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Abstract As multiple service providers may compete to offer the same functionality
with different quality of service (e.g., latency, fee, and reputation), a key issue in
service computing is selecting service providers with the best user desired quality. Ex-
isting service selection approaches mostly rely on computing a predefined objective
function. When multiple quality criteria are considered, users are required to express
their preference over different (and sometimes conflicting) quality attributes as
numeric weights. This is a rather demanding task and an imprecise specification of the
weights could miss user desired services. We propose a multi-attribute optimization
approach to tackle this issue. In particular, we develop a novel concept, called service
skyline, and a set of service skyline computation techniques that return a set of most
interesting service providers. These providers are non-dominant in all user interested
quality attributes. Thus, the service skyline ensures that the user desired providers
will be included. Analytical and experimental studies justify the performance of the
proposed techniques. The relative small sizes of the service skylines also make it
practical for service users to make selections from them.

Keywords Web service · quality of service · service selection

1 Introduction

Service oriented computing is emerging as the preferred platform for deploying
new applications [23, 31]. Industry leaders like IBM, Microsoft, Yahoo, Google,
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HP, and others are strongly behind this push. There is strong evidence that if
the right Web service infrastructure is in place, this will spur entrepreneurship in
deploying novel Web services that will compete to provide differentiated services
(www.programmableweb.com, [10, 26]). There is also a strong impetus by IBM to
define the field of services science, where Web services will play a major deployment
role (www.research.ibm.com/ssme/). Therefore, it is realistic to expect that Web
services will increase many fold in the future [4]. The growing number of Web
services gives users more options because multiple service providers may compete to
offer the same functionality. However, it also brings users another problem: selecting
a proper provider with the desired quality of service. Typically, users have to go
through a series of trial-run processes. It would be even more painstaking if users
want to target the providers that best suit their preference. Therefore, the user may
want to include the quality requirement into the search criteria. In this case, it is
necessary to differentiate competing Web services based on user expected Quality of
Web Service (QoWS).

Existing service optimization approaches usually select services based on a pre-
defined objective function [19, 29, 30, 33, 35]. They require users to express their
preference over different (and sometimes conflicting) quality parameters as numeric
weights. The objective function assigns a scalar value to each service provider based
on the quality values and the weights given by the service user. The provider gaining
the highest value from the objective function will be selected and returned to the
user. Implementing such an optimization strategy may pose several challenges:

• Transforming personal preferences to numeric weights is a rather demanding
task for users. Sometimes it is even impossible if the preference is still vague
before the user is presented with the actual service providers. Users may miss
their desired providers because of an imprecise specification of the weights,
which would be very common in real-world scenarios.

• Users may lose the flexibility to select their desired providers by themselves. For
example, a service user may choose a service provider that has a good reputation
within a price range she can tolerate although price is a very important factor she
considers. In this case, the relationship between reputation and price is subtle
and the choice from different users may vary significantly. Therefore, it would
be wise to give users the flexibility to make their own selections from a small set
of candidate providers.

We propose a novel concept, called service skyline, that tackles the service selection
problem from a perspective which is completely dif ferent from all existing service
selection approaches. Computing a service skyline guarantees to include the best user
desired service providers without any user intervention. Skyline computation has
recently received considerable attention in database community [5, 15, 20, 27]. For a
d-dimensional data set, the skyline consists of a set of points which are not dominated
by any other points. A point �p (p1, . . . , pd) dominates another point �r (r1, . . . , rd) if
∀ i ∈ [1, d], pi � ri and ∃ j ∈ [1, d], pj � r j. We use � to generally represent better
than or equal to and � to represent better than. In the context of Web services, a
service skyline can be regarded as a set of service providers or their compositions
that are not dominated by others in terms of all user interested QoWS attributes,
such as response time, fee, and reputation. A formal definition about the service
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skyline will be given in Section 2. Computing service skylines brings two key benefits
for service selection:

• Service skylines are computed automatically based on the inherent QoWS
features of service providers. Thus, it completely frees service users from the
challenging weight assignment task.

• Computing service skylines won’t lose any merit of using the objective function.
This is due to a major property of the skyline. For a set S and any monotone
objective function S → R, if �r ∈ S maximizes the objective function, then �r is
in the skyline [5]. Thus, no matter how the weights are assigned, the skyline
guarantees that the user desired service providers are included so that users can
make flexible selection from them. In addition, the users can always choose to use
any monotone objective function they prefer after the skyline is computed. The
optimal solution will always be the same as computed from the original service
space but with a much efficient manner because of the much smaller skyline size.

The service skyline algorithms proposed in this paper are developed based upon a
foundational service framework presented in [30]. A service model is provided by this
framework that defines a service schema and a service relation. The service schema
captures the key features of Web services across an application domain and the
service relation is used to store QoWS information of service providers. The major
contributions of this paper are summarized as follows:

• We formally define the concept of service skyline. We identify the key dif-
ferences between service skylines and database skylines and point out the
challenges for computing service skylines.

• We investigate how to leverage the indices on service operations to compute the
service skylines. This study helps identify some inherent issues, which lead us to
develop more efficient service skyline algorithms.

• We present two service skyline algorithms. The Baseline Algorithm (BA) adopts
a two-level pruning scheme to efficiently compute the service skyline. The second
algorithm, called OGI, is built upon a novel indexing structure.

• As a further refinement, we propose a hybrid indexing structure that combines
a R-tree with a partition tree. The hybrid structure optimizes both dominance
checking (using the R-tree) and incompatibility checking (using the partition
tree) to achieve good performance and scalability.

• We analytically and experimentally evaluate the proposed service skyline algo-
rithms in terms of both the performance and the sizes of the service skylines.
The results show that the algorithms are efficient and the sizes of the service
skylines are small and stable. These justify that the proposed approach provide
an promising solution for service selection.

Example 1.1 As a running example, we use an application from the car brokerage
domain. We consider a customer, say Mary, planning to buy a used car having a
specific model, make, and mileage. Assume that Mary has access to a Web service
infrastructure where the different entities that play a role in the car purchase are
represented by Web services. Typical Web services that need to be accessed include
car purchase, car insurance, and financing services. A single Web service may provide
multiple operations that have dependency relationships. We also anticipate that
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there will be multiple competing service providers with different QoWS (e.g., the fee
they charge, their reputation, etc). To purchase an entire car package, Mary would
first like to know the price quote of the selected car and the vehicle history report.
She then needs to get the insurance quote. Finally, since Mary needs the financing
assistance, she also wants to know the financing quote. Essentially, Mary wants to
get an entire package with low price and from creditable (i.e., with good reputation)
service providers.

The remainder of this paper is organized as follows. We formally define the
service skyline problem in Section 2. We investigate how to leverage the indices on
service operations to compute service skylines in Section 3. We present two service
skyline algorithms in Section 4 and provide a cost model for performance study and
improvement. We experimentally evaluate and compare the proposed algorithms
under different settings in Section 5. We discuss related work in Section 6 and provide
some concluding remarks in Section 7.

2 Preliminaries

In this section, we start with a brief introduction of the foundational service frame-
work presented in [30] because the service skyline algorithms are developed based
on this framework. We then formally define the service skyline problem.

2.1 The service framework

The service framework is built around a formal service model, which provides
foundational support for service query and service selection. The design of this model
is inspired by the standard relational model and makes some key extensions from it.
The service model captures a set of essential semantics of Web services, including
functionality, dependencies, and quality, which are all of primary interest for users
to access services. The service model defines two important concepts: service schema
and service model.

Definition 2.1 (Service schema [30]) A service schema S is defined as a tuple (SG1,

. . . , SGn,D), where each SGi is a DAG, called service graph. In SGi = (Vi, Ei, εi),
the vertex set Vi represents the set of service operations in the service graph, the
edge set Ei represents the dependency constraints between service operations, and
εi is the root of the service graph representing the entry point, through which all other
operations in the service graph can be accessed. D represents the set of dependencies
between two non-root operations from different service graphs.

Figure 1 shows the service schema for Example 1.1. The service schema con-
tains three service graphs, representing the Car Purchase (CP), Car Insurance
(CI), and FInancing (FI) services. For example, in CI, there are a set of service
operations, such as drivingHistory and insuranceQuote. These operations
collectively represent the functionalities of the CI Web service. The dependencies
between service operations are captured by the edges in the service graph. For
example, (drivingHistory, insuranceQuote) means that the execution of
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Figure 1 The service schema for car brokerage.

insuranceQuote depends on the result of drivingHistory. Service operations
from different Web services could have an inter-service dependency. For example,
there is a dependency between carQuote and insuranceQuote. It is denoted as
(carQuote, insuranceQuote).

