
query window.

The following parameters are associated with a query: (1) pruning coef f icient γ ,
and (2) candidate tree limit. The pruning coefficient represents the percentage of the
acceptable candidate tree size overhead compared to the strict k-skyband size, and is
used to calculate the candidate tree limit which determines the maximum candidate
tree size. When the candidate tree limit is reached, it triggers the process of relaxed
k-skyband pruning.

The processing of an incoming data object is done in three steps, as shown in
Figure 2. We first compare the incoming object score with the score of the top tree
tail. In the second step, the object is inserted either to the top tree if its score is lower
than the top tree tail, or otherwise to the candidate tree. In the third step, the process

Figure 2 RA: Three steps to
add object o into to the
relaxed k-skyband: 1 compare
o’s score with the top tree
tail, 2 insert o, and 3 prune
dominated objects if necessary.



476 World Wide Web (2011) 14:465–494

of pruning dominated objects is triggered if the number of objects in the candidate
tree is larger than the predefined limit. This process will reduce the relaxed k-
skyband to the strict k-skyband containing the minimal set of non-dominated objects
in the candidate tree.

Note that all top tree objects have already been reported as k-NN/w objects
upon insertion into the top tree, while candidate tree objects are waiting for their
opportunity to become k-NN/w objects when top tree objects are being dropped from
the query window. In particular, the candidate tree head will be moved to the top tree
to fill in the empty slot, and will subsequently be reported as a k-NN/w object to the
client. When a top tree object is dropped, it will be removed from the time tree and
top tree while its empty slot in the top tree will be filled by the candidate tree head.
The removal process from the top tree is straightforward because all other k-skyband
objects are younger and cannot be dominated by the removed object.

4.2 Probabilistic candidate pruning algorithm (PA)

In practice, most of the objects from a query k-skyband will never become k-NN/w
objects because k is typically much smaller than the number of non-dominated win-
dow objects, and will never be reported as answers to a client. Our original algorithm
PA utilizes this fact and prunes k-skyband objects that have small probability to
become top-k objects in future. It therefore maintains a significantly smaller set of
candidate data objects compared to RA, and is more efficient than deterministic
algorithms since memory consumption is the most important efficiency measure for
all streaming algorithms [13].

PA uses a probabilistic criterion originally published in [25] to decide upon object
arrival whether the object has good chances to become a top-k object with respect to
a query in future or not. If the computed probability of becoming a top-k object is
above a predefined threshold, the object is maintained in the probabilistic k-skyband;
otherwise, it is discarded. PA is based on the assumption that the sequence of data
objects entering the processor follows the random-order data stream model for which
any permutation of streaming data objects is equally likely to appear in a stream.
This does not imply that object scores are random for a query, but that data objects
are drawn independently from a non-time-varying distribution which characterizes
a number of independent data sources, e.g. RSS feeds or large sensor networks.
Random-order data stream model was originally introduced in [21], which is one
of the first papers in the field of data stream processing with limited memory, and
has been used to describe and analyze a number of real-world application scenarios
[6, 7, 10, 13]. In comparison to deterministic algorithms, the main drawback of PA is
that, as a probabilistic algorithm, it produces approximate results.

Analogously to RA, PA maintains the probabilistic k-skyband in memory using
two self-balancing binary trees sorted by ascending ranks, as depicted in Figure 3, and
an additional time tree. The probabilistic k-skyband structure is similar to the relaxed
k-skyband, and each object is associated with its score and time of appearance. The
top tree stores k-NN data objects, while the candidate tree stores other referenced
objects for a query, while the maximum number of such objects is smaller than the
probabilistic limit. Two attributes are associated with each query: (1) probabilistic
limit on the number of candidates, and (2) threshold. The probabilistic limit denotes
the maximum candidate tree size and is calculated using the probabilistic criterion



World Wide Web (2011) 14:465–494 477

Figure 3 PA: Four steps
to add object o to the
probabilistic k-skyband:
1 compare o’s score with the
threshold, 2 compare o’s score
with the top tree tail, 3 insert
o, and 4 update the threshold.

and a predefined acceptable probability of error. The threshold value is set to the
score of the candidate tree tail object.

The processing of an incoming data object is done in four steps, as shown in
Figure 3. We first compare the object score with the threshold, and abort the
procedure when it is higher that the threshold because the object has poor chances to
become a k-NN/w object, or otherwise continue with the second step. In the second
step we compare the object score with the score of the top tree tail. In the third step,
the object is inserted either to the top tree if its score is lower than the top tree tail,
or to the candidate tree. The candidate tree tail is removed from the probabilistic k-
skyband if the number of objects in the candidate tree is larger than the probabilistic
limit, and subsequently the threshold is updated. If the object is added to the top tree
such that its size becomes larger than k, we move the top tree tail to the candidate
tree.

4.3 Relaxed candidate pruning algorithm with probabilistic filter (RAPF)

RA inserts all incoming data objects into the relaxed k-skyband because all arriving
objects are non-dominated as they are the youngest. Many such objects may have low
ranks with respect to a query, and will soon become dominated by new higher ranked
and more recent objects. The insertion of such objects into the k-skyband wastes a lot
of resources, and thus we design an enhanced version of RA which filters out recent
objects with low ranks and delays their insertion into the relaxed k-skyband. The
algorithm is named Relaxed candidate pruning Algorithm with Probabilistic Filter
(RAPF) because it reuses the probabilistic criterion applied by PA to implement the
probabilistic filter.

