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Abstract We show that several classes of tree patterns observe the independence of
containing patterns property, that is, if a pattern is contained in the union of several
patterns, then it is contained in one of them. We apply this property to two related
problems on tree pattern rewriting using views. First, given view V and query Q, is
it possible for Q to have an equivalent rewriting using V which is the union of two
or more tree patterns, but not an equivalent rewriting which is a single pattern? This
problem is of both theoretical and practical importance because, if the answer is no,
then, to find an equivalent rewriting of a tree pattern using a view, we should use
more efficient methods, such as the polynomial time algorithm of Xu and Özsoyoglu
(2005), rather than try to find the union of all contained rewritings (which takes
exponential time in the worst case) and test its equivalence to Q. Second, given a
set S of views, we want to know under what conditions a subset S′ of S is redundant
in the sense that for any query Q, the contained rewritings of Q using the views in
S′ are contained in those using the views in S − S′. Solving this problem can help
us to, for example, choose the minimum number of views to be cached, or better
design the virtual schema in a mediated data integration system, or avoid repeated
calculation in query optimization. For the first problem, we identify several classes
of tree patterns for which the equivalent rewriting can be expressed as a single tree
pattern. For the second problem, we present necessary and sufficient conditions for
S′ to be redundant with respect to some classes of tree patterns. For both problems
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we consider extension to cases where there are rewritings using the intersection of
multiple views and/or where a schema graph is present.

Keywords XPath · tree pattern · views · containment · rewriting

1 Introduction

Query rewriting using views has many applications including data integration, query
optimization, and query caching [5]. A view is an existing query whose answer may
or may not have been materialized. Given a new query, the problem is to find
another query using only the views that will produce correct answers to the original
query. Usually two types of rewritings are sought: equivalent rewritings and contained
rewritings. An equivalent rewriting produces all answers to the original query, while
a contained rewriting may produce only part of the answers. Both types of rewritings
have been extensively studied in the relational database context, see [5] for an early
survey, and [12, 17] for more recent developments.

More recently rewriting xml queries using xml views has attracted attention
because of the rising importance of xml data [6, 9, 13, 20]. Since XPath lies in the
center of all xml languages, the problem of rewriting XPath queries using XPath
views is particularly important. Some major classes of XPath expressions can be
represented as tree patterns [1, 10]. Among previous work on rewriting XPath
queries using views, Xu et al. [20] studied equivalent rewritings for several different
classes of tree patterns, and it gave a polynomial time algorithm for finding equivalent
rewritings when the tree patterns do not have *. Mandhani and Suciu [9] presented
results on equivalent rewritings of tree patterns when the tree patterns are assumed
to be minimized. Lakshmanan et al. [6] studied maximal contained rewritings of tree
patterns where both the view and the query involve /, // and [] only (these XPath
expressions correspond to tree patterns in P{/,//,[]} [10]), both in the absence and
presence of non-recursive schema graphs—a restricted form of DTDs. When there
are no dtds, the worst case complexity of finding the maximal contained rewriting is
shown to be exponential in the size of the query.

In this paper, we study two related problems on XPath rewritings using views.
The first problem is about the form of equivalent rewritings: given view V and query
Q, is it possible for Q to have an equivalent rewriting using V which is the union
of two or more tree patterns, but not an equivalent rewriting which is a single tree
pattern? This problem is of both theoretical and practical importance because, if
the answer is no, then, to find an equivalent rewriting using the view, we can use
more efficient methods such as the polynomial time algorithm of [20], rather than
try to find the union of all contained rewritings [6] and test its equivalence to Q.
The second problem is what we call the redundant views problem. Given a set S
of views, we want to know under what conditions a subset S′ of S is redundant in
the sense that for any query Q, the contained rewritings of Q using the views in S′
are contained in those using the views in S − S′. Thus the contribution of redundant
views to the contained rewritings can be ignored. Solving this problem can help us to,
for example, choose the minimum number of views to be cached, or better design the
virtual schema in a mediated data integration system, or avoid useless computation
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in query optimization. We first study the above problems for the class of tree patterns
involving /, // and [], and then extend our results to other classes of tree patterns. We
also consider the case where the intersection of views is used in the rewriting, as well
as the case a schema graph is present.

Our main contributions are:

– We show that, when there is no dtd, several classes of tree patterns observe the
independence of containing patterns property, that is, if a tree pattern is contained
in the union of multiple tree patterns, then it must be contained in one of them.

– Using the above property, we show that for queries and views in P{/,//,[]}, if there
is no equivalent rewriting in the form of a single tree pattern, then there is no
equivalent rewriting in the form of a union of tree patterns. We extend this result
to queries in P{/,[],∗}, queries and views in ̂P{/,//,[],∗}, and rewritings using multiple
views. We also consider the presence of dtds.

– When multiple views exist, we provide a necessary and sufficient condition for
identifying redundant views. In the case where the intersection of views is also
used in the rewriting, we provide a necessary condition and a separate sufficient
condition for redundant views.

The rest of the paper is organized as follows. Section 2 provides the terminology
and notations. Section 3 shows the independence of containing patterns property of
tree patterns. Based on this property, Section 4 presents our result on the form of
equivalent rewritings. Section 5 then discusses conditions under which some views
are redundant. Section 6 discusses related work. Finally Section 7 concludes the
paper.

2 Preliminaries

2.1 DTDs, XML trees, and tree patterns

Let � be an infinite set of tags. We adopt the similar notations used in [6], and
model a dtd as a connected directed graph G (called a schema graph) satisfying the
following conditions:

(1) each node is labeled with a distinct label in �;
(2) each edge is labeled with one of 1, ?, +, and ∗, which indicate “exactly one”,

“one or zero”, “one or many”, and “zero or many”, respectively. Here, the
default edge label is ∗;

(3) there is a unique node, called the root, which may have an incoming degree of
zero. All other nodes have incoming degrees greater than 0.