The dependencies in the service schema determine the invocation sequence of
service operations. Since an operation can only be invoked after the invocation of
all its dependent operations, a key concept called operation graph is introduced to
capture these operations and the dependencies between them.

Definition 2.2 (Operation graph [30]) For a service graph SG = (V, E, ε), an opera-
tion graph G(op) is the union of all the paths in SG that lead to operation op. G(op)

is a subgraph of the service graph SG. Figure 2 shows an operation graph G(d), which

Figure 2 An example of an
operation graph.
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is formed from SG by the union of two paths, P1 and P2, that both lead to the service
operation d.

Definition 2.3 (Operation set graph [30]) For a service graph SG = (V, E, ε), we
define an operation set graph G(op) = ∪k

i=1G(opi), where op = {opi|1 ≤ i ≤ k}.
G(op) is a subgraph of service graph SG. For example, in Figure 2, the operation
set graph for {a,d,f} is SG itself, i.e., G({a, d, f }) = SG.

Given a (set of) service operation(s) that a service user wants to access and a ser-
vice graph, an operation (set) graph can be directly obtained through standard graph
algorithms. The operation (set) graph includes all operations that are necessary for
the user’s request. It also captures the dependencies between these operations, which
determine their invocation order. When a user wants to access service operations
from multiple service graphs, the corresponding service graphs can be composed on
demand. The composed graph, G′ = Gi ◦ G j, is formed by coalescing the root of Gi

and G j. The inter-graph edges become part of the edge set V ′ in the newly formed
service graph G′. The newly generated root needs to store the entry information (e.g.,
URI) for accessing service operations from original service graphs.

The service relation is used to store the quality of different service providers. It
defines a set of service instances that conform to the service schema, i.e., the service
instances offer the operations and follow the dependency constraints defined in the
service graphs. However, since the service instances are provided by different service
providers, they may have different quality properties.

Definition 2.4 (Service relation [30]) A service relation SR with a service graph
SG = (V, E, ε) is defined as a set of service instances I = {(sid, op1, . . . , opn)}, where
sid is the unique service id; op is a service operation and defined as a pair op =
(opid,Q(op)), where opid is the operation id and Q is a set of QoWS parameters
of op. Typical QoWS parameters include latency, fee, reliability, availability, and
reputation. Other parameters can be added based on the application domain.

2.2 Problem definition

Given an operation (set) graph, we can perform a topological sort on this graph,
which will order the operations based on their dependencies. This operation se-
quence is referred to as a generic service plan. Service Execution Plans (SEPs) can
be generated by instantiating the generic service plan with the operations from the
service instances in the service relation. Table 1 shows these aggregation functions for
some typical QoWS parameters. The quality parameters of a SEP can be computed

Table 1 QoWS for a SEP. QoWS parameter Aggregation function

lat(SEP)
∑n

i=1 lat(opi)

rel(SEP)
∑n

i=1 log(rel(opi))

avail(SEP)
∑n

i=1 log(avail(opi))

fee(SEP)
∑n

i=1 f ee(opi)

rep(SEP) 1
n

∑n
i=1 rep(opi)
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by aggregating those of its member service operations. These aggregation functions
are widely used in dealing with various service optimization problems [30, 33, 35].
Once the quality parameters of the SEPs are available, the quality of a SEP can be
represented as a vector, such as (lat, rel, avail, fee, rep).

Definition 2.5 (SEPA dominates SEPB) Consider a set of user interested QoWS
parameters, Q(q1, . . . , qd). SEPA dominates SEPB (denoted as SEPA� SEPB) when
∀ i ∈ [1, d], qA

i � qB
i and ∃ j ∈ [1, d], qA

j � qB
j .

Definition 2.6 (Service skyline) A service skyline (a.k.a. SEP skyline) consists of a
set of SEPs that are not dominated by other SEPs.

Example 2.1 Consider the following service request: a user wants to get an insurance
quote from a car insurance service and she is interested in two quality aspects,
service fee and response time. To fulfill this service request, a generic execution
plan will be first generated that consists of two operations: (drivingHistory,
insuranceQuote). It is worth to note that drivingHistory is dynamically
identified based on the dependency. Assume that there are five providers that offer
this car insurance service and their corresponding QoWS parameters are shown in
Figure 3. Instantiating the above generic execution plan will result in five SEPs: SEP1,
SEP2, SEP3, SEP4, and SEP5. Based on the aggregation functions defined in Table 1,
we can compute the QoWS of these SEPs as: (4, 25), (6, 20), (2, 40), (9, 20), (4.5, 25).
Based on Definition 2.5, we have SEP1� SEP5 and SEP2� SEP4. Thus, the service
skyline will consist of three SEPs: SEP1, SEP2, and SEP3.

SEPs are inherently different from data in a database. This poses a set of new
challenges for computing a service skyline. For example, SEPs are not stored prior
to the submission of a service request. Instead, for each service request, a set
of SEPs will be dynamically generated. A SEP usually contains a set of member
service operations, some of which may even not appear in the service request. The
operations are selected and put in the SEP dynamically based on the dependency
constraints. Since the service providers are selected based on user’s preference on
the entire SEP, the selection can only be carried out after the SEPs have been
generated. Furthermore, the attributes of a SEP are aggregates of the corresponding
attributes from its member operations. Answering aggregate queries remains to be a
challenging task in traditional database systems. It is usually addressed by leveraging

Figure 3 Sample service
providers for car insurance.

DrivingHistory

sid Latency Fee

1 2 25

2 3 15

3 1 30

Latency Fee

2 0

3 5

1 10

InsuranceQuote

4 5 10

5 1.5 20

4 10

3 5
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materialized views [9, 12, 25]. However, view materialization may not be suitable for
the highly dynamic SEP spaces.

Summary of contributions We propose two algorithms to efficiently compute ser-
vice skylines. The first algorithm relies on the indices built from service operations,
which are relatively static and can be stored and indexed beforehand. The second
algorithm relies on the operation graphs from the service schema to directly index
the SEP space. The key contributions are summarized as follows.

• Even though SEPs are dynamically generated for each service request, the
service operations are relatively static. Therefore, the QoWS parameters of
service operations can be stored and indexed beforehand. We develop a dual-
pruning mechanism, which exploits the service operation index to filter out dom-
inated SEPs and then uses an in memory structure to generate the final skyline.

• Services are typically not accessed in an ad hoc manner. Instead, certain business
logics usually need to be followed. For example, in the travel domain, if one
reserves a package that includes both airline booking and car rental, the pickup
time and location of the rental car is automatically determined by the air ticket.
The business logics are captured by the service schema in terms of dependency
constraints. These constraints only allow SEPs that conform to certain patterns
to be generated. We propose to leverage operation graphs, which can be derived
from the service schema, to directly build indices for SEPs. We discuss why
operation graphs offer sufficient information to index SEPs and present the
technical details for constructing operation graphs and how to use them to index
the SEP space.

• The indices on service operations and SEPs can be used to effectively prune the
dominated SEPs. However, for the SEPs that cannot be pruned by the indices
(which include all skyline SEPs), pairwise comparisons are required in order
to determine whether they are in the skyline or not. With the increase of the
skyline size, pairwise comparisons can become very expensive, which will slow
down the entire skyline computation process. Inspired by recent works on skyline
computation in the database community [17, 36], we propose a hybrid indexing
structure that combines a R-tree with a space partition tree. The space partition
tree can effectively reduce the number of pairwise comparisons by dividing the
SEPs into different partitions such that no comparisons are needed for SEPs that
belong to incomparable partitions. In this regard, the proposed hybrid structure
optimizes both dominance checking (using the R-tree) and incomparability
checking (using the partition tree). Experimental study demonstrated that it
achieves good performance and also scales well to high dimensionality.