To enable filtering of recent objects, we employ recent buf fer, a special FIFO
buffer of b most recent incoming objects represented in memory as a singly-linked
list of objects (b is typically much smaller than the number of query window objects).
We associate an auxiliary probabilistic k-skyband to a query—probabilistic f ilter
(PF)—filled with data objects from the buffer. Note that a filter is quite similar to
a query: the major difference is in the set of objects that are of interest to a filter, i.e.
the b most recent objects from the stream compared to all objects within the window
of size wq.

The filter is probabilistic because the number of objects maintained in the filter
k-skyband is calculated using the probabilistic criterion defined for PA. It enables
filtering of objects with low ranks by avoiding their insertion into the relaxed k-
skyband associated with a query at the time of object arrival: An object o is rather
temporary maintained in the probabilistic filter, and the filter makes the second
attempt to insert o into the query k-skyband, just before it is dropped from the buffer.



478 World Wide Web (2011) 14:465–494

At a later point, o will probably be dominated by younger objects with higher ranks,
and will be discarded, unless the quality of incoming data objects with respect to the
query changes such that newly arriving objects mainly have lower ranks than o. In
the second insertion attempt we insert o in the relaxed k-skyband only if less than
k higher ranked objects are left in the filter, and it was not inserted in the relaxed
k-skyband during the first attempt. Otherwise, o is discarded since it is dominated
for the query by k or more objects in the buffer.

Note that RAPF is a deterministic algorithm, although it uses the probabilistic
filter, because of the two insertion attempts into the query k-skyband for each
incoming data object. If an object is not among k-NN buf fer objects when it enters
the system, its insertion into the query k-skyband is delayed. The buffer size is chosen
such that the object cannot become a k-NN query object while in the buf fer because
of other better ranked objects within the window. When the object is dropped from
the buffer, it may become a k-NN object in the window and therefore we perform
the second insertion attempt into the query k-skyband. Only non-dominated buffer
objects are inserted into the query k-skyband in the second insertion attempt, and
therefore the probabilistic filter is needed to maintain such non-dominated buffer
objects. The proof of the aforementioned property, as well as the condition for
choosing an adequate buffer size is available in [26]. Moreover, our experiments show
that RAPF significantly outperforms RA in terms of processing efficiency although
it stores all buffer objects in memory,2 and requires the maintenance of an additional
filter k-skyband per each query. However, the filter k-skyband is probabilistic and
contains a small number of objects compared to the number of objects in the relaxed
query skyband. Additionally, it enables query indexing which enables a highly-
efficient algorithm implementation for multiple query processing, as explained in the
following subsection.

4.4 Supporting multiple k-NN/w queries

When multiple k-NN/w queries are simultaneously active in the system, a few addi-
tional data structures and minor algorithm modifications are needed when compared
to single k-NN/w query processing. The following data structures are introduced:

1. query tree, a self-balancing binary tree for storing all active queries and query
filters in the system;

2. object tree, a self-balancing binary tree for storing all data objects that are
referenced by at least one query k-skyband or filter;

3. common time tree shared among all queries and filters in the system since it is
more efficient than having separate time trees for different queries; and

4. single recent buf fer shared among all filters in the system.

If we closely analyze PA, we conclude that a query does not need to be informed
about a newly arrived object if its score is higher than the k-NN/w query threshold.
On the contrary, RA works by processing all incoming data objects and does not
define such a threshold. However, RAPF defines a threshold as the score of the
filter element with rank k, because in both insertion attempts only objects with ranks

2Note that the buffer is shared by all queries processed on a single processing node.



World Wide Web (2011) 14:465–494 479

Figure 4 Indexing of k-NN
queries in a regular grid.

higher than this object are inserted to the corresponding relaxed query k-skyband.
Note that all thresholds values change in time with object arrivals and droppings.

Query indexing reduces the number of data objects a query needs to process by
skipping those objects that are certainly not potential k-NN/w objects for the query,
and identifies the attribute subspace of interest for the query using the identified
threshold. We use a regular grid for indexing k-NN/w queries: It divides an attribute
space in cells of equal size, while a threshold defines the subspace of interest for a
query. Therefore, each threshold represents the radius of the subspace of interest
around a query point. Please note that the space of interest is covered by the cells of
interest from the regular grid that encompass a larger portion of the attribute space
than the subspace of interest itself. An example query with a hypersphere delimiting
its subspace of interest, and the corresponding cells of interest is depicted in Figure 4.
Since o2 and o3 fall within the cells of interest of query q, the query will be informed
about the appearance of o2 and o3, but not about object o1 which is outside the cells
of interest. Note that a query subspace of interest is varying in time due to continuous
threshold changes and can either expand or contract.

Query indexing changes PA and RAPF implementation in the following way:
Upon each object arrival, we first find the grid cell in which the new object resides,
and then find a subset of queries whose cells of interest encompass this cell to inform
them about the appearance of the new object. Therefore only a subset of active
queries processes an incoming object instead of all active queries which is necessary
in case when a processing node applies RA.

5 Distributed sliding-window k-NN processing

The major challenges arising in real-time processing of data streams are related to
real-time computation, storage, and transmission of data objects to the processing
node [22]. The centralized k-NN/w processing algorithms presented in Section 4
(RAPF and PA) can deal with the first two issues since they are designed for
efficient processing with low memory consumption. However, centralized processing



480 World Wide Web (2011) 14:465–494

cannot deal with the third issue especially in environments with highly-distributed
data sources because object transmission introduces significant latency and generates
huge network traffic. Moreover, a centralized solution is not scalable for an increas-
ing number of clients and queries because a single k-NN/w processor becomes the
major system bottleneck.

