World Wide Web (2011) 14:27-52
DOI 10.1007/s11280-010-0096-y

Implementing process views in the web service
environment

Xiaohui Zhao - Chengfei Liu - Wasim Sadiq -
Marek Kowalkiewicz - Sira Yongchareon

Received: 8 December 2009 /Revised: 28 June 2010
Accepted: 8 July 2010 /Published online: 20 July 2010
© Springer Science+Business Media, LLC 2010

Abstract Web service and business process technologies are widely adopted to facilitate
business automation and collaboration. Given the complexity of business processes, it is a
sought-after feature to show a business process with different views to cater for the diverse
interests, authority levels, etc., of different users. Aiming to implement such flexible
process views in the Web service environment, this paper presents a novel framework
named FlexView to support view abstraction and concretisation of WS-BPEL processes. In
the FlexView framework, a rigorous view model is proposed to specify the dependency and
correlation between structural components of process views with emphasis on the
characteristics of WS-BPEL, and a set of rules are defined to guarantee the structural
consistency between process views during transformations. A set of algorithms are
developed to shift the abstraction and concretisation operations to the operational level. A
prototype is also implemented for the proof-of-concept purpose.

The work was done while Xiaohui Zhao was working at Swinburne University of Technology, Australia.

X. Zhao

Information Systems Group, Department of Industrial Engineering & Innovation Sciences,
Eindhoven University of Technology, Eindhoven, The Netherlands

e-mail: x.zhao@tue.nl

C. Liu (<) - S. Yongchareon

Centre for Complex Software Systems and Services, Swinburne University of Technology, Melbourne,
Australia

e-mail: cliu@groupwise.swin.edu.au

S. Yongchareon

e-mail: syongchareon@groupwise.swin.edu.au
W. Sadiq - M. Kowalkiewicz

SAP Research, Brisbane, Australia

W. Sadiq
e-mail: wasim.sadiq@sap.com

M. Kowalkiewicz
e-mail: marek.kowalkiewicz@sap.com

@ Springer

28 World Wide Web (2011) 14:27-52

Keywords business process view - web service - workflow management - WS-BPEL

1 Introduction

Service-oriented architecture (SOA) tends to dominate the enterprise scale system
infrastructures, where the service components are orchestrated by business processes to
collaborate for a mutual goal [1, 11, 21, 22]. As one of the most mature SOA solutions,
Web services are widely adopted to realise SOA and the Business Process Execution
Language for Web Services (WS-BPEL) [2, 7] is particularly used to specify the business
processes for driving Web service composition and coordination.

Recently, the concept of process views has been proposed to generate a partial and
temporal representation of a business process. This mechanism provides a better granularity
control of business process representation. Further, this feature significantly enhances the
flexibility of business process management to adapt to the diverse authority levels and
interests of different users. Reluctantly, most of current business process modelling
languages, including WS-BPEL, stick to a fixed description of business processes.
Although WS-BPEL can define both abstract processes and executable processes, WS-
BPEL is in lack of mechanisms to automatically represent a business process at different
abstraction levels on demand. This shortcoming obstructs the further adoption of Web
services to real enterprise information systems. For example, in an enterprise with strict
organisational hierarchy, some roles are only allowed to see part of the business process
details at a time [3]. Besides, users with different interests may intend to see different views
of the same business process, such as the workshop assistant likes to know the detailed
procedure of pipeline operations yet the workshop manager may prefer to see a concise
view of the pipeline production process. Further, such requirements may result from the
aspect of flexible visualisation of business processes. For users with a smart phone as the
business process browser, due to the limit of screen size, they intend to display a reduced
version of the business process, and choose the interested area, like a “hot spot”, to see the
details of that area. A good example is google maps, which allows users to freely zoom in
or zoom out a map, while the displayed details on map automatically adapt to the scale
level, for instance, streets and roads are shown on a large scale map, yet a small scale map
only shows suburbs and towns.

Aiming to incorporate these appealing process view features into current process
orchestrated Web services applications, this paper proposes a novel FlexView framework to
facilitate the process view abstraction and concretisation for WS-BPEL processes. With
FlexView, users are allowed to define and switch among the different views of the same
WS-BPEL process. This mechanism enables the “smart zooming” function for business
process representation, which has been longed for by the practical enterprise applications
for flexible visualisation, authority control, privacy protection, process analysis purposes,
etc [16, 35]. A comprehensive model defines the structural constructs of a business process
and the relations between them. A series of algorithms formally illustrate how to enforce
the process abstraction and concretisation operations in compliance with structural
consistency.

The remainder of this paper is organised as follows: Section 2 introduces the structural
elements of WS-BPEL, and analyses their characteristics; Section 3 discusses the
requirements for supporting flexible views with a motivating example; Section 4 presents
a process component model with a set of rules on structural consistency and validity, as
well as the algorithms for realising abstraction and concretisation; Section 5 addresses the

@ Springer

World Wide Web (2011) 14:27-52 29

incorporation of FlexView into WS-BPEL, and also introduces the implementation of a
prototype; Section 6 reviews the related work and discusses the advantages of our
framework; concluding remarks are given in Section 7 with an indication for the future
work.

2 Preliminary of WS-BPEL

Based on the XML syntax, WS-BPEL defines a model and a grammar for describing the
behaviours of a business process based on interactions between the process and its partners.
The interaction with each partner occurs through Web Service interfaces, and the structure
of the relationship at the interface level is encapsulated in a partner link. A WS-BPEL
process defines how multiple service interactions with these partners are coordinated to
achieve a business goal, as well as the state and the logic necessary for this coordination.
WS-BPEL also introduces mechanisms for dealing with business exceptions, processing
faults and compensations.

The core set of WS-BPEL 1.1 consists of a series of elements as shown in Figure 1. In
regard to their functions, these elements can be classified into three categories, namely
declaration elements, control flow constructs, and activities. The texts along arrows denote
the structural relation between these elements, while the italic texts denote the semantic
relations. As the root element, <process> element contains the whole content for a business

Declarations

Variables Handlers Correlations Partner links
<faultHandlers>, <correlationSet>, <partners>,
<variables>, | | <catch>, <catchAll>, <correlationSet>, | | <partner>, <role>, | |
<variable> <eventHandlers>, <property>, | | <partnerLinkType>,
<compensationHandler> <propertyAlias> i <partnerLink>
3 T |
‘ | Identify |
!
Process Definition |f«——- 4 Define
<process> Comprises
l Comprises
Contain
Control flow constructs
. Sequencing Looping Branching graph-based
Scopes Contain
<pick>, .
<scope> <sequence> || <while> || <switch>, <flow> | <link>
<onAlarm>,
<onMessage>
| Navigate
¥
Activities
Invoke
Handler Web Service 9
A q 3 Miscellaneous
invocations operations
L]
<invoke>, <wait>, <assign>,
<compensate>,)
— <receive>, <empty>
<throw> . .
<reply> <exit>, <terminate>
'y

Figure 1 WS-BPEL elements.

@ Springer

30 World Wide Web (2011) 14:27-52

process. <scope> element defines the local declarations and exception handlers for a
partition of a business process. The other elements are explained as follows:

* The declaration elements include the elements for declaring variables, handlers,
correlations and partner links. These components will serve the main business process.

* The control flow constructs include the elements for defining the control flow of a
business process. These constructs support standard sequencing, looping, and branching
patterns. Particularly, elements <flow> and <link> support the conventional graph-
based control flow modelling scheme.

* The activity elements include the elements supporting functional operations of a
business process, such as Web service implementation and invocations, handler
invocations, etc.

