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Abstract Using graph theory, we analyze the topological landscape of web service
networks formed by real-world data set, either downloaded from web service
repositories or crawled by a search engine. We first propose a flexible framework to
study syntactic web service matchmaking in a unified manner. Under the framework,
then, the data set is analyzed from diverse perspectives and granularity. By and
large, the data set is shown to exhibit small world network well and power-law-like
distribution to some extent. Finally, using random graph theory, we demonstrate how
to accurately estimate the size of the giant component of such web service networks.
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1 Introduction

Web services are software systems designed to support machine-to-machine inter-
operation over the Internet. Many researches have been carried out for the web
service standard, and these efforts have significantly improved flexible and dynamic
functionality of the service oriented architecture in the current web services. More-
over, the recent realization—i.e., the core web service specifications of WSDL [33],
SOAP [35] and UDDI [29] are insufficient to realize the goal of the Semantic Web—
has developed a plethora of new means such as OWL [34], OWL-S [22], WSDL-S [1],
and WSML [12] to annotate rich semantics to web services (ontology), enabling truly
automatic data exchange on the Web. Therefore, it is expected that, in the near
future, service vendors will publish their offerings as “semantic web services”, i.e.,
semantically enriched web services. However, in practice, there has been little study
as to how useful current public web services are. In particular, since web services that
are specified in WSDL and published in UDDI form a network, one can use network
analysis methods to study the characteristics of web service networks.

In general, the topological structure of a network affects the processes and be-
haviors occurring in the network. For instance, the topology of a social acquaintance
network may affect the spread rate of gossip or disease. Similarly, the topology of the
Internet is known to be correlated with the robustness of communication therein.
Accordingly, understanding the structural properties of networks often help gain
better insights and develop better algorithms [3, 28]. Therefore, in this paper, we
study two directions: (1) data ⇒ model (Sections 5.1 and 5.2): identifying models (i.e.,
properties) from web service networks, and reversely (2) model ⇒ data (Section 5.3):
generating web service networks from models. Since currently there are not enough
semantic web services specified in OWL-S or WSDL-S yet, our study in this paper is
limited to ones in WSDL.

To investigate properties of the current web services, we collect a number of
web services from public repositories and by using a search engine (e.g., Google).
Then, we construct three kinds of web service networks where a node is a web
service (an operation, or a parameter resp.) while an edge is an invocation between
web services. The connections of nodes, i.e., invocations between web services, may
represent machine to machine interoperation which is the main goal of web services.
Also, one can consider the edges as an information production flow—e.g., a cuisine
and a zip code are able to produce the name and address of a restaurant by a web
service findRestaurant, and the address can be used to obtain the map of the
restaurant by a web service findMap. To identify edges, we focus on parameter
matchmaking since the WSDL standard does not support pre/post conditions or
world state changes. Note that since the descriptions of web services, operations, or
parameters are in natural languages and optional, they cannot be used for formal
matchmaking. Consequently, we use two web service matchmaking methods that
allow a web service ws1 to call another web service ws2 if the output parameters
of ws1 matches the input parameters of ws2 exactly (approximately resp.). Hence,
our matchmaking between web services is beyond a strict syntactic matchmaking.

By analyzing the networks constructed, we show that the current web service
networks have the small world and power-law-like properties. The finding that in
most cases there exists a short path between pairs of nodes provides a valuable
hint to web service composition techniques, which allows the techniques to focus
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on short paths first. The observation that there exist a small number of hub nodes in
web service networks is helpful to improve web service discovery and composition—
one can complete these processes earlier by considering the hub nodes first among
a number of candidates. For the other direction, we estimate the size of the giant
component in each network we construct by using a theoretic formula. Then the
calculated size is compared with the actual size of the giant component in the
corresponding network. Through this comparison, we show that the estimated size
is very closed to the actual size, which implies that a theoretical model can help to
study the interoperable portion of web service networks even without measuring the
actual networks.

Our main contributions are as follows:

– We propose a flexible web service matchmaking framework that allows to in-
corporate different “matching” in a unified manner. By using different matching
functions, the framework can cover from exact to approximate (e.g., as in Cosine
or WordNet) matching.

– We propose three dimensions of granularity to form web service networks from
parameters to operations to web services. By looking into web service network
using different glasses, we can understand the characteristics of the network
better.

– We have conducted extensive experimentation under the proposed framework,
and applied graph analysis techniques to study the distribution, average distance,
diameter, and clustering coefficient of the network. Furthermore, we examine if
the graph shows small world properties or power-law-like distribution.

– Reversely, given a model, being able to generate web service networks is impor-
tant in many settings. Using random graph theory, therefore, we demonstrate
how to accurately estimate the size of the giant component in our web service
networks.

2 Background

2.1 Web services

A webservice in a WSDL file can be viewed as a collection of operations, each of
which in turn consists of input and output parameters. When an operation op has
input parameters IN = {p1, · · · , pn} and output parameters OUT = {q1, · · · , qm},
we denote the operation by op(IN, OUT). Furthermore, each parameter is a pair
of (name, type). We denote the name and type of a parameter p by p.name and
p.type, respectively. To decide invocations between web service operations, we first
should check the type of the operations. The WSDL specification lists four types of
operations [33]: (1) one-way: the operation receives a message but will not return
a response; (2) request-response: the operation receives a request and will return
a response; (3) solicit-response: the operation sends a request and will wait for a
response; and (4) notification: the operation sends a message but will not wait for
a response. If an operation op1 wants to invoke another operation op2, op1 should
have a compatible type with op2. Since this checking process can be done trivially,
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from here forward, we assume that types of operations are all compatible, and focus
on other issues instead.

