
World Wide Web (2011) 14:623–649
DOI 10.1007/s11280-011-0124-6

Indexing and querying segmented web pages:
the BlockWeb Model

Emmanuel Bruno · Nicolas Faessel · Hervé Glotin ·
Jacques Le Maitre · Michel Scholl

Received: 22 April 2010 / Revised: 4 February 2011 /
Accepted: 9 February 2011 / Published online: 8 March 2011
© Springer Science+Business Media, LLC 2011

Abstract We present in this paper a model for indexing and querying web pages,
based on the hierarchical decomposition of pages into blocks. Splitting up a page into
blocks has several advantages in terms of page design, indexing and querying such as
(i) blocks of a page most similar to a query may be returned instead of the page as
a whole (ii) the importance of a block can be taken into account, as well as (iii) the
permeability of the blocks to neighbor blocks: a block b is said to be permeable to a
block b ′ in the same page if b ′ content (text, image, etc.) can be (partially) inherited
by b upon indexing. An engine implementing this model is described including: the
transformation of web pages into blocks hierarchies, the definition of a dedicated
language to express indexing rules and the storage of indexed blocks into an XML
repository. The model is assessed on a dataset of electronic news, and a dataset
drawn from web pages of the ImagEval campaign where it improves by 16% the
mean average precision of the baseline.

E. Bruno (B) · H. Glotin · J. Le Maitre
LSIS, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex, France
e-mail: bruno@univ-tln.fr

H. Glotin
e-mail: glotin@univ-tln.fr

J. Le Maitre
e-mail: lemaitre@univ-tln.fr

N. Faessel
LSIS, Université Paul Cézanne, Avenue Escadrille Normandie-Niemen,
13397, Marseille Cedex 20, France
e-mail: nicolas.faessel@lsis.org

M. Scholl
Cedric/Wisdom, CNAM, 292 Rue St Martin, 75141, Paris Cedex 03, France
e-mail: michel.scholl@cnam.fr

624 World Wide Web (2011) 14:623–649

Keywords web page segmentation · block importance · block permeability ·
web image indexing · document indexing · document retrieval

Mathematics Subject Classifications (2010) H.3.1 · H.3.3

1 Introduction

We present in this paper a model for indexing and querying web pages according
to their content as well as to their visual rendering. A web page can be viewed as a
set of blocks containing multimedia information. The visual presentation of a block
(font size, background color, . . .) and its location in the page give information about
its importance. Moreover, a block content is permeable to other blocks: it can receive
from a neighbor block in the page or an embedded block, part or the totality of
its content (e.g. the text surrounding an image can be used to index this image).
Another advantage of splitting up a web page into blocks is that answers to queries
can be precisely localized: blocks containing the keywords of a query can be returned
instead of the page taken as a whole. One objective of this paper is to show that
taking into account the organization of the page layout, in addition to its textual
content can significantly improve the precision of web page querying. For example,
Figure 1 sketches the home page of an electronic news paper. This page (block 1)

Figure 1 A segmented web page into eight blocks (the block number is in the yellow disc).

World Wide Web (2011) 14:623–649 625

is decomposed into a title block (2) and three article blocks (3, 7, and 8). Block 3 is
itself decomposed into three blocks: a title block (4), a body block (5) and an image
block (6).

Segmentation of a web page into a hierarchy of blocks comes from the DOM tree
of this page and from visual information extracted by using the rendering engine
of a web browser (e.g., the Mozilla Gecko engine). In this paper we assume blocks
do not overlap and that the concatenation of the leaves of the hierarchy represents
the content of the page. The major contributions of this paper are (i) to take into
account the hierarchical decomposition of a page into blocks and (ii) to model a
page as a directed acyclic graph where each node represents a block, and each edge
label accounts for the permeability of the source node to the target node content. To
our knowledge, the latter feature is novel. We choose as a block querying paradigm
keyword indexing and querying according to the vector space model [11]: a block
content (text) is modeled by a vector in the N-dimensional space where N is the
size of the vocabulary of terms. Without loss of generality, we decide in this paper
that the only blocks whose content is not empty are the leaves of the hierarchical
decomposition. The content of other blocks (in particular those blocks containing
the leaves) are initially empty. Thanks to permeability, the content of the (non
empty) leaves is propagated to other blocks and eventually all blocks reachable
by permeability from a non empty block are modeled by a non null vector and
therefore can be indexed and queried. Querying returns blocks ranked according
to the classical cosine similarity measure. As other contributions, (i) we extend the
notion of block importance which does not depend on the content but on the block
visual rendering and location and we take it into account for block indexing, (ii)
we exhibit an XML jargon called “XML Indexing Management Language” (XIML)
for specifying the block permeability and importance and develop a complete query
engine. To assess the model we apply it to electronic newspapers and to a corpus of
web pages taken from the ImagEval campaign.

The paper is organized as follows: in Section 2 related work is given. The data
model is presented in Section 3 which starts with an introduction to the major
features of our block model illustrated on the web page of Figure 1. Section 4 presents
the engine developed for block extraction, indexing and querying. A set of experi-
ments is reported in Section 5 which illustrates the effectiveness of our decomposition
into blocks in terms of precise localization of the answer and illustrates the impact
of permeability on web page image indexing. Some concluding remarks are given
in Section 6.

2 Related work

Related work concerns web page segmentation, evaluation of block importance,
index propagation and image retrieval by surrounding texts. A large number of
studies have been reported in these areas, out of which we only cite the pionnering
ones or those which directly influence our study.

Page segmentation First approaches for block segmentation used manually defined
wrappers while earlier approaches used HTML analysis. VIPS (VIsion-based Page
Segmentation) [4] is an efficient and popular top-down algorithm to detect the

626 World Wide Web (2011) 14:623–649

structure of a web page based on its DOM tree and visual representation rendered
by a web browser. A simpler version of VIPS using the recursive X-Y cut algorithm
for on-line medical journal papers analysis is proposed in [17]. The recursive X-Y
cut algorithm was initially elaborated in the framework of a system for technical
journal analysis [8]. An automated information extraction system is presented in [15]
which takes advantage of the Web pages information regularities to organize their
content into a hierarchical XML-like structure. Like VIPS the page segmentation
algorithm relies on the DOM tree representation of the HTML page. The quality of
the information extraction is improved by using a statistical domain model. When
the visual schema of pages is regular and known, algorithms like VIPS are not really
necessary because segmentation can be done by transforming the HTML source of
the page on the basis of this schema, using classical XML manipulation languages. It
is our current choice.

Block importance evaluation Several methods have been proposed to compute the
importance of a block in a web page. The simplest [6, 9, 16] consist in classifying
blocks into informative ones and noisy ones. In [9] this classification is done on the
entropy of keywords in block textual content, and in [6, 16] it is based on block
features (text, presentation tags, links, etc.) and block frequency in the corpus (by
analogy with idf). The method presented in [12] is more ambitious. Blocks are
classified into four levels of importance: (i) non informative, (ii) useful but not
really linked to the main subject of the page, (iii) pertinent with this subject but
of relative importance, (iv) at the heart of the page. This importance is deduced
from spatial and content features of blocks. Classification is done using two learning
methods: regression by neural networks for continuous real importance labels and
classification by support vector machines for discrete importance labels. It is this
kind of approach that can be implemented to learn block importance in our model.
In the current state of our tool, importance is manually instantiated.