WS-BPEL supports different process modelling ways. As identified in [12], WS-BPEL
supports both block-structured process and graph-based process modelling. The processes
modelled in different manners are also convertible to each other with specific
transformation techniques [12, 20]. Besides, WS-BPEL can define inline compensation/
fault handlers for <invoke> element, in addition to explicitly using an immediate enclosing
scope. To avoid redundancy, we focus exclusively on the block-structured processes in this
paper. The details for transforming graph-based processes into block-structured processes
can be found in [12, 20].

According to above discussion, we summarise the following features of WS-BPEL
process modelling:

1. The tasks on the branches in a <flow> element representing an And-Split/Join structure
can be synchronised via a <link> element.

2. In scope ¢, a <compensate> element can explicitly invoke a compensation handler that
is defined in ¢ or the scopes that are enclosed in c.

3. A fault handler can capture and handle faults that are occurred in the same scope.
When a fault handler captures a fault, it might throw the same or a different fault to its
outer scope using <throw> element.

4. In a scope, the compensation and fault handling can be treated as separate processes
from the normal process.

These features characterise the control flow construction and composition in WS-BPEL.
This paper will particularly take into account these features in the context of business
process view transformation.

3 Motivating example

In the Web service application environment, WS-BPEL has been widely adopted and
supported by many leading software companies. Figure 2 shows some WS-BPEL diagrams
drawn with SAP’s business process modelling tool—Maestro for BPEL. These diagrams
represent different process views for a simplified sales management process. Figure 2(a)
show the original content of this process, i.e., the base process, where the process starts
from receiving purchase orders, and then handles the production, cost analysis and shipping
planning concurrently, and finally terminates by sending the invoice. Each task may interact
with proper Web service(s) though WS-BPEL <invoke> or <receive> activity to fulfil the
assigned mission. The dashed arrows denote the synchronisation dependencies between
tasks, which are represented by <link> activities in WS-BPEL. For example, the arrow

@ Springer

World Wide Web (2011) 14:27-52 31

(b) (e)

Figure 2 Motivating example business process and process views.

between “production” and “dispatch products” denotes that task “dispatch products” can
only start after the completion of “production”.

Four departments are involved in this business process, viz., sales department,
workshop, accounting department, and distribution centre. The users of different depart-
ments may have different authorities or interests to observe the business process. For

@ Springer

32 World Wide Web (2011) 14:27-52

example, a user from the distribution centre may only care about the shipping details.
Thus, the user may choose to “zoom out” the details for production and cost handling
from the original business process, and thereby the user can obtain a process view for
this business process as shown in Figure 2(b). In this view, the details for production and
cost handling are abstracted into two new tasks, i.e., “handle production at workshop”
and “handle cost calculation at accounting department”. These two tasks hide the details
yet preserve the existence of the production and cost handling procedures. In this
transformation, the related links are hidden automatically, as well as the synchronisation
link from “schedule production” to “cost analysis”. The synchronisation link from
“production” to “dispatch products” is converted to connect “handle production at
workshop” to “dispatch products”, as these two tasks inherit the synchronisation
dependency of the former one.

Suppose a user is using a hand-held device to view this business process. Due to the
limited screen size, the user may prefer to display the details of a single shipping option at a
time. In this case, the representation of this business process can be transformed to the view
shown in Figure 2(c), where the shipping procedure is represented as an Or-split/join
structure. One branch of this Or-split/join structure contains task “prepare shipping”, and
the other branch is only with an empty task, which indicates that there is an alternative
shipping option besides self-shipping. The user may later on choose to “zoom in” this
empty task to see the details of the alternative option.

Some junior staff of other departments may not be authorised to see the shipping
details. Therefore, a process view like Figure 2(d) can be provided to them, where all
the shipping details are hidden in a new task “handle shipping at distribution centre”. In
this hiding behaviour, the synchronisation link from “production” to “dispatch products”
is also hidden, because the underlying synchronisation dependency is already not
effective for this view. Figure 2(e) displays a further abstracted view of the business
process, which only outlines the core part of the business process with three parallel
tasks. The authorised users can choose to concretise the interested part to see more
details.

Such representation mechanism separates the process representation from the
process execution, and thereby can provide highly flexible views over the underlying
business process. This capability brings benefits in aspects of process visualisation,
authority control, privacy protection, service advertising, etc., for business process
management.

This example reveals the demand for flexible process representations in the practical
environment. To realise the adjustability and customisability of the process representation
granularity, new mechanisms are on demand to support process abstraction and concretisation
functions on the fly. In details, we summarise the technical requirements as follows:

Maintain the correspondence between the hidden process fragments and the
corresponding tasks/links, and therefore enable wrapping a process fragment into a specific
task or link, and releasing the process fragment back from a task or link.

e Preserve the structural information of a business process, such as the execution order
between tasks, split/join structures, etc., during process view abstraction/concretisation
operations.

* Preserve the synchronisation links, and hide, reveal or relocate them properly during
process view abstraction/concretisation operations.

* Support cascading abstraction/concretisation operations.

* Guarantee the structural consistency and validity of process views during transformations.

@ Springer

World Wide Web (2011) 14:27-52 33

For the first requirement, our FlexView framework employs a process component model
to describe the structure of process views and structural components, and maintain the
relations between structural components. For the remaining requirements, we define a set of
rules regulate the structural consistency during the view transformations. A series of
algorithms are designed to enforce the process view abstraction and concretisation. A
prototype is developed for the proof-of-concept purpose. The reported work in this paper is
based on a preliminary version of our work on process view abstraction and concretisation
[36], with significant improvements and extensions on theoretical analysis, algorithms and
system implementation.

4 FlexView framework
4.1 Process component model

Based on the analysis of WS-BPEL characteristics and the requirements for flexible process
representation, we define a process component model in this section. This model well
describes the structure of business processes and process views, and maintains the
correspondence between related structural components.

Definition 1. (Gateway) In this model, gateways are defined as the dedicated control flow
constructs for a business process.

According to the main WS-BPEL structured activities, we define five types of gateways,
namely Or-Split, Or-Join, And-Split, And-Join, and Loop to represent the structure of a
control flow. These gateway types correspond to the WS-BPEL structured activities,
<flow> and </flow>, <switch> and </switch>, and <while>, respectively. Figure 3 shows
the samples of these gateways, respectively. Or-Split/Join and Loop gateways may attach
conditions to restrict the control flow.

Definition 2. (Synchronisation Link) Synchronisation links denote the links between tasks
on different branches of an And-Split/Join structure. Synchronisation links own a higher
priority than normal links in terms of execution order.

In WS-BPEL, the <link> element can be used to denote the synchronisation dependency
between the tasks of different branches in an And-Split/Join structure. In our model, we use
a synchronisation link to represent such synchronisation dependency. For example, in
Figure 3(b), the synchronisation link between #; and ¢, represented as a dashed arrow,
denotes that #; can only start after the completion of #.

Figure 3 Gateway examples.

@ Springer

34 World Wide Web (2011) 14:27-52

Definition 3. (Process Fragment) A process fragment denotes a consecutive part of a
business process. A process fragment s = (N, G, E, L) consists of

— aset N = {ny, ny, ..., n,} of tasks, where n,eN (1 <i < x) represents a task of s.

- asetG= {gy, g, ..., g} of gateways, where g;€G (1 <i <y) represents a gateway of s.

— a set E of directed edges. An edge e = (m;, mp)eE corresponds to the control
dependency between m; and m,, where m,eNUG, m,eNUG.

— aset L of synchronisation links. A synchronisation link / = (m1, m,)€L corresponds to
the synchronisation dependency between m; and m,, where meNUG, m,eNUG.

where each element geG has exactly one gateway type. Let type: G — {Loop, And-Join,
And-Split, Or-Join, Or-Split} be a function to return the type of gateway.

Functions ind(m) and outd(m) define the number of edges which take m as the target
node and the source node, respectively. Note, ind and outd only count the number of edges
but not synchronisation links.