Because a node in a schema graph G has a unique label, we also refer to a node by
its label. If the graph is acyclic, then the dtd is said to be non-recursive. We will use
dtd and schema graph interchangeably.1 Two example schema graphs are shown in
Figure 1(a) and (b), the first one is non-recursive, and the second one is recursive.

An xml tree is a node-labeled, unordered tree. Let v be a node in an xml tree t, the
label of v is denoted by label(v). Let N(t) (resp. N(G)) denote the set of all nodes in

1A schema graph cannot model constructs such as a := (b , b ?) and a := (b | c) in a dtd.
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Figure 1 Schema graphs G1, G2 and tree patterns P1, P2.

xml tree t (resp. schema graph G), and rt(t) (resp. rt(G)) denote the root of t (resp.
G). A tree t is said to conform to schema graph G if

(1) for every node v ∈ N(t), label(v) ∈ �,
(2) label(rt(t)) = label(rt(G)),
(3) for every edge (u, v) in t, there is a corresponding edge (label(u), label(v)) in G,

and
(4) for every node v ∈ N(t), the number of children of v labeled with x is con-

strained by the label of the edge (label(v), x) given in G.

We denote the set of all xml trees conforming to G by TG.
We consider a class of XPath expressions given as follows.

P ::= τ | ∗ | P/P | P//P | P[P] | P[//P]
Here, τ ∈ �, ∗ is the wildcard representing any tag in �, and, /, //, and [] represent
the child-axis, descendant-axis, and branching condition, respectively. The class of
XPath expressions corresponds to a set of tree patterns (TP) known as P{/,//,[],∗} in
[10]. Formally, a tree pattern (TP) in P{/,//,[],∗} is a tree such that each edge is labeled
with either / or //; each node is labeled with a tag in � or the wildcard ∗, and there
is a distinguished node corresponding to the output of the XPath expression. When
there is no confusion, we will use TP and XPath query interchangeably. A tree patten
has a tree representation. Figure 1(c) and (d) show two TPs. They correspond to the
XPath expressions a/ ∗ [c]//d and a/b/d, respectively. Here, single lines represent
edges labeled with /, called /-edges, and double lines represent edges labeled with //,
called //-edges. A branch in the tree representation represents a condition ([]) in an
XPath expression, and a circle indicates the distinguished node of P. Below, given a
TP P, we use DNP to denote the distinguished node. The path from rt(P) to DNP is
called the distinguished path.

The following subsets of P{/,//,[],∗} are of special interest to us. P{/,//,[]} is the set of
TPs that do not have *-nodes (i.e., nodes labeled with *), P{/,[],∗} is the set of TPs that
do not have //-edges, and ̂P{/,//,[],∗} is the set of TPs such that no //-edge is incident on
a *-node, and there are no leaf *-nodes. Note that P{/,//,[]} is a subset of ̂P{/,//,[],∗}.

Let N(P) (resp. rt(P)) denote the set of all nodes in a TP P (resp. the root of P).
A matching of P in an xml tree t is a mapping δ from N(P) to N(t) which is

(1) root-preserving, i.e., δ(rt(P)) = rt(t),
(2) label-preserving, i.e., ∀v ∈ N(P), label(v) = label(δ(v)) or label(v) = ∗, and
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(3) structure-preserving, i.e., for every edge (x, y) in P, if it is a /-edge, then δ(y) is
a child of δ(x); if it is a //-edge, then δ(y) is a descendant of δ(x), i.e, there is a
path from δ(x) to δ(y).

Each matching δ produces a subtree of t rooted at δ(DNP), denoted sub t
δ(DNP), which

is also known as an answer to the TP. We use P(t) to denote the set of all answers of
P on t:

P(t) = {

sub t
δ(DNP) | δ is a matching of P in t

}

(1)

If P(t) = ∅ for every xml tree t, then P is said to be an empty query, denoted P(t) = ∅.
Let T be a set of xml trees. We use P(T) to denote the union of answer sets of Q

on the trees in T. That is, P(T) = ⋃

t∈T P(t). In addition, when we discuss TPs in the
presence of dtd G, we will implicitly assume every TP P is satisfiable under G, that
is, there is t ∈ TG such that P(t) �= ∅.

2.2 Tree pattern containment and containment mapping

A TP P is said to be contained in another TP Q, denoted P ⊆ Q, if for every xml tree
t, P(t) ⊆ Q(t) (Refer to Eq. 1). Given a dtd G and two TPs P and Q, P is said to be
contained in Q under G, denoted P ⊆G Q, if for every xml tree t ∈ TG, P(t) ⊆ Q(t).
Tree pattern equivalence is defined as two-way containment as usual. That is, P = Q
is defined as P ⊆ Q and Q ⊆ P, and P =G Q means P ⊆G Q and Q ⊆G P.

When there are no dtds, the containment of some classes of tree patterns can be
characterized by the existence of a containment mapping. Recall [1]: a containment
mapping (CM) from Q to P is a mapping h from N(Q) to N(P) that is label-
preserving, root-preserving, structure-preserving (which now means that for every
/-edge (x, y) in Q, (h(x), h(y)) is a /-edge in P, and for every //-edge (x, y), there is
a path from h(x) to h(y)), and output-preserving, which means h(DNQ) = DNP. The
following lemma is proved in [11].

Lemma 1 In the following cases, P ⊆ Q iff there is a CM from Q to P [11].

(1) Q ∈ P{/,//,[]},
(2) P ∈ P{/,[],∗},
(3) Q ∈ P{/,[],∗}, and there are no leaf *-nodes in Q.

A closer inspection of the proof in [11] shows the following lemma is also true.

