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Abstract Automatic media tagging plays a critical role in modern tag-based media
retrieval systems. Existing tagging schemes mostly perform tag assignment based
on community contributed media resources, where the tags are provided by users
interactively. However, such social resources usually contain dirty and incomplete
tags, which severely limit the performance of these tagging methods. In this paper, we
propose a novel automatic image tagging method aiming to automatically discover
more complete tags associated with information importance for test images. Given
an image dataset, all the near-duplicate clusters are discovered. For each near-
duplicate cluster, all the tags occurring in the cluster form the cluster’s “document”.
Given a test image, we firstly initialize the candidate tag set from its near-duplicate
cluster’s document. The candidate tag set is then expanded by considering the
implicit multi-tag associations mined from all the clusters’ documents, where each
cluster’s document is regarded as a transaction. To further reduce noisy tags, a visual
relevance score is also computed for each candidate tag to the test image based on
a new tag model. Tags with very low scores can be removed from the final tag set.
Extensive experiments conducted on a real-world web image dataset—NUS-WIDE,
demonstrate the promising effectiveness of our approach.
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1 Introduction

With the rapid development of Internet and Web 2.0 technology, a large number of
community contributed multimedia contents have been produced and shared on the
Web. Quite a few representative Web 2.0 websites, such as Flickr,1 YouTube,2 etc.,
not only provide users interfaces of image or video sharing, but also allow users to
collaboratively describe the resources with their own tags (or annotations) through
social tagging services. This kind of user annotated multimedia contents is so called
community contributed dataset, based on which, a bottom-up and self-organized
classification system is formed, namely folksonomy.3

From the perspective of critical web applications such as keyword-based image
search engines, image tags are indispensable for image indexing and retrieval.
Currently, the performance of image search engines mainly relies on the quality of
image tags, which are generated automatically or manually. Duo to the well-known
semantic gap between low-level features and high-level semantics, annotations or
tags are regarded as a natural bridge for narrowing the gap between text-based
query and visual features of multimedia objects. Automatic keywords assignment
is implemented by analyzing the multimedia content or the surrounding text on the
web pages [23, 29, 33]. Manually tagging is often performed by experienced experts
based on a predefined ontology. It is much more accurate than automatic annotation
methods. However it is highly labor- and time-consuming. In recent decades, image
annotation [19, 20, 22, 30, 44] has been attracting significant research attention in
multimedia and computer vision area. It is usually formulated as a classification
problem over a predefined concept set and a well-established training data set.
Although these approaches enjoy relatively high performance in terms of precision
and recall, they usually suffer from the lack of training set and the limited descriptive
ability of the “small” concept set. Moreover they are hard to be extended to general
cases due to the model-driven property. Most recently the emergence of manually
social tagging [8, 10, 25, 36] provides a good opportunity to collect image tags from
users, yet it suffers from several intrinsic problems. The first problem is tag ambiguity
[21, 34], which means that one tag may have different meanings. For instance, tag
“apple” can either refer to a kind of fruit or a computer brand. In reality, it is
difficult for users to be conscious of the existence of tag ambiguity if they do not
know the other senses of the ambiguous tags. Tag noise [7, 28] is another severe
problem existing in community contributed image datasets. Existing studies reveal
that some tags provided by Flickr users are inaccurate and only about 50% tags truly
reflect the content of the images [12]. Moreover, the original tags associated with the
images in the dataset are expectedly incomplete [7, 15] due to the knowledge and
terminology limit of users. Based on such noisy and incomplete user provided tags,
existing tagging methods can hardly acquire satisfying results.

1http://www.flickr.com/
2http://www.youtube.com/
3http://en.wikipedia.org/wiki/Folksonomy
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Our work presented in this paper aims to overcome the above problems for
improving the performance of image tagging. Figure 1 depicts the overall framework
which consists of an offline process and an online tagging process. In the offline
process, three major components are designed: (1) Near-duplicate image discovery is
applied to find near-duplicate clusters from the image dataset such that incomplete
tag set of an image is compensated by the tags of its near-duplicate images; (2)
Weighted multi-tag association mining is proposed to discover multi-tag correlations
from the derived clusters’ documents. We mine multi-tag correlations in a weighted
scenario because traditional association rule mining only considers counts as support,
which may lead to the loss of important tag correlations; (3) Tag modeling are de-
veloped to find multiple latent semantic meanings of each individual tag represented
by multiple image groups. The purpose of proposing this component is to clarify the
ambiguity of each tag. In the online process, given a test image, we firstly initialize
its tag set as its near-duplicate cluster’s document (Step 1). We apply near-duplicate
cluster to perform tag initialization because we believe near-duplicate images should
contain same semantic meanings [45]. The initial tag set is then expanded by using the
weighted association rules (Step 2) since we cannot expect all potentially meaningful
tags are included in the first place. In the last step, because noisy tags are inevitably
introduced in the above two steps we further perform tag denoising by computing the
visual relevance between the test image and the tag’s multiple image groups (Step 3).

Figure 1 The overall tagging framework.
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More details will be revealed shortly. Our main contributions are summarized as
below:

1. Tag incompletion problem in community contributed image datasets always
limits the performance of existing tagging methods. Instead of dealing with
individual images, we group near-duplicate images together and aggregate their
individual tags to form a document for each image cluster.

2. Compared with existing methods using pairwise-tag correlation, we introduce a
new concept of multi-tag association to discover the correlation among multiple
tags, based on which new tags can be further expanded from the candidate tag
set. By considering each cluster’s document as a transaction and a tag as an item,
multi-tag associations can be discovered by the weighted association rule mining
model (WARM). The weighted support and weighted conf idence measures are
taken into account for measuring tag information importance with respect to the
test image.

3. To further reduce noisy tags introduced during the tag initialization and expan-
sion steps, we also introduce a new tag model. Given a tag, all the images which
contain the tag are partitioned into groups using an effective clustering method to
elicit its multiple latent semantic meanings if exist. A visual tag relevance is then
defined to indicate the maximal visual similarity between the test image and the
tag’s latent semantic groups. Tags with low scores are expected to be irrelevant
to the test image and thus can be removed from the results.