According to the natural characteristics of these gateways, we can define the following
rules in terms of the incoming and outgoing degrees:

ind(g)=1, outd(g)=2 If g is the starting node of a process;
A loop gateway is not allowed to be the
, N/A . }
ending node of a process;
ind(g)=2, outd(g)=2 Otherwise.
ind(g)=0, outd(g)> 1 If g is the starting node of a process;
if type(g) = “And- N/A A split gateway g is not allowed to be the
Split” or “Or-Split” ending node of a process;
ind(g)=1, outd(g)>1 Otherwise.
N/A A join gateway is not allowed to be the
if type(g) = “And- starting node of a process;
Join” or “Or-Join” ind(g)>1, outd(g)=0 If g is the ending node of a process;
ind(gy>1, outd(g)=1 Otherwise.

if type(g) = “Loop’

Definition 4. (Single-Entry-and-Single-Exit (SESE) Process Fragment) An SESE process
fragment denotes a process fragment which has only one entry node and one exit node. An
SESE process fragment se = (N, G, E, L, my, m;) consists of

— N, G, E, L are defined as same as in process fragment;
— meEeNUG is the starting node of se that ind(my) = 0.
— meNUG is the terminating node of se that outd(m,) = 0.

Definition 5. (Scoped Process Fragment) A scoped process fragment denotes an SESE
process fragment with optional compensation and fault handling process(es). A scoped
process fragment sp = (N, G, E, L, mg, m,, Ly, ch, fh) consists of

- N, G, E, L, mg, and m, are defined as same as in SESE process fragment;

— Ly is a set of hidden synchronisation links, i.e., the synchronisation links that have a
node not included in N or G. VI = (m;, my)eLy, (meNUG)A(m,¢NUG) or
(m1€NUG)AN(meNUG). The synchronisation links in L, are not displayable as they
connect to foreign nodes, but such synchronisation link information is preserved for
process fragment composition.

@ Springer

World Wide Web (2011) 14:27-52 35

— c¢h denotes a set of optional compensation handling processes, each of which
corresponds to an SESE process fragments;

— fh denotes a set of optional fault handling processes, each of which corresponds to a
process fragment;

In this paper, we confine that the process view manipulation is only conducted over
scoped process fragments. A business process may contain multiple scoped process
fragments, and the definition of business process itself also complies with the definition of
scoped process fragment. The relation between a business process and its constitute scoped
process fragments is reserved in the process hierarchy.

Definition 6. (Process Hierarchy) A process hierarchy I(p) for business process p
maintains all the related scoped process fragments and the mapping information for process
view generation. /{(p) can be represented as tuple (S, J, y, A) where

— Sis a finite set of distinct scoped process fragments.

For a scoped process fragment speS, VI = (ny, ny)esp.Lusp.Ly IspieS (n1€5p1.Nusp,.G)
Anaespi.Nusp,.G), or Asp €S, spo€S, (n1€sp.Nusp.G)A(nyesp,.Nusp,. G).
— spoeS is the root scoped process fragment, which shows the most abstracted view of p.
- 0E—>S(Ec U 5P E and S' € S\{spy}) is a bijection describing the relation between
edges and scoped process fragments. Correspondingly, we have the inverse function
s S > E
- 7N -8 NNc US sp.N and S" € S\{spy}) is a bijection describing the relation between
spe
nodes and scoped process fragments. Correspondingly, we have the inverse function
y S — N
- A" — RCH (T'c Ussp.T and RCH'c Ussp.ch) is a bijection describing the relation
spE spe

between compensation invoking tasks and the corresponding compensation handlers.

A scoped process fragment is restricted to occur in only one of the two inverse functions.
This denotes that VspeS\{sp,}, if § "'(sp) # null then y'(sp) = null; if y '(sp) # null then
5 '(sp) = null.

The scoped process fragments of a process hierarchy can be defined in a nested manner.
As shown in Figure 4, a process hierarchy may contain five scoped process fragments spo,

o\ dten) \
70) \

sp2 CH " en sp4 CH
OO~ FH OO

Figure 4 Process hierarchy example.

@ Springer

36 World Wide Web (2011) 14:27-52

.., Sps, and spo is the root scoped process fragment. Shapes labelled “CH” and “FH”
denote the attached compensation and fault handling processes.

In this hierarchy, tasks #; and ¢ of scoped process fragment sp, correspond to process
fragments sp; and sp,, respectively, and therefore #; and ¢ can be mapped to sp; and sp4 by
functions y(#;) and y(#). Further, task # and edge e, of sp; can be mapped to process
fragments sp, and sp; by functions y(z;) and d(e,,), respectively. In this manner, a process
view concretisation operation is equivalent to extending a scoped process fragment by
replacing a task or edge with the corresponding scoped process fragment. For example, root
scoped process fragment sp; can be concretised into spotspy, spotsps, Or spotspitspa,
where tasks ; and ¢; are replaced by the corresponding scoped process fragments. Similarly,
spo can be further concretised into spotspitsps, spotspitsps, spotspitspstsps, etc., by
replacing the proper task(s) or edge(s) with corresponding scoped process fragments.
Adversely, the abstraction operation is equivalent to unfolding a scoped process fragment
back into a task or edge with functions y ' and § ~'. For example, the combination of
Spotspi or spotsp4 can be abstracted into spy by hiding the scoped process fragment sp; or
sp4 into task ¢#; or #, respectively. Therefore, we can see that each result combination denotes
a partial view of the business process. Such a process hierarchy is fully customisable, and
thereby we can apply different process fragment partitioning and categorising strategies to
realise diverse WS-BPEL abstraction schemes according to users’ requirements.

Definition 7. (Process View) A process view represents a partial and temporal view of a
business process. For a given process hierarchy I1{p), a process view v corresponds to a sub
tree including the root scoped process fragment, where the mapped tasks/edges are
concretised with corresponding scoped process fragments. The structure of a process view v
also corresponds to an extended directed graph like a scoped process fragment, but without
any hidden content. Therefore, we define the structure of a process view in the form of
tuple (N, G, E, L, my, m,, ch, fh), where the constitute sets and elements have the same
meanings with those for a scoped process fragment.

A fully concretised process view, i.e., the view containing all the scoped process
fragments in this hierarchy, is equivalent to the base business process, while the most
abstract process view is the root scoped process fragment itself. The mapping between view
components and WS-BPEL elements will be detailed in Section 5.

4.2 Structural consistency and validity rules

To guarantee the structural consistency between the generated process views, this section
defines a series of rules to regulate the view transformation in terms of execution order,
branch correspondence and synchronisation dependency. Besides, some rules are also
defined to check the structural validity on split/join structures.

* Preliminary

— A dummy branch denotes a branch in a split/join structure such that the branch contains
nothing but only one edge.

— A common split gateway predecessor (CSP), x, of a set of tasks, 7, denotes a split
gateway such that x is the predecessor of each task in 7.

— before(ty, t,) denotes that task #; will be executed earlier than task #,. This means that
there exists a path from starting ¢, to ¢, in the corresponding directed graph, while the

@ Springer

World Wide Web (2011) 14:27-52 37

path does not contain any synchronisation links if an And-split/join structure or any go-
back edge of a loop structure. Apparently, before is a transitive binary relation.

— CSP(t, t,) returns the set of common split gateway predecessors of #; and #,, or returns
null if the two tasks have no common split gateway predecessors.

— branch(g, t,, t,) is a boolean function, which returns true if #; and #, lie in the same
branch led from split gateway g, otherwise returns false.

* Structural Consistency and Validity Rules

In regard to an abstraction/concretisation operation, the original process view v, and the
result view v, are required to comply with the following restrictions in terms of structural
consistency and validity:

Rule 1. (Order preservation) As for the tasks belonging to v, and v,, the execution
sequences of these tasks should be consistent, i.e.,
If 41, Lev.NNv,.N such that before(t;, t,) exists in vy, then before(t;, ;) also exists in v,.