The scalability problem can be solved by employing a network of k-NN/w
processing nodes, and by distributing the queries and thus processing load among
such nodes. Each node is built as a k-NN/w processor implementing either RAPF or
PA. It processes incoming data objects to deliver k-NN objects to querying clients
under their responsibility, and acts as a representative for both querying and data
producing clients since true data produces/consumers typically connect to the closest
nodes in terms of network distance. Such distributed architecture can balance the
load among k-NN/w processing nodes expressed as the number of queries under
each node responsibility. The next question arising from such network organization
is related to distribution of incoming data objects over processing nodes. A simple
solution that floods data objects across all processing nodes is unscalable in terms
of generated traffic similarly to the centralized solution. It is therefore necessary
to distribute the queries and incoming data objects across the nodes such that an
incoming object needs to be processed by a minimal set of k-NN/w processing nodes
(preferably even by a single node).

Peer-to-peer (P2P) networks offer the means for distributing queries and data
objects in a decentralized fashion while balancing the load among the peers, i.e.
nodes. We employ CAN [27] as the underlying structured overlay interconnecting
the k-NN/w processing nodes. CAN arranges a multi-dimensional Euclidean space
between the nodes in a self-organizing way. Since in our model data objects and
queries are represented as points from the Euclidean space while the distance
between two points defines our scoring function, CAN was a natural choice for the
underlying structured overlay.

This section presents D-ZaLaPS, a distributed k-NN/w processing system which
successfully copes with the previously mentioned stream processing challenges. It is
a hybrid between a P2P publish/subscribe system and data stream processing engine
built on top of CAN that relies on indexing of k-NN queries in a regular grid as
explained in Section 4.4. In the following we explain how k-NN/w nodes are mapped
onto CAN, and later on describe the protocols for query activation/cancellation
and data object publication in our distributed system architecture. Furthermore, we
introduce the protocols for peer joins, departures, and failures.

5.1 CAN overlay for k-NN/w processing

Content Addressable Network (CAN) is a structured peer-to-peer overlay network
which dynamically partitions a d-dimensional Euclidean space on a d-torus into
zones. It assigns non-overlapping zones to the peers, and ensures that peers in
neighboring zones are connected, while each part of the Euclidean space has a
responsible peer. Every peer maintains a routing table storing the IP address and
information regarding assigned zone for each of its neighbors. This purely local
information is sufficient to route a message between any two arbitrary points in the
space: The points are assigned to responsible peers in their zones and each peer
on the path from the source to destination peer forwards a message to a selected



World Wide Web (2011) 14:465–494 481

neighbor that is the closest to the destination point in the Euclidean space. CAN also
supports dynamic joining/leaving of peers, and enables load balancing between the
peers such that the Euclidean space is divided according to the current peer load, and
not evenly. For details regarding CAN please refer to [15, 27].

Let us discuss how D-ZaLaPS divides the d-dimensional CAN space among the
processing nodes, and assigns responsibility for query activation/cancellation and
data processing. It partitions the attribute space to cells as in the grid to identify
cells of interest for a query, and assigns responsibility over CAN zones to peers,
where each zone comprises a set of cells. However, please note that the size and the
distribution of the cells depends on the distribution of data in the CAN space. For
example, in the case of uniform data, all cells should be equal in size and uniformly
distributed in the CAN space. On the other hand, in the case of clustered data, cells
should be smaller and placed more densely around the center of a cluster. Both
queries and data objects fall into cells from the Euclidean space based on the points
which represent them, and each peer is responsible for processing those queries and
data objects assigned to cells within its zone of responsibility.

For example, Figure 5 shows a two-dimensional CAN space consisting of 32 zones
assigned to 32 peers. Zone boundaries are depicted by solid lines while peers are
represented by black dots. The CAN space is also partitioned into cells of equal
size and cell boundaries are depicted by dotted lines. It is visible that some zones
comprise 2, while other comprise four cells. A new peer joining the network may split
a two-cell zone with an existing peer and therefore also one-cell zones are possible in
our example. Note that zones cannot be smaller than cells.

The additional partitioning of zones into cells is needed to reduce the message
overhead when updating query thresholds, as explained later in this section. Our
approach can be further generalized to support zones comprising cells of different
sizes: Each peer would have to partition its zone into cells, and inform its neighbors
about the partitioning of its zone, similarly to zone partitioning which CAN uses. In
addition to having zone-related information of neighboring peers, each peer would
also maintain information regarding cell partitioning of each zone. For distributing
cell partitioning information between neighboring peers we use existing messages

Figure 5 The partitioning of
CAN space into zones and
cells.

y

x



482 World Wide Web (2011) 14:465–494

defines by the CAN protocol, neighbor inform messages, which are periodically ex-
changed between neighboring peers. Balanced zone partitioning solves the problem
of cell overload, while CAN deals with load balancing at the peer level. However,
to simplify the presentation, let us assume that cells are of equal size, and that they
correspond to cells within the regular grid.

5.2 Protocols for query and data processing

Let us now explain the algorithms for query and data routing. Each peer is the
rendezvous peer for all queries and data objects belonging to its cells of responsibility.
In this way, each newly appearing object and activated query is routed to the respon-
sible rendezvous peer. A rendezvous peer processes only queries and incoming data
objects under its responsibility. As producing and consuming clients are connected to
peers, a peer can act as a source peer for a data object and an owner peer associated
with an activated query. Note that an owner peer is probably not the rendezvous peer
for its own queries, although such situation is possible in practice.