Index propagation A lot of studies have been done in this field in the framework of
the Initiative for the Evaluation of XML Retrieval (INEX1) in particular in the ad
hoc and multimedia tracks. In these works, it is the logical structure of the documents
(title, sections, paragraphs, etc.) which is taken into account whereas in our approach
it is the visual structure. Two important issues of information retrieval in structured
documents are indexing propagation between document elements and providing
best entry points. A very interesting solution is proposed in [5] for hierarchically
structured documents: indexing terms equally distributed on every child of an
element are pruned from this element and propagated to their parent element. The
distribution of a term is measured by its entropy which depends on its frequency
in children and parent elements. This process allows retrieving the most specific
elements pertinent to a query but also decreasing the number of terms indexing each
block. We plan to adapt this idea to improve our propagation algorithm.

Web image retrieval using their surrounding text Numerous propositions have been
made for web image retrieval using the surrounding text of each image. The authors

1http://www.inex.otago.ac.nz/data/publications.asp

http://www.inex.otago.ac.nz/data/publications.asp

World Wide Web (2011) 14:623–649 627

of [3] described an interesting web image classification method which operates as
follows. Each page is segmented into blocks using the VIPS algorithm and an image
graph is built. Each block contains one or several images and the text surrounding
them. The weights defined on the edges of the image graph reflect semantic rela-
tionships between images. Three representations of images are then derived: visual
features based representation, textual features based representation, and links graph
based representation which are combined to cluster images into semantic categories.
This work is somewhat close to our proposal with regard to image indexing. It shows
that extracting the surrounding text can be done more precisely when the page has
been previously segmented into blocks. We propose to go further in introducing
the permeability concept which allows to quantify the contribution of each textual
neighbor block of an image. On the other hand we do not use image features analysis
as developed in [14] for ImagEval image web corpus, but it is one of our perspectives
to use it.

3 The data model

Our model was first introduced in [1, 2]. With respect to these former versions, the
current article not only presents in depth the model but characterizes precisely the
impact of importance and permeability on block indexing as well. Moreover this
paper describes the implementation of the engine and gives a refined evaluation
of the impact of block decomposition and permeability on finding the best entry
point related to a query and on the learning of the permeability parameters for
image indexing.

Our starting point is a set of web pages. In this paper we are not concerned by the
links between pages and leave as a future work the possible enrichment of the data
model with hyper-links. We first informally present the basic concepts of the model
illustrating its applicability scope through indexing and querying which are the focus
of the rest of the paper. Then we give a formal presentation of the data model based
on (i) a decomposition of a page into a hierarchy of blocks, (ii) the construction of a
graph of blocks taking into account their importance and their permeability to other
blocks content, and (iii) the use of the IR vector space model [11] for indexing and
querying blocks.

3.1 Informal model

A large number of applications such as electronic news, use a regular decomposition
of pages into a hierarchy of blocks. This decomposition is not only regular but also
relatively stable with time and with different page designers in the same application.
Then a better modeling of blocks might have some impact not only on the quality of
answers to keyword querying, but also on the quality of the overall design of pages.

Relative importance of blocks is extracted from visual properties of the page
layout. For example, one among the sequence of news blocks, called a “scoop” has
more importance (larger size, displayed on the upper left part of the screen, larger
text font, etc.). In Figure 1, article 3 may be seen as more important than articles 7 and
8 because it has a larger size than articles 7 and 8 which have the same importance
because they have the same size.

628 World Wide Web (2011) 14:623–649

Importance of a block b, denoted α(b), is chosen as relative to the importance
of its twin blocks in the decomposition of a (parent) block into a set of blocks. In
Figure 1, each block is labeled with its importance: block 2 has importance 1, block
3 has importance 1.5 and blocks 7 and 8 have importance 0.75 (assuming that the
importance of an article is proportional to its size); block 4 has importance 2 and
block 5 has importance 1 (taking into account the text font size and assuming that
image blocks have null importance). Block importance may have several interpre-
tations such as “delete (select) blocks whose importance is under (above) a given
threshold”, or “retrieve the blocks containing the word XML whose importance is
larger than 1”.

Another rationale behind the page decomposition in fine grained units is efficient
indexing and querying. When searching for pages including one or several keywords,
the user expects as a result a set of ranked pages containing the query keywords. The
larger the page is, the harder information localization when browsing through the
page is. By customizing the vector model to blocks, one can index and search blocks
instead of pages tending to rank the block where the information is located before
the block/page that contains this block. As an example (Figure 1) if the query is
“web”, one expects the system to find first block 5, then with lower ranks block 3 and
block 1 (the page block).

Our following observation is the influence of spatial proximity of two blocks.
A newspaper reader attracted by a scoop is tempted to read next, one of the
neighbor blocks. This is why we introduce the concept of permeability: there is some
permeability between the content of two blocks close to each other in the page
layout. Taking into account permeability when weighting (for indexing purposes)
two neighbor blocks allows for a richer indexing and querying of blocks: query
“OTIM PIMC” should return first the page block (block 1) acknowledging that
by permeability the parent block (we assume it has no initial content) inherits
the keywords of its children blocks. Image annotation is another application of
permeability. An image (with no annotation) could be reasonably indexed by the
keywords of the neighbor block: the author photo (Figure 1) has for keywords
that of its neighbor blocks (BlockWeb, IR, web . . .). Permeability of a block b
to the content of a block b ′ is denoted β(b ′, b), a real ranging from 0 to 1. In
Figure 1 arrows between blocks represent the non zero permeabilities between
blocks. We have assumed that the image of an article is fully permeable to the article
title (β(4, 6) = 1) and partially permeable to the article body (β(5, 6) = 0.3). A 1
permeability can be interpreted as “a keyword of the source block is a keyword of
the target block”. Two blocks far away in the page layout should not be permeable to
each other: their mutual permeability is equal to zero. Note that if the initial content
of a block is non empty (it already has keywords) by permeability, eventually, it
is indexed on its initial keywords as well as on the keywords of blocks reaching it
by permeability.

Last we observe that the page hierarchy of blocks corresponds to the HTML
structure of the page where some subtrees have been aggregated into a single leaf.
We might be interested only in the leaf blocks of this hierarchy, we call it a view2

2The view represents the specification of a partition of the page into blocks.

World Wide Web (2011) 14:623–649 629

or in the parent blocks as well. In Figure 1, leaf blocks are blocks 2, 4, 5, 6, 7,
and 8 which constitute a view. However, another view could be obtained after
aggregation of the articles content (title, body, and images): the gray blocks. When
parent blocks initially have no keyword, thanks to permeability, they recursively
inherit the keywords of the leaf blocks. This is our choice in the following for
querying blocks. The restriction to the view (zero permeability between a block
and its parent) would imply parent blocks are not indexed. This might be useful
for some applications. There might be permeability between blocks which are not
in an ancestor relationship as well: it is the case for block 6 in Figure 1 which inherits
keywords from blocks 4 and 5.