Rule 2. (Branch preservation) As for the tasks belonging to v, and v,, the branch
subjection relationship of these tasks should be consistent, i.e.,

If 41, t,ev.NNv,.N and geCSP(t,, t,) exist in v; and geCSP(t,, t,) exists in v, such that
branch(g, t,, t;) (or ~branch(g, t1, t,)) in vy, then branch(g, t,, t;) (or ~branch(g, t1, t;)) in v,.

These two rules ensure the basic structural consistency between process views, which reflect
a kind of observational equivalence to process users, i.e., the original process and its
transformed process view represent the same interaction pattern with users. However, this
observational equivalence is subject to the constrained process perception, and therefore it
corresponds to the weak bi-simulation in the process algebra context. To justify this property of
process views, we are to prove that the task hiding and aggregation operations both support this
property using the concept of labelled transition system in the process algebra context. The
definitions of labelled transition system and weak bi-simulation can be found in Appendix.

(1) Weak simulation in task hiding.

Proof Figure 5(a) gives two BPEL process views, where view v; shows the result view of
hiding task “Arrange Shipping” of view v,. This hiding operation can be generalised into
the process view transformation of abstracting a scoped process fragment sp of v, into edge
eo of vy, as shown in Figure 5(b). We first transfer v; and v, into labelled transition systems
LTS, and LTS, as shown in Figure 5(c), respectively. Note, in labelled transition system,
edges represent tasks (actions) and nodes represent process states. The tasks included in sp
in v, are changed to 7 actions in LTS,. In LTS,, 7* denotes none or a series of invisible
transitions that are included in sp’s tasks. def def

For relation R = {(m,, ms)}, we have (P=n,) = (Q= 7*.n,). Given P = Q, we can prove
that n;.P = n,.Q using Milner’s 7-laws. This will lead to the conclusion of LTS; = LTS,. o

(2) Weak simulation in task aggregation.
Proof In Figure 6(a), view v; shows the result view of aggregating the tasks belonging to
the switch structure of view v, into a new task “Arrange Shipping”. Generally, this

transformation is represented as aggregating v,’s scoped process fragment sp into a new
task x, as shown in Figure 6(b). The underlying semantic is that these tasks are aggregated

@ Springer

38 World Wide Web (2011) 14:27-52

n

INAME: Decide Shipping

invoke sp
NAME: Decide Shipping $ € m
i
[|mika | MAME: Arange Shipping n,
’\lAME' Dispatch Products | l ny

SORONO
1049400

Q o

%k_e)

NAME: Dispatch Products
ny R
‘ v, vy LTS, LTS,

Vi V2

(@) (b) (c)

Figure 5 The labelled transition systems for task hiding.

into a delegated one, while the details are hidden. Therefore, LTS, can be changed to LTS,,
where states ms and ms’ have self-directed 7 actions, respectively. def

Given relation R = {(m;, ms), (ma, ms')}, we can see that (PZx) =~ (Q T*.O.T*)
according to the definition of weak simulation (please refer to Appendix). Further, we can
conclude that LTS, = LTS.. m]

Rule 3. (Synchronisation dependency preservation) If an abstraction operation involves
any tasks with synchronisation links, the synchronisation links should be rearranged to
preserve the synchronisation dependency. Assume that scoped process fragment sp
comprising tasks # and ¢, is to be abstracted into a compound task #. as shown in Figure 7,

— for task t,es.N and ¢, has an outgoing synchronisation link /,

=
&

MAME: Decide Shipping

€

&

NAME: Arrange ppmg

MAME: Dispatch Products

€

-

©
bS]
= S| S >
° o
B
h‘*

HAME: Confirm Bgoking n,

N 5
)
9“6 ::

LTS, LTS,

< .
N

Vi

IAME: Dispatch Products

Vi vy

(2) (b) (c)

Figure 6 The labelled transition systems for task aggregation.

@ Springer

World Wide Web (2011) 14:27-52 39

If Vtesp.N, before(t, t.) then the source task of / should be changed to ., otherwise
[should be hidden.

— for task t,esp.N and t, has an incoming synchronisation link /,

If Vtesp.N, —before(t, t.) then the target task of / should be changed to ., otherwise
[should be hidden.

In Figure 7, the transformation from (al) to (a2), where ¢; and ¢, are hidden in task z,,
and the transformation from (al) to (a3), where #, and #s are hidden in task 7., illustrate the
two mentioned scenarios, respectively.

[__imvoke
AME: Handie
Froduction

A — T ——.
{| NAME: Decomposition

P IAE Cost A |
:

MAME: Handle Shipping

AME Handle Shipping

(al) (a2)

oke 1| [Jwoks |
AME: Schedule MAME: Decomposition
Production

ivoke | AME Finish Productio

JAME: Production

AME Handle Shipping

@3) BCY)

IAME: Schedue AME' Decomposition
Froduction

JAME Hande Shipping

(b2)

Figure 7 Synchronisation link handling.

@ Springer

40 World Wide Web (2011) 14:27-52

In the case that a task involving a synchronisation link is abstracted into an edge, the re-
arrangement of synchronisation links is subject to Rule 1. For example, Figure 7(bl) and
(b2) illustrate the re-arrangements in cases that #, and #, are hidden in edges, respectively.

Rule 4. (No empty Split/Join or Loop structures) If a loop structure contains no tasks, or
if a split/join structure contains only dummy branches, then the loop or split/join structure
should be hidden.

Rule 5. (No dummy or single branch in And-Split/Join structures) If an And-split/join
structure contains both dummy and non-dummy branches, then the dummy branch(es)
should be hidden. If the And-split/join structure contains only one non-dummy branch, then
the And-split/join structure will be degraded into a sequential structure.

As shown in Figure 8(al), when tasks #; and ¢4 are hidden, the And-split/join structure
will decay into a sequential structure as shown in Figure 8(a2).

Rule 6. (Dummy branch in Or-Split/Join structures) If an Or-split/join structure
contains a dummy branch, then this dummy branch should remain to indicate the existence
of an alternative execution path. If an Or-split/join structure contains multiple dummy
branches, these branches should merge into one dummy branch.

As shown in Figure 8(b1), when tasks # and #, are hidden, the Or-split/join structure will
use an empty task to hold the place for that dummy branch, as shown in Figure 8(b2). This is
to preserve the possibility that branch containing #; and #, may be bypassed during execution.

Rule 7. (Compensation Handler Redirection) When a scoped process fragment sp is
hidden, any reference to sp’s compensation handler(s) should be redirected to a virtual
handler to indicate the indivisibility of the referenced handler(s). When sp is released during
a concretisation operation, the redirected reference(s) should be changed back to sp’s
compensation handler(s).

Fault handlers cannot be explicitly invoked, and therefore they do not need such redirection.

4.3 Enforcing process abstraction and concretisation

To realise the view abstraction and concretisation in compliance with the defined rules, we
developed a series of algorithms to formalise the process view transformations.

Given a process hierarchy I(p) = (S, d, v, 1), the following basic functions are to be
used in the algorithms: elementType(y) returns whether y is a task or an edge.
combineSProc(spy, sp») returns the result scoped process fragment by combining the
constitute sets, i.e., N, G, E, L, Lo, ch and fh of scoped process fragments sp, and sp,
together. removeSProc(sp;, sp,) returns the result scoped process fragment by removing
the constitute sets of scoped process fragment sp, from scoped process fragment sp;.
toSequence(sp, g1, g») returns the result scoped process fragment by flating a single
branch split/join structure scoped by gateways g; and g, in scoped process fragment sp
into a sequence structure, i.e., removes the two gateways and re-connects the gateways’
adjacent nodes to the single branch. spSet(S, x) returns the scoped process fragments that
are in set S of process hierarchy and contain task or edge x.