3 Indexing service operations

In this section, we investigate how to leverage indices on service operations to
possibly expedite service skyline computation. The following theorem allows us to
compute the service skyline based on the indices of service operations. We define a
notation that will be used for explaining the algorithms. Consider two SEPs: SEP1

and SEP2. SEP1op SEP2 represents that SEP1 dominates SEP2 on operation op. For
instance, in Example 2.1, we have SEP1insuranceQuote SEP5.
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Theorem 3.1 For any two SEPs, SEP1 and SEP2, that contain k service operations
op1, . . . ,opk,

(
SEP1 op1 SEP2

) ∧ . . . ∧ (
SEP1 opk SEP2

)

⇒ SEP1 (op1,...opk) SEP2 (i.e., SEP1  SEP2)

Theorem 3.1 states that if SEP1 can dominate SEP2 on all member operations,
then SEP1 dominates SEP2. Thus, these dominated SEPs can be eliminated from the
SEP space. The underlying strategy is to examine dominance relationship between
two SEPs on each service operation. If a SEP has all operations dominated by
another SEP, the former SEP can be safely removed. Checking the dominance re-
lationship between service operations can be efficiently achieved through the indices
on these operations. In what follows, we will focus on extending two algorithms,
B-tree based approach and nearest neighbor search approach. The strategy can be
easily applied to database skyline algorithms with other types of indices.

3.1 Indexing service operations using B-trees

We investigate how to leverage the B-tree index on service operations to compute the
service skyline in this section. We will use the service request in Example 2.1 to illus-
trate the idea. Since a SEP consists of two service operations (drivingHistory,
insuranceQuote) and each operation has two QoWS parameters. Therefore, we
have four attributes, i.e., drivingHistory.fee, drivingHistory.latency,
insuranceQuote.fee, and insuranceQuote.latency. Assume that these
four attributes are all indexed by using a B-tree. We start by scanning the four
indices simultaneously to find the first match of the service id (i.e., sid). All the
service instances that are not inspected before the first match will be removed from
further computation. The remained service instances will go through a second round
selection to determine the final skyline. The second round selection needs to be
conducted in a brute-force manner. The quality of a SEP (i.e., fee and latency, etc)
will be calculated using the aggregate functions defined in Table 1. Then a non-index
based approach (e.g., block nested loop, divide-and-conquer, etc) can be applied to
compute the final skyline.

Figure 4 illustrates how to use the B-tree approach to compute a skyline for
the example service request. For example, the simultaneous scan identifies the first
match, which is S8. The SEPs that have not been inspected are then eliminated. The
scan process guarantees that, for any SEPk that has not been inspected, (SEP8op1

SEPk) ∧ (SEP8op2 SEPk) is true, where op1 and op2 are drivingHistory and
insuranceQuote respectively. According to Theorem 3.1, SEP8(op1,op2) SEPk is
true, i.e., SEP8 dominates SEPk. Therefore, SEPk should be removed from further
computation. The remaining SEPs (i.e., SEP2, SEP15, . . . ,SEP8) will go through the
second round selection to generate the target skyline.

The above approach assumes that different SEPs have distinct values on each
attribute so that they can be sorted in a strictly increasing order. When there are
duplicate QoWS values, some SEPs may not be properly pruned in the first round
and thus increase the computational overhead of the second round. This can be
handled by using an approach, which is similar to the one proposed in [18]. In
particular, a buffer Bi will be created for attribute Ai, where Bi is used to store
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sid fee ($)

S2 8

S15 10

S8 13

S22 18

... ...

sid latency (s)

S10 5

S1 7

S4 12

S8 15

... ...

sid fee ($)

S21 0

S2 2

S8 4

S22 8

... ...

sid latency (s)

S15 15

S8 18

S23 19

S6 21

... ...

drivingHistoryinsuranceQuote

S2 S15 S10 S1 S4 S21 S15 S8

Figure 4 Indexing the service operations using a B-tree.

possible skyline SEPs that share the same value in Ai. Before inserting a potential
skyline SEP into the buffer, it will first be compared with the SEPs within the buffer.
If the new SEP is dominated, it won’t be inserted. If any SEP in Bi is dominated, it
will be removed from the buffer. When a SEP with a larger value in Ai is inserted
into Bi, all SEPs within the buffer will enter the second round selection.

3.2 Indexing service operations using R-trees

In this section, we assume that the service operations are indexed by using a R-tree.
We study how to extend the nearest neighbor algorithm [15] to compute service
skylines in this section. We continue to use the service request in Example 2.1 to
illustrate the computation process (see Figure 5). We divide the main procedure into
five steps:

1. Take the first member operation (i.e., drivingHistory) and compute the
nearest neighbor of data record (0, 0). Assume that the nearest neighbor we
get is S1

NN and the set of SEPs dominated by S1
NN is A. We then take S1

NN and
evaluate it on the second operation (i.e., insuranceQuote) and get the set of
SEPs dominated by S1

NN , which is B.
2. Compute the intersection of A and B and we get C = A ∩ B. According to

Theorem 3.1, all the SEPs in C are dominated by S1
NN and therefore should be

removed from further computation.
3. For SEPs that are not dominated by S1

NN , recursively apply steps 1 and 2 to
further remove dominated SEPs..

4. For the remaining SEPs, reverse the order of member operations (i.e., find the
nearest neighbor of insuranceQuote and evaluate it on drivingHistory),
and apply the above three steps.

5. Use a brute-force approach to generate the skyline from the remaining SEPs.
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Figure 5 Indexing the service operations using a R-tree.

The above algorithm requires a frequent computation of intersections between
two sets. Computing set intersections could be very expensive especially for large
sets. Assume that the cardinalities of set A and B are k1 and k2 respectively. To get
the intersection C, we usually need to do a pairwise comparison between these two
sets that requires O(k1 × k2) time complexity. When k1 and k2 are large, this will
be prohibitive as a frequently executed operation. Another approach is to sort the
two sets and do a sequential pass simultaneously on them. This would require a time
complexity of O(k1 × log k1 + k2 × log k2).

We adopt the key-indexed search strategy to make this operation run in linear
time. To achieve this efficiency, we need O(n) additional space as a tradeoff. Suppose
there are n service instances with the car insurance service. We assign the id numbers
of these instances from 0 to n − 1, i.e., sid ∈ [0, n − 1]. The id numbers are distinct
from each other. We use an assistance array T of size n to record these sids. All the
elements of the array are initialized to be 0. To compute the intersection of A and B,
we first pass set A and add 1 the corresponding item of T accordingly. For example,
if sidk ∈ A, then set T[sidk] to 1 (the initial T[sidk] is 0). We then continue to apply
the same process using B. In the end, all the sids that satisfy T[sid] > 1 fall into the
intersection. Obviously, the time complexity of this approach is O(n).

We can further reduce the space complexity by using bitmaps to implement the
assistance array T. Specifically, we can use two n-bits vectors V1 and V2 to replace
T. They will only use 1/16 of the space used by T. All the bits in V1 and V2 are
initialized to 0. Similarly, we first pass A and set the corresponding bits of V1 to 1
accordingly, i.e., if sidk ∈ A, then V1[sidk] = 1. When we pass B, we set the bits in
V2 according to V1, i.e., if (sidk ∈ B) ∧ (V1[sidk] == 1), then V2[sidk] = 1. Finally,
all the sids that satisfy V2[sid] == 1 fall into the intersection. We can use bitwise
operators that enable to process bits in a batch mode to further improve the efficiency
(Figure 6).

3.3 Analysis

Theorem 3.1 offers us heuristics for pruning dominated SEPs. However, algorithms
based on this theorem may be far less efficient than an optimal algorithm because
they have to use a brute-force approach on a usually large SEP space due to the
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8

B

2
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V2
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Figure 6 Computing set intersections using bitmap.

limited pruning power of the adopted heuristics. In this section, we conduct an
analysis that gives an insight on some inherent issues.

We continue to use the service request in Example 2.1. Since each SEP consists
of two operations, SEP1 SEP2 actually means SEP1(op1,op2) SEP2. There are four
possible situations that lead to SEP1(op1,op2) SEP2:

1. (SEP1op1 SEP2) ∧ (SEP1op2 SEP2)
2. (SEP1op1 SEP2) ∧ (SEP1 � op2 SEP2)
3. (SEP1 � op1 SEP2) ∧ (SEP1op2 SEP2)
4. (SEP1 � op1 SEP2) ∧ (SEP1 � op2 SEP2)

Theorem 3.1 only covers the first situation, i.e., (SEP1op1 SEP2) ∧ (SEP1op2

SEP2) ⇒ SEP1(op1,op2) SEP2. We can directly eliminate SEP2 if the first situation
is satisfied. However, for the remaining three situations, we have to postpone
the decision until the aggregate attributes of the SEPs are actually computed and
compared. Therefore, the heuristics derived from Theorem 3.1 only help prune a
(sometimes small) subset of SEPs. For a correlated service space, where some service
instances that are good in one quality aspect are also good in the other quality
aspects, the heuristics may have a good pruning capability because there may be few
very good SEPs that dominate others. However, for other circumstances, the prune
power may be very limited.