A query under the responsibility of a peer may cover the cells of interest outside
the zone of peer responsibility because cells of interest for a query change over time,
and each rendezvous peer is usually responsible for a set of queries. Therefore, a
peer needs to interact with its neighboring peers to receive data objects of interest
for its queries, although the peer is not responsible for processing such queries. To
reduce the number of exchanged messages between neighboring peers, each peer
merges the queries it is responsible for in a special merger which covers all subspaces
of interest of the merged queries. The subspace of interest of such a merger is always
mapped to cells, while peers responsible for the cells are informed with a merger
update message that the rendezvous peer is interested in data objects belonging to
their cells. Therefore, such peers forward data objects falling into cells under their
responsibility to interested rendezvous peers for further processing.

Query activation When a new query is activated, the owner peer uses the CAN
protocol to route a query activation message to the rendezvous peer responsible
for the query. Subsequently, the rendezvous peer merges the new query with other
queries under its responsibility. If the created merger expands to additional cells due
to new query activation, the rendezvous peer will inform all peers responsible for
cells within the merger that it is interested in data objects belonging to their cells by
sending a merger update message.

Figure 6 depicts an example query activation in a CAN network. Upon query
activation by its client, the owner peer sends a query activation message to the
responsible rendezvous peer, as shown in Figure 6a. In Figure 6b we see that the
query has expanded the merger of the rendezvous peer, which than sends merger
update messages to the neighboring peers covering the new merger subspace of
interest.

Query cancellation Similarly to query activation, when a query is canceled, the
owner peer sends a query cancellation message to the rendezvous peer responsible for
the query. The rendezvous peer contracts its merger if necessary, and subsequently
sends a merger update message to all peers responsible for cells that are no longer of
interest.



World Wide Web (2011) 14:465–494 483

y

x

Query activation 
message

Query subspace 
of interest

Owner 
peer

Merger

Rendezvous 
peer

(a) Activation message propagation

Merger update 
messagey

x

Expanded
merger

(b) Merger updating

Figure 6 Query activation in D-ZaLaPS.

Note that query activation and cancellation expands and contracts a merger of a
rendezvous peer causing the generation of merger update messages. We investigate
the number of such messages in the experimental evaluation in Section 6, and show
that the number of merger update messages would be significantly larger if the
attribute space has not been partitioned into cells.

Data object appearance When a new data object appears, the source peer sends
it in a notify rendezvous peer message to the rendezvous peer responsible for the
object. The rendezvous peer performs k-NN/w processing of this object for active
queries under its responsibility using either RAPF or PA. From Section 4.4 we know
that a query is interested in a data object if object score with respect to the query
is lower than the query threshold. When this happens, the rendezvous peer directly
forwards the new object to the query owner peer in a notify owner peer message.
Additionally, it also forwards the object in a notify interested peer message to those
peers that have previously expressed interest in the cell to which the object belongs
to. When a peer receives a notify interested peer message, it performs the regular
k-NN/w processing and may report the object as a k-NN/w object to a set of query-
owner peers, or store it as a candidate object for some of its queries. The third option
is to discard the object as it has low probability to become a k-NN/w object if the node
applies PA, or store it temporarily in its recent buffer if the node applies RAPF for k-
NN/w processing. Note that a recent buffer has to be maintained at every rendezvous
peer, and is shared by all queries under the peer’s responsibility. Analogously to
the centralized implementation when we try to insert a data object into a k-skyband
twice, the rendezvous peer also has to notify interested peers about a data object
twice: the first message is sent immediately after object arrival, whereas the second
is sent when the object is dropped from the recent buffer.

Figure 7 shows an example scenario for data object activation. The object is first
forwarded in a notify rendezvous peer message to the responsible rendezvous peer
which forwards the object to an interested peer. The interested peer processes the
received data object and concludes that this object is a k-NN/w object for the query
whose activation is shown in Figure 6. Thus the peer stores it in the query k-skyband,



484 World Wide Web (2011) 14:465–494

y

x

Notify rendezvous 
peer message

Notify interested
peer message

Rendezvous 
peer

Interested
peer

Source
peer

(a) Propagation of messages: notify rendezvous peer
and interested peer

y

x

Owner
peer

Interested
peer

Notify owner
peer message

(b) Forwarding a k-NN/w object to the
query owner peer

Figure 7 Data object appearance in D-ZaLaPS.

and forwards the object to the query owner peer in a notify owner peer message, as
shown in Figure 7b.

5.3 Protocols for peer joins, departures and failures

The CAN overlay network handles peer joins, departures, and failures by using
special self-organizing protocols. D-ZaLaPS reuses existing CAN protocols for this
purpose with minor modifications.

Peer join Upon joining, a new peer randomly selects a point in the Euclidean
space and sends a join message to the rendezvous peer responsible for this point.
The message is routed through the CAN network starting at any CAN peer. Upon
receiving the join message, the rendezvous peer splits its zone of responsibility in two
equally sized sub-zones while taking into account cell granularity, selects one of two
sub-zones for itself, and assigns the other sub-zone to the new peer. The rendezvous
peer also hands over the responsibility for queries belonging to the assigned zone
by forwarding them to the newly joined peer. Additionally, both the rendezvous and
newly joined peer inform their neighbors about the new organization of the CAN
subspace.