3.2 Model

3.2.1 Blocks

We choose a tree representation of page information, appropriate for modeling
text information decomposition into sequences of more elementary texts. In other
words, the information contained in a block b is representable as an inclusion
hierarchy of more elementary blocks b 1, b 2, . . . , b n. We say that b includes or
contains bi, i = 1, . . . , n. Pages are the largest blocks: they are not included into
any block of the database. The tree representation of a non leaf block b is denoted
T(b). Note that two pages may share the same block. Because of lack of space,
we present a simplified model in which two pages may not share the same block.
Therefore, database DB is a forest of trees with roots, the pages of the database.
Block information has one or two among the following types: text and image
(short cut for a variety of media: graphics, images, videos, sound). While texts can
be further decomposed into sub-texts, an image is atomic: a block representing
an image cannot be further decomposed. The representation of a page includes
some information about the page layout. Tree T(b) induces a tree T L(b) of
minimum bounding rectangles (mbb) homomorphic to T(b). Let b ′ be a block in
T(b). Either b ′ comes in the representation with a minimum bounding rectangle
(mbb(b ′)) as an attribute of its layout, or mbb(b ′) is computed as the mbb of
its children.

T(b) is said to be valid if for any two blocks b 1 and b 2 in T(b) (i) if b 1

(b 2) is an ancestor of b 2 (b 1) in T(b) then mbb(b 1) includes mbb(b 2) (mbb(b 2)

includes mbb(b 1)), else (ii) (b 1 and b 2 are not in an ancestor relation) mbb(b 1) ∩
mbb(b 2) = ∅. A page view V(p) is the set of leaves of T(p). Since there are several
decompositions of a page into a tree, there are several partitions of a page into a
view. As an example a page might be viewed as its sequence of articles. Next a
reader focusing on the scoop replaces in the former view the block “Scoop” by its
3 sub-blocks “Title”, “Text” and “Image”. This leads to the following definition of a
page view:

1. a page is a view,
2. let {b 1, b 2, . . . , b n} be a view and let {bi1, . . . , bij, . . . , bip} be a partition of bi,

then {b 1, . . . , bi−1, bi1, . . . , bij, . . . , bip, bi+1, . . . , b n} is a view.

630 World Wide Web (2011) 14:623–649

3.2.2 Identif ier and content of a block

A block has an identif ier3 and a content. Let b denote the identifier of a block. Let
V be the vocabulary of terms included in the database4. Then the content of block b,
denoted by I(b) is defined as:

1. if b is a leaf and is of type text, then I(b) = tb where tb is the bag of terms of V in
b. We say that b is indexed by tb ,

2. if b is a leaf and is of type image, then I(b) = ib where either b comes with an
initial bag ib of terms in V indexing b (the image has been indexed prior to the
inclusion of the block into the database), or I(b) = ∅,

3. if b is a non atomic leaf (text + image), then I(b) = tb ∪ ib where tb is the bag of
terms of V in b and ib is the bag of terms indexing image i,

4. if b is not a leaf, then its content is the empty bag: I(b) = ∅5.

3.2.3 Importance of a block

We choose to base block importance on visual cues, independently of its content. We
define importance as a function α : Bl → R

+ where Bl is the set of the blocks of the
database. If b is a block in Bl then α(b) denotes the importance of b. A variety of
importance models may be defined among which we exhibit two.

1. block context. The importance of a block is relative to the importance of its
siblings blocks. Let b 1, . . . , b n be the set of blocks with parent f then the block
importances are real satisfying

∑n
i=1 α(bi) = n.

2. view context. In contrast to the previous model which restricts the scope for a
block importance to its siblings, in the view context model, the importance of
a block is relative to all blocks in the view. It is undefined for other (internal
blocks of the hierarchy). Let αbl denote the importance of a block in the former
“block context” model. Then in the view model of importance, let b be a block in
the view whose identifier is a path through blocks b ′

1, b ′
2, . . . , b. Its importance

is α(b) = αbl(b ′
1) × αbl(b ′

2) × · · · × αbl(b). The block importances of the view
satisfy:

∑m
i=1 α(bi) = m where m is the number of blocks in the view.

In the following we choose the block context model for importance.

3.2.4 Permeability

A block is permeable to another block if the former inherits some part of the
content of the latter. We define permeability as a relation which is anti-reflexive,

3As an identifier, one can choose an XPath expression whose prefix is an url (uri) allowing to reach
the HTML representation of the page, and the suffix if any allowing to identify the root of the block
inside the page.
4V is the set of distinct words obtained after preprocessing all texts in the database using usual
linguistic tools (elimination of stop-words, stemming, etc.).
5Note that with such a definition, only the leaf nodes have a non empty content. An alternate
definition for non leaf node content, that might be useful for other applications, would be “the (bag)
union of its child node contents”.

World Wide Web (2011) 14:623–649 631

Figure 2 The IP graph of the
page of Figure 1.

anti-symmetric and transitive. In order to quantify the part of the content of a block
inherited by another block we introduce a function β : Bl × Bl → [0, 1] (where Bl
is the set of the blocks of the database). If b and b ′ are two blocks β(b , b ′) = p
denotes “the part p” of the content of b inherited by b’. If p = 0 then we say that
b ′ is impermeable to b, and if p = 1, we say that b ′ is totally permeable to b. Since
we do not take into account hyper-link, β(b , b ′) = 0 if blocks b and b ′ are not in the
same page.

3.2.5 IP graph

Let IPG(p) denote the Importance-Permeability graph (IP graph) of page p defined
as follows. The nodes of IPG(p) are the nodes of T(p) i.e. the nodes associated
with the blocks of page p. Each node is labeled by the importance of the block
it is associated with. There is an edge from node b to node b ′ with label β(b , b ′),
0 < β(b , b ′) ≤ 1, if b ′ is permeable to b. Because permeability is an anti-reflexive and
anti-symmetric relation, the IP graph of a page is a directed acyclic graph (DAG).
The IP graph of the page of Figure 1 is depicted in Figure 2.

3.2.6 Vector space model

To index a block, we customize the classical vector space model [11] with importance
and permeability. The index of a block b is a vector (w(b , t1), . . . , w(b , tN)) where N
is the cardinality of V and w(b , ti) is the weight of term ti in the index of b. The way in
which this weight is calculated is explained in Section 3.2.7. A query is also a vector
(w(q, t1), . . . , w(q, tN)). The answer to a query is the set of blocks most similar to this
query. The similarity between a block b and a query q is computed by the classical

cosine formula: sim(b, q) =
→
b ·→q

‖→
b ‖·‖→

q‖
where

→
b (respectively

→
q) is the vector associated

with block b (respectively query q).

632 World Wide Web (2011) 14:623–649

3.2.7 Block indexing

The index of a block depends on its content and on the content of its predecessors in
the IP graph. Given a page p and its IP graph IPG(p):

1. the local index of a block with empty content is the null vector,

2. the local index of a block b in p whose content is non empty is the
→
bl vector where

the weight of term t is t f (t, b) × idf (t) where t f (t, b) is a function of the number
of occurrences of t in the content of b and idf (t) is a function of the number of
occurrences of t in the content of all the blocks in database DB,

3. the index of a block b in p is the vector

→
b = α(b) ×

(
→
bl +

m∑

k=1

(β(b k, b)× →
b k)

)

(1)

where α(b) is the importance of b,
→
bl is its local index,

→
b 1, . . . ,

→
b m are the indexes

of the m predecessors of b in IPG(p) and β(b k, b) is the permeability of b
to b k.

Equation (1) expresses that in order to produce the index of a block, its local index
is enforced by the partial or total inheritance of the indexes of its predecessors in the
IP graph and weighted by its importance.