4 Indexing the SEPs

Based on the above analysis, we first present a Baseline Algorithm (BA) that relies
on a two-level pruning mechanism to efficiently compute the service skyline. We
then conduct an in-depth performance analysis, which helps reveal some inherent
issues with this algorithm. This also leads us to develop a novel indexing structure on
SEPs. The experimental study in Section 5 justifies the effectiveness of the proposed
indexing structure.

4.1 The baseline algorithm

We propose in this section the BA algorithm to efficiently retrieve service skylines.
We continue to use the service request in Example 2.1. Similar to the B-tree based ap-
proach, we treat the operation space as having four dimensions: op1. f ee, op2.latency,
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op1. f ee, and op2.latency, where op1 and op2 represent drivingHistory and
insuranceQuote, respectively. Suppose that this operation space is indexed by a
R-tree, referred to as RO. The leaf nodes of the R-tree represent the actual SEPs.
An intermediate node represents a minimum bounding rectangle (MBR) of each
node at its lower level. Similar to BBS (branch and bound skyline) [20], BA also
leverages a priority queue (or a heap) to make sure that the SEPs are enumerated in
an ascending order of their mindist. The mindist of a leaf node is the summation of
all its coordinate values whereas the mindist of an intermediate node is the mindist
of its lower-left corner point. The heap is constructed to efficiently output the node
(intermediate or leaf node) that has the minimum mindist.

Recall that if SEP1 dominates SEP2, it actually means SEP1(op1,op2) SEP2 and
there are four possible situations that may lead to SEP1(op1,op2) SEP2 as stated in
Section 3.3. Since RO is an index that is built upon service operations, in essence,
it can only deal with the first situation. Therefore, we need to make key extensions
to BBS in order to compute the service skyline. The detailed algorithm is given in
Algorithm 1. BA initially inserts all the entries in the root of RO into the heap H.
The entry with the minimum mindist is removed from the heap. This entry is then
expanded and all its child entries are inserted into the heap. Again, the entry with
the minimum mindist will be removed from the heap, expanded, and all its child
entries will be inserted into the heap. This process continues until the first leaf node
is removed by the heap. This leaf node will be inserted into the resultant skyline list
L. A SEP R-tree, referred to as, RS, will then be initialized using the first skyline
SEP. The purpose of RS is to effectively prune dominated SEPs. More specifically,
RS will be dynamically constructed with two dimensions: SEP.fee and SEP.latency
(because this is a R-tree on SEPs not operations), where

SEP. f ee = op1. f ee + op2. f ee (1)

SEP.latency = op1.latency + op2.latency (2)

After RS is constructed, the entries output from the heap will be checked against it
for dominance. Specifically, if a top entry in the heap is dominated by some SEP in
RS, it can be directly pruned. Otherwise, we have two situations:

1. If the entry is an intermediate node, it will be expanded into its child entries and
these child entries will also be checked for dominance against RS before inserting
into the heap. The dominated entries can also be directly pruned.

2. If the entry is a leaf node. it will be inserted into both L and RS.

As can be seen in Algorithm 1, RO and RS essentially form a two-level pruning
mechanism and the SEPs that cannot be pruned by these two R-trees are the skyline
SEPs.

4.2 Analysis

RS enables dominance checking on the aggregate QoWS attributes of SEPs. It
determines the SEP skyline search region (SSR) that is the section of the data space
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Algorithm 1 BA
Input: A R-tree RT
Output: A list of the SEP skyline points L

1: L = φ, RS = φ;
2: insert all entries in the root node of RO into H
3: while H �= φ do
4: e = H.extractmin();
5: if RS �= φ then
6: map e to the dimensions of RS and check dominance;
7: if e is dominated then
8: prune e;
9: else

10: if e is an intermediate node then
11: for each child entry e.ci of e do
12: if e.ci is not dominated by RS then
13: H.insert(e.ci);
14: end if
15: end for
16: else
17: L.insert(e);
18: RS.insert(e);
19: end if
20: end if
21: else
22: if e is an intermediate node then
23: for each child entry e.ci of e do
24: H.insert(e.ci);
25: end for
26: else
27: L.insert(e);
28: initialize RS using e;
29: end if
30: end if
31: end while

containing the skyline SEPs [20]. By observing formulae (1) and (2), we find that RO

that is used to index the operation space and RS share the same mindist, i.e.,

mindist = SEP. f ee + SEP.latency (3)

= op1. f ee + op2. f ee
︸ ︷︷ ︸

SEP. f ee

+ op1.latency + op2.latency
︸ ︷︷ ︸

SEP.latency

(4)

The mindist of a SEP is defined as the sum of its QoWS attributes. Different QoWS
attributes are normalized into the same range (e.g., [0, 1]) before being aggregated.
Based on (3) and (4), RO and RS share the same mindist as long as the aggregation
functions are defined as the sum of the QoWS attributes from the SEP’s member
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operations. For some aggregation functions that are usually defined as the product of
the QoWS attributes from the member operations (e.g., reliability and availability),
we take a logarithm to make an adaption as shown in Table 1.1

Given that RO and RS share the same mindist function, BA only accesses
candidate entries in RO that potentially contain skyline SEPs. Here, we define a
candidate entry as a R-tree entry that intersects with the SSR. A non-candidate entry,
say e, does not overlap with the SSR, which also implies that there is a skyline SEP
ψ that can dominate the lower-left corner of e. ψ must also have a mindist that is
smaller than that of e [20]. We use the notion mindist(RS) to denote the mindist
calculated under RS. Similarly, we use the notion mindist(RO) to denote the mindist
calculated under RO. Recall that the heap enables that the entries in RO are visited
in ascending order of their mindists. If mindist(RS) equals to mindist(RO), it can be
guaranteed that ψ is processed before e so that e is pruned by ψ . In this manner, the
non-candidate entries will be pruned and only candidate ones are accessed.

Based on the above analysis, we can estimate the number of nodes accessed by
BA. Assume that the height of RO is h and there are candi candidate nodes in the
ith level of the R-tree. The total number of node accesses can be represented as

N A =
h−1∑

i=0

candi (5)

To further examine how N A is related to the structure of the R-tree and the inherent
characteristics of the data space, we further elaborate (5). Specifically, h can be
specified as 1 + �log f (

N
f )�, where N is the cardinality of the data space and f is

the average fanout of a node in RO. Suppose there are ni nodes at level i and the
probability that a node at level i intersects with SSR is Pi

intsect(SSR). The candidate
nodes at level i can be described as [20]

candi = ni × Pi
intsect(SSR) (6)

The number of node at level i can be specified as ni = N
f i+1 . Pi

intsect(SSR) can be
evaluated by using the node density Di(p) at level i, i.e.,

Pi
intsect(SSR) =

∫

p∈SSR
Di(p)dp (7)

Assuming that each leaf node visited contains some skyline SEPs, a pessimistic upper
bound for retrieving the entire skyline is given by [20] , which is |L| × h. It is decided
by the cardinality of the skylines (i.e., |L|) and the height of RO. This upper bound
corresponds to the situation that the algorithm needs to go through a complete path
(i.e., the length of the path is h) to find each skyline point. However, multiple skyline
points may be grouped into a single node or belong to the same branch of the R-tree.
In this regard, the R-tree can be viewed as a cluster mechanism that groups together

1Some other monotonic aggregation functions can also be handled in a similar way, e.g.,
(∏n

i=1 xi
)1/k

and the exponential function e
∑n

i=1 xi . Since sum and product are the most commonly used aggrega-
tion functions for QoWS, we mainly focus on these two types of functions.
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the points with similar properties (e.g., similar coordinate values). Since the total
number of node accesses is less than |L| × h, we can have

N A = α × |L| × h =
�log f (

N
f )�

∑

i=0

N
f i+1 ×

∫

p∈SSR
Di(p)dp (8)

where α ∈ (0, 1] is defined as a bounding factor. From (5), (6) and (7), we can see that
N A is determined by the cardinality of the data space, the node density of each level
of the R-tree, and the fanout of the R-tree. Therefore, α is related to the structure of
the R-tree and the inherent characteristics of the data space.