Lemma 2 Suppose Q ∈ ̂P{/,//,[],∗}. Then for any pattern P ∈ P{/,//,[],∗}, P ⊆ Q iff there
is a CM from Q to P.

2.3 Contained rewriting, maximal contained rewriting and equivalent rewriting

A view is a pre-defined TP. Let V be a view and Q be a TP. A contained rewriting
(CR) of Q using V is a TP Q′ such that when evaluated on the subtrees returned by V,
Q′ gives correct answers to Q. More precisely, (1) for any xml tree t, Q′(V(t)) ⊆ Q(t),
and (2) there exists some t such that Q′(V(t)) �= ∅.

Let Q′ be a CR of Q. We use Q′ ◦ V to represent the expansion of Q′, which
is the TP obtained by merging rt(Q′) and DNV as follows: if label(DNV) �= ∗, then



92 World Wide Web (2009) 12:87–105

Figure 2 View (a), query (b),
CR (c), and expansion (d).
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the merged node is labeled label(DNV), otherwise the merged node is labeled
label(rt(Q′)) (Note that if label(DNV) �= ∗, label(rt(Q′)) �= ∗ then label(rt(Q′)) =
label(DNV)). The distinguished node of Q′ ◦ V is the distinguished node of Q′.
Figure 2 shows a view V, a TP Q, a CR Q′ of Q using V, and the expansion Q′ ◦ V
of Q′.

It is easy to see that (Q′ ◦ V)(t) = Q′(V(t)). Thus condition (1) in the definition
of CR is equivalent to Q′ ◦ V ⊆ Q, and condition (2) in the definition is equivalent
to Q′ ◦ V �= ∅. A CR Q′ is said to be an equivalent rewriting (ER) if Q′ ◦ V ⊇ Q also
holds. The maximal contained rewriting (MCR) of Q using V, denoted MCR(Q, V),
is the union of all CRs of Q using V [6]. We use EMCR(Q, V) to denote the union of
expansions of all of the CRs in MCR(Q, V). Using the concepts of useful embedding
[6] and revised useful embedding [19], it can be easily proved that, when Q is in
P{/,//,[]} or ̂P{/,//,[],∗}, the MCR of Q using V is the union of a finite number of CRs
of Q using V. That is, there are CRs Q1 . . . Qm such that EMCR(Q, V) = Q1 ◦ V ∪
· · · ∪ Qm ◦ V. For convenience, we define EMCR(Q, V) to be the empty query if Q
has no CRs using V.

In the presence of DTDs, a contained rewriting (resp. equivalent rewriting) of Q
using view V under dtd G is a TP Q′ such that (1) for any xml tree t ∈ TG, Q′(V(t)) ⊆
Q(t) (resp. Q′(V(t)) = Q(t)), (2) for some t ∈ TG, Q′(V(t)) �= ∅. TheMCR of Q using
V under G is the union of all CRs of Q using V under G.

3 Independence of containing patterns property of tree patterns

In this section, we show that some classes of tree patterns observe what we call the
independence of containing patterns (ICP) property, that is, if a TP is contained in the
union of several other TPs, it is contained in one of them.

Theorem 1 Let P and P1, . . . , Pn be tree patterns, in the following cases, if P ⊆
⋃n

i=1 Pi, then there exists i ∈ [1, n] such that P ⊆ Pi.

(1) P ∈ P{/,//,[],∗}, P1, . . . , Pn ∈ ̂P{/,//,[],∗}, or
(2) P ∈ P{/,[],∗}, P1, . . . , Pn ∈ P{/,//,[],∗}.

To prove the above theorem, we need the concept of boolean tree patterns. A
boolean pattern [10] is a pattern with no distinguished node. Let P be a boolean
pattern. For an xml tree t, the result of evaluating P on t, denoted P(t), is either true
or false. P(t) is true if and only if there is a matching of P in t. For two boolean
patterns P1 and P2, P1 ⊆ P2 means P1(t) =true implies P2(t) =true for any xml
tree t. If P2 is in ̂P{/,//,[],∗}, then P1(t) ⊆ P2(t) iff there is a homomorphism from P2 to
P1 (Recall: a homomorphism is the same as a containment mapping, except it does
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not need to be output-preserving) [10]. In addition, P1 ∪ P2 returns P1(t) ∨ P2(t) for
any t.

We first prove the following lemma.

Lemma 3 For boolean patterns P, P1, . . . , Pn ∈ P{/,//,[],∗}, if P ∈ P{/,[],∗}, or
P1, . . . , Pn ∈ ̂P{/,//,[],∗}, then P ⊆ ⋃

i Pi implies there exists i ∈ [1, n] such that
P ⊆ Pi.

Proof We prove the lemma for the case n = 2. The case n > 2 is similar.
Using Lemma 1 of [10], we can construct two boolean patterns Q and Q′ such that

P ⊆ P1 ∪ P2 iff Q ⊆ Q′. Q and Q′ are as shown in Figure 3, where V is a pattern
which is contained in both P1 and P2, and V does not have *-nodes or //-edges (see
[10] for how to construct V). Furthermore, c can be chosen as a label which does not
appear in either P1 or P2. Note that (1) if P1, P2 are in ̂P{/,//,[],∗}, then Q′ ∈ ̂P{/,//,[],∗},
(2) if P ∈ P{/,[],∗}, then Q ∈ P{/,[],∗}. Since P ⊆ P1 ∪ P2 implies Q ⊆ Q′, by Lemma 1,
we know there is a homomorphism from Q′ to Q. Now examine the structure of Q
and Q′, any homomorphism from Q′ to Q must map the nodes u1 and u2 either to
v1 and v2 respectively, or to v2 and v3 respectively. In the former case, there will be a
homomorphism from P2 to P; in the latter case there will be a homomorphism from
P1 to P. Therefore, either P ⊆ P1 or P ⊆ P2. ⊥ ��

We are now ready to prove Theorem 1.