Peer departure In case of peer departure, the departing peer explicitly hands over
its zone of responsibility and the corresponding cells to one of its neighbors. The
departing peer initiates the hand over process by sending a departure message to the
selected neighbor. Similarly to the peer join procedure, the selected neighbor informs
all of its current neighbors about the departure. Both peer joins and peer departures
affect only a small portion of an existing CAN network which is a desirable property
in case of churn.

Peer failure Under normal operating conditions, a peer periodically sends neighbor
inform messages to inform its neighbors about the partitioning of its zone of respon-
sibility into cells. The prolonged absence of neighbor inform messages indicates the



World Wide Web (2011) 14:465–494 485

failure of the corresponding neighbor. When a peer detects such failure, it initiates
the CAN mechanism for takeover of the abandoned zone of responsibility by one of
the failed peer neighbors. Please note that the abandoned queries (and data objects
memorized in the recent buffer) would be lost in the case of peer failure without an
additional replication technique. Standard CAN replication techniques can be used
for replicating queries and data objects at neighboring nodes.

6 Experimental evaluation

The experimental evaluation represents a feasibility study of the proposed distrib-
uted solution, and examines the number of exchanged messages in the peer network
due to introduced protocols for query and data processing. In particular, we examine
control messages (notify interested peer and merger update messages) because they
are exchanged among neighboring peers, while query activation/cancellation and
notify rendezvous peer messages use the standard CAN routing. Next, we compare
a distributed solution to centralized in terms of exchanged messages and processing
load per peer. Furthermore, we examine how the varying window size and data/CAN
dimensionality affect our distributed system. Finally, we provide a scalability study
for an increasing number of queries and peers in the system.

The experimental evaluation is performed using two synthetic and one real
data set. In particular, we generate uniform and clustered Gaussian data within
the interval [0, 1]. The clustered Gaussian data has two randomly chosen cluster
centers and variance equal to 0.1 for each dimension. It has similar properties to the
distribution of our real data set which is an excerpt of the LUCE deployment data,
environmental data collected from a large-scale wireless sensor network deployed
within the project SensorScope.3 The LUCE deployment data is preprocessed to
extract four-dimensional data objects (solar panel current, global current, primary
buffer voltage and secondary buffer voltage) and normalized to the values within the
interval [0, 1]. You can relate our data set to the motivating scenario (2) introduced
in Section 1.

Our CAN network is composed of 256 peers that are randomly selected to
generate both queries and data objects, and therefore become query owners and
object producers. Each experimental run is performed with the total of 400 queries
and 106 data objects, while the number of objects within the query window of all
queries is set to 40,000. The default simulation parameters used in the evaluation are
specified in Table 1.

We evaluate the system in a static network scenario which can be considered as a
typical baseline operational scenario for a Sensor Web application. After creating a
CAN network using the default CAN protocol, we first produce the set of k-NN/w
queries, either by taking a random sample from the LUCE data, or by generating
queries using one of the listed distributions. Each query is assigned to a randomly
selected owner peer that activates the query. Second, we simulate the generation of
data objects, either by randomly choosing data objects from the LUCE data, or by
generating data objects using the same distribution as for the previously generated

3http://sensorscope.epfl.ch/

http://sensorscope.epfl.ch/


486 World Wide Web (2011) 14:465–494

Table 1 Simulation
parameters.

Parameter Symbol Value

Number of data objects N 106

Number of queries m 400
Intensity of object appearance λ 40,000

(objects/window)
Recent buffer size b 2,000
Data dimensionality d 4
Grid resolution ρ 12
RA: pruning coefficient γ 0.2
PA: probability of error σ 10−3

Peers C 256

queries. A source peer for each simulated data object is chosen randomly from
the CAN network. Finally, after N incoming objects are processed, we analyze the
obtained query result set. It is important to mention that before each simulation run,
we first publish 105 data objects to set initial query thresholds for all the queries so
that system performance is analyzed under regular working conditions.4

Note that we use a regular grid with cells of equal size in all experiments,
regardless of the data and query distribution. Such setup is optimal for the uniform
data set because the load on the peers is balanced, but it also produces the largest
number of control messages compared to the clustered and real data set. Conversely,
in case of experiments with clustered and real data sets, peers located at the cluster
center are highly loaded, although the number of exchanged messages in the entire
network is smaller. The standard CAN mechanism for load balancing can be used
to alleviate the problem, however note that a peer zone cannot be smaller than a
grid cell. In case the grid is designed to follow the data distribution, results for the
clustered and real data set would be the same as for the uniform dataset.

6.1 Number of exchanged messages

We investigate the number of exchanged messages in terms of the average number
of generated messages within the peer network per each published data object to
measure the overhead compared to a single message required to deliver the object
to a centralized processor. Note that there are 400 active queries in the system and
therefore these numbers include all exchanged messages needed for the parallel
processing of all queries.

Notify owner peer messages Figure 8 shows the average number of exchanged notify
owner peer messages per appeared data object in the default simulation scenario.
The number of such messages equals the number of reported k-NN/w objects to
querying peers, and obviously it grows when increasing k. For example, we report
on average around 1 data object per all 400 queries when k = 81 for each published

4A k-NN/w query is interested in the entire attribute space upon activation until its threshold is set to
an initial value. This process can generate a lot of threshold update messages. However, in a real-life
system query thresholds can initially be estimated based on data stream characteristics and history.
For this reason, we evaluate the system in a typical situation with already set thresholds.



World Wide Web (2011) 14:465–494 487

Figure 8 Average number of
exchanged notify owner peer
messages per appeared data
object.