The above analysis helps us further investigate the performance of BA. Although
it has an upper bound of |L| × h, it may not be an optimal solution for retrieving
the SEP skylines (i.e., the bounding factor α of BA may be large). The reason is that
BA is based on a R-tree (i.e., RO) that is constructed from the operations space. The
operation space is different from the SEP space whose coordinates are the aggregates
of the operations. Therefore, (1) the SEP space may have different characteristics
with the operation space; (2) a R-tree built from the SEP space (where we try to find
the skylines) may have a different structure with a R-tree built from the operation
space. We illustrate these two aspects by using two simple examples.

4.2.1 Space characteristics

Based on formula (2), the latency of a SEP is the sum of the latency from its member
operations. We use X and Y to represent the latency of the two member operations
and assume they are two independent continuous random variables with density
functions fX(x) and fY(y). The latency of the SEP is described as the sum of X and
Y, i.e., Z = X + Y. The density function of Z is fZ (z) with fZ = fX ∗ fY , where ∗
is the convolution operator. Specifically,

fZ (z) = ( fX ∗ fY)(z) =
∫ +∞

−∞
fX(z − y) fY(y)dy

As an example to show how the distribution of Z is different from X and Y, we
assume X and Y are randomly chosen variables from interval [0,1] with uniform
probability density. Z = X + Y is the sum of these two variables. The density
functions of X and Y are described as:

fX(x) = fY(y) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

The density function of Z can be computed from the convolution of fX and fY :

fZ (z) =
∫ +∞

−∞
fX(z − y) fY(y)dy =

⎧
⎨

⎩

z if 0 ≤ z ≤ 1
2 − z if 1 ≤ z ≤ 2
0 otherwise
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We can see that Z has a triangle distribution that is different from both fX and fY .
We use this example just to show that how the characteristics of the SEP space may
be different from the operation space.

4.2.2 R-tree structure

Using Example 2.1, we assume that all the service instances provide the insurance
quote for free (i.e., op2. f ee = 0). This enables us to visualize the SEPs in the
operation space (with three dimensions because the op2.fee dimension is collapsed
into the origin). As we can see in Figure 7, the operation space is represented using
three coordinates: fee, op1.latency, and op2.latency. We select three representative
SEPs, a, b , and c to investigate how they could be organized differently in the
operation space and the SEP space. In the operation space, a and b are far from
each other because they have quite different values for the latency on their two
member operations, i.e., a is much more efficient on performing op2 whereas b is
much more efficient on performing op1. Another SEP c is much nearer to a than b
although it is less efficient on performing both op1 and op2 than a. Therefore, a and
c may be more likely to be “clustered” into the same MBR by a R-tree built from
the operation space. However, in the SEP space (represented using two coordinates:
fee and op1.latency + op2.latency in Figure 7), a′ is actually much closer to b ′ than
c′. In this case, a′ and b ′ may be more likely to be “clustered” into the same MBR
by a R-tree built from the SEP space. If both a′ and b ′ belong to the service skyline,
they can be retrieved together. In contrast, retrieving a and b from the operation
space may require more node accesses because they could be in different leaf nodes
or even different branches of the R-tree.

4.3 Operation graph based indexing (OGI)

An effective improvement on BA is to make it perform on a R-tree that is con-
structed directly from the SEP space. However, the challenge is that the SEP space is
dynamically generated by each service request. This makes the SEP space inherently
different from the operation space which is relatively static. Pre-computing an index
structure for such a dynamic space seems to be infeasible.

Figure 7 SEP distribution in
operation space and SEP
space.

a bc

a’b’

c’

fee

op1.latency
op2.latency

op1.latency+op2.lantency
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In this section, we present an operation graph based indexing (OGI) approach to
build indices for SEPs. Although different SEP spaces can be dynamically formed
for different service requests, SEPs are not generated in an ad hoc manner. The
dependency constraints between service operations only allow SEPs that conform to
certain patterns to be generated. These patterns are like rules that define what kind
of SEPs can be generated. If we know these patterns in advance, we can foresee the
properties (i.e., the aggregate attributes) of the SEPs and construct index structures
on them. Now the problem turns out to be whether such patterns exist or not and
if yes, how to find such patterns. The proposed service model provides a natural
solution for this problem.

Consider a set of SEPs, SEP1, . . . ,SEPk, that are generated from service relation
SR with k service instances. Assume that these SEPs are used to access operation
op specified by some service request. The operation graph G(op) is made up of a
minimum number of necessary operations that make op accessible. In another word,
G(op) consists of all operations that op depends on (i.e., ancestors of op in the service
graph SG) and no other redundant operations. We can formally prove it as follows.
Assume there exists an operation op′ where op′ is ancestor node of op in SG and
op′ is not a node of G(op). Let P1 be the path from op′ to op. Also, we denote the
path from ε to op′ as P2. Connecting P1 and P2, we get a new path P3 from ε to op,
which is not included in G(op). This contradicts definition of the operation graph.
Therefore, no such op′ exists. Thus, G(op) includes all operations that op depends on.
Let’s now assume that there exists a graph G′(op) = G(op) − {op′}, where op′ �= op,
such that G′(op) includes all operations that op depends on. From definition of the
service graph, there is a path to op which passes through op′ in SG. Therefore, op′ is
an ancestor node of op in SG. Since G′(op) includes all operations that op depends
on, we have op′ ∈ G′(op). This contradicts the fact that op′ is removed from G′(op).
Therefore, G(op) does not include any redundant operations.

The above proof shows that G(op) captures all the operations (i.e., op and all its
the operations it depends on) in the SEPs. On the other hand, the service instances
in SR store the QoWS parameters for each of these operations. Thus, the operation
graph G(op) and service relation SR carry enough information to construct the index
for the SEPs. The algorithm for constructing OGI is presented in Algorithm 2.

Algorithm 2 OGI_construction
Input: A requested operation op, a service graph SG(V, E), and a service relation SR
Output: A R-tree RT for the SEP space

1: OG = G(op)_construction(op, SG);
2: S = φ; //a two dimensional array used to store the SEPs
3: for each op ∈ V[OG] do
4: op = select op from SR; //retrieve the QoWS of op from all service instances in SR
5: insert op into S as a column;
6: end for
7: RT = build_Rtree(S); //build the R-tree from S, where each row of S stores the

QoWS for a SEP
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Algorithm 3 G(op)_construction
Input: A requested operation op and a service graph SG(V, E)

Output: An operation graph OG(V, E)

1: V[OG] = φ; E[OG] = φ; //initialize the operation graph OG
2: O = {op}; //O is a set for storing operations
3: while O �= φ do
4: op = O.remove(); //remove an operation op from O
5: V[OG] = V[OG] ∪ {op};
6: for each (o, o′) ∈ E[SG] do
7: if (o′ == op) then
8: E[OG] = E[OG] ∪ {(o, o′)};
9: O = O ∪ {o};

10: end if
11: end for
12: end while

Operation graph based indexing (OGI) enables us to directly construct indices for
SEPs when the service schema is available. Algorithms built from OGI can thus use
an index on the SEP space. This has two major advantages over BA:

• OGI overcomes the “distortions” introduced by using an index on the operation
space.

• A R-tree index on the SEP space has lower dimensionality than a R-tree on the
operation space. The former has a dimensionality that equals to the number of
user interested quality attributes while the dimensionality of the latter equals the
number of user interested quality attributes times the service operations in a SEP.

4.4 Incorporating space partition tree

As the size of the service skyline increases, a large number of SEPs (including all
skyline SEPs) may not be pruned by the indices. Instead, pairwise comparisons have
to be performed to determine the skyline membership. Even if a main-memory R-
tree can be used, the R-tree still needs to be frequently updated due to the insertion
of each skyline SEP, which can also be computationally expensive.

Inspired by the recent works on skyline computation in the database community
[17, 36], we propose to consider incomparability among the SEPs when computing
the final service skyline. The R-tree that is built upon the operation space (for BA) or
the SEP space (for OGI) provides an effective way to perform dominance checking.
It groups together SEPs with similar QoWS so that they can be efficiently pruned
in a batch mode. On the other hand, for the SEPs that cannot be pruned, as most
of them are skyline SEPs, they are not comparable to each other (or they do not
dominate each other). As the size of the skyline increases, it demands a large number
of pairwise comparisons, which are computationally expensive and slow down the
entire skyline computation process. We propose a hybrid structure that combines
a R-tree with a space partition tree. The space partition tree is similar to the one
proposed in [36], which is mainly used to efficiently process SEPs that are not pruned
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by the R-tree. The hybrid structure thus optimizes both dominance checking (using
the R-tree) and incomparability checking (using the partition tree) and is expected
to achieve good performance and scalability. In what follows, we briefly describe the
space partition tree and then present how the R-tree and the space partition tree can
be integrated into the skyline computation process.