Example 1 Consider the web service w:

<message name="findRestaurant_Request">
<part name="zip" type="int"/>
<part name="foodPref" type="string"/>

</message>
<message name="findRestaurant_Response">

<part name="name" type="string"/>
<part name="address" type="string"/>

</message>
<portType name="findRestaurantPortType">

<operation name="findRestaurant">
<input message="findRestaurant_Request"/>
<output message="findRestaurant_Response"/>

</operation>
</portType>

The web service, w, consists of one request-response type operation,
findRestaurant, that takes two input parameters, p1 = (zip, integer) and p2 =
(foodPref, string), and returns two output parameters, q1 = (name, string) and
q2 = (address, string). Therefore, a client program wishing to get the name and
address of a restaurant may invoke findRestaurant (16801, “Thai”) to w.

2.2 Small world and power-laws

In general, a network is called the small world network if it shows the properties of
both random and regular networks.

Definition 1 (Random Network) A random network consists of N nodes, where
each pair of nodes is connected with the probability p. As a result, edges are
randomly placed among a fixed set of nodes [37].

Definition 2 (Regular Network) A regular network consists of N nodes, where a
node i is adjacent to nodes [(i + j) mod N] and [(i − j) mod N] for 1 ≤ j ≤ K. If
K = N − 1, it becomes the complete N-node graph, where every node is adjacent to
every other N − 1 nodes [37].

Random networks are characterized by their short average distances among
reachable nodes. On the other hand, in regular networks, each node has highly
clustered neighbor nodes, such that the connectivity between neighboring nodes
is very high. Consequently, small world networks show both (1) highly clustered
structure and (2) small average shortest distance. To measure the connectivity and
short average distances, the following metrics are often computed.
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– L: The average shortest distance (i.e., number of hops) between reachable pairs
of vertices. L(p) is defined as L of Watts-Strogatz graph [38] with probability
p. Lrandom is identical to L(1).

– C: The average clustering coefficient. For a node i with vi neighbors, Ci = 2Ei
vi(vi−1)

,
where Ei is the number of edges between vi neighbors of i. C is the average
clustering coefficient Ci for a network. Again, Cp is defined as C of the Watts-
Strogatz graph with the probability p. Crandom is identical to C(1).

– IndexSN : The small world network index is defined as: IndexSN = |Cactual−Crandom|
|Lactual−Lrandom| ,

where Cactual and Lactual represent C and L of the measured network, respec-
tively, and Crandom and Lrandom represent C and L of the random graph with
the same number of nodes and the average number of edges per node as the
measured network.

If a network has the small world properties, then its L and C shows: Cactual �
Crandom and Lactual � Lrandom. That is, the average clustering coefficient is much larger
than that of a random network, while the average shortest distance is slightly larger
than or similar to that of a random network. Therefore, the more distinct the small
world properties of a network are, the bigger IndexSN of the network becomes.

A power-law distribution often occurs in complex systems where a majority
of nodes have very few connections, while a few nodes have a high degree of
connections. Typical power-law function has the form of y = Cx−α , and is captured
as a straight line in log-log plots. The existence of power-law distribution has
been observed in many real and artificial networks such as power grid, WWW,
or collaboration network, and believed to be one of signs of mature and robust
networks.

2.3 Giant component

Many properties of the random network model are shown to be exactly solvable
in the limit of large network size [25, 26, 28]. In particular, in this paper, we are
interested in the size of giant component of random graphs. Informally,

Definition 3 (Giant Component) The giant component is a connected component of
a graph larger than a size threshold θ(n).

Typically, the giant component consists of the majority of nodes in the graph.
Here, we use the theoretical framework derived in [28] to estimate the giant
component size in web service networks by using the generating functions [39].
The idea is, instead of dealing with the degree distribution directly, a generating
function G0(x) that encapsulates all the information in the degree distribution pk

is used as follows: G0(x) = ∑∞
k=0 pkxk, where k represents the degree and pk is the

desired degree distribution of the network. This form is easier to work on rather
than working with the complexities of the distribution function. For instance, we can
represent the average degree as z = ∑

k kpk = G′
0(1) for any degree distribution by

using this generating function.
One important point towards the analysis of component sizes, we need to be able

to represent the degree distribution of the node we reach by following a randomly
chosen edge. It is not the same as pk since there are k edges that arrive at a node
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with degree k. Hence, it is proportional to kpk, and can be generated by the following
normalized function:

∑
k kpkxk

∑
k kpk

= x
G′

0(x)

G′
0(x)

(1)

If we start from a randomly chosen node and follow its edges to reach its
neighbors, we need to subtract the edge connecting the node to the neighbor in order
to find the degree distribution of remaining outgoing edges of the neighbors of that
node. Thus we can define the generating function for the degree distribution of a
randomly chosen node’s neighbors G1(x) as:

G1(x) = G′
0(x)

G′
0(1)

= 1

z
G′

0(x) (2)

The average size of components to which a randomly chosen node belongs when
there is no giant component formed in a network is derived in [28] as:

〈s〉 = 1 + G′
0(1)

1 − G′
1(1)

= 1 + z2
1

z1 − z2
(3)

where z1 = z is the average number of neighbors of a node and z2 is the average
number of second neighbors. The expression diverges when G′

1(1) = 1 which is
the point to mark a phase transition at which a giant component first appears. By
rewriting the conditions, we can say that a giant component exists in a network if

∑

k

k(k − 2)pk ≥ 0 (4)

The size of a giant component, if there exists, can be calculated from the following
simple heuristic argument. Let u be the probability that a node chosen uniformly at
random from the network is not in the giant component. In order words, this value is
the fraction of all nodes outside the giant component. Then this probability is equal
to the probability that none of the node’s neighbors belong to the giant component
which is just uk if the node has degree k. If we average this over the probability
distribution [28], we obtain the self consisting function, u = G1(u). Then for the
smallest non-negative real solution of u, the following equation gives the size of
the giant component, S:

S = 1 − G0(u) (5)

2.4 Related work

Many empirical networks are well modeled by complex networks including the scale
free and small world networks. The small world networks are generated by Watts-
Strogatz model [38]. Albert et al. [4] proposed a set of different models for generating
scale free networks, based on the growing process of the Internet and other empirical
complex networks. Denning [13] surveyed various network laws with a focus on
the power-law distribution and the scale free networks. In this paper, we apply the
developed techniques to examine web services networks.
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Many web service matchmaking solutions are based on the keyword matching
supported by the category browsing of UDDI. However, the keyword based match-
ing cannot fully capture real functions of web services. To address this limitation,
many researchers have developed various methods to assess the similarity of web
services for matchmaking. Wu [40] suggested a matchmaking process based on a
lightweight semantic comparison of signature specifications in WSDL by means of
several assessment methods. Wang and Stroulia [36] assessed the similarity of the
requirement description of the desired service with the available services via the
semantic information retrieval method and a structure matching approach. Maedche
and Staab [20] provided multiple phase cross evaluation to assess the similarity
between two different ontology. Blake and Nowlan [9] manually analyzed real,
fully-operational web services currently available on the Internet and, discovered
insights into how real web service messages are defined. Finally, they used the
insights for web service discovery. In addition, Cibran et al. [11] proposed a new
layer, the Web Services Management Layer (WSML) between the application and
the web services. WSML decouples web services from client applications and enables
swapping between semantically equivalent web services based on availability. In this
paper, we do not propose a particular matchmaking method. Instead, we advocate
a flexible framework that can accommodate a plethora of matchmaking schemes in
a unified manner. Due to the availability, we choose Cosine [8] and WordNet based
matching schemes in this paper [16] (to be elaborated in Section 4). However, note
that it is also possible to incorporate the aforementioned matching approaches such
as [36, 40] in our framework, if the implementation is available.

Recently, a number of researches have been carried out for matchmaking with
semantic web service descriptions. Paolucci et al. [30] proposed a semantic match-
making algorithm by matching of inputs and outputs of the service profiles. Bellur
and Kulkarni [6] proposed a more exhaustive matchmaking algorithm, based on the
concept of matching bipartite graphs, to overcome the problems faced with Paolucci
et al’s work [30]. Akkiraju et al. [2] presented an algorithm to compose web services
in the presence of semantic ambiguity by combining semantic matching and AI
planning algorithms. They used cues from domain-independent and domain-specific
ontologies to compute an overall semantic similarity score between ambiguous terms.
Bianchini et al. [7] proposed an ontology-based hybrid approach in which several
matchmaking techniques were combined to provide an adaptive service discovery
environment. Lecue et al. [18] presented a web service composition technique by
adding annotation and exploiting matchmaking between input/output parameters of
web services. Their approach extends existing methods (Exact, Plug-in, Subsume,
Intersection and Fail) with concept abduction to provide explanations of mis-
connections between web services. Dong et al. [14] suggested a web service search
engine, Woogle, which has the web service similarity search capability. Woogle first
clusters parameter names into semantically meaningful concepts, which are then used
to compute the similarity between parameter or operation names.

Li and Horrocks [19] used DAML-S to design a service matchmaker. DAML-S
is used to represent knowledge for promoting service capability matching. A de-
scription logic (DL) based on DAML-S is used to implement matchmaking details.
Medjahed et al. [24] proposed an ontology-based framework for the automatic
composition of web services. From the AI planning perspective to the automatic
web service composition, Sirin et al. [31] demonstrated how an OWL reasoner can be
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integrated with an AI planner to overcome automatic web service composition prob-
lems. They identify the challenges of writing service descriptions and reasoning when
an expressive language such as OWL is used. Martin et al. [23] described OWL-S
for more complete specifications of the capabilities and behavior of Web Services,
so as to support automation of service-related activities, discovery and composition.
In addition, they described selected tools, technologies and research directions based
upon OWL-S. As an independent research branch, Zhang and Zhang [41] considered
the problem of web service quality. It is unlikely for an organization to dynamically
select a partner merely based upon the information in UDDI. Therefore, the test of
quality and trustworthiness of web services is critical for the success of web service
paradigm. Recently, Cai [10] proposed a mechanism to help the communities to grow
into scale-free networks, and extended WSDL into Scale-Free Web Services using
Web Services Resource Framework.

3 The matchmaking framework

3.1 Flexible matching

A network consists of nodes and edges between them. In our framework, different
entities can be used as nodes and edges in a unified manner. First, as nodes,
we consider three kinds—parameters, operations, and web services—from finer to
coarser granularity. Second, as edges, we use the notion of parameter matching
and operation invocation. When the “meanings” of two parameters, p1 and p2,
are interchangeable, in general, they are said to be “matching” each other. The
simplest way to check this is if two parameters have the same name and type:
(p1.name = p2.name) ∧ (p1. type = p2. type). Since web services are designed and
created in isolation, however, this naive matching is often too rigid and thus misses
cases like p1 = (“password”, string) and p2 = (“passwd”, string). On the other hand, if
web services are annotated with rich semantics (e.g., using RDF [32] or WSDL-S [1]),
then the so-called “semantic” matching can be easily reasoned out. However, in
practice, the majority of public web services does not have annotated semantics
yet. In order to cover all the spectrum of matching, therefore, we propose a generic
Boolean function, match(p1, p2), that determines if two parameters p1 and p2 are
matching. Formally,

Definition 4 (Type-match) A boolean function, type-match(p1. type, p2. type),
returns True if: (1) p1. type = p2. type, or (2) p1. type is derived from p2. type in a
type hierarchy.