1 3 9 27 81
0

0.5

1

1.5

k
nu

m
be

r 
of

 m
es

sa
ge

s

 

 

uniform dataset
clustered dataset
real dataset

object. The number of reported objects is independent of the data set, and this
experiment shows our implementation is in line the the proposed model since it
performs effective filtering of the input data stream regardless of the dataset. Since
PA has very low error rate, the number of generated messages for PA is similar to
RAPF and therefore the differences are not visible in Figure 8.

Notify interested peer and merger update messages Figure 9 shows the number of
exchanged notify interested peer messages per appeared data object for different
data sets. The number of such messages depends on the query threshold since a
query with a larger threshold has a larger subspace of interest which spans the zones
of more peers. For all data sets, when k > 3, PA-based implementation generates
significantly less messages than RAPF-based implementation. This is expected since
PA usually sets lower query thresholds than RAPF, and additionally, there are two
object insertion attempts for RAPF per each published data object. The number of
messages is the highest for the uniform dataset as query thresholds are the largest.
However, all peers generate and consume on average the same number of messages,
while in case of clustered and real data set the message distribution within the peer
network is unbalanced.

1 3 9 27 81
2

4

6

8

10

12

14

k

nu
m

be
r 

of
 m

es
sa

ge
s

uniform dataset
clustered dataset
real dataset

(a) PA-based k-NN/w queries

1 3 9 27 81
0

20

40

60

80

100

k

nu
m

be
r 

of
 m

es
sa

ge
s

uniform dataset
clustered dataset
real dataset

(b) RAPF-based k-NN/w queries

Figure 9 Average number of exchanged notify interested peer messages per appeared data object.



488 World Wide Web (2011) 14:465–494

1 3 9 27 81
0

0.5

1

1.5

2

2.5

k

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(a) PA-based k-NN/w queries

1 3 9 27 81
0

10

20

30

40

k

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(b) RAPF-based k-NN/w queries

Figure 10 Average number of exchanged merger update messages per appeared data object.

Figure 10 shows the number of exchanged merger update messages per appeared
data object for different data sets. As the number of such messages depends on
the frequency of query threshold changes, PA-based implementation generates
significantly less merger update messages than RAPF-based implementation because
PA thresholds change less frequently. As for the notify interested peer messages,
the number of merger update messages is the highest for the uniform dataset. If
we closely analyze the number of generated messages per processed object, it turns
out that notify interested peer messages represent the larges overhead, however the
number of such messages is quite low for PA-based implementation.

Total number of generated messages Figure 11 shows the average number of all
generated messages per appeared data object during the default simulation scenario
for different data sets. The number of messages obviously grows for increasing k
as more stream objects are reported as k-NN/w objects. PA-based implementation
generates up to six times less messages than RAPF-based implementation. In
particular, it grows up to 21 messages which is quite low compared to 256 messages
that would be needed in case all published data objects are flooded to all peers.

1 3 9 27 81
5

10

15

20

25

k

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(a) PA-based k-NN/w queries

1 3 9 27 81
0

50

100

150

k

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(b) RAPF-based k-NN/w queries

Figure 11 Average number of all exchanged messages per appeared data object.



World Wide Web (2011) 14:465–494 489

6.2 Comparison with the centralized k-NN/w processing engine

We compare the average number of all exchanged messages in a distributed system
to the number of messages needed to transport all objects and queries to a single
processing node. Since notify interested peer and merger update messages do not
appear in the centralized setup, the total number of exchanged messages in the
centralized case is the sum of the query activation, notify rendezvous peer and notify
owner peer messages.

Figure 12 shows the percent increase of the number of exchanged messages in
the distributed system compared to centralized implementation. We observe that
distributed D-ZaLaPS using PA generates around 5–10 times more messages than
its analogous centralized version. However, since the complete processing happens
at a single node in the centralized case, the average peer load in the distributed
case is C = 256 times lower than the load of the centralized peer for the uniform
data set because the processing load is uniformly distributed among available peers.
Additionally, although the total number of exchanged messages is lower in the
centralized case, the average network traffic per peer is C

10 ≈ 25 to C
5 ≈ 50 times

lower in the distributed case. Similarly, distributed D-ZaLaPS with RAPF-based
implementation generates around 10–60 times more messages than a centralized
version which results in C

60 ≈ 4 to C
10 ≈ 25 times lower average traffic load per peer.

One may argue the increase of the total number of messages is significant for
the RAPF-based implementation, especially for large k, and therefore PA-based
solution would be offered as more economical with significantly lower processing
and message exchange load over processing nodes.

Furthermore, we can also see that for PA-based queries, the shown percent
increase decreases with increasing parameter k in the case of the clustered and real
dataset. This happens because in the distributed case, the number of notify owner
peer messages increases linearly with parameter k, as shown in Figure 8, while the
number of other types of messages increases sub-linearly with parameter k. However,
in the centralized case, the number of all messages grows linearly since the number
of query activation and notify owner peer messages is constant for different values of
parameter k. For this reason, the rate at which the total number of messages increases
with parameter k is higher for the centralized case than for the distributed case. The

1 3 9 27 81
400

500

600

700

800

900

k

 

 

Pe
rc

en
t i

nc
re

as
e 

(%
)

uniform dataset
clustered dataset
real dataset

(a) PA-based k-NN/w queries

1 3 9 27 81
1000

2000

3000

4000

5000

6000

7000

k

 

 

Pe
rc

en
t i

nc
re

as
e 

(%
)

uniform dataset
clustered dataset
real dataset

(b) RAPF-based k-NN/w queries

Figure 12 Percent increase in the number of exchanged messages when compared to the centralized
k-NN/w processing system.