An alternate block indexing schema would be that of equation (1′):

→
b = α(b)× →

bl +
m∑

k=1

(

β(b k, b)× →
blk

)

(1′)

Equation (1′) is irrelevant for our current block interpretation, internal node im-
portance being not taken into account, since the local index of an internal node is
empty: only the importance of the leaves would impact on the weights of the internal
nodes. However equation (1′) might be relevant for other applications. To illustrate
this, take the example of a page with two embedded blocks. The IP graph of this

page is depicted in Figure 3. From equation (1) we have:
→
b 1= α1 × β × α2×

→
bl2. In

Figure 3 A simple IP graph
for a page with two embedded
blocks.

World Wide Web (2011) 14:623–649 633

other words the inherited weight is not only sensitive to the target block importance
but also to the source block importance while with the indexing schema induced by
equation (1′) only the source block importance has an impact on the inherited weight:
→
b 1= β × α2×

→
bl2. In the following, block indexing is that of equation (1).

Let b 1, . . . , b m be the m blocks of page p, ALPHA be the diagonal m × m matrix
whose (i, i) element is α(bi), and BETA be the m × m matrix whose (i, j) element is
β(bi, b j). Let B (BL) be the column-matrix whose (i, 1) element is the (local) index
of block bi. Then from (1) we have:

B = (
Im − ALPH A × t BET A

) − 1 × ALPH A × BL (2)

where Im is the m × m identity matrix. Equation (2) allows to compute the index
of each block in a page as a function of the (local) index of each block, given
its block importance and the permeability of its predecessors. It is easy to show
that since the IP graph is a directed acyclic graph (DAG), the determinant of the
matrix (Im − ALPH A × t BET A) is not null and therefore that equation (2) has a
unique solution.

3.2.8 Properties of inheritance on indexing

Two important properties are offered by the BlockWeb model:

– Best Entry Point Property. When a query is contained6 in the content of two
blocks, the most specif ic one in the block hierarchy is returned f irst.

– Inheritance Indexing Property. The more important a child block is, the more its
content contributes to the index of its parent block.

The Best Entry Point property is a consequence of our choice (see Section 3.2.6)
to use the cosine similarity formula: given two blocks b 1 and b 2 and a query q such

that
→
b 1 · →

q = →
b 2 · →

q , sim(b 1, q) ≤ sim(b 2, q) if ‖ →
b 1 ‖ ≥ ‖ →

b 2 ‖. The Inheritance
Indexing Property is a consequence of our choice (see Section 3.2.3) to constrain
the sum of the importances of the n children of a block to be equal to n: the
more the importance of a child block increases, the more the importances of its
siblings decreases.

In the following, we give a proof of these two properties in a particular case. Let
us consider a very simple page composed of three blocks: a block b which contains
two blocks b 1 and b 2. The IP graph of this page is the following:

6We say that a query is contained in the content of a block when every term of this query appears in
the content of this block.

634 World Wide Web (2011) 14:623–649

Notice that, block b has importance 1 because it is the only block at its level.
Furthermore let us suppose that:

– the content of b is empty and the content of b 1 is disjoint from the one
of b 2 (for example: content(b 1) = {OT IM, query, language} and content(b 2) =
{PIMC, whale}),

– the terms of a query q are contained in the content of b 1 but not in the one of b 2

(for example: q = {query, language}).7

Although the following proof is done for two siblings it is easy to show that it holds
for more than two siblings.

Property 1 sim(b, q) increases with the importance α of block b 1.

According to the cosine similarity (see Section 3.2.6), we have:

sim(b, q) =
→
b · →

q
∥
∥
∥

→
b

∥
∥
∥ ·

∥
∥
∥

→
q

∥
∥
∥

=

(

αβ1

→
bl1 + (2 − α)β2

→
bl2

)

· →
q

∥
∥
∥
∥αβ1

→
bl1 + (2 − α)β2

→
bl2

∥
∥
∥
∥ ·

∥
∥
∥

→
q

∥
∥
∥

(3)

Let us remark that
→

bl1 and
→
q are orthogonal to

→
bl2 because (i) content of b 1 and

content of b 2 are disjoint and (ii) q has no intersection with the content of b 2. Then
→

bl2 · →
q = 0 and ‖ →

b ‖2 = (‖α β1

→
bl1 ‖)2 + ((2 − α) β2‖

→
bl2 ‖)2. Let P = →

bl1 · →
q ,

and Lq be the norm of
→
q , L1, L2 be the respective norms of

→
bl1 and

→
bl2.

We have:

sim(b, q) = Pαβ1

Lq

√(
L1αβ1

)2 + (
L2(2 − α)β2

)2
(4)

Given that P, β1, β2, Lq, L1 and L2 are positive real numbers (b 1, b 2 and q being not
empty) which are not dependent on α, it is easy to show that sim(b, q) is an increasing
function of α in the interval [0, 2]. It increases from 0 to P

L1 Lq
when α varies between

0 and 2.

Corollary (Inheritance Indexing Property) The more important a child block is,
the more its content contributes to the indexing of its parent block.

For example, let us consider the case where β1 = β2 = 1 and V = {t1 =
language, t2 = OT IM, t3 = PIMC, t4 = query, t5 = whale}, and block b 1 is indexed
by “language”, “OTIM” and “query”, block b 2 is indexed by “PIMC” and “whale”,

7As a matter of fact, one can generalize the proof to the case where the intersection of the content
of b1 and the content of q is disjoint from the content of b 2.

World Wide Web (2011) 14:623–649 635

and query q is “query language”. We have
→

bl1= (1, 1, 0, 1, 0),
→

bl2= (0, 0, 1, 0, 1),
→
q= (1, 0, 0, 1, 0) and the graph of the similarity function sim(b, q) is the following:

We now turn to the proof of the best entry point property:

Property 2 (Best entry point property) When a query is contained in two blocks, the
most specific block in the hierarchy has a larger (cosine) similarity with the query.

Let us compare the similarity of query q with blocks b 1 and b (the parent of b 1).
We have:

sim(b 1, q) = αβ1

→
bl1 · →

q
∥
∥
∥
∥αβ1

→
bl1

∥
∥
∥
∥ ·

∥
∥
∥

→
q

∥
∥
∥

= Pα

Lq

√(
L1α

)2
(5)

and according to (4):

sim(b, q) = Pα

Lq

√(
L1α

)2 + (
L2(2 − α)

(
β2/β1

))2
(6)

Therefore, because ((L1α)2 + (L2(2 − α)(β2/β1))
2 ≥ (L1α)2), we have sim(b 1, q) ≥

sim(b, q) : gain G = sim(b 1, q)/sim(b, q) is greater than 1. This concludes the proof
of the Best Entry Point Property. In our example, we have sim(b 1, q) = 0.82 and
sim(b, q) = 0.63. Block b 1 is effectively the best entry point.

The following remarks on the behavior of

G = sim
(
b 1, q

)
/sim(b, q) =

√(
L1 · α

)2 + (
L2 · (2 − α) · (

β2/β1
))2

√(
L1 · α

)2

are noteworthy:

1. in contrast to property 1, for given values of β2/β1, L1 and L2, the smaller α, the
larger G, the better b 1 is an entry point. In other words importance blurs the
precision of localization.

636 World Wide Web (2011) 14:623–649

2. as expected, for given values of α, L1 and L2, the larger the ratio β2/β1, the larger
G. In other words, the less the parent inherits the content of b 1, the better b 1 is
an entry point.