4. We conduct extensive experiments to confirm the effectiveness of our proposal
by comparing with existing methods.

The rest of this paper is organized as follows. Related work will be reviewed
in Section 2, followed by the detailed discussions on multi-tag correlation mining
and tag aggregation in Section 3. Section 4 introduces three components of the
online aumatic tagging framework, including tag initialization, tag expansion and tag
denoising. Experimental results are reported in Section 5, followed by conclusions in
Section 6.

2 Related work

In this paper, we aim to address the problem of multimedia tagging by exploiting
knowledge mined from community contributed multimedia repository. In addition
to reviewing research work related to multimedia tagging, we also focus on an
extremely relevant topic, namely multimedia annotation, which has been attracting
significant attention in multimedia and computer vision area. The basic difference
between annotation and tagging is that most annotation methods are developed
based on machine learning models (model-driven) and the words are limited in a
small lexicon while tagging is usually built based on data-driven approaches and the
words used in tagging are theoretically arbitrary. In this section we discuss state-of-
the-art research in tagging and annotation areas respectively.
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2.1 Image & video annotation

In the most recent years, multimedia annotation problem has been attracting sig-
nificant research attention in multimedia and computer vision area. Duo to the well-
known semantic gap between low-level features and high-level semantics, annota-
tions are regarded as a natural bridge for narrowing the gap between text-based
query and visual features of multimedia objects. Typically, multimedia annotation
can be formulated as a classification problem in which semantic concepts are used
as class labels. Hence, supervised learning techniques are suitable for building
connection between annotations and low-level visual features in such scenarios. Amir
et al. [3] simultaneously exploited several machine learning approaches, including
Support Vector Machine, Gaussian Mixture Model, Maximum Entropy learning,
modified nearest-neighbor classifier, and Multiple Instance Learning to model con-
cepts. They also fused across various features and approaches to boost concepts
modeling performance. In [22], Qi et al. formulated video annotation as a multi-
label classification problem and proposed a Correlative Multi-Label framework to
simultaneously model multi-concepts and take into account semantic correlations
between concepts. They also illustrate that their model can be intuitively interpreted
by Gibbs Random Field. By extending this idea, Hua et al. [11] further proposed a
novel multi-label active learning framework which adopts an online learner instead
of SVM-like classifier to deal with large-scale data. Wu et al. [35] focused on learning
an optimal similarity metric by exploiting side information associated with social
media, such as surrounding text and existing tags. After that, they used nearest-
neighbors classifier to identify tags for test images. Similarly, Mei et al. [19] also
defined and learned a semantic distance function to measure similarity containing
more sematic information. Some researches focus on exploring more effective data
representation rather than novel machine learning models. Liu et al. [18] introduced
a tensor framework in which video samples are represented by three modalities,
namely image, audio and text. Then, a generalized SVM—STM is used to classify the
samples. Finally, an active strategy is added to refine the STM classifier. Cao et al.
[5] proposed a Logistic Canonical Correlation Regression which first discovered
canonical correlations between heterogeneous features and existing annotations,
then exploited logistic regression to create more enhanced annotations for web
images. Similarly, in [4] the authors also utilized CCA to fuse different types of visual
features to generate a more descriptive feature for subsequent annotation task.

Most recently, sparse coding becomes extremely popular in computer vision
research area and has been applied to annotation task to some extent. Zhang et al.
[44] focused on investigating properties of features and exploited a regularization
based feature selection algorithm to leverage both sparsity and clustering properties
of features. The selected features were then incorporate into nearest-neighbor
classification to predict annotations for test images. Han et al. [9] also proposed to use
a structural group sparsity for feature selection and boost annotation performance by
exploiting correlations among multiple tags. Liu et al. [17] proposed a bi-layer sparse
coding for encoding regions and propagating labels at region level, and showed state-
of-the-art performance in region-level image annotation. In their work, images in
dataset are first over-segmented into basic patches followed by grouping spatially
coherent patches into candidate regions which can be treated as potential semantic
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regions. Then the proposed bi-layer sparse coding which guarantees both image- and
patch-level sparsity was applied for reconstructing candidate regions from segmented
basic patches. The common tags of images containing target region and selected
patches will be re-assigned to the region according to reconstruction coefficients.
However, basic patches in the dictionary are implicitly assumed to be independent
with each other in their work. Wang et al. [30] proposed to use sparse coding twice
for image annotation. First, they applied sparse coding to reconstruct images in label
space, which amounts to establish semantic relatedness between images. The label
reconstruction coefficients were further used to perform dimensionality reduction
over the feature representation derived from Gaussian Mixture Model. Then, sparse
coding was used again to reconstruction images in the reduced feature space and
coefficients were used to propagate labels from training images to query image.

Due to the scarcity of pre-labeled data, many researchers have turned to take
advantage of semi-supervised learning which can simultaneously learn from labeled
and unlabeled data. In [27], Tang et al. extended a semi-supervised learning method
called linear neighborhood propagation to a non-linear kernel-mapped space and
used the optimal propagation coefficients to reconstruct the annotations. Yuan et al.
[42] adopted a graph-based semi-supervised method named manifold-ranking to
conduct video annotation task.

It can be observed that learning-based annotation approaches usually suffer from
lack of training data and a pre-defined annotation set. As a result, they are hardly
extended to large-scale data set and the annotated labels has limited descriptive and
indexing ability.

2.2 Collaborative multimedia tagging

Confronted with huge amount of emergent web media and tags, traditional machine
learning based methods are mostly unapplicable. In such case, we have to seek for
new tagging schemas. Automatic tagging is to automatically annotate an object with
descriptive tags by mining knowledge from web media and their associated context,
such as surrounding text, existing tags, etc. The existing tagging methods mostly focus
on mining tag-to-tag relationships, object-to-object relationships and tag-to-object
relationships from social media and its associated contextual information.