Proof of Theorem 1 We denote by P′, P′
i (i ∈ [1, n]) the boolean patterns obtained

from P, Pi by attaching a child node labeled with a distinct label z to the distinguished
nodes of P and Pi respectively (Since � is an infinite set of tags, z exists, refer to
Figure 4). Let us denote the new nodes in P and Pi by zP and zPi respectively.

We show that P ⊆ ⋃

i∈[1,n] Pi implies P′ ⊆ ⋃

i∈[1,n] P′
i. Let t be any xml tree. For

every matching h of P′ in t, there is a matching of P in t which is the one obtained by
restricting h to all nodes in P except zP. Since P ⊆ ⋃

i∈[1,n] Pi, there exists an i ∈ [1, n]
such that there is a matching f of Pi in t and f (DNPi) = h(DNP). This matching f can
clearly be extended to P′

i - simply let f (zPi) = h(zP). Therefore P′ ⊆ ⋃

i∈[1,n] P′
i.

By Lemma 3, there exists i ∈ [1, n] such that P′ ⊆ P′
i. Therefore, there is a

homomorphism from P′
i to P′. This homomorphism implies a containment mapping

from Pi to P. Hence P ⊆ Pi. ⊥ ��

Figure 3 Q and Q′ as in [10]. Q Q 'r r
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Figure 4 Tree patterns P, Pi
and the boolean patterns P′
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Theorem 1 does not hold in the presence of dtds. For example, consider the dtd
in Figure 1a. Under the dtd, a//d ⊆ a/b/d ∪ a/e/d. But a//d is contained in neither
a/b/d nor a/e/d. Also a/∗ is contained in the union of a/g, a/b and a/e, but it is not
contained in any of them.

4 Equivalent rewritings, single pattern or union of patterns?

Let V be the view, and Q be the query. By definition, EMCR(Q, V) ⊆ Q. In the best
case, EMCR(Q, V) is equivalent to Q (In this case, we say the MCR of Q using V
is equivalent to Q). The question arises now whether it is possible for Q to have
no ER (which is a single TP) using V, but it has a MCR (which is a union of TPs)
using V which is equivalent to Q. In other words, any single CR of Q using V is not
equivalent to Q , but the union of all CRs is. We study this problem for the following
cases.

4.1 The class P{/,//,[]}

We first consider the case V ∈ P{/,//,[]}, Q ∈ P{/,//,[]} and the rewritings of Q using V
are all in P{/,//,[]}. Using Theorem 1, we can easily prove the following result.

Theorem 2 Let V, Q ∈ P{/,//,[]} be the view and query respectively. When there are no
DTDs, if Q has a MCR using V which is equivalent to Q, then it has a single CR using
V which is equivalent to Q.

Proof Suppose EMCR(Q, V) = Q1 ◦ V ∪ . . . ∪ Qn ◦ V, where each Qi is a CR of Q
using V. Since every Qi ◦ V is in P{/,//,[]}, ifEMCR(Q, V) = Q, then by Theorem 1 (1)
there is i ∈ [1, n] such that Q = Qi ◦ V. That is, Qi is an equivalent rewriting of Q
using V. ⊥ ��

Because of Theorem 2, for queries and views in P{/,//,[]}, if there is no equivalent
rewriting of Q using V, then no MCR of Q using V is equivalent to Q. In other
words, if we cannot find a single CR of Q using V which is equivalent to Q, then
it is impossible to find a union of CRs of Q using V which is equivalent to Q. This
suggests that we should always use a more efficient algorithm, such as that in [20] to
find an equivalent rewriting of Q using V.
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4.2 Other classes of tree patterns

Theorem 2 can be extended to the cases as stated in the next theorem.

Theorem 3 Let V, Q be the view and query respectively. In the following cases, if Q
has a MCR using V which is equivalent to Q, then it has a single CR using V which is
equivalent to Q.

(1) Q ∈ P{/,[],∗} and there are no leaf *-nodes in Q.
(2) V, Q ∈ ̂P{/,//,[],∗}, and label(DNV) �= ∗.

Note that Theorem 3 (2) includes the case where V, Q ∈ P{/,//,[]}.
Before proving the above theorem we prove the following lemmas first.

Lemma 4 Let the query Q and view V be in P{/,//,[]}. For every CR Q′ ∈ P{/,//,[],∗} of
Q using V, there is a CR Q′′ ∈ P{/,//,[]} such that Q′ ◦ V ⊆ Q′′ ◦ V.

Proof By definition of CR, Q′ ◦ V ⊆ Q. Since Q ∈ P{/,//,[]}, there is a CM δ from Q
to Q′ ◦ V. δ partitions N(Q) into two disjoint sets: N1 = {v ∈ N(Q) | δ(v) ∈ N(V)},
and N2 = {v ∈ N(Q) | δ(v) ∈ N(Q′) − {rt(Q′)}}. It is clear that for every path p in
Q, either every node on p is mapped to V, or the last node on p which is mapped to
V, denoted x, and the child of x on p, denoted y, satisfy the following relationship:
δ(x) is on the distinguished path of V, and either (x, y) is a //-edge, or δ(x) = DNV .
Furthermore DNQ is mapped to DNQ′◦V = DNQ′ .
If we denote Q′′ the pattern obtained as follows:

(a) Let rt(Q′′) be a node labeled with label(DNV);
(b) For every path p in Q that is not fully embedded, let the first node on p which

is not mapped into V be y, and the node preceding y on p be x, then add the
subtree of Q rooted at y under rt(Q′′), and connect rt(Q′′) and rt(Qy) with the
same type of edge as that of (x, y).

then Q′′ ∈ P{/,//,[]}, Q′′ ◦ V ⊆ Q, and δ makes a CM from Q′′ to Q′, therefore, Q′ ⊆
Q′′ and Q′ ◦ V ⊆ Q′′ ◦ V. ⊥ ��

Lemma 5 Let the query Q and view V be in ̂P{/,//,[],∗}. Suppose label(DNV) �= ∗. For
everyCR Q′ ∈ P{/,//,[],∗} of Q using V, there is aCR Q′′ ∈ ̂P{/,//,[],∗} such that Q′ ◦ V ⊆
Q′′ ◦ V.