To tackle the modification of synchronisation links during process view transformations
according to Rule 3, we develop a general algorithm adjustSyncLinks to sort out the influenced
synchronisation links for both process view abstraction and concretisation operations.

@ Springer

World Wide Web (2011) 14:27-52 41

Algorithm. adjustSyncLinks(sp, zoom, sp°, y)

Input sp — ascoped process fragment;
zoom — astring indicating whether it is for a concretisation or abstraction operation;
sp® — the scoped process fragment to be zoomed in from a task/edge during a
contraction operation, or to be zoomed out during an abstraction operation;
¥ — theinvolved task or edge during the process view transformation;
Output sp’ — the result scoped process fragment after structuring.

1 if zoom="zoomIn” then

2 for each sync link /=(m;, my)e sp.Lo\sp°.Lo

3 if (m, esp’. NuUsp'.G)A(myesp’.NuUsp'.G) then
4 sp'L=sp' LU {1}; sp'.Ly=sp'.L\{l};
5 end if

6 for each sync link /=(m,, my)esp’L\sp.L

7 if (m=y) or (my=y) then sp’.L=sp'.L\{] };
8 for each sync link /=(m,, my)esp’.Lo\sp°.Ly

9 if (m=y) or (my=y) then sp' Ly=sp' Lo\{ [};
10 return sp’;
11 else

12 sp'=removeSProc(sp, sp°);
13 if elementType(y)=task then

14 for each sync link /=(m,, my)esp’.L

15 if (m; es°p.NUsp®.G) and (Viesp®.N, before(t, m))) then

16 sp'L=sp'.L U { (v, m) }; sp’.L=sp’ L\ {1};

17 else if (m,esp°.NUsp°®.G) and (Vtesp®.N, —before(t, m,)) then

18 sp'.L=sp".L U { (m, y) }; sp'L=sp".L\{1};

19 end if

20 if elementType(y)=edge then

21 for each sync link /=(m,, my)esp'.L

22 if (m, esp° . Nusp®.G) and (Viesp®.N, before(t, m,)) then

23 suppose y =(ms, my); sp'.L= sp'.LU{ (m3, my) }; sp'.L=sp'.L\{I};
24 else if (m,esp°.NuUsp®.G) and (Viesp®.N, —before(t, m,)) then

25 suppose y=(ms, my); sp'.L= sp'.LO{ (my, my) }; sp'.L= sp' . L\{1};
26 end if

27 return sp’;

28 end if

In case of a process view concretisation operation, lines 2—5 check whether any hidden
synchronisation links turn visible during the process view concretisation. If the
concretisation operation zooms in from a specific task, i.e., variable y is not null and
zoom has value of “zoomlIn”, lines 67 delete the synchronisation links that are involved
with the to-be-zoomed task, because the newly revealed synchronisation links from sp° will
replaces these links, while lines 8-9 adjust the hidden synchronisation links that are
involved with the to-be-zoomed task.

Lines 11-27 handle the synchronisation links for a process view abstraction operation. If
it is to abstract a scoped process fragment into a task, lines 14—16 and lines 17-19 rearrange
the synchronisation links to preserve the synchronisation dependency in cases that sp°® has
an incoming link and the link leaves from the last node or joins to the first node of sp°,
respectively. Similarly, lines 20-26 handle the same cases that the operation is to abstract a
scoped process fragment into an edge. The time complexity is o(n%), where n is the number
of tasks and gateways belonging to the scoped process fragment.

Algorithm edgeZoomln is responsible for concretising a scoped process fragment by
extending an edge.

@ Springer

42 World Wide Web (2011) 14:27-52

Algorithm. edgeZoomIn(sp, e)

Input sp — ascoped process fragment;

e — an edge of scoped process fragment sp;
Output sp' — theresult scoped process fragment after concretising e.
L sp=sp;
2 let e=(m,, my);
3 if 5(e)=null then return sp else sp°=d(e);
4 sp' E=sp'.E U { (my, sp°.my) };
S splE=sp.E U { (sp®.my, my) };
6 sp.E=sp'E\{e};
7 sp'=combineSProc(sp’, sp°);
8 sp'=adjustSyncLinks(sp', “zoomln”, sp°, null);
9 for each resp.T
10 if 7 is a compensation invoking task then
11 if 7 refers to “virtual compensation handler” and A(f)esp°®.ch then change ¢ to refer to
A2).
12 return sp’;

Line 4 connects edges according to Rulel and Rule 2. Lines 67 replace edge e with the
mapped scoped process fragment. Line 8 calls adjustSyncLinks algorithm to sort out the
affected synchronisation links. Lines 9-11 change the references to virtual compensation
handler back to the real compensation handlers, if these handlers are revealed when
extending sp, according to Rule 7. The time complexity is O(n), where n is the number of
tasks belonging to the scoped process fragment.

Algorithm taskZoomlIn is responsible for concretising a scoped process fragment by
extending a specific task.

Algorithm. taskZoomlIn(sp, t).

Input sp — ascoped process fragment;
t — atask of scoped process fragment sp;
Output sp’ the result scoped process fragment after concretising z.
1 sp'=sp;
if y(/)=null then return sp else sp°=y(?);
if 1=sp'.m; then sp.m;=sp°.m;
if 1=sp'.m, then sp.m=sp°.m;;
do while (Fe=(m,, t)esp'.E)
sp'.E=sp'.E\{e};
sp'.E=sp".E U { (m, sp°.my) };
loop
9 do while (Je=(t, m,)esp'.E)
10 sp'.E=sp'.E\{e};
11 spl.E=sp'.E U { (sp°.m;, m,)};
12 loop
13 sp'.T=sp'.T\{1t};
14 sp'=combineSProc(sp', sp°);
15 sp'= adjustSyncLinks(sp', “zoomIn”, sp°, t);
16 for each tesp’.T

[c BN B NNV I NV)

17 if 7 is a compensation invoking task then
18 if refers to “virtual compensation handler” and A(f)esp®.ch then change ¢ to refer to
A2).

19 return sp’;

@ Springer

World Wide Web (2011) 14:27-52 43

Lines 3—4 handle the connection in case that the task to concretise is the starting or
ending node. Lines 5-12 connect edges according to Rule 1 and Rule 2. Lines 13-14
replace task ¢ with scoped process fragment sp. Line 15 calls adjustSyncLinks algorithm to
sort out the affected synchronisation links. Lines 16—18 redirect the references to virtual
compensation handler back to the real compensation handlers. The time complexity is O(n),
where 7 is the number of tasks belonging to the scoped process fragment.

Algorithm taskZoomOut is responsible for abstracting a scoped process fragment sp by
hiding a part of it into the corresponding edge or task.