Wang et al. [29] first collected candidate tags (terms) from textual information
(e.g. captions and surrounding text) by exploiting tf-idf weight, and then random
walk with restart was use to re-rank these candidate tags based on visual similarity of
images, finally only top candidates were selected as final tags. Moxley et al. [20] first
searched visually similar videos based on multiple modalities and then proposed a
graph reinforcement mining approach to filter out meaningful tags for test video. In
[24], Siersdorfer et al. revealed the relationships between videos from the perspective
of content redundancy, existing near-duplicate detection techniques were applied to
identify redundant videos. They further proposed neighbor-based and context-based
tag propagation strategies for assigning tags to test videos. Similarly in [14], Li et al.
proposed a neighbor voting algorithm which can establish tag relevance with respect
to images by accumulating votes from their visually similar neighbors. In [33], Wang
et al. also used neighbor-based method. They first search visually and semantically
similar images, then mined searching results by an SRC clustering model to identify
latent terms which can be treated as the final tags. Compared with our approach,
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most of these method does not make use of tag corpus knowledge to mine tag-to-tag
correlations. Most recently Liu et al. [15] proposed a novel retagging scheme which
is similar to our framework. But the difference between our work and their approach
is that we propose a more comprehensive framework that is suitable to handle the
situation that images are associated with no tags.

Tag recommendation is to recommend more tags for a sematic object based on
the existing clues, including tags, surrounding text and visual content information.
Tag recommendation is similar the research topic of query expansion [43]. They are
two ways of improving information retrieval but there are still differences between
them in that tag recommendation aims to describe the content resources in a more
complete and precise way while query expansion tries to boost retrieval performance
from the perspective of clarifying query’s ambiguity. Sigurbjörnsson et al. [25] first
characterized users tagging behaviors in Flickr and then presented different tag
recommendation strategies which are mainly based on tag co-occurrence statistics
information. Wu et al. [36] proposed a multi-modality recommendation approach
based on not only tag co-occurrence but also visual correlation among tags. A
Rankboost algorithm was adopted to fuse different modalities into an optimal
integration feature. In [13], Krestel et al. introduced an approach based on Latent
Dirichlet Allocation which uses tagged resources to elicit latent topics. Based on
these topics, other tags within the same topic can be recommended for the new
resource. Xu et al. [37] utilized collaborative tagging information to recommend
tags. Their recommendation algorithm aggregates tags from similar textual content
and prefers tags used by a large number of people on the target document. Ames
et al. [2] built a system called ZoneTag to make it easier for mobile-phone users
to tag their photos based on geographical information and existing tags. However,
these methods mainly focused on finding semantically similar tags based on tag co-
occurrence, which only took into account the relationship between two individual
tags and may lead to tag semantics loss. Tag ranking aims to rank the tags associated
with a given semantic object. The key problem is how to evaluate tag relevance
with respect to the object. The approach in [16] first estimated initial relevance
scores for the tags based on probability density estimation, and then performed
a random walk over a tag similarity graph to refine the relevance scores. In [21],
the tag translation task is formulated as a network comparison in order to handle
the disambiguation issue. Each tag and its translation candidates are represented as
networks of co-occurring tags. Then the tag similarity can be obtained by computing
network similarity. Yin et al. [41] exploited social tags as a bridge to connect web
objects. An efficient algorithm was proposed to enrich the semantics of the objects
and to infer the labels for unlabeled objects.

Compared with existing annotation methods, our work mainly focuses on ex-
ploiting data mining to infer potentially unlimited tags from large-scale social media
and the associated contextual information rather than learning models for mapping
annotations and low-level visual features from training set. Tag recommendation is
able to complete tags for individual images, but our tag completion mainly focuses on
how to preliminarily explore more hidden correlations from near-duplicate clusters
and then mine them out. Therefore the basic purpose of our tag completion aims
to provide more comprehensive correlations among tags for more accurate image
tagging or tag recommendation. Most existing tagging schemas usually ignore tag
semantic incompletion issue of community contributed social media data, which may
omit or underestimate certain tag correlations.
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3 Multi-tag correlation mining

In this section we aim to handle the problem of tag incompletion in existing web
image datasets, and further propose to employ a weighted association rule mining
algorithm to discover multi-tag correlations.

3.1 Tag aggregation

Though user-generated-content websites provide a great opportunity to easily collect
enormous images with user-provided tags, unfortunately there many noisy tags
exist while some necessary and meaningful tags are missing. It is a very common
phenomenon that users always depict images with simple and insufficient tags. For
example, if a user has tagged an image with word “iphone”, hardly will he/she
tag this image with extra words like “mobile”, “handphone”, or “apple”, because
from the personal perspective, it is not necessary to do so. In this case, those
essential but implicit tags can not be embodied completely, such as synonymous
relationship (ocean-sea), hierarchical relationship (computer-dell), etc. This kind of
tag incompletion issue exists in most of the community contributed image datasets.

In this subsection we intend to address the problem of tag incompletion problem
by grouping the tags of near-duplicate images. It is well understood that near-
duplicate images should carry same semantic meanings [45]. Take Flickr as an
example. It contains hundreds of millions tagged images. Obviously, it is possible
that near-duplicate images are annotated with different tags. We next will describe
the way to analyze the annotated image dataset for tag aggregation.

Given an image dataset X = {x1, x2, · · · , xN}, by considering each image as a
node, a near-duplicate graph can be built, where the weight on each edge con-
necting two nodes implies the visual similarity of the corresponding pair of near-
duplicate images. Graph mining algorithms [32] can be further applied to identify
cohesive subgraphs which are regarded as groups of near-duplicate images denoted
as X̂ = {X1, X2, · · · , XM} (M � N). For each Xi ∈ X̂ , comprised of a group of
near-duplicate images, the aggregation of tags associated with images in it forms a
“document” of cluster Xi:

Di = {ti1 : ni1 , ti2 : ni2 , · · · , til : nil } (1)

where ti j( j = 1...l) denotes the tag that occurs in cluster Xi and ni j is the frequency of
tag ti j (i.e., the number of times ti j occurs).

After this preprocessing step we compensate tag incompletion in original image
dataset to some extent. We believe more meaningful tag correlations are explicitly
built in such way. In follow work, instead of X the new dataset X̂ is used as the basis
of the tag correlations mining and tag initialization.