3. as expected by the cosine similarity measure, for given values of α, β2/β1 and L1,
the larger the norm L2 of b 2, the larger the norm of parent b and therefore the
larger G. In other words the larger the norm of the parent block is in comparison
with the norm of b 1, the better b 1 is an entry point.

Of course, if query q is itself partially or fully contained in block b 2 the best entry-
point could be block b in place of block b 1. In our example, if block b 2 is not only
indexed by “PIMC” and “whale” but also by “query” and “language”, we would
have sim(b 1, q) = 0.82 and sim(b, q) = 0.85. The best entry point is now the block b.
In Section 5, we present an experimental validation of this property.

3.2.9 Modeling of a web page

Several strategies to model a web page corpus according to the BlockWeb model are
possible. In the case where the layouts of the pages of the corpus share the same
schema, a block hierarchy schema and an IP graph schema can be built as follows:

1. The block hierarchy schema is built.
2. A coefficient of importance is assigned to each child block of a parent block in

accordance to the block context model (see Section 3.2.3) i.e. the sum of the
importances of the n children blocks of a block must be equal to n.

3. A permeability edge with value β = 1 is drawn between each children block and
its parent block. Setting β < 1 would have the effect to decrease the contribution
of the corresponding block to its parent block such that it has been set up by its
importance coefficient in step 2.

4. Transverse permeability edges may be drawn between two blocks which are not
in an ancestor relationship, for example from a textual block to an image block
in order to index the latter. A transverse edge from a textual block to another
textual block allows to strengthen the content of the latter. When drawing such
transverse permeability edges no cycles must be introduced in the IP graph which
is constrained to be a directed acyclic graph (see Section 3.2.5).

This strategy is the one used to model the page of Figure 1. However recall that other
strategies are applicable which consist in simplifying and reconfiguring the visual
block hierarchy for the purpose of specific applications. We give an example of such
another strategy in Section 5.2 where we present an application of the BlockWeb
model for image indexing by permeability.

4 An engine for block extraction and indexing

This section is devoted to the description of the prototype designed and implemented
for block extraction, indexing and querying according to our model. Recall that the
main objective of this paper is to define a fine grained indexation system dedicated
to web pages. As it is fine grained, a dedicated tool is needed to help the system
administrator in defining the indexing parameters (importance and permeability) for
a large corpus of documents using rules based on logical and visual properties.

World Wide Web (2011) 14:623–649 637

4.1 General architecture

Web pages are described using HTML, XHTML or even arbitrary XML. Page visual
rendering is generally described using CSS and the pages can be dynamic (on the
client side) thanks to embedded script languages (like Javascript). Indexing and
querying the content and the logical structure is interesting but relying only on the
logical structure is not enough. To illustrate this, Figure 4 shows the HTML source
corresponding to the web page shown in Figure 1. If we use only the logical structure
(the body element) important visual information is lost: complex CSS rules (in the
style element) need to be applied to reveal that the first article (the first div
element) is more important (according to its area). That is why, to achieve block
indexing of web pages, our architecture has three main objectives:

– the first one is to combine the logical structure of the page described in the DOM
representation and the visual rendering of the page (i.e. like a human user would
see it in a web browser) in an abstract block hierarchy,

– the second one is to provide a language which enables the system administrator
to automatically produce the IP graph (and so the indexing) on top of the
previous block hierarchy,

– the third one is to provide a query language to query both the original logical
structure and content, and the result of the indexing (a vector of terms associated
with each block).

Figure 4 HTML and CSS
source of the document in
Figure 1

638 World Wide Web (2011) 14:623–649

Indexing is done in four steps as shown in Figure 5:

1. the web page is transformed into a block hierarchy keeping pointers to the
HTML source,

2. the indexing parameters (ALPHA and BETA matrices) are calculated using
generic rules applied on the previous block hierarchy. These rules are expressed
in an indexing sheet using a dedicated XML language called XIML.

3. the local indexing of each block is computed and inserted into the XML docu-
ment representing the block hierarchy which is stored in an XML database,

4. the index of each block is calculated by propagation (equation (2)) using AL-
PHA and BETA matrices produced at step 2. Each index is also inserted into
the corresponding block in the XML database.

Querying, which is not detailed in this paper, is done using XQueries on the block
hierarchy and on a XMLized version of the original web page. The system provides
(i) functions dedicated to information retrieval (similarity measures and IR-queries
evaluation on indexed blocks) and (ii) functions dedicated to navigation between
blocks in the hierarchy and corresponding elements in the web pages. To improve
the performance, indexes for terms are stored in a relational database and used by
the XQuery extension.

4.2 Transformation of a web page into a block hierarchy

As already mentioned, in more and more applications the structure and rendering
of the pages of a given site does not change with time, is often shared by several
sites and is similar to that of other sites within the same community or domain.
For example, the following french newspapers web sites http://www.lefigaro.fr/,
http://www.lemonde.fr/, http://www.liberation.fr/ have all two main classes of pages
(welcome pages, articles, . . .) and the welcome page is composed of a list of
the beginnings of articles and by a list of short news. A hierarchy of blocks can
be produced from a web page by either automatic mapping (using segmentation
algorithms) or manual mapping.

To produce the block hierarchy, we did not use a visual segmentation algorithm
like the XY-cut algorithm or the VIPS algorithm, which did not provide a schema
fine enough so as to represent the actual block hierarchy. Since the latter is known in
advance (it does not change from one page to another), it was “manually” generated

Figure 5 Functional diagram of the engine.

http://www.lefigaro.fr/
http://www.lemonde.fr/
http://www.liberation.fr/

World Wide Web (2011) 14:623–649 639

Figure 6 XML Syntax for a
hierarchy of blocks extracted
from the document in Figure 1.

using XSLT stylesheets. Moreover, web pages are often produced using content
management systems, then it is easy to define stylesheets to transform pages from
a “wide” classe of web sites to the same abstract block hierarchy.

After the production of the block hierarchy, we layout the web page with the
HTML engine Gecko8 at a standard resolution of 1024×768. Then, we extract the
visual properties of each block from the corresponding visual box.

The hierarchy of blocks and their corresponding visual data can easily be repre-
sented as an XML document. Figure 6 shows the simplified XML representation of
the block hierarchy document corresponding to the HTML document of Figure 1.
Only one visual property (area) is shown, the others (geometry, position, font, colors
. . .) have been hidden to ease the reading. Notice that the vectors of terms are
not yet calculated at this step but they are later inserted as an index element in
each block.

4.3 XIML a language to define block indexing parameters

To help the application administrator to tune the indexing of a web site document,
we have defined the “XML Indexing Management Language” (XIML). An XIML
sheet works like a stylesheet but is dedicated to indexing: it applies to the XML
representation of a block hierarchy and produces the ALPHA and BETA matrices.
Figure 7 shows the XML syntax of the XIML sheet used to index the document
described in Figure 1 (i.e. to produce the IP graph from Figure 2). Notice that,
the indexing models used in the experiments in the next section have also been
generated with XIML. An XIML sheet is composed of two parts: one to define

8http://developer.mozilla.org/fr/docs/Gecko

http://developer.mozilla.org/fr/docs/Gecko

640 World Wide Web (2011) 14:623–649

Figure 7 XML Syntax for an XIML instance.

the rules dedicated to importance computing (the Alpha element) and one for the
permeability (the Beta element).