Given d user interested QoWS parameters, the SEP space will be divided into 2d

partitions by a given skyline SEP, called a reference point. The key idea is that no
pairwise comparison is needed between SEPs that are assigned to incomparable par-
titions. For example, as illustrated in Figure 8a, the SEP space is divided by skyline
SEP S0 into four partitions, which are addressed as 00, 01, 10, and 10, respectively. No
pairwise comparisons are needed between SEPs in partition 10 (i.e., S1 to S4) and the
ones in partition 01 (i.e., S5 to S8) because they are guaranteed to be incomparable to
each other. Following the same lines, the SEP space can be recursively divided until
no further partitioning can be performed. For example, S2 and S6 can be used to
further divide partitions 01 and 10. As the number of incomparable SEPs increases,
pairwise comparisons can be significantly reduced, which will greatly improve the
performance. The partitions can be efficiently represented by the space partition
tree, as shown in Figure 8b. Each node has no more than one child and the child
node represents the reference point from the partition with the smallest address. For
example, S6 is the child node of S0 because S6 has a smaller partition address than S2.
The reference points from other partitions form the sibling nodes, which are ordered
in ascending partition address.

The space partition tree will be initialized when the first skyline SEP is identified.
The entries output from the heap will then be evaluated using the partition tree. If
the entry is dominated (i.e., fall into the dominated partition such as 11 in Figure 8a),
it will be pruned. Otherwise,

1. If the entry is an intermediate node, it will be expanded into its child entries and
these child entries will also be evaluated using the partition tree before inserting
into the heap. The dominated entries can also be directly pruned.

2. If the entry is a leaf node. it will be inserted into the partition tree.
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Figure 8 Incomparable partitions in the SEP space.
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4.5 Computing SEP skylines over multiple services

The approaches we presented so far focus on computing service skylines from a single
service. In Example 1.1, Mary wants to access an integrated service package that
consists of three services: Car Insurance, Car Purchase, and Financing. Processing
such a service request will generate SEPs that are across multiple services. We define
a service skyline that is computed from multiple service relations, SR1, . . . , SRm, as
a multi-service skyline, denoted as SKall . Suppose that there are k1, . . . , km service
tuples for each of the m service relations. To find the skyline for the service package,
N = ∏m

i=1 ki number of candidate SEPs need to be evaluated. The computational
cost would be prohibitive if the number of service instances in each service relation
is large. Fortunately, we can leverage the following key property of service skylines
to greatly improve the performance.

Lemma 4.1 Consider a set of service relations SR1, . . . ,SRm, and a set of service
skylines SK1, . . . ,SKm, computed for each of them. A multi-service skyline SKall over
SR1, . . . ,SRm can be completely decided by SK1, . . . ,SKm.

Proof sketch Lemma 4.1 essentially says that any multi-service SEP, ψ ∈ SKall , must
be aggregated from a set of SEPs, ψ1, . . . , ψm, where each ψ j is a skyline SEP from
SR j. Assume that ψ j is not a skyline SEP from SR j. Thus, we can always find a
skyline SEP, say ψ ′

j, from SR j, such that ψ ′
j dominates ψ j. Therefore, we can get a

multi-service SEP, say ψ ′, by aggregating ψ ′
j with ψ1, . . . , ψ j−1, ψ j+1, . . . , ψm. Thus,

ψ ′ dominates ψ . This contradicts the fact that ψ is in the skyline SKall . ��

Lemma 4.1. enables us to compute the skylines over multiple services by using the
skylines from each individual services. Since the size of a skyline is expected to be
much smaller than the number of service instances, a large portion of computation
overhead can be effectively reduced. Computing a multi-service skyline over m
services can be conducted in two conceptually separated steps:

1. Compute the service skylines for each individual service. The cost of this step
is dominated by the total number of node accesses, which can be quantified as∑m

i N Ai.
2. Pick one SEP from each skyline resulted from the first step to generate the multi-

service skyline and enumerate all possible combinations. The cost of this step is
determined by

∏m
i |Li|, where |Li| is the size of the skyline for the ith service.

5 Experimental study

We conduct an extensive set of experiments to assess the effectiveness of the
proposed service skyline computation algorithms. We run our experiments on a
Macbook Pro with 2.5 GHz Intel Core 2 Duo processor and 4G Ram under Mac
OS X 10.5.8. Since there is not any sizable Web service test case that is in the
public domain and that can be used for experimentation purposes, we focus on
evaluating the proposed skyline algorithms and indexing structure by using synthetic
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Table 2 Abbreviation of
algorithms.

BA-IR Baseline algorithm using an main memory R-tree
BA-PT Baseline algorithm using a space partition tree
OGI-IR OGI algorithm using an main memory R-tree
OGI-PT OGI algorithm using a space partition tree
LESS Linear Elimination Sort for Skyline [11]
OSP Object-based space partitioning algorithm [36]

Web services. The QoWS attributes2 of syntactic service instances are generated
in three different ways following the approach described in [5]: (1) Independent
QoWS where all the QoWS attributes of service instances are uniformly distributed,
(2) Anti-correlated QoWS where a service instance is good at one of the QoWS
attributes but bad in one or all of the other QoWS attributes, and (3) Correlated
QoWS where a service instance which is good at one of the QoWS attributes is also
good at the other QoWS attributes.

We setup a set of experiment parameters to evaluate and compare the perfor-
mance of BA and OGI. These include the number of QoWS attributes (i.e., d) in
the range of 2–10, the number of operations per SEP (i.e., o) in the range of 2–10,
and the cardinality of the service relations (i.e., n) in the range of 100k–500k (i.e.,
100,000 to 500,000). We also study the performance of skyline computation over
multiple services and investigate how the performance varies with different number
of services in a SEP. By performance, we report both the node accesses (which is
independent of hardware settings) and the actual running time on our experiment
machine. Finally, we study the sizes of the SEP skylines and examine whether they
are in a practical range for user selection. To further evaluate the performance of the
proposed algorithms, we also implemented and compared our algorithms with LESS
[11] and the object-based space partitioning algorithm (OSP) [36]. For LESS, we use
an EF window that holds 100 SEPs in the first pass. For OSP, we implemented the
sorting first version of the algorithm. All algorithms in Table 2 are implemented in
Java.

5.1 Effect of the space partition tree

We first investigate the effectiveness of the space partition tree. We compare it with
the main memory R-tree based approach described in Section 4.1. Some interesting
observations are summarized as follows: (1) For anti-correlated QoWS with high
dimensionality (Figure 9a), the space partition tree helps generate the skyline in
a much more efficient manner than the main memory R-tree: OGI-PT and BA-
PT outperform OGI-IR and BA-IR, respectively for d ≥ 6). (2) For independent
QoWS, the advantage of using a space partition tree is not as obvious as the anti-
correlated case: OGI-PT is slightly more efficient than OGI-IR for d ≥ 9. (3) For
correlated QoWS, using a main memory R-tree has a better performance than the
space partition tree.

The results can be interpreted as follows. For the anti-correlated case, as the
dimensionality increases, the size of the skyline will quickly increase (also see

2We use QoWS attributes instead of QoWS parameters in the experiment section to differentiate it
from the term “experiment parameters” we use in this section.
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Figure 9 Effect of partition tree (n = 100k, o = 2).

Figure 17). Hence, the number of incomparable SEPs will increase accordingly. As
described in Section 4.4, the space partition tree can efficiently process incomparable
SEPs and thus achieve a much better performance than a memory-based R-tree.
For the case of correlated QoWS, as the size of the skyline is small, the number of
incomparable SEPs is limited. The memory-based R-tree can group together similar
SEPs and prune them in a batch mode, which makes it more efficient than the space
partition tree. Nevertheless, as shown in Figure 9c, both the space partition tree
and the main-memory R-tree can generate the skyline in a rather efficient manner.
The above observations justify that the hybrid structure that combine a R-tree with
a space partition tree provides a good balance between dominance checking and
incomparability checking and thus can achieve a good performance for different data
distributions.