3.2 Mining tag correlation

Tag co-occurrence is the key of measuring tag correlation. In a sizable annotated
image dataset, two or more tags appearing together frequently can be considered as
being highly relevant to each other. Different relationships can be derived, such as
hierarchical relationship (fruit-pear), inclusion relationship (car-tyre) and some other
relationships (ocean-boat, sky-grass, etc.). Most recently, tag co-occurrence based
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tagging methods [25, 36] have been well investigated. However, to the best of our
knowledge, they only take into account pairwise tag correlation, which is defined as:

rel(ti, t j) = |ti ∩ t j|
|ti| (2)

where ti and t j are any two tags in the corpus. |ti| indicates the number of images that
are associated with tag ti, and |ti ∩ t j| means the number of images that are associated
with both tag ti and t j.

In reality, many strong correlations exist on a set of tags. For instance, tag mac
usually has a stronger correlation with tag set {computer,apple} than with tag com-
puter or tag apple only. In other words, given an image with tag set {computer,apple},
tag mac should be assigned to the image with a higher confidence. However, if
we only consider pairwise correlation, neither computer ⇒ mac nor apple ⇒ mac
might be confident enough to support the assignment of tag mac to the image,
thereby underestimating the tag relevance score. In order to overcome the above
drawback, we adopt weighted association rule mining model (WARM) to generalize
tag co-occurrence method and explore multi-tag correlations from the derived near-
duplicate image clusters X̂ .

By considering a near-duplicate cluster as a transaction and its associated tags
as the items in the transaction, it is very natural to discover tag correlations by
applying association rules mining model [1], whose effectiveness has been proved in
recommending tags for social bookmarking system [10]. However, the conventional
association rule mining methods treat items and transactions with equal weight, yet
ignore their individual information importance. Thus, under a certain minimum sup-
port requirement, some infrequent itemsets with significant information importance
will be filtered out during the frequent itemset mining stage, thereby leading to the
loss of some meaningful tag correlations. Therefore, it is vital to assign different
weights to different transactions and items so as to reflect their different importance
in supporting itemset. When there are not many supportive transactions for an
itemset, the itemset should also be considered as a candidate for deriving useful
association rules if the items contained in it or the transactions containing it are quite
important. To this end, we intend to take into account tags information importance to
enhance the conventional association rule mining model and promote the potential
important itemsets with small support.

Given the tag corpus C = {t1, t2, · · · , tn}, we initialize a weight wi for each tag
ti, with 0 ≤ wi ≤ 1, where i = 1, 2, · · · , n. Here we estimate wi using normalized
information importance:

wi = h(ti)
∑

t j∈C h(t j)
(3)

where h(ti) is the Shannon Information for tag ti. Accordingly, the weight of a
transaction D (i.e., the “document” of an image cluster X) is calculated as:

wD =
∑

ti∈D

tn(ti, D) × wi (4)
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where tn(ti, D) denotes the frequency of tag ti occurring in D. In terms of aggregation
of transaction weights, we define weighted support of an itemset A as follows:

w support(A) =
∑

D:A⊂D∧D∈X̂ wD
∑

D∈X̂ wD
(5)

Accordingly, the weighted support and weighted conf idence of an association rule
A ⇒ B can be obtained by:

w support(A ⇒ B) = w support(A ∪ B) (6)

w conf idence(A ⇒ B) = w support(A ∪ B)

w support(A)
(7)

Although the new weighted measures does not satisfy the downward closure prop-
erty of conventional association rule mining model, as proved in [26], they follow
a weighted downward closure property: when an itemset satisfies a pre-defined
minimum weighted support threshold, all its subsets satisfy this minimum weighted
support threshold as well. With this property, a modified Apriori algorithm can be
applied to mine the weighted frequent tag sets (multi-tag correlations), as illustrated
in Algorithm 1.

As we can see from this algorithm the support of tag sets are measured by the
accumulated weights (information content) rather than counts. Thus, we are able
to preserve those infrequent tag sets carrying rich information. More potentially
meaningful tag correlations can be elicited from these tag sets.

4 Online automatic tagging

Based on near-duplicate image grouping results and the mined multi-tag correlations
we are able to design our online automatic image tagging scheme. Three steps
are developed in this online process, i.e. tag initialization, tag expansion and tag
denoising.
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4.1 Tag initialization

In this section, we introduce the first step for the online process of our automatic
image tagging framework, i.e., tag initialization. Given a test image without any
contextual information, the only clue that we can use to obtain the initialized tags
is its own visual content.

Starting from this we employ the results of near-duplicate image groups to collect
initial tags for test images. Given a test image x, we first find the near-duplicate
cluster Xi that it belongs to, and then initialize the candidate tags as Di. If x does
not have any near-duplicates, the cluster which contains the most similar image to x
is used. On the other hand, if x has near-duplicates from multiple clusters, the cluster
which contains the most number of near-duplicates is chosen.

4.1.1 Corpus tag relevance

Nevertheless, the target of our automatic tagging framework is not only to find
relevant tags for images, but also to provide the importance of each tag to the test
image. Apparently this is of high significance in improving the searching and indexing
effectiveness of image retrieval engines. In this subsection, an information theory
based approach is developed to quantify a tag’s information importance.

Intuitively, more common a tag is, the less information it contains. Based on the
tag corpus knowledge, we can use the information volume of a tag t to quantify the
degree of tag importance. Given an initial candidate tag set S for a test image x, first
we can treat it as a bag-of-words document, and for each tag t, its initial corpus tag
relevance w.r.t. image x is defined as follows:

rc(t, x) = tn(t, S) × h(t) (8)

where tn(t, S) is the number of times that tag t appears in image x’s initial candidate
set S. h(t) denotes the quantity of tag t’s information importance, which can be
estimated using the Shannon Information:

h(t) = − log p(t) (9)

where p(t) is the proportion of images associated with t in the whole image dataset.
Denote |t| as the number of images associated with t, N as the number of images in
the dataset, we estimate p(t) as follows:

p(t) = |t|
N

(10)

Finally, rc(t, x) is normalized by the sum of relevance scores of all tags that appear in
x’s candidate tag set

rc(t, x) = tn(t, x) × h(t)
∑

t′∈S tn(t′, x) × h(t′)
(11)

In fact, the underlying intuition of this estimation method is widely used in infor-
mation retrieval and data mining, such as the idea of tf-idf weight. The relevance
increases proportionally to the number of times a word appears in the document
but is counteracted by the information volume of the word in the corpus. Also, this
estimation method can be explained by a voting scheme. The candidate tag set is
actually the aggregation of the tags of near-duplicates of the test image, and the tag
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occurrence number denotes the voting number. Thus, the corpus tag relevance score
can be treated as the collective contribution of the image’s near-duplicates Table 1.