The Proof of Lemma 5 is very similar to that of Lemma 4, except that to ensure Q′′
is in ̂P{/,//,[],∗}, we need the condition label(DNV) �= ∗. In fact, if this condition is not
satisfied, then the lemma does not hold. For example, consider the view V = a/ ∗ [/c],
and the query Q = a//b . Clearly Q′ = ∗//b is a CR of Q using V. There is no CR
Q′′ ∈ ̂P{/,//,[],∗} such that Q′ ◦ V ⊆ Q′′ ◦ V.

Using the above lemmas, we prove Theorem 3 as follows.

Proof of Theorem 3 Recall (Section 2.3) that, in both of the cases stated in the
theorem, there are CRs Q1, . . . , Qk of Q using V such that EMCR(Q, V)=Q1 ◦
V ∪ . . . ∪ Qk ◦ V. Since EMCR(Q, V) = Q, we know Q ⊆ Q1 ◦ V ∪ . . . ∪ Qk ◦ V. In
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case (1), by Theorem 1 (2), there is some i such that Q ⊆ Qi ◦ V. That is, Qi is an
equivalent rewriting of Q using V. In case (2), by Lemma 5, there are Q′

1, . . . , Q′
k ∈

̂P{/,//,[],∗} such that Q = Q′
1 ◦ V ∪ . . . ∪ Q′

k ◦ V. Clearly each Q′
i ◦ V is a pattern in

̂P{/,//,[],∗}. By Theorem 1 (1), there is i ∈ [1, k] such that Q ⊆ Q′
i ◦ V. That is, Q′

i is an
equivalent rewriting of Q using V. ⊥ ��

We point out that Theorem 3 (2) does not hold if label(DNV) = ∗ and the
rewritings are allowed to be in P{/,//,[],∗}. For example, the query Q = a//b has the
following two CRs using the view V = a/∗: Q1 = b and Q2 = ∗//b . The union of
the expansions of these rewritings is a/b ∪ a/ ∗ //b , which is equivalent to Q. But Q
is not equivalent to either a/b or a/ ∗ //b .

4.3 Rewritings using multiple individual views

Theorem 2 and Theorem 3 can be easily extended to the case when there are multiple
views.

Theorem 4 Let V1, . . . , Vn be views and Q be a query. In the following cases, if Q ⊆
EMCR(Q, V1) ∪ · · · ∪ EMCR(Q, Vn), then there exists i ∈ [1, n] such that there is an
equivalent rewriting of Q using Vi.

(1) Q ∈ P{/,[],∗} and Q has no *-leaves.
(2) V1, . . . , Vn, Q ∈ ̂P{/,//,[],∗}, and label(DNVi) �= ∗ ( for i ∈ [1, n]).

The proof of the above theorem is similar to that of Theorem 3.

4.4 Rewritings using intersections of views

So far we have only considered rewritings using individual views. However, multiple
views can be combined to rewrite a query. For instance, when the views have
identical root labels and identical labels for distinguished nodes (we say such views
are compatible), the intersection of these views may be used to rewrite a query, even
though there are no rewritings using any individual view. For example, the query
Q = a[b ][c]/d does not have a CR using either V1 = a[b ]/d or V2 = a[c]/d, but it
has a CR using V1 ∩ V2, which is equivalent to Q. We will consider this case now.

We need to formally defineCR andER using V1 ∩ · · · ∩ Vn first. We focus on views
and queries in the class P{/,//,[]} here.

Definition 1 Let V1, . . . , Vn be compatible views in P{/,//,[]}, and Q be a query in
P{/,//,[]}. Suppose V1 ∩ · · · ∩ Vn is not always empty. A contained rewriting (CR) of
Q using V1 ∩ · · · ∩ Vn is a TP Q′ ∈ P{/,//,[]}, such that for any xml tree t, Q′(V1(t) ∩
· · · ∩ Vn(t)) ⊆ Q(t), and there is at least one t such that V1(t) ∩ · · · ∩ Vn(t) �= ∅. Q′ is
said to be an equivalent rewriting (ER) if Q′(V1(t) ∩ · · · ∩ Vn(t)) ⊇ Q(t) also holds.
The maximal contained rewriting (MCR) of Q using the intersection is the union of
all CRs of Q using the intersection.

In the presence of dtd G, the CR, MCR and ER are defined similarly, except we
consider only xml trees conforming to G.
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The next example shows that it is possible for a query to have different CRs using
the intersection, thus the union of theseCRs produces strictly more answers than any
single CR.

Example 1 Consider the views V1 = a[x]/b and V2 = a[y]/b , and the query Q =
a[x][y][//b/d]//b [c]. It can be verified that Q1 = b [c][d], Q2 = b [d]//b [c], Q3 =
b [//b/d][c] and Q4 = b [//b/d]//b [c] are all CRs of Q using V1 ∩ V2, and none of
them is contained in the others.

However, if the union of all CRs becomes equivalent to Q, then one of the CRs is
equivalent to Q. In other words, Theorem 2 can be extended to rewritings using the
intersection of compatible views.

Theorem 5 Let V1, . . . , Vn be compatible views in P{/,//,[]}, and Q be a query in
P{/,//,[]}. If the MCR of Q using V1 ∩ · · · ∩ Vn is equivalent to Q, then one of the
CRs is an ER of Q using V1 ∩ · · · ∩ Vn.