5.2 Number of QoWS attributes

We study the effect of the number of QoWS attributes in this section. We keep the
cardinality as 100k, the number of operations per SEP as 2, and vary the number of
attributes from 2 to 10. Figures 10 and 11 show how the number of node accesses and
the actual running time vary with the number of attributes for the three different
QoWS distributions. For both anti-correlated and independent QoWS, OGI-PT
outperforms BA-PT on low dimensionality by almost an order of magnitude but
the difference decreases as the number of attributes increases. The performance
difference comes from two sources: (1) BA-PT operates on a R-tree built from the
operation space as contrast to a R-tree built from the SEP space used by OGI-PT;
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Figure 10 Node accesses vs. number of attributes.
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Figure 11 CPU time vs. number of attributes.

(2) The R-tree used by BA-PT has a dimensionality which is two times (since the
number of operations per SEP is 2 in this case) of the one used by OGI-PT. The
difference becomes smaller with a larger number of attributes, which is because both
algorithms are dominated by the poor performance of R-tree in high dimensions.

We also compare the number of node accesses with the theoretical upper bound
described in Section 4.2. As can be seen in Figure 10, the number of node accesses
is much lower than the upper bound except for some low dimensional cases. The
reason is that the upper bound holds when we assume that each leaf node contains
some skyline SEPs. However, when the dimensionality is low, the number of skyline
SEPs is small and a lot of leaf nodes do not contain any skyline SEP.

We study the performance of BA-PT and OGI-PT by comparing them with LESS
and OSP in Figure 11. OGI-PT achieves the best performance in all cases. BA-PT
also outperforms LESS in all cases. For both anti-correlated and independent QoWS,
the performance of BA-PT, OGI-PT, and OSP tend to be similar with the increase
of dimensionality. This is because for these two distributions, the size of the skyline
grows quickly with dimensionality. As more SEPs become incomparable to each
other, the number of SEPs that can be pruned by the R-tree will be significantly
reduced. In this case, both BA-PT and OGI-PT will rely on the space partition
tree to process most SEPs, which explains their similar performance with OSP. For
correlated QoWS, the performance of OGI-PT and BA-PT significantly outperforms
LESS and OSP because a large number of SEPs can be directly pruned by the R-tree
through dominance checking.

5.3 Number of operations per SEP

We study the effect of the number of operations per SEP with Figures 12 and
13. We keep the cardinality as 100k, the number of QoWS attributes as 2, and
vary the number of operations per SEP from 2 to 10. OGI-PT is more efficient
than BA-PT with several orders of magnitude and the difference increases with
the number of operations. The performance degradation of BA-PT is mainly due
to the dimensionality increment of the R-tree with the number of operations. A
close investigation reveals that the performance of OGI is insensitive to the number
of operations. By using the operation graph to index the SEPs, the same QoWS
attributes from multiple operations (e.g., the fee of operations) are aggregated
into a single QoWS attribute of the SEP (e.g., the fee of a SEP). Therefore, the
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Figure 12 Node accesses vs. number of operations.

dimensionality of the R-tree used by OGI-PT equals to a constant (i.e., the number
of different QoWS attributes which is 2 in this case) and will not increase with the
number of operations.

For CPU time, OGI-PT achieves the best performance in all cases. For anti-
correlated and independent QoWS with large number of operations, BA-PT uses
similar or even more CPU time as compared with LESS and OSP for a large number
of operations. The reason is similar to the one described above. When the number of
operations is large, BA-PT uses a R-tree with a very high dimensionality. Thus, the
number of node access increases accordingly, which affects the overall performance
of BA-PT.

5.4 Cardinality of service relations

We show the effect of cardinality in Figures 14 and 15. We keep the number of QoWS
attributes as 2, the number of operations per SEP as 2, and vary the cardinality from
100k to 500k. The performance of OGI-PT is consistently better than BA-PT due
to similar reasons as described in Section 5.2. BA-PT also significantly outperforms
LESS and OSP for independent and correlated QoWS. The number of node accesses
of both BA-PT and OGI-PT and the CPU time of all algorithms tend to increase with
the cardinality. For some cases, BA-PT and OGI-PT even perform more efficiently
with larger cardinality. This may be caused by the positions of the skyline SEPs and
the order they are retrieved [20].
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Figure 14 Node accesses vs. cardinality.

5.5 SEP skylines over multiple services

We now investigate the performance of skyline computation over multiple services.
We keep the cardinality of each service relation as 100k, the number of QoWS
attributes as 2, the number of operations per sub-SEP from each service as 2, and
vary the number of services from 2 to 5. We follow the two-step procedure described
in Section 4.5 and adopt OGI-PT in the first step to retrieve the skylines from each
individual service. Figure 16 shows both the number of node accesses and the running
time versus the number of services. The number of node accesses increases in a linear
manner because the number of node accesses for m services is the sum of those
for each individual service. The running time, however, increases in an exponential
manner because the cost of the second step is determined by the product of the sizes
of individual skylines. The overhead will be very obvious when the sizes of individual
skylines are large. This applies for the anti-correlated QoWS which is expected to
have a relatively large number of skyline SEPs. However, for the most practical
scenarios where the number of services is no greater than three, the SEP skylines
can still be generated very efficiently.

5.6 Sizes of the SEP skylines

We finally examine how the sizes of SEP skylines change with cardinality, number of
operations per SEP, number of QoWS attributes, and number of services. Figure 17
presents some interesting effects of these parameters on the sizes of SEP skylines.
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First of all, the skylines generated from anti-correlated QoWS have larger sizes than
those generated from independent and correlated QoWS, which is just as expected.
Second, cardinality and number of operations per SEP have no obvious effect on
the sizes of SEP skylines. As the cardinality varies from 100k to 500k, the sizes of
skylines for independent and correlated QoWS vary from 5 to 20 whereas those
for anti-correlated QoWS vary from 30 to 40. The sizes of skylines stay in a similar

100k 200k 300k 400k 500k
10

0

10
1

10
2

Cardinality

S
ky

lin
e 

si
ze

Anti correlated
Independent
Correlated

2 3 4 5
10

0

10
1

10
2

Operation

S
ky

lin
e 

si
ze

Anti correlated
Independent
Correlated

2d 3d 4d 5d
10

0

10
1

10
2

10
3

10
4

Dimension

S
ky

lin
e 

si
ze

Anti correlated
Independent
Correlated

2 3 4 5
10

0

10
1

10
2

10
3

Service

S
ky

lin
e 

si
ze

Anti correlated
Independent
Correlated

Figure 17 Sizes of SEP skylines.
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range respectively when we vary the number of operations per SEP from 2 to 5.
Interestingly, the sizes of skylines for anti-correlated QoWS have a trend to decrease
with the number of operations. This may be due to that the aggregation of QoWS
attributes from multiple operations compromises the anti-correlated effect. Third,
the sizes of skylines clearly increase with the number of QoWS attributes and the
number of services. However, in most practical usage scenarios where the number
of QoWS attributes and the number of services are less than three, the sizes of the
skylines are still within a practical range for user selection.

6 Related work

The proliferation of Web services is fostering a very active research area. We give an
overview of the most closely related work.

In [26], a Web Service Management System (WSMS) is proposed to enable opti-
mized querying over Web services. It incorporates Web services into the traditional
Select-Project-Join queries and treats them as a type of expensive predicates [13]. An
algorithm is proposed to arrange service calls into a pipelined execution plan. The op-
timization is “performance centered” that focuses on reducing the total running time.
In [19], a query model is proposed that offers query optimization functionalities for
Web services. The query model consists of three levels: query level, virtual level, and
concrete level. The query model uses the predefined mapping rules to map relations
defined at the query level to virtual operations defined at the virtual level. Users
can thus directly use relations to query Web services. In [35], a composite service
optimization approach is proposed based on several quality of service parameters.
Composite services are represented as a state-chart. The optimization problem is
tackled by finding the best Web services to execute a composite service in the form
of a linear programming problem. In addition, the optimization approach adopted by
[35] is based on the computation of a single objective function, which requires users
to assign weights over different quality parameters. This also limits its applicability.