4.2 Tag expansion

As mentioned, it is possible that the initial candidate tags are not comprehensive
enough for describing the testing image. Tag expansion (Step 2 in the online process
of our framework) plays an essential role to enrich the tag set. Given an image
associated with a set of tags, we assume that a new tag which has strong correlation
with the existing tags should be assigned to the given image with a high probability. In
this section, we focus on how to exploit the mined multi-tag correlations to find more
potentially meaningful tags for forming a more descriptive tag set for test images.

Starting from the weighted association rules derived from the annotated image
dataset, we design a novel approach to find the maximal relevance of a tag t∗ w.r.t. to
the existing candidate tag set S of the image x, where t∗ /∈ S.

Definition 1 (support subset) Given a tag t∗ and the weighted association rules set
R = {r1, r2, · · · , rp}, if association rule S′ ⇒ t∗ exists in R and S′ ⊆ S, then S′ is a
support subset of S with respect to t∗.

It is possible that both S′ and S′′ are support subsets of S with respect to t∗ where
S′′ ⊂ S′. In this case, only S′ ⇒ t∗ will be considered for deriving new tags. In other
words, weighted conf idence of the association rule S′ ⇒ t∗ is used for deriving tag t∗.
We assume a “larger” subset (e.g., S′) can reflect the correlation between S and t∗
more precisely. Therefore, we introduce a new concept of maximal support subset.

Definition 2 (maximal support subset) A support subset S′ of S w.r.t. t∗ is a maximal
support subset if there exist no proper superset S′′ such that S′′ ⊆ S, and rule S′′ ⇒ t∗
exists in R.

We believe that the maximal support subsets reflect the genuine underlying
relation between S and t∗. Meanwhile, considering the maximal support subsets only
essentially reduces the computational cost by ignoring the redundant tags derived
from their subsets. Recall the example in Section 3.2. If rules computer ⇒ mac,
apple ⇒ mac and computer, apple ⇒ mac all exist in R, {computer}, {apple} and
{computer, apple} are the support subsets of S w.r.t. mac. If we consider all of

Table 1 Main notations. Notation Description

X a web image dataset
C the tag corpus contained in X
X̂ the set of near-duplicate image clusters
S the candidate tag set
R the set of weighted association rules mined from X̂
rc(t, x) corpus tag relevance of tag t w.r.t. image x estimated

by Shannon information
rv(t, x) visual tag relevance of tag t w.r.t. image x estimated

by tag models
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them, tag mac would be expanded redundantly. Thus, we only consider the maximal
support subset {computer, apple} to generate tag mac once.

Definition 3 (maximal division) Given a set of subsets of S, denoted as d =
{S1, S2, . . . , Sm}, if Si ∩ S j = ∅(1 ≤ i < j ≤ m) and

⋃
i Si = S, then d is called a divi-

sion of S. Further, if either Si is a maximal support subset of S w.r.t. t∗, or any subset
of S′

i is not a support subset, then d is a maximal division of S w.r.t. t∗.

We may merge the Si of which any subset is not a support subset, and denote it as
Sm. Thus, we define the relevance of t∗ w.r.t. image x as follows:

rc(t∗, x|d) =
m−1∑

i=1

confidence(Si ⇒ t∗) × rc(Si, x) (12)

where S is the existing tag set of x, confidence(Si ⇒ t∗) is the confidence score of
association rule Si ⇒ t∗ , and rc(Si, x) is the relevance score of tag set Si and x:

rc(Si, x) =
∑

t∈Si

rc(t, x) (13)

Then, the optimal relevance score of the extended tag t∗ can be defined as:

rc(t∗, x) = max
d∈D

rc(t∗, x|d) (14)

where D is the set of all possible maximal divisions w.r.t. t∗.
So far, we have discussed multi-tag correlation to generate a more complete set

of candidate tags for a testing image. This candidate set will be further refined in the
tag denoising step which will be discussed in details in the next section.

4.3 Tag denoising

Note that in both tag initialization step and tag expansion step, noisy tags are
inevitably brought in due to the inherent dirtiness of dataset and the existence of
tag ambiguities. On one hand, in tag initialization step, existing noisy tags in near-
duplicate clusters will be easily propagated to the test image. One another hand, in
tag expansion step, more irrelevant tags can be derived from both noisy tags and
ambiguous tags introduced in the first step. A quantitative analysis of noisy tags has
been conducted in [7]. As noisy tags can severely affect the performance of tag-based
search engine, it is essential to further refine the candidate tag set before using them
to index images.

To handle noisy tags, we intend to build the connection between tags and images.
Due to the tag ambiguity issue, an individual tag often has more than one meanings,
which can be regarded as the underlying latent semantics of the tag (Figure 2).
Starting from this, we first model the latent semantics for each candidate tag as
multiple image groups based on content closeness, then measure the relevance
between a candidate tag and a test image by finding the most relevant latent semantic
with the test image.
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apple

...

Figure 2 An example of multiple latent semantics.

4.3.1 Eliciting tag latent semantics

Given an image x and a candidate tag t, we first collect all the images associated
with t. These images are treated as the representative samples of t in real world. If
the latent semantics of t are mapped onto these representative images, then they
will be spontaneously divided into different groups. Meanwhile, building the latent
semantics for tags can also help isolate the images that are incorrectly tagged with
t. To elicit the underlying latent semantics of tags more explicitly, we partition these
images using a clustering process method. A lot of clustering models could be applied
here, such as k-means and the image clustering proposed in [39], etc. Most recently,
Wang et al. [31] proposed a novel Integrate KL (K-means—Laplacian) Clustering
approach which coherently combines K-means clustering and normalized cut spectral
clustering. The main advantage of this model is that it can take advantage of
multiple data sources for harvesting better results. It has shown that simultaneously
incorporate textual and visual features helps narrow the so-called semantic gap
[38, 40] In this new tag modeling process, we assume each group represents a specific
latent semantic meaning of tag t. To get closer to the underlying semantics, both
visual and textual features are used to cluster the representative images.