Algorithm. taskZoomQOut(sp, x)

Input sp — ascoped process fragment;
x — atask or edge of scoped process fragment sp;

Output sp’ — the result scoped process fragment after abstracting the part containing x.
sp'=sp;
if spSet(S, x)=null then return sp else sp°=spSet(S, x);
if 5 (sp°)#null then

sp'.E=sp'.E U {5 (sp°) }; y= 0" (sp°);
else if y ' (sp°)#null then

sp'. T=sp".T U {7 (sp°) }: y=7"(sp°);
end if
sp'= adjustSyncLinks(sp', “zoomOut”, sp°, x);
9 sp'=removeSProc(sp', sp°);

0NN AW N~

10 do
11 for each loop structure with loop gateway g in sp’
12 if Je=(g, g)esp.E then sp'=removeLoop(sp', g);
/* remove empty loop structure */
13 for each split/join structure scoped by split gateway g; and join gateway g», in sp’
14 flag=0;
15 if (outd(g))=ind(g,)=1) and (3e=(g1, g,)esp’.E) then
16 sp".E= sp'.E\{ e }; sp'=toSequence(sp', g\, &»); flag=1;
17 end if
18 if (sp"type(g1)=And-split) AND (Fe=(g), g2)esp'.E) then sp".E=sp' . E\{ e };
19 if outd(g,)=ind(g>)=1 then
20 sp'= toSeqence(sp’, g1, &); flag=1;
21 end if
22 end for

23 loop until (flag=0)

24 for each tesp'.T

25 if 7 is a compensation invoking task then

26 if A(7)¢sp'.ch then change ¢ to refer to “virtual compensation handler”
27 return sp’;

Lines 3-7 replace the proper scoped process fragment with the mapped task or edge.
Line 8 calls adjustSyncLinks algorithm to sort out the affected synchronisation links.
Lines 10-23 iteratively check the structural consistency according to Rules 4-6, until no
conflicts exist. According to Rule 4, lines 11-12 and lines 13—-17 delete empty loop
structures and empty split/join structures, respectively. According to Rules 5 and 6, line
18 deletes dummy branches in an And-split/join structure, and lines 19-21 flat any split/
join structures with single branches into sequential structures. Note, due to the set
definition, the dummy branches in an Or-split/join structure are already combined
together. Lines redirect the references to the compensation handlers which are hidden
during the abstraction, to a virtual compensation handler. The time complexity is O(max

@ Springer

44 World Wide Web (2011) 14:27-52

[mvoke] MAME: Schedule
O [voke] Production

owe
NAME: Schedule IAME Dacomposition
Froduction

T [imvoke |
[imoke | AME: Production
IAME Finish Productio
AME: Production

(at) (a2)

(al)—>(a2)

=] h

S TR——

NAME: Prepare Shippeng

[Teceve]
{AME: Confirm Bocking

MAME: Book Stepping
L7 T—

IAME: Confirm Bocking

NAME Drspatch Products

) ©2) (b1)—>(b2)

Figure 8 Branch handling examples.

(m?, n)), where m and n are the numbers of gateways and tasks belonging to the scoped
process fragment, respectively.

The result scoped process fragment from these algorithms can be easily converted to a
process view for representation, by discarding set L.

5 Incorporation into WS-BPEL
5.1 Mapping to WS-BPEL

To incorporate the proposed process view framework into the WS-BPEL processes, we first
need to combine the process component model with WS-BPEL model. According to the
structural characteristics, Table 1 lists the correspondences between the constructs of our
model and WS-BPEL elements.

Besides, in WS-BPEL, every edge is implicitly represented, i.e., the execution sequence
is determined by the occurrence sequence of elements nested in <sequence>, <pick>,
<flow>, <while>, <switch> elements.

@ Springer

World Wide Web (2011) 14:27-52

45

Table 1 Mapping between WS-BPEL elements and process model constructs.

Structural construct

WS-BPEL element

Description

Task sequence <sequence> Allow for sequential execution of tasks.

A pair of Or-Split/Join ~ <pick> Perform the non-deterministic execution of one of
gateways with several paths depending on an external event.
conditions

A Loop gateway with <while> Perform a specific iterative task repeatedly until the
conditions given condition becomes false.

A pair of Or-Split/Join ~ <switch> Perform a conditional behaviour with a set of branches.
gateways with
conditions

A pair of And-Split/Join <tflow> Perform parallel execution of a set of branches.
gateways

A synchronisation link <link> Support the synchronisation between tasks or gateways

on the branches inside a <flow> element.

A scoped process <scope> Originally used for defining the compensation scope
fragment for fault handling in WS-BPEL, yet here we use it to

store the structural content and contextual information
(such as variables and declarations), for scoped
process fragments.

A dummy branch of a <empty> Originally used to denote a dummy task, yet here we

split/join structure

Compensation handling
process

Fault handling process

<compensationHandler>

<faultHandlers>

use it to stand for a dummy branch of a split/join
structure.

Specify the compensation process for a scoped process
fragment.

Specify the fault handling process for a scoped process

fragment.

5.2 Prototype Implementation

We have developed a prototype on the basis of SAP Maestro for integrating the process
view abstraction and concretisation functions. This prototype is programmed in Java, and
uses the packages from Tensegrity Software [25] for user interface design. Both original
business processes and process views are written in WS-BPEL using XML syntax. The
WS-BPEL process view transformation is enforced though XML transformations using the
Extensible Stylesheet Language Transformation (XSLT) [30] by Apache Xalan [29].
Figure 9 illustrates the architecture and the view transformation procedure of the prototype.
The slim arrows denote the behaviours between the functioning components, and the large
white arrows denote the flow of input and output documents. Three repositories are used in
the prototype. The Process Hierarchy Repository stores the process hierarchies for different
business processes, and the Mapping Repository stores the mapping relations between
process components and scoped process fragments, i.e., the content of functions v and 4.
Besides, the Mapping Repository also stores the hidden synchronisation links, as WS-
BPEL documents do not support such invisible components.

This kernel system works as a backend system, whereby users can input the business
processes/process views and abstraction/concretisation requests through diverse client
systems, such as process editors, handset-based process viewers, web browsers, etc. When
the system receives an abstraction/concretisation request and the inputted process view, the

@ Springer

46 World Wide Web (2011) 14:27-52

Result process view
BPEL | inthe form of a
WS-BPEL document

AN
e U N
===-=- 1
\ I XML Render
e [our] © (Mo
) Generated XSLT >
i document | XSLT
Template
_Repository J
Refers to
XSLT Generator D
»| Mapping
ﬁ Repository
~N
I=--=-= 1 i__ ;
i BPEL}J + Primitive .View | Process
kf;" Operation ~| Hierarchy
T \Repository J
View Operation _| View Transformation
Interpreter .| Rules and Algorithms
Consults
= ZEN %
U

Abs./
BPELJ + Con_J

Inputted process
view in the form of a
WS-BPEL document

View Operation
Requests

Figure 9 View generation system architecture.

View Operation Interpreter will decompose the requests into primitive process view
operations, i.e., atomic task/link insertion and deletion operations, according to the
developed algorithms. This decomposition will refer to the Process Hierarchy Repository
and Mapping Repository. The derived primitive process view operations are passed to an
XSLT generator, which will create an XSLT style file by filling a proper XSLT template
from the XSLT Template Repository. The generated XSLT document is then sent to the
XML render (Apache Xalan) to transform the original process view into an abstracted/
concretised process view. The SAP Maestro is used to display the result process view
graphically.

Now, we take the process view transformation from Figure 2(e) to Figure 2(c) as an
example to illustrate how this system works. The view operation request from users is to
concretise the task “Handle Shipping at DC” in Figure 2(e) into its mapped scoped process
fragment at next level. According to the Mapping Repository and Process Hierarchy
Repository, the View Operation Interpreter analyses and decomposes the view operation
following the taskZoomln algorithm. For this task concretisation operation, the View
Operation Interpreter first checks the connection between the new scoped process fragment
and the original process, combines process fragments, and adjusts the related synchroni-
sation links, according to Rules 1, 2 and 3, as shown in the algorithm. Particularly, the
combination of process fragments can be further converted into replacing the task with
corresponding scoped process fragment, as indicated in Figure 10.

@ Springer

World Wide Web (2011) 14:27-52 47

H process

MNAME: Receive Order

NAME: handle MNAME: Handle Cost Calc. E: Handle
Production at Werkshop| jat Accounting Dept. ipping at DC

voke |

"
IAME: Send Invoice

S

Figure 10 Replacing a task with a scoped process fragment.

Such replacement can be easily implemented with XSLT support. Figure 11 shows the
XSLT style file created by the XSLT generator. This XSLT replaces task “handle shipping at
distribution centre” with a <switch> element including a branch with task “prepare
shipping” and a branch with an empty task.