To prove the above result, we need an important property of intersection of TPs,
as stated in the following lemma.

Lemma 6 [18] Let V1, . . . , Vn be compatible views in P{/,//,[]}. If V1 ∩ · · · ∩ Vn is
not always empty, then there are TPs V ′

1, . . . , V ′
k ∈ P{/,//,[]} such that V1 ∩ · · · ∩ Vn

is equivalent to V ′
1 ∪ · · · ∪ V ′

k.

We call each V ′
i in the above lemma a disjunctive component of the intersection.

Proof of Theorem 5 By Lemma 6, there are TPs V ′
1, . . . , V ′

k ∈ P{/,//,[]} such that V1 ∩
· · · ∩ Vn is equivalent to V ′

1 ∪ · · · ∪ V ′
k. Therefore, Q′ is aCR of Q using V1 ∩ · · · ∩ Vn

if and only if it is a CR of Q using every V ′
i for i = 1, . . . , k. Suppose Q1, . . . , Qm are

all of the CRs of Q using V1 ∩ · · · ∩ Vn. Then the MCR of Q using the intersection is
equivalent to Q implies

Q ⊆
m
⋃

i=1

k
⋃

j=1

(Qi ◦ V ′
j).

Since all TPs involved are in P{/,//,[]}, by Theorem 1, we know there is an i and a j
such that Q ⊆ Qi ◦ V ′

j. Therefore, the CR Qi is an equivalent rewriting of Q using
V1 ∩ · · · ∩ Vn. ��

Theorem 5 can also be extended to the case where rewritings using both individual
views and using intersections of views are considered together. Let S = {V1, . . . , Vn}
be a set of compatible views. We use MCR(Q, S) (resp. EMCR(Q, S)) to denote the
union of allCRs (resp. union of the expansions of allCRs) of Q using a single view in
S or using the intersection of a subset of views in S. Similar to the Proof of Theorem 5,
we can prove the theorem below.

Theorem 6 Let S = {V1, . . . , Vn} be compatible views in P{/,//,[]}, and Q be a query
in P{/,//,[]}. If EMCR(Q, S) is equivalent to Q, then there exists a single CR, Q′, of Q
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using either a single view, or using the intersection of some of the views in S, such that
the expansion of Q′ is equivalent to Q.

4.5 The presence of dtds

Theorem 2 still holds in the presence of a non-recursive schema graph. This is
because an equivalent rewriting is also a MCR, and when both Q and V are in
P{/,//,[]}, theMCR of Q using V under a non-recursive schema graph can be expressed
as a single TP in P{/,//,[]} [6].

Theorem 2 does not hold in the presence of recursive schema graphs, as
demonstrated by the next example.

Example 2 Consider the query Q = a//b and the view V = a/b under the recursive
dtd in Figure 1(b). Q has two CRs: Q′

1 = b and Q′
2 = b//b . The expansions of these

CRs are a/b and a/b//b respectively. Under the dtd, Q is equivalent to the union
of a/b and a/b//b , but it is not equivalent to either one of them. That is, there is no
single CR of Q using V which is equivalent to Q, but the union of the two CRs is
equivalent to Q.

Theorem 4 does not hold in the presence of non-recursive schema graphs. For
example, consider the dtd G shown in Figure 1(a). Under the dtd, if we let Q =
a//d, V1 = a/b/d and V2 = a/e/d, then MCR(Q, V1) = V1 and MCR(Q, V2) = V2,
and MCR(Q, {V1, V2}) = V1 ∪ V2 =G Q. But Q is not equivalent to either V1 or V2

under G.
Theorem 5 still holds in the presence of non-recursive dtds. This is because, under

a non-recursive dtd G, V1 ∩ · · · ∩ Vn is equivalent to a single TP in P{/,//,[]}, say V.
As given in [6], the MCR of Q using V under G is contained in a single CR of Q
using V under G. Therefore, the MCR of Q using V1 ∩ · · · ∩ Vn under G is contained
in a single CR, say Q′, of Q using V1 ∩ · · · ∩ Vn under G. If the MCR produces all
answers to Q, namely Q is contained in the MCR, then Q′ is an ER of Q.

4.6 Discussion: answerability of Q using V

In this section, we show, by example, that even if Q has no equivalent rewriting
using V according to the definition given in Section 2, it is still possible to answer Q
completely using V. The next example demonstrates this point.

Example 3 Consider the query Q and view V shown in Figure 5(a) and (b) respec-
tively. Q has no equivalent rewriting using V. But given any xml tree t, we can
find Q(t) using the view as follows. We evaluate the query Q1 = x/x[e]/y over the
subtrees in V(t), and denote the results as Q1(V(t)); we then evaluate Q2 = x/y
over the subtrees in V(t), and obtaining a set denoted as Q2(V(t)). Finally, we take
the intersection of Q1(V(t)) and Q2(V(t)). It can be verified that Q(t) = Q1(V(t)) ∩
Q2(V(t)).



World Wide Web (2009) 12:87–105 99

a

x

x

x

b

c

d

b

 c
x

x
d e

(a)Q

a

x

x

x

b

c

d
(b)V

x

x

x
e

(c)Q1

a

x

x

x

b

c

d
x

x
e

(d)Q1 ° V

x

x
(e)Q2

a

x

x

x

b

c

d
x

(f)Q2 ° V

Figure 5 Q has no equivalent rewriting using V according to conventional definition, but Q can be
fully answered using V: Q1 ◦ V ∩ Q2 ◦ V = Q.