Definition 5 (Name-match) A boolean function, name-match(p1.name, p2.name,
S, θ), returns True if the similarity between p1.name and p2.name by a similarity
metric S is over the given threshold θ : i.e., S(p1.name, p2.name) ≤ θ .

For instance, name-match(“password”, “passwd”, =, 1) represents the exact
matching, and would return False since “password” �= “passwd”.1 Similarly, by

1For the equality checking (i.e. =), the threshold value other than 1 is not meaningful.
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using string matching functions such as cosine metric or WordNet similarity, one
can express the approximate name matching. For instance, name-match(“flight”,
“plane”, WordNet, 0.9) would return True since two names of parameters have the
similarity of 1 (> 0.9) as WordNet. In our experimentation, we use three metric
functions: = (i.e., literal equality), cosine similarity with TF/IDF weights [5], and
WordNet [16] based approximate similarity. Based on two boolean functions above,
we define the generic parameter match function as follows:

Definition 6 (Match) A boolean function, match(p1, p2, S, θ), returns True
if: (1) type-match(p1. type, p2. type) = True , and (2) name-match(p1.name,
p2.name, S, θ) = True .

Definition 7 (Parameter Matching) When a boolean function, match(p1, p2, S, θ),
returns True, it is said that a parameter p1 matches a parameter p2: “p1 ∼ p2”.

In order to invoke an operation op1 with input parameters IN = {p1, · · · , pn},
one may need to provide values for input parameters. When one can provide all
input parameters, op1 is said “fully invocable”. When one can provide at least one
input parameter, op1 is said “partially invocable”. For instance, Google API has a
search operation with several input parameters, but it can be invoked by null values
for many of parameters. Similarly, consider a client program wishing to invoke an
operation op1 first and then have op1 invoke another operation op2 directly (i.e., a
case of web service composition). In this case, if the output parameters of op1 satisfy
all input parameters of op2, then op1 “fully” invokes op2, and if output parameters of
op1 satisfy some input parameters of op2, then op1 “partially” invokes op2. Formally,

Definition 8 (Operation Invocation) For two operations, op1(IN1, OUT1) and
op2(IN2, OUT2),

– op1 fully invokes op2, denoted by “op1 → op2”, if for every input parameter
p ∈ IN2, there exists an output parameter q ∈ OUT1 such that q ∼ p.

– op1 partially invokes op2, denoted by “op1 ��� op2”, if there exists an input
parameter p ∈ IN2 and an output parameter q ∈ OUT1 such that q ∼ p.

We denote each invocation by full- and partial-invocation, respectively.

3.2 Web service network model

In this section, using the notions of nodes and edges defined in Section 3.1, we
propose a flexible web service network model as follows.

Definition 9 (Web Service Network Model) A web service network is generated by
a 4-tuple model M = (T, S, θ, I), where:

– T is the type of nodes and can be either “p” for parameters, “op” for operations,
or “ws” for web services.

– S (and θ) is the similarity metric to be used in parameter matching (and its
threshold resp.).
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– I is the type of operation invocation and can be either “FI” for full invocation
(denoted as M f ) or “PI” for partial invocation (denoted as Mp).

Example 2 A model M1 = (op, cosine, 0.75, FI) generates an operation node
network where parameter matching is done using cosine metric with a threshold 0.75.
Furthermore, an edge from an operation op1 to op2 is added only when op1 → op2.
On the other hand, another model M2 = (ws, word-net, 0.9, PI) generates a web
service node network where intra-parameter matching is done using WordNet based
approximate similarity metric with a threshold 0.9. Furthermore, an edge from a web
service ws1 to ws2 is added if op1 ��� op2 for op1(∈ ws1) and op2(∈ ws1)—that is,
partial invocation among operations.

Consider Figure 1 as an example. Here, a web service network is formed by a
set of web services, each of which consists of a set of operations. An operation is
invoked with a set of input parameters and produces a set of output parameters.
There are three kinds of nodes representing web services (e.g., ws1 and ws2),
operations (e.g., op11, op12 and op21) or parameters (e.g., p1, · · · , p7). Each web
service node containing a set of operation nodes is connected to parameter nodes

P2

P1

P3

P4

P5

P6

P7

Figure 1 Web service networks: a WSDLs, b conceptual networks, c networks from diverse models,
d Mp, e M f

op, f Mp
op, and g Mws .
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with “directed” edges. These edges show the flow of the parameters as inputs or
outputs of operations. An edge from a parameter node p to an operation node op
indicates that the parameter p is used as one of inputs for the operation op. On the
other hand, an edge from an operation node op to a parameter node p represents
that the operation op produces the parameter p as an output. For example, p1 is one
of inputs of op11 in ws1. Similarly, p5 is not only an output of op12 but also an input
of op21 in ws2.

In order to study subtle differences among node types, one can “project out” the
aforementioned web service network into three kinds as follows:

– A parameter node network, i.e., Mp = (p, S, θ, I), consists of parameter nodes
and edges representing operations that have an input parameter as the
source node and an output parameter as the target node. For instance, if
op1(IN1, OUT1) exists, then we create edges from each parameter p ∈ IN1 to
every output parameter q ∈ OUT1.

– An operation node network, i.e., Mop = (op, S, θ, I), consists of nodes represent-
ing operations and edges representing invocations in-between. If an operation
op1 can (either partially or fully based on I) invoke an operation op2, there is an
edge from op1 to op2 in Mop.

– A web service node network, i.e., Mws = (ws, S, θ, I), consists of web service
nodes and edges representing the existence of invocable operations between web
services.