The user interfaces of the FlexView-BPEL and the SAP Maestro are given in Figure 12.

<process>

| i i i - P .
<_.> Declarations for partnerLinks, variables This is the WS-BPEL document representing
S the process view shown in Figure 1 (e).
<sequence>

<receive partnerLink="pLinkA" name="Receive Task “Receive Purchase Order”
PO"> :

</receives>

<wait name="Handle shipping at DC "> ... Task “Handle shipping at DC”.
</wait>

<invoke partnerLink="pLinkB" name="Return « -
Invoice"> Task “Return Invoice”.

</invoke>
</sequences>
</process>

<xsl :template match="/">

<xsl:apply-templates/s> </xsl:templates This is the generated XSLT style file for

<xsl:template match="+*"> extending the view into the view shown in
<xsl:choose> O Figure 1 (c).
<xsl:when test="name(.)='wait' and : 15 P
@name- ' Handle shipping at DC'"s Loc:”ate the specific task “Handle shipping at
<scope> <switch> ... </switch></scope> DC”.
</xsl:when>
<xsl:otherwise> Replace task “Handle shipping at DC” with
<xsl:element name="{name(.)}"> th di 5 ¢ ic. th
<xsl:for-each select="@*"> € corresponding process rggmen , 1.€., the
<xsl:attribute name="{name(.)}"> <scope> element that comprises the Or-
<xsl:value-of select="."/> split/join structure.

</xsl:attribute> </xsl:for-eachs> ‘o
<xsl:apply-templates/> </xsl:element> 9utput the _Orlgmal Contiqt when task
</xsl:otherwises> Handle shipping at DC” is not located.

</xsl:choose> </xsl:template>

Figure 11 XSLT example.

@ Springer

48 World Wide Web (2011) 14:27-52

AP Research - Maestro for BPM with BPEL support 1.1 =2k
i B Ywe Peart Format Took furame Yde 3
DoOFHEl @2 9¢ Yl x RaE88 = » Th- N K% W% B s 4744
= — Ery |MUmimen o "
(o o o [= Q

| s 3
|

Figure 12 User interfaces of the FlexView-BPEL engine and the Maestro tool.

6 Related work and discussion

Business process technology has been an integral part of service oriented architecture
(SOA) [14, 23]. Before WS-BPEL, HP’s eFLow [6], Microsoft’s BizTalk [18], Web service
Flow Language (WSFL) [13], XLANG [26], etc., all intended to orchestrate services to
fulfil complex business applications. Later, WS-BPEL [2] was developed to unify WSFL
and XLANG, and became the widely accepted standard of business process language in the
Web service environment. These languages well support sub processes which can be nested
in a cascading hierarchy. At representation level, a sub process can be folded up into a
special task, which can be extended back to the sub process. However, this fold-up function
simply wraps up the sub process without concerning the structural elements across the sub
process, e.g., the synchronisation links, fault handlers and compensation handlers that are
also used outside of the sub process. In comparison, our approach can abstract a sub process
into a task or edge through task aggregation and hiding operations. Particularly, the
abstraction of a sub process into an edge indicates the hiding of process details, and is not
supported by these modelling languages. Further, our approach takes into account the
handling of cross-sub-process structural elements, including the synchronisation links, fault
handles and compensation handlers, during the process view transformation.

Martens [17] discussed the verification on the structural consistency between a locally
defined executable WS-BPEL process and a globally specified abstract process based on
Petri net semantics. In regard to the structural consistency between general process views,
Liu and Shen [15] proposed an order-preserving approach for deriving a structurally
consistent process view from a base process. In their approach, the generation of “virtual
activities” (compound tasks) needs to follow their proposed membership rule, atomicity
rule, and order preservation rule. Recently, Eshuis and Grefen [9] formalised the operations
of task aggregation and process customisation, and they also proposed a series of
construction rules for validating the structural consistency. Compared with these work, first
of all, our approach focused more on realising the process transformation at technical level

@ Springer

World Wide Web (2011) 14:27-52 49

rather than theoretical level. Secondly, in the mentioned works, the customisation process
actually lost some tasks. Yet, our approach preserved the hidden tasks and necessary
mapping relations, and thus supported both abstraction and concretisation operations.
Finally, synchronisation links were considered in our approach.

Some other works applied different workflow/process view approaches in the inter-
organisational collaboration environment to support process privacy and interoperability. van
der Aalst and Weske [28] proposed a “top-down” workflow modelling scheme in their public-
to-private approach. Organisations first agree on a public workflow, and later each
organisation refines the part it is involved in, and thereafter generates its private workflow.
This work reflected a primitive idea of workflow view. Chiu et al. [8] borrowed the notion of
‘view’ from federated database systems, and employed a virtual workflow view for the inter-
organisational collaboration instead of the real instance, to hide internal information. In [24],
Schulz and Orlowska focused on the cross-organisational interactions, and proposed to
deploy coalition workflows to compose private workflows and workflow views together
to enable interoperability. Issam, Dustdar et al. [10] extracted an abstract workflow view to
describe the choreography of a collaboration scenario and compose individual workflows into
a collaborative business process. By deploying workflow views in the workflow
interconnection and cooperation stages, their approach allows partial visibility of workflows
and resources. Our previous works [31, 33] also established a relative workflow model for
collaborative business process modelling. A relative workflow for an organisation comprises
the local workflow processes of the organisation and the filtered workflow process views
from its partner organisations. In this way, this approach can provide a relative collaboration
context for each participating organisation. Some follow-up work targeted at the instance
correspondence [34] and the process evolvement [32] in collaborative business processes, as
well as role-based process view derivation and composition [35]. Supplementary to these
works, our approach provided a practical implementation solution by incorporating the view
concept into a popular standard business process modelling language. The abstraction and
concretisation functions were naturally applicable to support privacy protection or perception
control in the collaboration environment.

Proviado project [4] adopted process views for the personalised visualisation of large
business processes. This project did some trade-off between the structural consistency and
the adequate visualisation, whereby the generated process views were allowed not fully
consistent with the original business process. Our work firmly complied with the proposed
structural consistency and validity rules, and supported bi-directional process view
operations.

Driven by the requirements for flexible business process representation, our FlexView
framework shifts the process view concept to the technical level. The whole framework has
been incorporated into WS-BPEL, and therefore can easily attach the process view support
for Web service applications.

In summary, this work contributes to the following aspects:

1. Abstraction and concretisation functions towards process representations. With these
two operations, users are allowed to choose and switch among different views of the
same business process. In this way, our approach caters for the diversity of users’
interests, authority levels, and so on. Although this paper chooses WS-BPEL as the
target process modelling language, the conceptual and methodological part of our
approach well supports other existing process modelling languages, such as Event-
driven Process Chain (EPC) [27], Petri net based workflows, Business Process
Modelling Notation (BPMN) [19], etc.

@ Springer

50 World Wide Web (2011) 14:27-52

2. Information preservation and structural consistency mechanism. The defined rules and
developed algorithms guarantee that the abstracted or concretised process views are
consistent and valid in structure. Consequently, the two operations can be performed
back and forth rather than one way only.

3. Incorporation of process views into WS-BPEL language. The whole framework is
completely incorporated into WS-BPEL at both conceptual level and implementation
level. A prototype is developed to provide an operational solution for supporting WS-
BPEL process view abstraction and concretisation using XSLT techniques.

However, the integration of process view support also brings some trade-offs, which can
be potential limitations. Some of the tradeoffs are summarised as follows, although they can
be outweighed by the offered advantages.

* The process component model assumes that WS-BPEL processes are created with block
structures. Therefore, non-block-structured business processes have to be converted into
block-structured processes before applying our approach. The details about the
conversion can be found in [12, 20].

» The diverse representation for the business process inevitably complicates the execution
of the underlying business process. More coordination mechanisms are required for
users and systems to run a specific business process with different process views.