5 Redundant views

In this section we assume there are multiple views V1, . . . , Vn in ̂P{/,//,[],∗}. We now
ask the question when a subset of views Vi1 , . . . , Vik are redundant in the sense that
for every query Q, the MCRs of Q using Vi1 , . . . , Vik are all contained in the union
of the MCRs of Q using the other views. Formally we have

Definition 2 Let V1, . . . , Vn ∈ ̂P{/,//,[],∗} be views and k < n. If for every TP Q ∈
̂P{/,//,[],∗},

k
⋃

i=1

EMCR(Q, Vi) ⊆
n

⋃

j=k+1

EMCR(Q, V j)

then we say the views V1, . . . , Vk are redundant.

Intuitively, when considering CRs the redundant views can be ignored because all
answers returned by CRs using the redundant views can be returned by CRs using
other views.

One might wonder how the redundant views problem is related to the view
containment problem ∪k

i=1Vi ⊆ ∪n
j=k+1V j. As we show in the next example, the

condition ∪k
i=1Vi ⊆ ∪n

j=k+1V j is neither sufficient nor necessary for V1, . . . , Vk to be
redundant.

Example 4 (1) Let V1 = a[b ]/c and V2 = a/c. Clearly V1 ⊆ V2. But V1 is not redun-
dant, because the query Q = a[b ]/c/d has a CR using V1, but it does not have a CR
using V2. (2) Now let V1 = a/x/x and V2 = a/x. It is easy to verify V1 � V2, but V1

is redundant.

We now provide the following sufficient and necessary condition for redundant
views.
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Theorem 7 Given V1, . . . , Vn ∈ P{/,//,[],∗}, V1, . . . , Vk (k < n) are redundant iff for
every i ∈ [1, k], the union of the expansions of the CRs of Vi using the views
Vk+1, . . . , Vn is equivalent to Vi, that is,

Vi =
n

⋃

j=k+1

EMCR(Vi, V j).

Proof (only if) we only need to consider the query Q = Vi for i ∈ [1, k]. Clearly
there is an equivalent rewriting of Vi using itself. Therefore

⋃k
j=1 EMCR(Vi, V j) = Vi

for i ∈ [1, k]. By definition, V1, . . . , Vk are redundant implies that

k
⋃

j=1

EMCR(Vi, Vj) ⊆
n

⋃

j=k+1

EMCR(Vi, Vj).

Thus

Vi ⊆
n

⋃

j=k+1

EMCR(Vi, Vj)

for all i ∈ [1, k]. Since EMCR(Vi, Vj) ⊆ Vi for all j ∈ [k + 1, n], we know

Vi =
n

⋃

j=k+1

EMCR(Vi, Vj).

(if) Suppose for every i ∈ [1, k],

Vi =
n

⋃

j=k+1

EMCR(Vi, Vj).

Suppose EMCR(Vi, Vj) = Q j,1 ◦ Vj ∪ . . . ∪ Q j,m j ◦ Vj. Then

Vi =
n

⋃

j=k+1

m j
⋃

s=1

(

Q j,s ◦ Vj
)

.

For any TP Q, if Q′ is a CR of Q using Vi, then Q′ ◦ Vi ⊆ Q. Hence

Q′ ◦
n

⋃

j=k+1

m j
⋃

s=1

(

Q j,s ◦ Vj
) ⊆ Q

i.e.,

n
⋃

j=k+1

m j
⋃

s=1

(

(Q′ ◦ Q j,s) ◦ Vj
) ⊆ Q

Thus every Q′ ◦ Q j,s (s = 1, . . . , m j), if not empty, is a CR of Q using Vj. Therefore,

Q′ ◦ Vi ⊆
n

⋃

j=k+1

EMCR
(

Q, Vj
)
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Since Q′ is an arbitrary CR of Q using Vi, we know

k
⋃

i=1

EMCR(Q, Vi) ⊆
n

⋃

j=k+1

EMCR(Q, Vj).

By definition, V1, . . . , Vk are redundant. ⊥ ��

If the views V1, . . . , Vk are in P{/,[],∗} and they have no *-leaves, or if V1, . . . , Vn

are in ̂P{/,//,[],∗} and the distinguished nodes of Vk+1, . . . , Vn are not labeled *, then
by Theorem 4, Vi = ⋃n

j=k+1 EMCR(Vi, Vj) iff there is j ∈ [k + 1, n] such that Vi has
an equivalent rewriting using V j. This leads to the following corollary.

Corollary 1 Given views V1, . . . , Vn, In the following cases, V1, . . . , Vk (k < n) are
redundant iff for every i ∈ [1, k], there exists j ∈ [k + 1, n] such that Vi has an
equivalent rewriting using V j.

(1) V1, . . . , Vk are in P{/,[],∗} and they have no *-leaves.
(2) V1, . . . , Vn are in ̂P{/,//,[],∗}, and the distinguished nodes of Vk+1, . . . , Vn are not

labeled *.

Note that case (2) above includes the case where V1, . . . , Vn are in P{/,//,[]}.
Theorem 7 still holds when there is a schema graph, and the proof is similar.

However, when a schema graph exists, the condition in Corollary 1 is still sufficient
but no longer necessary. The proof of sufficiency is similar to the case when there
are no schema graphs. The non-necessity is shown by the dtd in Figure 1(a), and the
views V1 = a/b , V2 = a/e, and V3 = a//d. Clearly V3 is redundant under the dtd,
but it does not have an equivalent rewriting using either V1 or V2.

A special case of Corollary 1 is when all the views V1, . . . , Vn are in P{/,//,[]},
and they are compatible, that is, their distinguished nodes have identical labels. In
this case, if Vi is redundant, then by Corollary 1, there is j �= i such that Vi has an
equivalent rewriting using V j. That is, there is a TP Q′ such that Vi = Q′ ◦ V j. If the
distinguished path of Vi does not have repeating labels, then we know the root of Q′
must be the same as the distinguished node of Q′. Therefore Vi ⊆ V j. This proves
the following corollary.