490 World Wide Web (2011) 14:465–494

10000 20000 40000 80000 160000
5

10

15

20

25

w

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(a) PA-based k-NN/w queries

10000 20000 40000 80000 160000
15

20

25

30

35

40

45

w

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset
real dataset

(b) RAPF-based k-NN/w queries

Figure 13 Average number of all exchanged messages per appeared data object for varying query
window size.

sudden drop of the percent increase for k = 81 in the case of clustered dataset and
RAPF-based queries can be explained analogously.

6.3 Varying query window size and data dimensionality

Figure 13 shows the average number of all exchanged messages per appeared data
object for varying query window sizes. In the case of PA-based k-NN/w imple-
mentation, the number of messages decreases with increasing window size because
less objects are dropped from a larger query window which then results in both
lower and less dynamic query thresholds. The direct consequence is a lower number
of exchanged notify interested peer and merger update messages. For RAPF-based
implementation, the number of exchanged messages does not depend on query
window sizes since query thresholds are influenced by the recent buffer size, and
not by the query window size.

Figure 14 shows the average number of all exchanged messages per appeared
data object while varying data dimensionality. We show only the results for the
uniform and clustered dataset since the dimensionality of the real dataset is lower

2 4 8
0

20

40

60

80

100

120

d

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset

(a) PA-based k-NN/w queries

2 4 8
0

100

200

300

400

d

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

uniform dataset
clustered dataset

(b) RAPF-based k-NN/w queries

Figure 14 Average number of all exchanged messages per appeared data object for varying data
dimensionality.



World Wide Web (2011) 14:465–494 491

200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2
x 10

7

number of queries

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

notify interested peer
merger update
all

(a) PA-based k-NN/w queries

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12
x 10

7

number of queries

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

notify interested peer
merger update
all

(b) RAPF-based k-NN/w queries

Figure 15 Total number of exchanged messages for different number of queries.

than 8. In this experiment we keep the number of grid cells g = 216 constant for
different data dimensionality. For this reason, the grid resolution ρ is varying with
dimensionality, i.e. it was 256, 16 and 4 in the case of 2, 4 and 8-dimensional data,
respectively. For the uniform dataset, the number of messages for both the PA-
based and RAPF-based implementation increases exponentially with the increasing
dimensionality. The explanation for such behavior is in the number of peer neighbors
(including edge peers) which equals 3d − 1. However, in the case of a clustered
dataset, we can see that the number of messages for both the PA-based and RAPF-
based implementation increases linearly because clustered data is generated with
fixed variance for each dimension, which, when increasing the data dimensionality,
results in the decreasing proportion of the hyperspace in which data is generated.
The combined influence of these two factors produces a linear grow on the number
of messages in this case.

6.4 Scalability

We evaluate the scalability of the D-ZaLaPS system when the number of queries
and peers increases, respectively. In both experiments we use the default simulation
setup producing 106 data objects with the uniform dataset.

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

x 10
7

number of peers

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

notify interested peer
merger update
all

(a) PA-based k-NN/w queries

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
x 108

number of peers

nu
m

be
r 

of
 m

es
sa

ge
s

 

 

notify interested peer
merger update
all

(b) RAPF-based k-NN/w queries

Figure 16 Total number of exchanged messages for different number of peers.



492 World Wide Web (2011) 14:465–494

In Figure 15 we can see that the system is scalable since the number of messages
grows sub-linearly with the increasing number of queries. However, please note that
the number of merger update messages grows linearly with the increasing number of
queries, while the number of messages is almost an order of magnitude higher for
RAPF compared to PA in our simulation setup.

In Figure 16 we see that the system is scalable since the number of messages
grows logarithmically for PA-based queries with an increasing number of peers, and
sub-linearly for RAPF-based queries. As in the previous experiment, the number
of merger update messages scales worse than the number of notify interested peer
messages.

7 Conclusions and future work

In this paper we have presented an approach to distributed processing of continuous
k-NN queries over sliding windows which combines the distributed nature of pub-
lish/subscribe systems with processing efficiency of data stream processing systems.
We have shown that our model and corresponding system implementation enable
effective filtering of data objects published by distributed data sources. In contrast
to existing data stream processing systems for efficient processing of k-NN queries
over sliding windows that are centralized, in this paper we offer the first distributed
solution built over the CAN overlay. Our experiments using both real and synthetic
data sets demonstrate the feasibility of the proposed solution because the message
overhead of D-ZaLaPS is acceptable and beneficial in terms of peer processing load.
Moreover, the PA-based implementation has significantly lower messaging overhead
compared to RAPF-based implementation, and should be applied when network
resources are scarce. The proposed system is scalable because the generated network
traffic expressed in terms of the number of generated messages grows sub-linearly
with increasing number of queries, and logarithmically with increasing number of
peers. Therefore, it represents a viable system for effective and efficient filtering
of structured data published on the Web at high rates, such as the Sensor Web. It
could also be applied to process semi-structured data which can be represented in
attribute spaces with low dimensionality, and our future work will be directed to
design methods for efficient indexing of queries in such attribute spaces and evaluate
them experimentally.

Acknowledgements This work was carried out within the research project “Content Delivery and
Mobility of Users and Services in New Generation Networks”, supported by the Ministry of Science,
Education and Sports of the Republic of Croatia.