Figure 1d describes a parameter node network Mp based on Figure 1b. For
instance, p1 can be transformed to p2 by op11. For operation node example, op21
can be invoked with two input parameters both of which are produced by op12
in Figure 1c. Therefore, there exists an edge op12 to op21 in both operation node
networks (Figure 1e and Figure 1f). On the other hand, p3, one of outputs for op11,
is used as one of inputs for op12. However, op12 has another input parameter p4

not produced by op11. In the partial invocation mode, therefore, an edge from op11
to op12 is added. On the contrary, in the full invocation mode, no edge is added.
Note that in the example of Figure 1, we obtain the same web service node network
whether we use partial or full invocation mode. However, in general, different
networks will be formed depending on the choice of invocation mode.

Table 1 shows the summary of symbols.

Table 1 Summary of symbols. Symbol Meaning

p1, q1, ... Parameters
op1, op2, ... Operations
ws1, ws2, ... Web services
Mp Parameter node network

Mp
op Partially invocable operation node network

M f
op Fully invocable operation node network

Mp
ws Partially invocable web service node network

M f
ws Fully invocable web service node network
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Figure 2 Compatible types with different structures.

4 Set-up

4.1 Data set

From web service repository and by using Google, we have downloaded a total of
2,100 publicly available web services (as WSDL files). We refer to those data sets as
PUB. The pre-processing of PUB data set consisted of four steps as follows:

(1) Data Gathering: First, 1,554 files were taken from Fan et al. [15] who
downloaded the files from public repositories such as XMethods.org or
BindingPoint.com. Second, out of top-1,000 ranked WSDL files from
Google for the query string “wsdl filetype:wsdl”, 546 were downloaded using
Google API (the rest were un-downloadable). Note that although we could
have downloaded more than the first 1,000 WSDL files from Google, we
decided to disregard the rest since their qualities degraded rather quickly (e.g.,
many WSDL files after top-1,000 were for testing as in “Hello World”).

(2) Validation & De-duplication: According to WSDL standards, 740 invalid
WSDL files were removed, and 1,360 files are left out. Then, 376 duplicate
WSDL files at operation level were removed, yielding 984 valid WSDL files
at the end.

(3) Type Flattening: For matching parameters, we use both name and type of
parameters. However, since WSDL files are designed by different people
in isolation, using only atomic types of XML Schema can be too rigid.
For instance, consider two parameters: p1 (address, addressType1) and p2

(MyAddress, addressType2) of Figure 2. Although names of two parame-
ters are similar, their types are user-defined and different. However, the
types are in fact “compatible”. Therefore, if we flatten these types into
p1.type = {integer zipcode, string street, string city, string state} and p2.type =
{string street, string city, string state, integer zipcode}, then the parameters can
be matched. We call this process type flattening.2 After type flattening, each
atomic type and name are compared using type hierarchy of XML Schema
and flexible matching scheme (e.g., exact or approximate), respectively. The
detailed statistics of type flattening is in Table 2. As the table, after type flatten-
ing we still have 7.41% of input parameters and 9.16% of output parameters as
complex types, since the complex type information is missing in the WSDL files
we downloaded and thus we are not able to flatten them.

(4) Data Cleaning: The final step is to clean data to improve the quality of
parameters. For instance, a substantial number of output parameters (16%)

2An alternative to our type flattening is to use more expensive metric such as tree edit distance. For
its simplicity, we used type flattening in this paper.
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Table 2 Type distribution.

Type Before flattening After flattening
Input (num) Output (num) Input (num) Output (num)

anyType 0.07% (7) 0.09% (5) 0.2% (35) 0.2% (51)
simpleType 65.52% (6,751) 32.37% (1,792) 92.43% (19,809) 90.63% (22,946)

string 53.75% (5,538) 22.00% (1,218) 65.06% (13,943) 54.74% (13,859)
number 7.79% (803) 7.12% (394) 17.69% (3,791) 22.89% (5,796)
time 0.90% (93) 0.22% (12) 1.85% (396) 2.93% (743)
boolean 3.74% (385) 2.46% (136) 7.16% (1,535) 9.14% (2,314)

complexType 34.41% (3,545) 67.54% (3,739) 7.41% (1,588) 9.16% (2,320)
Total number 10,303 5,536 21,432 25,317

were named “return”, “result”, or “response” which are too ambiguous for
clients. However, often, their more precise underline meaning can be derived
from contexts. For instance, if the output parameter named “result” belongs to
the operation named “getAddress”, then the “result” is in fact “Address”. In
addition, often, naming follows apparent pattern such as getFooFromBar or
searchFooByBar. Therefore, to replace names of parameters or operations
by more meaningful ones, we removed spam tokens like “get” or “by” as much
as we could.

4.2 Similarity functions

We use three similarity functions for the name matching, name-match:

– Exact Matching: p1.name and p2.name match if (p1.name = p2.name).
– Cosine Similarity: The similarity of p1.name and p2.name is measured as the

cosine value of the angle between two tf/idf vectors, v1 and v2, made from the
tokens of p1.name and p2.name: Scos = cos(θ) = v1·v2

||v1||·||v2|| .
– WordNet-based Similarity: Since WordNet is a network of English words labeled

with semantic classes (e.g., synonyms), it carries various semantic relations
among words. Many researchers have proposed various ways to measure the
approximate similarity of two words in WordNet. Among them, we employ Lin
similarity function [16] that scales the information content of the least common
subsumer by the sum of the information content of two vocabularies. Formally,

SimilarityLin(c1, c2) = 2 log pM(c1, c2)

log p(c1) + log p(c2)

where p(c) is the probability of encountering an instance of concept c for any
concept c ∈ C, and pM(c1, c2) = MINc∈Sub(c1,c2) p(c) where Sub(c1, c2) is the set of
concepts that subsume c1 and c2. Finally, our similarity function with WordNet is
SWordNet(p1.name, p2.name) = SimilarityLin(p1.name, p2.name).