The Alpha element contains a sequence of item selectors. Each item selector
selects a sequence of blocks using an absolute XPath expression (select attribute).
The value of the importance α(b) for each selected block b is computed with another
XPath expression absolute or relative to b (value attribute). If a block is selected
more than once, the last selection takes precedence. In the example, the first element
ItemSelector sets the default importance of every block to 1, the second one
defines an exception for the article title blocks, and the last one shows how XPath
can be used to dynamically compute the importance according to visual properties.

The Beta element contains a sequence of relations. A relation is made of three
XPath expressions: target, source and value. Every relation adds a set of edges to
the IP graph to represent: β(s, t) = val(value(s, t)) for all blocks t selected by target,
blocks s selected by source(t) (source is absolute or relative to t). The expression
value can use the variables $target and $source binded to s and t. If an edge
is selected more than once, the last value takes precedence. In the example, by
default children indexing is propagated to parent indexing (first Relation element).
The three last relations state that images are more permeable to the title of the
same article than to its content and that they do not propagate their indexing to
their article.

4.4 Implementation of the prototype

The engine is implemented in Java. It satisfies the functional decomposition of
Figure 5: it includes the web pages integration system (and the stylesheets re-
quired for three French electronic newspapers and the ImagEval experiment) and
a processor for the XIML language. The indexed block hierarchy associated with

World Wide Web (2011) 14:623–649 641

each web page (computed using XIML) is stored in the EXIST9 XML database
management system. A set of functions extending XQuery is used (i) to transform
a set of words into a query (stemming, weight computation, . . .), (ii) to query the
index to retrieve the matching blocks, and (iii) to retrieve the corresponding HTML
fragments. Classical XQuery statements can also be used to combine information
retrieval, structured querying and content constraints. Some dedicated indexes have
been stored in a relational database to speed up the indexing and querying processes.

4.5 Manual indexing with the help of graphical tools

We have presented an engine to extract and index blocks from web pages. Even
though the engine requires manual steps using stylesheets to produce blocks and
XIML sheets to define the IP graph the amount of work is not prohibitive for
three reasons. First, as aforementioned, the number of different stylesheets is not
large as many web pages especially in the same application classes have close visual
structures and so basic templates can be provided and adapted. Second, graphical
tools integrated in a web browser allow users to visually create XPath expression by
selecting HTML elements or blocks. These XPath expressions are the ones used in
XIML for producing the IP graph.

Examples of such tools are the Firefox extensions FireXPath and AutoPager.
Third, if a general block hierarchy schema can be exhibited, then standard basic
parameters (α and β) can be learned. The latter point is illustrated in Section 5, in
the context of image indexing.

5 Evaluation

The objective of this section is to experimentally illustrate two functionalities of our
model: (1) finding the most specific block containing a query (best entry point), (2)
the impact of permeability on image indexing. The impact of importance on indexing
and querying is left as a future work.

5.1 Best entry point

An Intel® Bi-Xeon™ at 3.20GHz computer was used for the experiments with 8 GB
of RAM. We chose as a corpus, electronic versions of one French daily newspaper
in the period running from January 2008 to April 2008. 1,300 web pages were
extracted from these documents. Note that all blocks have same importance α = 1.
The total number of blocks is 48,000. The indexing vocabulary is the set of word
stems encountered in the leaf blocks (22,639 terms), excluding the stop words. The
weight of terms in local vectors was computed using the t f ∗ idf formula where t f
is the number of occurrences of the term in the block and idf is the inverse page
frequency. The indexes of blocks are computed according to equation (2). The IP
graph of the page is presented in Figure 8. 500 queries are generated with two terms
randomly chosen inside the same paragraph (at depth 5 in the tree decomposition).

9http://exist.sourceforge.net/

http://exist.sourceforge.net/

642 World Wide Web (2011) 14:623–649

Figure 8 IP graph of the pages
of the corpus of experiment 1
(Finding the best entry point).

The capacity of our model to find the best entry point is based on two factors:
the decomposition of pages into blocks and the choice of the cosine similarity(

sim(b, q) =
→
b ·→q

‖→
b ‖·‖→

q‖

)
which normalizes the length of block textual content (see

Sections 3.2.6 and 3.2.8 above). In order to evaluate the contribution of the normal-
ization, we compare answers obtained with the cosine similarity with those obtained

with the inner product similarity sim(b, q) =→
b · →

q which does not normalize the
length of block textual content.

The measures reported in Table 1 are the average rank and average depth (in the
page tree) of the highest rank answers including either the two query terms or only
one of the query terms. Two blocks having same score have same rank. Ranks are
≥ 0 and depth is between 2 and 5. For example, with cosine similarity, for answers
with the two query terms, note that since the highest ranked block is not zero, there
are blocks with better scores with one term only (on the average 1.158). Several
conclusions, consistent with the expected impact of normalization can be drawn from
these measures.

(i) The cosine measure favors blocks with higher depth and therefore finds better
entry points as expected by Property 1 (see Section 3.2.8). Indeed for example
with two terms, the average depth of best answers is almost 4 with the cosine
similarity (the depth would be 5 if in all cases, the two terms of the query
appear only in a paragraph, and not as well in another paragraph, section . . .);
in contrast the depth is only 2.660 with the inner product.

Table 1 Best entry point:
rank and depth of the first
block in the answer set
satisfying “number of terms”
condition.

Similarity Nb term Rank Depth

Cosine 2 1.158 3.992
1 2.181 4.602

Inner product 2 0.614 2.660
1 1.491 3.082

World Wide Web (2011) 14:623–649 643

Table 2 Best entry point: rank of the first block in the answer set satisfying “depth” and “number of
terms” conditions.

Similarity Nb term Depth 5 Depth 4 Depth 3 Depth 2
(paragraph) (section) (body) (article)

Cosine 2 2.814 8.780 10.832 8.468
1 2.541 13.356 20.233 14.914

Inner product 2 5.092 2.362 1.194 0.614
1 5.205 3.197 1.675 1.480

(ii) Compared to the cosine similarity, the inner product similarity favors answers
with two terms wrt answers with one term: on the average only 0.614 answers
with one query term have a higher rank, while with the cosine similarity the
average is 1.158. However this result must be analyzed more carefully. With
the inner product similarity, blocks containing a query have the same similarity
whatever their content length which is not really what one expects. This is
confirmed by the fact that this better average rank (0.614 vs 1.158) is associated
with a smaller depth (2.660 vs 3.992) corresponding to larger blocks (body vs
section blocks approximately). On the other hand with the cosine similarity,
blocks totally containing a query have a similarity inversely proportional to
their content length and even more blocks containing only partially this query
may have a higher similarity than blocks containing totally this query if they
have a shorter content length which is in favor of a better answer precision.

(iii) Both measures tend to rank (on the average) queries with two terms prior
to queries with only one term, which is what one expects from a nice query
engine; indeed, the rank with cosine (inner product) is 1.158 (0.614) for two
terms which is less than 2.181 (1.491) for one term. These observations are
confirmed by the Table 2 where the rank of the first block at depth 2, 3, 4 or 5
with the two terms (with only one term) is displayed. As an example, with the
cosine similarity, on the average, there are 8.780 blocks whose score is higher
than the first section block score answering the query. As expected, with the
cosine similarity, the paragraph blocks in the answer are found first, while with
the inner product, articles are found first!

5.2 Image indexing

This section is devoted to the evaluation of the impact of the block structure on
web images indexing and retrieval. The experiment is conducted in the framework of
the recent international ImagEval campaign, which aims at evaluating several tasks
about image indexing and retrieval. One of these tasks (task2) aims at assessing how
text techniques improve image search by similarity. Its web page corpus is described
in the following section.