* The process hierarchy needs to be predefined by process architects to enable the
abstraction and concretisation of process representation.

7 Conclusions and future work

In this paper, we analysed the structural characteristics of WS-BPEL processes, and
proposed a process component model to describe the structure and mapping relations of
process fragments. Based on this process component model, a framework was developed to
support the process view abstraction and concretisation functions for WS-BPEL processes.
The process view transformation was under strict supervision of a set of rules on structural
consistency and validity. The whole framework enabled to present a business process with
different granularities to cater for the diverse requirements on process visualisation from
users. A prototype was developed for the proof-of-concept purpose.

The future work included the strategies on automatic partitioning process fragments and
generating the process hierarchy according to actual applications. With such support, the
FlexView system is expected to assist business analysts, administrators to observe, diagnose
business processes from different perspectives.

Acknowledgement The research work reported in this paper is supported by Australian Research Council
and SAP Research under Linkage Grant LP0669660.

Appendix
The following content are extracted from [5].

Definition al. (Labelled Transition Systems) A labelled transition system (LTS) is a tripule
(Proc, Act, {->|acAct}), where

@ Springer

World Wide Web (2011) 14:27-52 51

— Proc is a set of states, ranged over by s;

— Act is a set of actions, ranged over by «;

— 2¢cProc x Proc is a transition relation, for every Act. As usual, we shall use the more
suggestive notation s in lieu of (s, s').

Definition a2. (Observational Equivalence and Weak Bi-simulation) A binary relation R
over the set of an LTS is a weak bi-simulation if and only if for each action whenever s; R
s, and a is an action:

- If s1—> s1', then there is a transition s, #sz such that s;" = s,';
- If s2—> s,', then there is a transition slésl such that s;' = s,".

For two processes P and Q, P:€>Q if and only if there is a (possibly empty) sequence of
T transmons i.e., unobservable transitions, that leads from P to Q. For each action a, we
write P:>Q if and only if there are processes P’ and Q' such that P:>P’—>Q’$Q

Milner’s 7-laws:

a.t.P=aP

P+7P=1P

aP+1.Q0)=aP+ 7.0 +aQ

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web services—concepts, architectures and applications.
Springer (2004)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D.,
Thatte, S., Trickovic, 1., Weerawarana, S.: Business process execution language for web services
(BPEL4WS) 1.1. (2003)

3. Bertino, E., Squicciarini, A.C., Paloscia, I., Martino, L.: WS-AC: a fine grained access control system for
web services. World Wide Web 9(2), 143171 (2006)

4. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: The Sth International
Conference on Business Process Management, Brisbane, Australia, pp. 88-95, 2007

5. Busi, N.: Process algebras, bisimulation (and logics), (2006)

6. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and dynamic service
composition in eFlow. In: The 12th Conference on Advanced Information Systems Engineering, pp. 13—
31, 2000

7. Charfi, A., Mezini, M.: AO4BPEL: an aspect-oriented extension to BPEL. World Wide Web 10(3), 309—
344 (2007)

8. Chiu, D.K.W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow view based E-contracts in a cross-
organizational E-services environment. Distributed and Parallel Databases 12(2-3), 193-216 (2002)

9. Eshuis, R., Grefen, P.: Constructing customized process views. Data Knowl. Eng. 64, 419-438 (2008)

10. Issam, C., Schahram, D., Samir, T.: The view-based approach to dynamic inter-organizational workflow
cooperation. Data Knowl. Eng. 56(2), 139-173 (2006)

11. Khoshafian, S.: Service oriented enterprise. Auerbach Publisher (2006)

12. Kopp, O., Martin, D., Wutke, D., Leymann, F.: On the choice between graph-based and block-structured
business process modeling languages. In: MobIS 2008: Modellierung betrieblicher Informationssysteme,
Stuttgart, Germany, pp. 59-72, 2008

13. Leymann, F.: Web Services Flow Language (WSFL) 1.0, (2001)

14. Leymann, F., Roller, D., Schmidt, M.-T.: Web services and business process management. IBM Syst. J.
41(2), 198-211 (2002)

15. Liu, D.-R., Shen, M.: Workflow modeling for virtual processes: an order-preserving process-view
approach. Inf. Syst. 28(6), 505-532 (2003)

16. Liu, C., Li, Q., Zhao, X.: Challenges and opportunities in collaborative business process management.
Information System Frontiers (2008)

@ Springer

World Wide Web (2011) 14:27-52

25.
. Thatte, S.: XLANG—web services for business process design, (2001)
27.
28.
29.
. XSLT (http://www.w3.org/TR/xslt)
31.
32.
33.

34.

35.

36.

. Martens, A.: Consistency between executable and abstract processes. In: The 7th IEEE International

Conference on e-Technology, e-Commerce, and e-Services, Hong Kong, China, pp. 6067, 2005

. Microsoft BizTalk (http://www.microsoft.com/biztalk/)
. OMG: Business process modeling notation (BPMN 1.1), (2008)
. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.M.P.: Pattern-based translation of BPMN

process models to BPEL web services. Int. J. Web Serv. Res. 5(1), 42-62 (2008)

. Papazoglou, M.P.: Web services and business transactions. World Wide Web 6(1), 49-91 (2003)
. Papazoglou, M.: Web services: principles and technology. Prentice Hall (2007)
. Papazoglou, M.P,, Yang, J.: Design methodology for web services and business processes. In: The 3rd

International Workshop on Technologies for E-Services, pp. 54-64, 2002

. Schulz, K.A., Orlowska, M.E.: Facilitating cross-organisational workflows with a workflow view

approach. Data Knowl. Eng. 51(1), 109-147 (2004)
Tensegrity Software (http://www.tensegrity-software.com/home/home.html)

van der Aalst, WM.P.: Formalization and verification of event-driven process chains. Inf. Softw.
Technol. 41(10), 639-650 (1999)

van der Aalst, WM.P., Weske, M.: The P2P approach to interorganizational workflows. In: International
Conference on Advanced Information Systems Engineering, pp. 140-156, 2001

Xalan (http://xml.apache.org/xalan-j/)

Zhao, X., Liu, C.: Tracking over collaborative business processes. In: The 4th International Conference
on Business Process Management, pp. 3348, 2006

Zhao, X., Liu, C.: Version management in the business process change context. In: The 5th International
Conference on Business Process Management, Brisbane, Australia, pp. 198-213, 2007

Zhao, X., Liu, C., Yang, Y.: An organisational perspective on collaborative business processes. In: The
3rd International Conference on Business Process Management, Nancy, France, pp. 17-31, 2005

Zhao, X., Liu, C., Yang, Y., Sadiq, W.: Handling instance correspondence in inter-organisational
workflows. In: The 19th International Conference on Advanced Information Systems Engineering,
Trondheim, Norway, pp. 51-65, 2007

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M.: Process view derivation and composition in a dynamic
collaboration environment. In: The 16th International Conference on Cooperative Information Systems,
Monterrey, Mexico, pp. 82-99, 2008

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., Yongchareon, S.: WS-BPEL business process
abstraction and concretisation. In: The 14th International Conference on Database Systems for Advanced
Applications, Brisbane, Australia, 2009

@ Springer

http://www.microsoft.com/biztalk/
http://www.tensegrity-software.com/home/home.html
http://xml.apache.org/xalan-j/
http://www.w3.org/TR/xslt

	Implementing process views in the web service environment
	Abstract
	Introduction
	Preliminary of WS-BPEL
	Motivating example
	FlexView framework
	Process component model
	Structural consistency and validity rules
	Enforcing process abstraction and concretisation

	Incorporation into WS-BPEL
	Mapping to WS-BPEL
	Prototype Implementation

	Related work and discussion
	Conclusions and future work
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