Both cosine and WordNet metrics return a similarity value from 0 to 1, and use
thresholds to determine matchmaking (i.e., if the calculated similarity is over the
threshold, we consider that two parameter names match). The following example
illustrates the Cosine similarity.
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Example 3 Consider two parameters p1 = “endRoamDate” and p2 = “EndDate”.
Let us assume that two parameters are the same type. First, parameter names are
tokenized to sets of lowercase tokens, i.e., “endRoamDate” → {“end”, “roam”,
“date”} and “EndDate” → {“end”, “date”}. Then, for each token, a tf/idf weight,
w, is calculated based on the entire PUB data set as the corpora, e.g., w(date) =
0.57, w(end) = 0.57, and w(roam) = 0.7. With tf/idf weights, p1 and p2 are trans-
formed to 3-dimensional vectors v1 and v2, respectively: v1 = [0.57, 0.57, 0.7] and
v2 = [0.57, 0.57, 0]. Finally, the similarity between “endRoamDate” and “EndDate”
is Scos(p1, p2) = 0.816.

At the end, we have generated a total of 25 (= 5 network types × 5 similarity
metrics) web service networks: (1) three kinds of networks with “full invocation”—
Mp, M f

op, and M f
ws, and two of their counterparts of “partial invocation”—Mp

op,
and Mp

ws; (2) five similarity variations—Exact, Cosine (0.75), Cosine (0.95), Word-
Net (0.75), and WordNet (0.95).

Table 3 Statistics of PUB—A: the number of nodes in each network, B: the number of nodes in
a giant component, C: the percentage of the giant component, D: the average degree, and l: the
network diameter.

Scheme Model A B C (%) D �

Exact matching Mp 11,301 8,494 75.1 18.66 21
Mp

op 5,180 2,993 57.7 108.01 10

M f
op 5,180 1,538 29.6 28.25 11

Mp
ws 984 608 61.7 52.41 6

M f
ws 984 431 43.8 17.25 7

Cosine (0.95) Mp 10,952 8,385 76.5 18.13 21
Mp

op 5,180 3,232 62.3 110.43 10

M f
op 5,180 1,667 32.1 28.89 11

Mp
ws 984 656 66.6 54.42 7

M f
ws 984 474 48.1 17.73 9

Cosine (0.75) Mp 10,568 8,197 77.5 17.50 9
Mp

op 5,180 3,375 65.1 110.43 9

M f
op 5,180 1,696 32.7 28.92 11

Mp
ws 984 676 68.6 54.04 7

M f
ws 984 485 49.2 17.69 9

WordNet (0.95) Mp 8,870 7,077 79.7 18.82 18
Mp

op 5,180 3,742 72.2 214.51 7

M f
op 5,180 2,045 39.4 39.31 9

Mp
ws 984 765 77.7 86.23 6

M f
ws 984 558 56.7 28.77 6

WordNet (0.75) Mp 7,042 5,590 79.3 16.87 10
Mp

op 5,180 3,967 76.5 498.01 7

M f
op 5,180 2,574 49.6 110.58 8

Mp
ws 984 807 82.0 178.93 5

M f
ws 984 667 67.7 66.25 5
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5 Main results

In this section, we present the main results of our study. We first present topological
landscape of web service networks with respect to the small world property and
power-law distribution (i.e., data ⇒ model), then reversely demonstrate how to
estimate the size of the giant component of networks (i.e., model ⇒ data).

5.1 Small world

First, we analyze the PUB data set to see whether it exhibits characteristics of the
small world network. Similar to many studies on the small world network [38],
we restrict our attention to the giant connected component. The details of the
giant component of each web service network are summarized in Table 3: the
number of nodes in each network, the number of nodes in a giant component,
the percentage of the giant component, the average degree, and the network diame-
ter. Note that the percentage of the giant component is, in most cases, biggest in the
WordNet (0.75) among other matching schemes. It indicates that the usage of the
approximate matching scheme reduces the number of isolated web services in web
service networks.

Table 4 Small world properties of PUB.

Scheme Model Lactual Lrandom Cactual Crandom

Exact matching Mp 4.3185 3.4244 0.2229 0.0021
Mp

op 2.8590 1.9830 0.3056 0.0362

M f
op 3.7605 2.5628 0.2147 0.0180

Mp
ws 2.2710 1.9222 0.4809 0.0874

M f
ws 2.9659 2.4250 0.2610 0.0405

Cosine (0.95) Mp 4.1760 3.4442 0.2324 0.0022
Mp

op 2.8651 1.9881 0.3125 0.0340

M f
op 3.7538 2.5787 0.2001 0.0173

Mp
ws 2.2847 1.9254 0.4925 0.0833

M f
ws 3.0046 2.4803 0.2499 0.0359

Cosine (0.75) Mp 4.1981 3.4730 0.2397 0.0020
Mp

op 2.8671 1.9925 0.3190 0.0326

M f
op 3.7392 2.5910 0.1990 0.0172

Mp
ws 2.2923 1.9307 0.4822 0.0801

M f
ws 2.9990 2.4394 0.2392 0.0375

WordNet (0.95) Mp 3.6088 3.3282 0.2612 0.0027
Mp

op 2.4234 1.9425 0.3251 0.0574

M f
op 3.4165 2.4440 0.1493 0.0190

Mp
ws 2.1222 1.8865 0.5290 0.1138

M f
ws 2.6215 2.1839 0.2527 0.0510

WordNet (0.75) Mp 3.2656 3.3665 0.3118 0.0030
Mp

op 2.0546 1.8743 0.4818 0.1256

M f
op 2.6506 1.9657 0.1842 0.0429

Mp
ws 1.8484 1.7790 0.6697 0.2214

M f
ws 2.2226 1.9023 0.3487 0.0993
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Figure 3 The small world
index, IndexSN .