For this experiment, we index every image contained in a web page. For each
image, we identify four interesting blocks, as illustrated in Figure 9:

– Page block: the whole page. This block is the concatenation of all text blocks in
the page.

– Title block: the block containing the title of the page.

644 World Wide Web (2011) 14:623–649

Figure 9 A web page of the
ImageEval corpus and its
block decomposition.

– Legend block: This block is constructed with the available index of the image
block. Its textual content is the concatenation of the image legend (the alt
attribute of the image, which gives an alternative textual content for the image
if the browser is not able to display the image), and words extracted from the
image file name.

– Context block: Let a be the farthest ancestor block of the image, apart from
the Page block, which contains no other image. The Context block is the
concatenation of a and its descendant blocks apart from the Legend block.

To assess the quality of image indexing we compute the Average Precision which
is equal to the integral of the Recall-Precision curve, and the Mean Average Precision
(MAP) over all the queries for the five following permeability schemas:

1. the Page schema which consists in indexing an image by the whole text of the
page: β(Page, Image) = 1 and β(b 1, b 2) = 0 for all other pairs (b 1, b 2) of blocks,

2. the Title schema which consists in indexing an image by the page title only:
β(Title, Image) = 1 and β(b 1, b 2) = 0 for all other pairs of blocks,

3. the Legend schema which consists in indexing an image by its legend only:
β(Legend, Image) = 1 and β(b 1, b 2) = 0 for all other pairs (b 1, b 2) of blocks,

4. the Context schema which consists in indexing an image by its context only:
β(Context, Image) = 1 and β(b 1, b 2) = 0 for all other pairs (b 1, b 2) of blocks,

5. the BlockWeb schema, depicted in Figure 10, which consists in indexing an image
by cumulating the Page index, the Title index, the Legend index, and the Con-
text index: β(Page, Image) = βpage, β(Title, Image) = βtitle, β(Legend, Image) =
βlegend, β(Context, Image) = βcontext, and β(b 1, b 2) = 0 for all other pairs (b 1, b 2)

of blocks, where βpage, βtitle, βlegend , and βcontext are learnt as explained in the
following section.

World Wide Web (2011) 14:623–649 645

Title

other images and

their context...Some textual content...

Context

Page

Image

Legend

(a)

1 Page

1 Title 1 Context

1 image

MAP 0.62→ 0.73

1 Legend

β
β

=
1

→

=
0.36

=

0
→

=

0.56

=

0→
=

0:44

=
0

→

=
0.49

(b)

β

β

β
β

β
β

Figure 10 BlockWeb permeability schema for web page image indexing. Permeability values prior
learning (only the page block indexes the image) and after learning, and the MAP improvement on
the test set are given.

For each permeability schema the MAP is computed: MAP(Page), MAP(Title),
MAP(Legend), and MAP(BlockWeb).

5.2.1 ImagEval web page corpus

The dataset is built from the 2009 web pages of the ImagEval task2 corpus (see
http://www.imageval.org/e_presentation.html). This campaign aims at assessing how
text techniques improve image search by similarity. As this task is “search on the
web” oriented, the database has been created by extraction of pages from the Web,
especially from Wikipedia for copyright reasons. The web pages have been found
using classical search engines (Google and Alltheweb). The database is composed
of a list of URLs and the corresponding text and images files. Query terms and web
pages are in French. In this paper the terms and examples are translated into English.
Pages were uploaded using topics like: “Eiffel Tower”, “Clown Fish”, “Uluru rock”,
“Ethiopian flag”, using Wikipedia. This campaign focused on “encyclopaedic” and
“picturable” topics: animals, places, monuments and objects. A query is composed
of one to five terms.

A complete description of the ImagEval campaign and Average Precision metrics
can be found in [10]. The authors of the latter paper addressed the issue of query
complexity due to the presence of image synonyms in the test set. For example, there
are photos of clowns, and some of fish. But none of them are good answers for the
“clown fish” query. For solving this issue, a fusion of text and image content analysis
for efficient web image retrieval is proposed in [13].

http://www.imageval.org/e_presentation.html

646 World Wide Web (2011) 14:623–649

Table 3 Number of target
images in the global set of
4,705 images for 25 queries.

Number of target The 52 terms of the 25 queries
images for the query

11 {flag, Ethiopian}
17 {flag, european}
17 {screwdriver}
12 {ball, tennis}
16 {planete, venus}
28 {roch, Perce}
24 {zebra}
41 {fish, clown}
42 {roch Uluru, Uluru, Ayer, Ayer-roch, roch}
90 {lemon}
47 {fall, Niagara}
41 {tower, Eiffel}
56 {big, wall, China}
43 {flow, lava}
26 {lawyer, fruit}
21 {cat, siamois}
22 {Guernica, Picasso}
18 {ground, tennis}
12 {statue, Liberty}
9 {Joconde}
8 {bear, teddy}
7 {people-tree, tree}
5 {map, Norway}
6 {ladybird, insect}
7 {liberty, guide, people, Delacroix}
626

Tackle this issue. In the following section, we show that the BlockWeb model is a
generic approach to deal with this problem. In our experiment, the dataset contains
4,705 web pages including images, out of which 626 appear in one of the queries
described in Table 3.10 The indexing terms are the 52 terms occuring in the queries.

We randomly split this corpus into two sets of equal size, the training set and
the test set, such that both sets have a similar number of web pages including
images satisfying each query: the target images. The training set is used to learn
the four permeability values βpage, βtitle, βlegend, and βcontext by a gradient descent
optimization [7], with as constraints, maximizing the target images similarities and
minimizing the non target images similarities. The test set is used to validate these
four automatically learned permeability values.

5.2.2 Results and discussion

The training lasted 2 minutes on an usual Dell laptop. The evolution of the perme-
ability values during 30 training stages is depicted in Figure 11, which shows that only
a few training stages are necessary. The learnt permeability values are the following::
βpage = 0.36, βtitle = 0.56, βlegend = 0.44, βcontext = 0.49.

10In the original online corpus 906 images appear in one of the queries, but since 2006, some web
pages have been removed.

World Wide Web (2011) 14:623–649 647

Figure 11 Evolution of the permeability values (βpage, βtitle, βlegend, βcontext) during the training
stage.

Table 4 gives the MAP for the fives permeability schemas (Page, Title, Context,
Legend, BlockWeb). Note that MAP values on the training set and on the test
set are close (naturally, MAP(BlockWeb) is smaller for the test set), even for the
BlockWeb schema, demonstrating that the permeability values on the training set
well generalizes on unknown web pages.

Looking at Table 4, the first observation is that when we do not learn the
permeability values, the Page block alone provides the best MAP to queries. It
is probably because a Page block contains all the terms of the page what favours
a better recall. Surprisingly it is the Title block which provides the second best
MAP although it was the Context which was expected since it is much closer to
the image block. A possible explanation is that page titles are well chosen and that
their conciseness favours the precision in contrast to image contexts which are more
developped.

The second observation concerns the Legend. For this corpus, the Legend does
not always exist. Sometimes, but not always, the page designer provides, often
manually, an alternative text, which might be the best information source to index
an image. Therefore Legend is an example of bad quality block which justifies again
the use of an optimal combination of all page blocks for image indexing, as provided
by the BlockWeb model.