4.3.2 Visual tag relevance

Given a tag t and a test image x, the visual relevance between them is defined as
follows:

rv(t, x) = max
g∈Gt

sim(g, x) (15)

where Gt is the set of the latent semantic groups for tag t, and sim(g, x) is the
similarity between group g and x which is defined as:

sim(g, x) = exp(− 1

|g|
∑

y∈g

‖x − y‖2

σ 2
) (16)

The reason of choosing the most similar latent semantic cluster is that we assume
usually an image only contains one sense of a specific tag. Recall Figure 1. After tag
expansion, tags like cat and kitten are also included in the candidate set. Tag pet is



World Wide Web (2011) 14:133–156 147

modeled by two latent semantic groups while cat and kitten have one only. In tag
denoising, cat and kitten will have very low visual relevance scores since both groups
are not similar to the test image. However, pet will have a high visual relevance score
since it has one very similar latent semantic group to the test image. As a result,
although cat and kitten have strong correlation with pet, both can be removed from
the final tag set due to their very low visual relevance scores.

For the purpose of tag ranking, the complementary nature of both corpus and
visual tag relevance can be explored and linearly combined as:

r(t, x) = β · rc(t, x) + (1 − β) · rv(t, x) (17)

where β ∈ [0, 1]. The combined tag relevance is treated as the final relevance score
of tag t and the test image x.

5 Experiment

In this section, we test our proposed automatic tagging method on a real-world Flickr
image dataset and present the evaluation results. We first introduce the characteris-
tics of this dataset in details. Then, in order to compensate the lack of tagging ground
truth in real-world datasets, we adopt a classification evaluation strategy rather than
traditional Precision and Recall measures to illustrate the effectiveness of our tagging
approach. Besides, we also invite users to directly judge the relevance of the tags
generated by our tagging approach.

5.1 Dataset

5.1.1 Statistical information of images and tags

To evaluate our proposed approach, we conduct experiments on a real-world web
image dataset—NUS-WIDE [7]. This dataset consists of 269,648 web images and
the associated tags created by users from Flickr. The total number of the extracted
unique tags is 425,059, and the power law distribution of tag frequency illustrates
that most tail tags occur seldom in the dataset (usually less than 2 times), which
could be caused by misspelling or used for specific name, etc. Although these tags
contain more information content from the perspective of information theory, they
are actually less helpful for general media tagging or indexing task. Hence, those
tags appearing less than 100 times are first removed. Then, in order to further obtain
more meaningful and refined tag list, those tags that does not appear in WordNet are
further pruned as well, such as meaningless words 2008, 2009, and so on. At the end,
a tag list of 5,018 unique tags are left for performing our tagging task. We denote the
image set as X and the refined tag list as our tag corpus C. Table 2 summarizes the
basic information of NUS-WIDE dataset.

5.1.2 Low-level visual features

NUS-WIDE dataset provides five different types of global low-level features and one
local visual feature to describe image content: 64-D Color Histogram in LAB color
space, 144-D color correlogram in HSV in HSV color space, 73-D edge distance
histogram, 128-D wavelet texture, 225-D block-wise LAB-based color moments
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Table 2 Summary of
NUS-WIDE dataset.

Feature Description

Original tag set 425,059 unique tags
Refined tag set C 5,018 unique tags
Image set X 269,648 unique images
Color histogram 64-D
Color correlogram 144-D
Edge distance histogram 73-D
Color histogram 128-D
Wavelet texture 128-D
Bag of visual word 500-D

extracted over 5 × 5 fixed grid partitions, and 500-D bag of visual words based on
SIFT descriptor. On one hand, global features provide a global view of image content
in a high-dimensional feature space. It can capture different kinds of image content
characteristics, such as object contour (e.g., shape feature), content distribution
(e.g., color histogram), recurrent spatial layout (e.g., textual feature), etc. On the
other hand, local features can describe more semantic content of image than global
features. They capture the structural elements of the semantic content contained in
the image by detecting a series of local interesting points or keypoints. Each interest-
ing point is further described by a high-dimensional feature vector. Scale-invariant
feature transformation (SIFT) and its variants such as PCA-SIFT and PSIFT are
useful local descriptors for image near-duplicate detection and classification task.
Usually, hundreds of or more local interest points can be detected from a single
image. Hence the similarity computation could be very time-consuming. Thus, a
practical way is to transfer local feature to a bag-of-visual-word representation by
clustering interest points into “word bags”. To balance the computational cost and
semantic precision, both global and local features are together adopted in our paper.

5.2 Mining prior knowledge

In our proposed tagging method, we have to mine some essential prior knowledge
from the dataset. We partition the whole NUS-WIDE dataset into two disjoint sets:
a training set containing 200,000 randomly selected images and a test set comprised
of the remaining images. The training set are first utilized to perform semantic
aggregation task. For reducing the computational cost, k-means clustering is used to
divide the training set into smaller subsets. For each subset, we run the near-duplicate
clustering algorithm on a weighted image graph [32], where the weight on each edge
implies the visual similarity of the corresponding image nodes.

There is a parameter—subgraph cohesion threshold γ which indicates how
strongly the images are connected within a near-duplicate cluster. In fact, while the
subgraph cohesion threshold γ increases (i.e., the subgraphs are more rigid), less
images are included into a near-duplicate group and more near-duplicate groups
can be produced, which means more aggregated tag transactions are available in the
multi-tag correlation mining step. Hence it is easier to bring in false near-duplicate
images. To control the false rate, we set γ with 0.8, 0.85, 0.9 and 0.95. Table 3 shows
the effect of different γ values on the results of near-duplicate grouping and weighted
association rules. For saving computational cost, we randomly select 100,000 images
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Table 3 Effect of subgraph
cohesion threshold γ on
near-duplicate clusters and
multi-tag correlation mining.