References

1. Aberer, K.: P-grid: a self-organizing access structure for P2P information systems. LNCS 2172,
179–194 (2001)

2. Balazinska, M., Deshpande, A., Franklin, M.J., Gibbons, P.B., Gray, J., Hansen, M., Liebhold,
M., Nath, S., Szalay, A., Tao, V.: Data management in the worldwide Sensor Web. IEEE
Pervasive Computing 6(2), 30–40 (2007)



World Wide Web (2011) 14:465–494 493

3. Bell, T.A.H., Moffat, A.: The design of a high performance information filtering system.
In: SIGIR, pp. 12–20 (1996)

4. Böhm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing continuous k-nn queries on data
streams. In: ICDE, pp. 156–165 (2007)

5. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In: PODC (2004)
6. Chakrabarti, A., Cormode, G., McGregor, A.: Robust lower bounds for communication and

stream computation. In: STOC, pp. 641–650 (2008)
7. Chakrabarti, A., Jayram, T.S., Pǎtraşcu, M.: Tight lower bounds for selection in randomly or-

dered streams. In: SODA, pp. 720–729 (2008)
8. Conover, H., Berthiau, G., Botts, M., Goodman, H.M., Li, X., Lu, Y., Maskey, M., Regner, K.,

Zavodsky, B.: Using Sensor Web protocols for environmental data acquisition and management.
Ecol. Informa. 5(1), 32–41 (2010)

9. Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc top-k query answering for data streams.
In: VLDB, pp. 183–194 (2007)

10. Guha, S., McGregor, A.: Approximate quantiles and the order of the stream. In: PODS,
pp. 273–279 (2006)

11. Haghani, P., Michel, S., Aberer, K.: The gist of everything new: personalized top-k processing
over web 2.0 streams. In: CIKM, pp. 489–498 (2010)

12. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and
Computational Geometry, chapter 24, pp. 529–562. CRC Press, Boca Raton (2004)

13. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on uncertain streams.
VLDB J. 19(3), 411–435 (2010)

14. Koudas, N., Ooi, B.C., Tan, K.L., Zhang, R.: Approximate nn queries on streams with guaranteed
error/performance bounds. In: VLDB, pp. 804–815 (2004)

15. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer
overlay network schemes. IEEE Commun. Surv. Tutor. 7, 72–93 (2005)

16. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases.
ACM Trans. Database Syst. 29, 319–362 (2004)

17. Michel, S., Triantafillou, P., Weikum, G.: Klee: a framework for distributed top-k query algo-
rithms. In: VLDB, pp. 637–648 (2005)

18. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding
windows. In: SIGMOD, pp. 635–646 (2006)

19. Mouratidis, K., Pang, H.: An incremental threshold method for continuous text search queries.
In: ICDE, pp. 1187–1190 (2009)

20. Mouratidis, K., Papadias, D.: Continuous nearest neighbor queries over sliding windows. IEEE
Trans. Knowl. Data Eng. 19(6), 789–803 (2007)

21. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. In: SFCS, pp. 253–258
(1978)

22. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput.
Sci. 1(2), 117–236 (2005)

23. Neumann, T., Bender, M., Michel, S., Schenkel, R., Triantafillou, P., Weikum, G.: Optimizing
distributed top-k queries. LNCS 5175, 337–349 (2008)

24. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems.
ACM Trans. Database Syst. 30(1), 41–82 (2005)

25. Pripužić, K., Podnar Žarko, I., Aberer, K.: Top-k/w publish/subscribe: finding k most relevant
publications in sliding time window w. In: DEBS, pp. 127–138 (2008)

26. Pripužić, K.: Top-k publish/subscribe matching model based on sliding window. Ph.D. thesis,
University of Zagreb (2010). Section 3: Efficient top-k/w processing over data streams

27. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable
network. In: SIGCOMM, pp. 161–172 (2001)

28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-
peer lookup service for internet applications. In: SIGCOMM, pp. 149–160 (2001)

29. Terpstra, W.W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer approach to
content-based publish/subscribe. In: DEBS, pp. 1–8 (2003)

30. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: Publish/subscribe functionality in IR environ-
ments using structured overlay networks. In: SIGIR, pp. 322–329 (2005)

31. Yu, H., Li, H.G., Wu, P., Agrawal, D., Abbadi, A.E.: Efficient processing of distributed top-k
queries. LNCS 3588, 65–74 (2005)



494 World Wide Web (2011) 14:465–494

32. Zhang, J., Suel, T.: Efficient query evaluation on large textual collections in a peer-to-peer
environment. In: P2P, pp. 225–233 (2005)

33. Zhang, Y.: Computing order statistics over data streams. Ph.D. thesis, University of New South
Wales (2008)

34. Zimmer, C., Tryfonopoulos, C., Berberich, K., Koubarakis, M., Weikum, G.: Approximate infor-
mation filtering in peer-to-peer networks. In: WISE, pp. 6–19 (2008)


	Distributed processing of continuous sliding-window k-NN queries for data stream filtering
	Abstract
	Introduction
	Related work
	Sliding-window k-NN processing model
	Model definition
	Problem statement

	Centralized sliding-window k-NN processing
	Relaxed candidate pruning algorithm (RA)
	Probabilistic candidate pruning algorithm (PA)
	Relaxed candidate pruning algorithm with probabilistic filter (RAPF)
	Supporting multiple k-NN/w queries

	Distributed sliding-window k-NN processing
	CAN overlay for k-NN/w processing
	Protocols for query and data processing
	Protocols for peer joins, departures and failures

	Experimental evaluation
	Number of exchanged messages
	Comparison with the centralized k-NN/w processing engine
	Varying query window size and data dimensionality
	Scalability

	Conclusions and future work
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