The last noteworthy result is that the Block permeability schema provides a
significantly better quality of the answers. Indeed MAP(BlockWeb) = 0.73 vs
MAP(Page) = 0.62, resulting in a relative improvement of 16%.

Table 4 MAP of the 25 queries for each permeability schema.

Page Title Legend Context BlockWeb
schema schema schema schema schema

MAP on the 0.634 0.510 0.128 0.241 0.740
training set

MAP on the 0.622 0.485 0.118 0.262 0.726
test set

648 World Wide Web (2011) 14:623–649

These results show not only the interest of the BlockWeb model strategy com-
pared to image indexing based on all terms of the Page block. They also bring out
that in this corpus, images are poorly indexed by using only the Title block or the
Context block or the Legend block alone. Although the latter statement is true for
the majority of pages of the corpus, there are of course some counter examples.

Finally we observed that only a few number of positive examples are necessary
to have a correct training. Half of the training set is enough to get similar results
with the ones of Table 4. This suggests that for any other application domain, the
few hand labeled web pages needed for the training can be downloaded from any
web page browser, and refined to quickly obtain fifty labeled web pages containing
positive target images. The labeling of a web page is a set of booleans, set to yes
for each image in the web page satisfying the query, and set to no otherwise. The
negative samples can be simply randomly uploaded from the web. In conclusion, the
effort needed for assessing the ground truth of the training set keeps reasonable.

6 Conclusion

This paper was devoted to a novel approach dedicated to Information Retrieval in
web pages. We have proposed a model, called BlockWeb, and an architecture for
indexing segmented web pages taking into account their visual rendering and their
multimedia content. The concept of permeability was introduced as a flexible tool
for indexing blocks in various applications.

The three key features of our model are: (i) web page segmentation into blocks
including data on visual rendering, (ii) use of block importance, (iii) and use of block
permeability to improve other blocks indexing.

We have presented an engine which implements our model. It enables an user to
define the transformation from web pages to block hierarchies represented as XML
documents. A dedicated language called “XML Indexing Management Language”
(XIML) has been defined to express generic rules to compute the permeability β

between blocks and the importance of each block (i.e. the IP graph). The rules can
rely on the structure of the block hierarchy, on the content of the blocks, and on
automatic annotations about the real visual rendering in a web browser. The result
of the indexing is a corpus of XML documents which represents the blocks hierarchy
with visual annotations and pointers to the real HTML elements, the IP graph for
each page, and the final indexing of each block.

We have shown that the model is adequate to find the best entry point in a page,
i.e. to locate more precisely in the page the information one looks for. The model
was first illustrated and assessed on a dataset of electronic news. One conclusion of
this first experiment is that the classical cosine measure (or any measure taking into
account the “size” of the block) is well adapted to block indexing based on keywords
inheritance from their component blocks. As a future work we intend to look at the
impact of block importance.

We have also presented a second experiment on a dataset from the ImagEval
campaign in which our model is applied to indexing images occurring in web pages.
The experiment shows that the indexing of an image from a weighted combination
of the terms of blocks of the page as provided by the BlockWeb model is better than
the indexing by all terms of the page or by the terms of blocks close to the image such

World Wide Web (2011) 14:623–649 649

as the Legend. Joint optimization of permeability and importance coefficients will be
addressed in future work.

Acknowledgements We would like to thank CEA and TRIBVN society for providing the IM-
AGEVAL web image Task data set. We also thank ANR AVEIR ANR-06-MDCA-002 which
partially supports this research.

References

1. Bruno, E., Faessel, N., Glotin, H., Le Maitre, J., Scholl, M.: Indexing by permeability in block
structured web pages. In: Proceedings of the 9th ACM Symposium on Document Engineering
(DocEng 2009), pp. 70–73, (2009) (short paper)

2. Bruno, E., Faessel, N., Le Maitre, J., Scholl, M.: Blockweb: an IR model for block structured
web pages. In: Proc. of 7th Int. Workshop on Content Based Multimedia Indexing (CBMI 2009),
pp. 219–224. Chania, Crete, June 3–5 (2009)

3. Cai, D., He, X., Li, Z., Ma, W.-Y., Wen, J.-R.: Hierarchical clustering of WWW image search
results using visual, textual and link information. In: Proc. of the 12th ACM Int. Conf. on
Multimedia, MULTIMEDIA ’04, pp. 952–959. ACM, New York, NY, USA (2004)

4. Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: VIPS: A Vision-Based Page Segmentation Algorithm.
Technical report, Microsoft Research (2003)

5. Cui, H., Wen, J.: Hierarchical indexing and flexible element retrieval for structured documents.
In: Proc. of the 25th European Conf. on IR Research (ECIR 2003), pp. 73–87. Pisa, Italy (2003)

6. Debnath, S., Mitra, P., Pal, N., Giles, C.L.: Automatic identification of informative sections of
web pages. IEEE Trans. Knowl. Data Eng. 17(9), 1233–1246 (2005)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience (2000)
8. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive X-Y cut using bounding boxes of connected com-

ponents. In: Proc. of the Third International Conference on Document Analysis and Recognition
(ICDAR’95), vol. 2, pp. 952–955. Washington, DC, USA (1995)

9. Lin, S.-H., Ho, J.-M.: Discovering informative content blocks from Web documents. In: Proc.
of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 588–593.
Edmonton, Alberta, Canada (2002)

10. Moëllic, P.A., Fluhr, C.: ImagEval 2006 official campaign. CEA List (2006)
11. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM

18(11), 613–620 (1975)
12. Song, R., Liu, H., Wen, J.-R., Ma, W.-Y.: Learning block importance models for web pages. In:

Proc. of the 13th Int. Conf. on World Wide Web (WWW 2004), pp. 203–211. Manhattan, NY,
USA (2004)

13. Tollari, S., Glotin, H.: Web image retrieval on ImagEVAL: Evidences on visualness and textual-
ness concept dependency in fusion model. In: Proc. of the ACM Int. Conf. on Image and Video
Retrieval (CIVR 2007), pp. 65–72 (2007)

14. Tollari, S., Glotin, H.: Learning optimal visual features from web sampling in online image re-
trieval. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP
2008, pp. 1229–1232. IEEE (2008)

15. Vadrevu, S., Gelgi, F., Davulcu, H.: Information extraction from web pages using presentation
regularities and domain knowledge. World Wide Web 10(2), 157–179 (2007)

16. Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining. In: Proc
of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 296–305.
Washington, DC, USA, ACM (2003)

17. Zou, J., Le, D., Thoma, G.R.: Combining DOM tree and geometric layout analysis for online
medical journal article segmentation. In: Proc. of the 6th ACM/IEEE-CS Joint Conf. on Digital
Libraries, pp. 119–128. Chapel Hill, North Carolina, USA (2006)

	Indexing and querying segmented web pages: the BlockWeb Model
	Abstract
	Introduction
	Related work
	The data model
	Informal model
	Model
	Blocks
	Identifier and content of a block
	Importance of a block
	Permeability
	IP graph
	Vector space model
	Block indexing
	Properties of inheritance on indexing
	Modeling of a web page

	An engine for block extraction and indexing
	General architecture
	Transformation of a web page into a block hierarchy
	XIML a language to define block indexing parameters
	Implementation of the prototype
	Manual indexing with the help of graphical tools

	Evaluation
	Best entry point
	Image indexing
	ImagEval web page corpus
	Results and discussion

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