ND clusters Weighted association rules

γ = 0.8 95,961 1,460
γ = 0.85 97,437 993
γ = 0.9 98,528 656
γ = 0.95 99,469 499

from the training set to evaluate the effect of γ . We can see that as γ increases, the
number of near-duplicate clusters becomes larger while that of weighted association
rules decreases. In fact, when the subgraph cohesion constraint γ becomes larger,
fewer near-duplicate images can be detected and fewer tags will be aggregated
together. Obviously, the number of weighted association rules will significantly limit
the effectiveness of our tag expansion. By default, we set γ as 0.8 to have more mined
rules. Note that a very small γ value will potentially group many non-near-duplicate
images into the same near-duplicate cluster.

Table 4 illustrates the comparison of weighted association rules mining (WARM)
and conventional association rules mining (CARM) in terms of the number of rules.
Apparently, WARM mines many more available rules than CARM, which can
greatly benefit the tag expansion step. Figure 3 shows the statistical information
about the number of tags expanded by the weighted association rules. As illustrated,
most test images (76.83%) can be expanded with 4 to 10 additional tags which can
provide more potentially meaningful semantics for the test images.

5.3 Classification evaluation

Currently, one of the main difficulties in automatic tagging evaluation is the lack
of real tagging ground truth. Although social tags are manually provided by social
users, they cannot be regarded as tagging grounding truth because of the semantic in-
completion and noisy tag problems. This means that traditional information retrieval
measures such as Precision, Recall, F1 score, etc., which mostly rely on ground truth
are not applicable in such a scenario any more. Fortunately, NUS-WIDE dataset
provides semi-manually annotation ground truth for 81 concepts which can be used
to evaluate image annotation task. Therefore, we plan to design a classification-based
experiment to present the effectiveness of our tagging method and the descriptive
ability of the automatically generated tags.

5.3.1 Evaluation strategy

We compare our proposed method with different automatic tagging methods in
terms of classification performance. Given the automatically generated tags, not only
we can treat them as the descriptive keywords w.r.t. the image, but also can we apply
bag-of-words model to formulate them as a high-dimensional textual feature vectors.

Table 4 The number of
association rules mined by
WARM and CARM.

min_w support CARM WARM

0.3 67 2,867
0.4 43 2,122
0.5 27 1,459
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Figure 3 The number of
expanded tags for the test
images.
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One reasonable criteria of evaluating the effectiveness of the tags is the classification
performance by utilizing such tag feature. If the tag feature generated by a tagging
method performs better than the other tagging method in terms of classification
performance, we can say this tagging method can create more descriptive tags for
images. In fact, many mature text classification techniques can be applied to conduct
our evaluation task. In this paper, we adopt an implementation of Support Vector
Machines (SVMs) [6] in our experiments as it can support sparse format input
data and has shown its effectiveness in text classification task. The purpose of our
classification experiments is to estimate the descriptive ability of the tags generated
by our tagging method rather than the performance of an image annotation mode.
Hence, we do not need to consider the distribution of the training dataset. The tag
feature vectors are constructed by sorting the tag set according to the relevance
computed by different tagging methods. In order to obtain reliable classification
results, we select the concepts that are annotated at least 1,000 times. Table 5
illustrates the most frequent concepts in our test data set. For each ground truth
concept, we randomly select a set of 500 images for binary classification training and
a disjoint set of 500 images for classification testing from the tagged test images. As
to the tag vector, we choose top K tags according to the tag relevance score as the
tag feature, where K = 100, 90, 80, 70 and 60.

Table 5 The set of most
frequent concepts.

Concept Frequency Concept Frequency

Sky 4,812 Tree 1,725
Water 4,525 Animal 1,682
Clouds 3,533 Sun 1,613
Sunset 2,766 Ocean 1,553
Beach 2,116 Flowers 1,535
Reflection 1,902 Snow 1,432
Street 1,725 Lake 1,161



World Wide Web (2011) 14:133–156 151

We compare our proposed automatic image tagging approach with three existing
tagging methods:

1. Simple Neighbor-based Tagging (SNTag). SNTag method is proposed in [24].
The basic idea is to accumulate votes from image x’s visually similar neighbors
for tag t.

2. Tag Propagation (TagRank). TagRank is also proposed in [24], and it performs
an iterative process over a neighbor image graph to compute the tag relevance.

rel(t, x) =
∑

x′∈Nx

rel(t, x′) × sim(x, x′) (18)

3. Random Walk based Tagging (RWTag). Random Walk model has been widely
used in tagging or annotation refinement task [16, 29]. We conduct random
walk process over candidate tag graph of which edges are constructed based on
symmetric tag co-occurrence:

rel(ti, t j) = |ti ∩ t j|
|ti ∪ t j| (19)

The process can promote tags that have more co-occurring tags within the
candidate tag set.

5.3.2 Parameter tuning

We first conduct experiments to analyze the effect of linear combination parameter
β (17) on the classification accuracy. We test β from 0.0 to 1.0. Specifically, when
β = 0.0 it indicates tag relevance totally depends on visual tag relevance. When
β = 1.0, tag relevance is totally determined by corpus tag relevance. For each β value,
we calculate combined tag relevances for all tags associated with test images and use
top K = 100, 90, 80, 70 and 60 tags as tag features for classification. Average accuracy
over 14 different concepts is used as the performance measure. The experimental
results are shown in Figure 4. We can see that five average accuracy curves fluctuate
in the range [0.0, 1.0]. Especially when β = 0.6, all accuracy curves reach their best
performance, which is much higher than using either corpus tag relevance or visual
tag relevance alone. When β = 0.6, it indicates that corpus tag relevance contributes
slightly more than visual tag relevance in the final relevance aggregation. Meanwhile,
a smaller K leads to a better accuracy due to less noises included in the results.
Interestingly, the curves also have some local peaks (e.g., when β = 0.2), indicating
the instability of β’s effect. This experiment shows the importance of considering
both visual tag relevance and corpus tag relevance in improving the tagging accuracy.
However, the performance could be sensitive to different β values. By default, we set
β = 0.6 since it achieves the best results.