Skyline analysis, which was originally investigated as a mathematical problem
[16, 22], was first introduced into the database domain by [5]. Three basic algo-
rithms including block nested loops (BNL), divide-and-conquer, and B-tree based
approach were presented to tackle the skyline computation problem [5]. The BNL
algorithm was further extended with a pre-sorting scheme to improve the efficiency
[8, 11]. A special function is adopted in [2] that sorts the data points based on
their minimum coordinate value, which avoids the scanning of the entire dataset.
Data incomparability has been considered as a key factor by some recent works
in database skyline computation [17, 36]. An object-based space partition scheme
is proposed in [36] that divides the data space into different partitions based on
a reference skyline point. Data points that fall into incomparable partitions do
not need to be compared with each other. A left-child/right sibling skyline tree is
further developed that provides high space efficiency and fast access to the partitions
and skyline points. To select the optimal skyline point to partition the data space,
a cost model is developed in [17]. The selected pivot point is able to effectively
prune non-skyline points by dominance and bypassing unnecessary dominance tests
on incomparable pairs of points. Indexing structures have also been leveraged to
improve the performance of skyline analysis. Two indexing structures were presented
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in [27] with the ability to progressively report the skyline. NN and BBS are another
two representative algorithms that can progressively process the skyline based on a
R-tree indexing structure [15, 20]. Skyline computation has also been extended to
a distributed environment, where data points are stored in different Web accessible
databases [1]. A progressive distributed skyline algorithm was proposed in [18] that
can progressively report the skyline points in a distributed environment.

Skyline or similar concepts have been applied in the area of service computing.
A service discovery framework was developed in [24] that integrates the similarity
matching scores of multiple service operation parameters obtained from various
matchmaking algorithms. The framework relies on the service dominance rela-
tionships to determine the relevance between services and users’ requests. Instead
of using a weighting mechanism, the dominance relationship adopts a skyline-like
strategy that simultaneously considers the matching scores of all the parameters for
ranking the relevant services. A concept, called p-dominant skyline, was proposed in
[32] that integrates the inherent uncertainty of QoWS in the service selection process.
A p-R-tree indexing structure and a dual-pruning scheme were also developed to
efficiently compute the p-dominant skyline.

Another possible solution to tackle service selection is to use top-k queries which
have also received considerable attention recently. The top-k queries retrieve the
best k objects instead of returning a single optimal object. This greatly reduces the
decision space and also gives users certain flexibility to make their own choice among
the k objects. Typical techniques for solving top-k queries include PREFER [14] and
Onion [7] that rely respectively on pre-materialization and convex hulls. However,
top-k queries are usually based on some specific preference function. Therefore,
using top-k queries is not able to completely free users from assigning weights to
different QoWS parameters.

7 Conclusion and future work

We present a novel concept, called service skyline, to tackle the service selection
problem. The service skyline offers two significant benefits over existing service
selection approaches. First, it completely frees service users from the weight as-
signment task in service selection. Second, it won’t lose any merit of computing an
objective function. A service skyline guarantees to include all user desired service
providers. Since the service operations are relatively static, we first investigate how to
leverage the indices on service operations to compute service skylines. The results led
us to develop a Baseline Algorithm and a novel indexing structure for the dynamic
SEP spaces. Analytical and experimental results show that the proposed indexing
scheme is quite effective and efficient. For future work, we identify several important
and promising directions:

• OGI is based on a R-tree index, which is optimized for a fixed set of dimensions
(and operations in the context of service skyline). Their performances will
decrease for skyline queries targeting different attributes (or operations). This
limitation also applies to other index-based skyline approaches [28]. A straight-
forward extension that builds an index on all dimensions (or operations) suffers
the issue of “curse of dimensionality” [3]. A suitable solution for the service
skyline problem is to identify the typical usage patterns of service users. This
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is practical for specific service domains because the user interested operations
and QoWS attributes usually converge to a small number of candidates. A more
general solution may be to extend the Skyline Cube approach [21, 34] and adapt
it to the service skyline problem.

• Our aggregation functions do not take into consideration of missing quality
values that may be common in real-world scenarios. Work on fuzzy-set based
querying (e.g., SQL-F [6]) may be relevant for handling the situation of missing
values.

• As the number of services increases, the running time of computing a service
skyline over multiple services increases in an exponential manner. Another
interesting future direction is to develop algorithms that can efficiently compute
the service skyline over a large number of services.

References

1. Balke, W.-T., Guntzer, U., Zheng, J.X.: Efficient distributed skylining for web information
systems. In: EDBT, pp. 256–273 (2004)

2. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans. Data-
base Syst. 33(4), 1–49 (2008)

3. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: an index structure for high-dimensional
data. In: VLDB (1996)

4. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible semantic-based service matchmaking
and discovery. World Wide Web 11(2), 227–251 (2008)

5. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
6. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy

Syst. 3(1), 1–17 (1995)
7. Chang, Y.-C., Bergman, L., Castelli, V., Li, C.-S., Lo, M.-L., Smith, J.R.: The onion technique:

indexing for linear optimization queries. In: SIGMOD (2000)
8. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE (2003)
9. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In: PODS (1999)

10. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity search for Web services.
In: VLDB Conference (2004)

11. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB
(2005)

12. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data warehousing envi-
ronments. In: VLDB (1995)

13. Hellerstein, J.M., Stonebraker, M.: Predicate migration: optimizing queries with expensive pred-
icates. In: SIGMOD, pp. 267–276. ACM, New York (1993)

14. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: a system for the efficient execution of
multi-parametric ranked queries. In: SIGMOD (2001)

15. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline
queries. In: VLDB (2002)

16. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4),
469–476 (1975)

17. Lee, J., Hwang, S.-W.: Bskytree: scalable skyline computation using a balanced pivot selection.
In: EDBT ’10: Proceedings of the 13th International Conference on Extending Database Tech-
nology, pp. 195–206. ACM, New York (2010)

18. Lo, E., Yip, K.Y., Lin, K.-I., Cheung, D.W.: Progressive skylining over web-accessible databases.
Data Knowl. Eng. 57(2), 122–147 (2006)

19. Ouzzani, M., Bouguettaya, B.: Efficient access to Web services. IEEE Internet Computing 37(3),
34–44 (2004)

20. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD (2003)

21. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic approach based
on decisive subspaces. In: VLDB (2005)



World Wide Web (2012) 15:1–31 31

22. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Berlin
(1985)

23. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide Web
7(2), 211–229 (2004)

24. Skoutas, D., Sacharidis, D., Simitsis, A., Sellis, T.: Ranking and clustering web services using
multicriteria dominance relationships. IEEE T. Service Computing 3, 163–177 (2010)

25. Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggregation using
views. In: VLDB (1996)

26. Srivastava, U., Widom, J., Munagala, K., Motwani, R.: Query optimization over Web services.
In: VLDB (2006)

27. Tan, K., Eng, P., Ooi, B.: Efficient progressive skyline computation. In: VLDB (2001)
28. Tao, Y., Xiao, X., Pei, J.: Subsky: efficient computation of skylines in subspaces. In: ICDE (2006)
29. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-enhanced qos-based web services

discovery. In: ICWS, pp. 249–256 (2007)
30. Yu, Q., Bouguettaya, A.: Framework for Web service query algebra and optimization. ACM

Trans. Web 2(1), 1–35 (2008)
31. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services: issues,

solutions, and directions. VLDB J. 17(3), 537–572 (2008)
32. Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE T. Service

Computing 3(1), 16–29 (2010)
33. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end qos

constraints. ACM Trans. Web 1(1), 6 (2007)
34. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J., Zhang, Q.: Efficient computation of the skyline

cube. In: VLDB (2005)
35. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.: Quality-driven Web service

composition. In: WWW (2003)
36. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based space

partitioning. In: SIGMOD ’09: Proceedings of the 35th SIGMOD International Conference on
Management of Data, pp. 483–494. ACM, New York (2009)


	Multi-attribute optimization in service selection
	Abstract
	Introduction
	Preliminaries
	The service framework
	Problem definition

	Indexing service operations
	Indexing service operations using B-trees
	Indexing service operations using R-trees
	Analysis

	Indexing the SEPs
	The baseline algorithm
	Analysis
	Space characteristics
	R-tree structure

	Operation graph based indexing (OGI)
	Incorporating space partition tree
	Computing SEP skylines over multiple services

	Experimental study
	Effect of the space partition tree
	Number of QoWS attributes
	Number of operations per SEP
	Cardinality of service relations
	SEP skylines over multiple services
	Sizes of the SEP skylines

	Related work
	Conclusion and future work
	References