Table 4 shows the average shortest path, L, and clustering coefficient, C, for 25
web service networks, compared to random graphs with the same number of nodes
and same average number of edges per node. It shows that all web service networks
generated from the PUB data set are small world networks—Lactual � Lrandom and
Cactual � Crandom. This suggests that the real-world web services have short-cuts that
connect nodes of networks.

Each matching scheme has a different level of small world properties. For
example, in the parameter node network Mp, Lactual(= 3.2656) of the WordNet
(0.75) is smaller than Lactual(= 4.3185) of the exact matching, while Cactual(= 0.3118)

of the WordNet (0.75) is bigger than Cactual(= 0.2229) of the exact matching. For
better understanding, Figure 3 illustrates the value of IndexSN for different matching
schemes. Intuitively, IndexSN represents how strong small world property a network
has. In the figure, we can see that the usage of approximate matching scheme,
WordNet (0.75), shows more clearly small world properties than the exact and cosine
similarity matching schemes. In the case of Mp with the WordNet (0.75) matching,
IndexSN is ten times bigger than one of the exact matching case. This result implies
that the approximate matching scheme makes the network denser with the increased
number of edges. For the web service composition perspective, this result suggests
that approximate matching scheme can facilitate more productive and effective
service compositions than when only exact syntactic matching is used. Moreover, the
finding that in most cases there exists a short path between pairs of nodes provides a
valuable hint to web service composition techniques, which allows the techniques to
focus on short paths first.

5.2 Power-laws

First, we examine how complex web services are by measuring how many operations
(parameters resp.) are involved in each web service (operation resp.) [15]. These
results are shown in Figure 4, fitted to a power-law function y = Cx−α (in log-
log plot). They show near3 power-law distributions with the exponent of 1.49 and

3A recent study [27] reported that most of real-world power-law distributions exhibited an exponent
of 2 ≤ α ≤ 3.
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(a) α = 1.49 (b) α = 1.27

Figure 4 The complexity of web services and operations. Y-axis is the number of samples of web
services and operations, respectively (a, b).

1.27, respectively. In Figure 4a, 37% of the web services have just one operations
and 71% of the web services have less than 5 operations. On the other hand, the
largest web service has over 110 operations. For the operation complexity, 181
operations among 5,180 operations have only one input/output parameter (see the
leftmost point in Figure 4b). Considering a power-low distribution, this number is
very small. The main reason is that it is natural for operations to have at least one
input parameter and one output parameter. In fact, the number of operations with 2
parameters (see the second point) is quite large enough—over 1,000. Consequently,
we can ignore the leftmost point in this figure. In addition, the whole distribution also
shows a power-law-like property. In more detail, even after type flattening, around
65% of operations have less than 6 parameters while the maximum number of the
parameters in an operation is 360.

Second, in Figure 5, we examine the popularity of parameter names to see if
some parameter names occur more often than others. X-axis is the frequency of
parameter names while Y-axis is the number of samples. That is, (10, 100) indicates
that there are 100 parameters that occur 10 times. Again, all of them show near

(a)α =1.63 (b)α =1.58 & (c) α =1.06

Figure 5 The popularity of parameter names. X-axis is the frequency of parameter names while
Y-axis is the number of samples. a Exact matching, b Cosine (0.75), and c WordNet (0.75) (inset).
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power-law distributions. From these distributions, we can observe a very small
number of popular “hub” parameter names. For instance, the parameter (“name”,
string) appears most frequently in our collection. In addition, as the matching method
gets more flexible, from (a) to (c) in Figure 5, more parameters are involved in
matching. Since the matched parameters are considered as a single parameter, the
number of distinct parameters decreases but the frequency of parameter names
increases. For example, while p1 appears 490 times in Exact matching among 11,301
distinct parameter names, p1 appears 3,278 times in WordNet (0.75) matching among

Figure 6 Out-degree
distribution of three web
service networks, Mp for

(a)–(c), M f
op for (d)–(f) and

M f
ws for (g)–(i): a Exact

matching: α = 1.15, b Cosine
(0.75): α = 1.19, c WordNet
(0.75): α = 1.04, d Exact
matching: α = 1.18, e Cosine
(0.75): α = 1.12, f WordNet
(0.75): α = 0.64, g Exact
matching: α = 1.25, h Cosine
(0.75): α = 1.24, and
i WordNet (0.75): α = 0.68. (a)-(c) p

(d)-(f) f
op

(g)-(i) f
ws
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7,042 distinct parameter names, where similar parameters like p1 (“name”, string)
and p2 (“identification”, string) are considered to be a “match” and consolidated.
Therefore, Figure 5c (inset) has the smallest α and the largest tail among these three.

In Figure 6, we examine the out-degree distributions of three web service networks
of three matching schemes. Compared with previous figures, by and large, out-
degree distributions show weaker power-law distributions. Nevertheless, it is evident
to observe the existence of hub parameters, operations, or web services with huge
number of out-degrees while majority has only a few.

In the parameter node networks of Mp of Figure 6a–c, due to flexible matching,
the number of nodes decreases from (a) to (c): 11,301 for Exact matching, 10,568 for
Cosine (0.75), and 7,042 for WordNet (0.75). However, even though Figure 6c has
the smallest number of nodes of 7,042, it has the largest number of edges and biggest
out-degree. For example, a parameter node including (“name”, string) has 317 out-
degrees (to 2.7% of nodes) in Exact matching, 306 out-degrees (to 2.9% of nodes) in
Cosine (0.75), and 1,378 out-degrees (to 19.57% of nodes) in WordNet (0.75).