5.3.3 Evaluation results

The criteria we use to evaluate the classification performance is the ratio of images
correctly categorized, namely accuracy. Usually, accuracy is not a good metric in
classification evaluation due to the imbalance of positive and negative samples in
training set. Nevertheless, in our test we just use classification to illustrate the
descriptive ability of our methods, and we randomly select even number of positive
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Figure 4 Effect of linear
combination parameter β.
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and negative samples. Therefore, we believe accuracy in such scenario is able to
explain the performance of our methods. The average classification accuracy over
all concepts are concluded in Table 6. For more comprehensive comparison, we also
include the results for β = 0.2 in our method.

As we can see, our methods (β = 0.2 and β = 0.6) consistently outperform the
other tagging methods in terms of average classification accuracy. Especially when
β = 0.6 for large K (e.g., 100, 90, and 80), our method improves SNTag, RWTag,
TagRank methods by around 3–5% (i.e., relative improvement close to 10%). We
believe the reason is in that the tag expansion step really provides some meaningful
and descriptive extra tags to the test images, which makes them more discriminative.
For small K (e.g.,70 and 60), though the performance difference becomes smaller,
still our method obtains about 1–3% improvement over existing methods. As the
K decreases, the proportion of relevant tags generated by each tagging method is
expected to increase because the refinement processes are capable of promoting the
relevant tags and degrading those noisy and irrelevant tags. It is worth noting that
rather than boosting descriptive ability, more tags actually do not bring in more infor-
mation for depicting the content. We believe the extra tags contain more noisy tags
that degrade the classification performance. As a result, the differences of final tag
results among various tagging methods may become smaller as K decreases, which

Table 6 Average Classification Accuracy (%) of different tagging methods over 14 concepts with
top K = 100, 90, 80, 70 and 60 automatically generated tags.

SNTag RWTag TagRank Our method Our method
(β = 0.2) (β = 0.6)

K = 100 56.34 55.76 56.27 59.64 60.13
K = 90 56.06 56.54 56.07 60.07 60.43
K = 80 57.71 57.39 57.94 60.73 61.21
K = 70 59.51 57.40 60.76 61.54 61.70
K = 60 60.47 60.11 62.06 62.40 62.59
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explains the decrease in the performance improvement. Among the two β settings in
our method, β = 0.6 performs slightly better than β = 0.2, which corresponds with
the results in Section 5.3.2. This results indicate that relatively balanced combination
(β = 0.6) is able to generate better performance than imbalanced one (β = 0.2),
which further proves the effectiveness of both of our proposed visual and corpus
tag relevances.

Besides, we also observe that as K decreases, there are consistently rising trends
in both of comparing algorithms and our methods (β = 0.2 and β = 0.6). Note that
in the results of our methods, when K = 60 two curves reaches 62.59 and 62.40%
which improve the results of K = 100 by nearly 5%. This phenomenon proves that
our tag denoising step with the new tag model of multiple latent semantic groups is
really more capable of promoting relevant tags and removing noisy tags than existing
methods.

5.4 User-involved assessment

To further evaluate the tagging performance of our method, we also conduct a
subjective assessment experiment. Test images and their automatically generated
tags are together presented to invited users for direct and subjective assessment.
In this experiment, we compare the results generated by two tagging methods—
TagRank and our method with β = 0.6 as they provide better results than other
methods in terms of the average classification accuracy as shown in Table 6.

For practical evaluation, assessors are provided two tag lists for each image. The
tag lists are produced by the two methods and sorted in descend order according to
tag relevance score. As manual evaluation is an extremely time-consuming process,
we only randomly choose 50 test images and top 60 tags for evaluation. Assessor
are asked to manually score each tag with a five-grade relevance scale: 1 (strongly
irrelevant), 2 (irrelevant), 3 (uncertain), 4 (relevant), and 5 (strongly relevant).

We analyze the average rating scores to evaluate the effect of our tag relevance
estimation strategy. To this end, average rating scores over top K = 10, 20, 30, 40, 50

Figure 5 User involved
assessments.
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and 60 tags are summarized and the results are illustrated in Figure 5. Generally
speaking, as K rises, both methods show descending trends. This phenomenon
reveals that the proportion of relevant tags in K results decreases as K grows. This
outcome is expectedly in correspondence with our previous classification results.
When comparing the two methods, we observe that the difference between their
results is marginal. On average, our method slightly outperforms TagRank, especially
when the number of tags is between 10 to 30.

6 Conclusions

In this paper, we have introduced an image tagging approach based on near-duplicate
image content and collective multi-tag association mining. More specifically, con-
fronted with the tag semantic incomplete issue, we first adopt a near-duplicate
clustering algorithm to aggregate tags of near-duplicate images as a cluster docu-
ment, which can help enhance and elicit tag correlation. Then, by regarding each
cluster document as a transaction, multi-tag correlations are mined via a weighted
association rule mining algorithm. Given a test image, its near-duplicates are re-
trieved to generate its candidate tags and the initial corpus relevance score for each
candidate tag is estimated from corpus knowledge. More potentially relevant tags
are subsequently expanded based on the multi-tag association rules. Meanwhile, we
build a visual tag model for each tag using a KL Clustering method in order to elicit
the underlying multiple latent semantics. For each tag, its visual tag relevance score
can be calculated by comparing the test image and multiple clusters. Finally, visual
and corpus relevance scores are combined together to obtain the overall relevance
score. Experiments on a real-world Flickr image dataset shows that our proposed
method outperforms existing tagging methods in terms of classification performance.
We believe that our proposed tagging approach can bring direct improvement for
current multimedia indexing and search.

Since our approach is composed of several parametric data mining techniques, it
means our approach is probably sensitive to parameters and not easy to extend to
general cases. In future, we intend to focus on exploring nonparametric techniques
for developing more robust tagging framework. Also we plan to take into account
multiple sources such as web shared image (Flickr), videos (YouTube), bookmarks
(Delicious), etc. to extract more complete and meaningful knowledge for boosting
the performance of current tagging approaches. In addition, we will further seek
for more adaptive algorithm to elicit tag latent semantics. Finally, different near-
duplicate detection methods will also be further investigated to see how they affect
the performance of our method.
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