In operation node networks (see Figure 6d–f), every M f
op corresponding to three

matching schemes has the same number (5,180) of operation nodes since they are not
merged. From exact to approximate matching, the total number of edges increases
from 22,253 to 25,174 to 184,429. The fact that approximate matching schemes such
as Cosine or WordNet have larger out-degrees indicates that information can flow
more flexibly among web service operations through many edges. In Figure 6g–i, the
web service node networks of M f

ws also have a fixed number of 984 nodes, and the
out-degree increases from (g) to (i). While some edges in operation node networks
correspond to intra-connections within the same web service, the edges of M f

ws

are amount to pure inter-connection among different web services. As parameter
node networks and operation node networks, more cooperation with different web
services can be expected as we have more flexible approximate matching. In addition,
the observation that there exist a small number of hub nodes in web service networks
is helpful to improve web service discovery and composition—one can complete
these processes earlier by considering the hub nodes first among a number of
candidates.

5.3 Estimating the size of giant component

In this section, reversely from Sections 5.1 and 5.2, we study how to apply the graph
model to generate data set (i.e., web service networks) accurately (model ⇒ data).
In particular, we focus on estimating the size of the giant component in a network.
When a new web service w is created, it is natural for w to be connected to majority
of nodes by being a part of the giant component in a network. Therefore, many real
networks are reported to have giant components with a substantial size and density
(e.g., [27, 28]).

The giant component size is calculated according to (5) in Section 2.3, and the
results are shown in Figure 7. For each matching scheme, the theoretical value of the
giant component size is very close to the measured one except for Mp. This implies
that this simple model can be helpful to estimate the inter-operable portion of such
networks even without analyzing the actual network beyond its degree distribution.
Of course, it is not a perfect model since there is still a gap for the giant component of
Mp. The theory is based on randomness between connections. If the actual networks
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Figure 7 Actual vs. estimated size of giant components.

were random enough then one would expect the model to agree perfectly with
real-world measurements. The fact that in some cases the results are not consistent
to actual networks indicates lack of randomness in web service networks.

6 Observations and limitations

In this section, we discuss three important observations from (and limitations of) our
experimentation.

Semantic Web The fact that Sections 5.1 and 5.2 show the small world and power-
law-like properties more clearly as the matchmaking scheme becomes more flexible
(from Exact to Cosine to WordNet) can be interpreted as an evidence of the
needs of more semantically-rich web service networks. Many real networks (that are
known to be robust and error-tolerant) have shown both small world and power-
law properties. Therefore, we may argue that as web service networks become more
mature and robust, they will show both small world and power-law-like properties
better. The ultimate case of flexible matching is to use the semantics of parameters
or operations. For instance, in the WordNet method of our experimentation, both
“play” and “start” can be treated as synonym, meaning “begin”. However, “play”
may be used as a noun with the meaning “a theatrical performance” rather than
a verb “begin”. Therefore, this kind of mis-matching would cause a problem in
discovering and composing web services (semi-)automatically. We envision that this
kind of problems be solved only when the semantic web (services) are fully adopted
in future.

Graph Fitting Graphs in Figure 6 among graphs in Section 5.2 follow weaker power-
law-like patterns. This is due to outliers which can happen for various reasons.
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Figure 8 The effect of the
operation complexity to the
out-degree distribution.

First, operations with a number of parameters can significantly affect the number
of outgoing edges on Mp. For instance, in Figure 8, consider an operation with m
input parameters and n output parameters. After transforming the operation and
its parameters to Mp, Then in parameter node networks, all of m input parameters
of the operation have the same outgoing edges to all n output parameters, which
produces m parameters with n out-degrees. If m is large, then the point (n, m) would
sit far above the fitting line, becoming an outlier. Second, in Mop, web services with
many operations make similar results with Mp. Since operations in a web service
use similar parameters in names and types in general, the operations can invoke
each other and have the same set of outgoing edges. As a result, operations within
a web service can have the same out-degrees. Finally, we believe that outliers can
happen due to the fact that we ignore service domains. Services from different
domains are often not appropriate to invoke each other (i.e., ws1 in the airline
domain may not be meant to be used for ws2 in the insurance domain), although they
could have their inputs/outputs matched. We expect that as the size of web services
increases and service domains are taken into account for matching, fitting becomes
smoother.

Generative Model The agreement between the web service networks and theory
in Section 5.3 suggests that there be no statistical difference between a web service
network and an equivalent random network in terms of the giant component size.
However, at the same time, the existence of disagreeing points in the analysis also
suggests that one needs better models or tools (than the simple random network
model) to be able to fully explain the properties and behaviors of the web service
networks. Needless to say, more investigation is needed to fully untangle this
problem.

7 Conclusion

In this paper, we have studied topological aspects of the real-world data set.
Under the uniform framework of matchmaking, we have constructed various web
service networks—some are based on exact matching while others employ more
flexible approximate matching. Our findings are the following. First, regardless of
the matching schemes and network types, all of web service networks show small
world properties well and power-law-like distribution to some extent. Second, as
more flexible matchmaking is employed, the resulting network shows the properties
of small world and power-law network more clearly. Since many “robust” real-
world complex systems also show the similar properties of small world and power-
law network, we argue that the usage of more flexible approximate matching as in
“semantic” web services would make the network more robust and useful.
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Future Work Ample directions are ahead. First, we may try more extensive simi-
larity/distance metrics (e.g., Edit distance, n-gram) and matching schemes (e.g., [21,
36, 40]) under our matchmaking framework. We expect to see the similar pattern
(with different exponent) emerging from these cases as well. Second, toward true
measurement of the semantic web services, we may use WSDL-S or OWL-S files,
in addition to WSDL files, downloaded from search engines. As people annotate
more semantics to their web services, we expect to have richer data set. Third, we
may evolve our matching scheme using reasoning technologies, since the operation
invocation may be decided by not only input/output parameter matching, but also
pre/post conditions or state changes. Forth, we may aim at devising novel web
service discovery and composition algorithms that can take advantage of the learned
knowledge about network topology and properties.
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