Corollary 2 Let V1, . . . , Vn be compatible views in P{/,//,[]}. If V1, . . . , Vk (k < n)

are redundant, then for every i ∈ [1, k] such that the distinguished path of Vi has no
repeating labels, there exists j ∈ [k + 1, n] such that Vi ⊆ Vj.

The condition that the distinguished path of Vi has no repeating labels is important
in the above corollary. If it is not satisfied, the corollary does not hold. This is easily
seen in Example 4 (2).

Identifying redundant views Corollary 1 provides a means to find the redundant
views. To see whether Vi is redundant we only need to check whether there exists Vj

such that Vi has an equivalent rewriting using Vj. To do so we can use the algorithm
in [20].
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5.1 Redundant views when intersections of views are used for rewriting

We now re-examine the redundant views problem, taking into consideration
rewritings using intersections of views as well as individual views.

Let S = {V1, . . . , Vn} be a set of compatible views. We use EMCR(Q, S) to denote
the union of expansions of all CRs of Q using any single view in S or using the
intersection of any subset of views in S. The new meaning of redundant views is as
follows.

Definition 3 Let S = {V1, . . . , Vn} be a set of compatible views and S′ be a proper
subset of S. We say that S′ is strongly redundant if for every query Q, EMCR(Q, S) ⊆
EMCR(Q, S − S′).

The following theorem provides a necessary condition for S′ to be strongly
redundant.

Theorem 8 Let S = {V1, . . . , Vn} be a set of compatible views in P{/,//,[]} and S′ be
a proper subset of S. If S′ is strongly redundant, then for every view V ∈ S′, V =
EMCR(V, S − S′).

Proof We prove the theorem by contradiction. Suppose there is V ∈ S such that V �=
EMCR(V,S − S ′). That is, V � EMCR(V,S − S ′). Consider the query Q = V. Q
has an equivalent rewriting using S, whose expansion is V itself. ThusEMCR(Q, S) =
V. Therefore EMCR(Q, S) � EMCR(Q,S − S ′). This contradicts the assumption
that S′ is strongly redundant. ⊥ ��

However, the condition that ∀V ∈ S, V = EMCR(V, S − S′) is generally not
sufficient for S′ to be strongly redundant, as shown in the following example.

Example 5 Let V be the view shown in Figure 5b, V1 be the pattern shown in
Figure 5(d), and V2 be the pattern shown in Figure 5f. Let S = {V, V1, V2} and
S′ = {V1, V2}. As shown in Figure 5, V1 = Q1 ◦ V and V2 = Q2 ◦ V. However, S′
is not strongly redundant because there is Q (as shown in Figure 5(a)) which has an
equivalent rewriting using V1 ∩ V2, but no equivalent rewriting using V.

The next theorem provides a sufficient condition for S′ to be strongly redundant.

Theorem 9 Let S = {V1, . . . , Vn} be a set of compatible views in P{/,//,[]} and S′ be
a proper subset of S. If for every view V ∈ S′, V = EMCR(V, S − S′), and for every
intersection I involving views in S′ each disjunctive component V′ in I satisfies V ′ =
EMCR(V ′, S − S′), then S′ is strongly redundant.

Proof Let Q be any TP in P{/,//,[]}. Suppose Q has a CR Q′ using the intersection
I of some views (a single view is treated as a special intersection). Suppose I =
V ′

1 ∪ . . . ∪ V ′
k, then Q′ is a CR of Q using V ′

i for all i ∈ [1, k]. By assumption,
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every V ′
i satisfies V ′

i = EMCR(V ′
i , S − S′). By Theorem 6, there is intersection Ii

of some views in S − S′ such that V ′
i has an equivalent rewriting using Ii. Let

V ′
i = Qi ◦ Ii. Then Q′ ◦ (Qi ◦ Ii) ⊆ Q (hence (Q′ ◦ Qi) ◦ Ii ⊆ Q). Thus Q′ ◦ Qi is a

CR of Q using Ii, and Q′ ◦ I = Q′ ◦ (V ′
1 ∪ . . . ∪ V ′

k) = ⋃k
i=1(Q′ ◦ Qi) ◦ Ii. Therefore,

EMCR(Q, S) ⊆ EMCR(Q, S − S′). By definition, S′ is strongly redundant. ⊥ ��

6 Related work

When a tree pattern is viewed as a constraint over xml trees, the independence of
containing patterns property can be regarded as a special case of the independence of
negative constraints (INC) property: given constraints C, C1, . . . , Cn, C implies C1 ∨
· · · ∨ Cn iff C implies some Ci. The INC property was first studied in [7] and since
then found to hold for many classes of constraints. For works on tree pattern query
rewriting using views, besides the papers [6, 9, 20] discussed in Section 1, several other
papers have dealt with the problem. In particular, [18] considered rewritings using
different combinations of multiple views, one of them is intersection. Tajima and
Fukui [14] studied the problem of query answerability using views for general XPath
queries (that may involve negation, and disjunction), that is, given Q and V1, · · · , Vn,
whether there are Q1, · · · , Qn such that Q1 ◦ V1 ∪ · · · ∪ Qn ◦ Vn = Q. As shown in
Section 4 (Theorem 4), when Q and V1, · · · , Vn are restricted to some classes of tree
patterns, the problem is significantly simplified because no unions of tree patterns
need to be considered, hence the simple algorithm in [20] can be applied. Tang and
Zhou [15] defined correct rewritings of TPs, using a single view, for tree patterns with
multiple output nodes. The rewriting is essentially a mapping from the output nodes
of Q to the output nodes of V under which V ⊆ Q. When restricted to a single output
node for each pattern or view, the mapping is unique, and the existence of a correct
rewriting simply means V ⊆ Q. Balmin et al. [3] addressed the problem of answering
XPath queries using a single materialized view where, for the view, a combination
of node references, typed data values, and full paths may be stored. However,
the way in which a query is answered using the view is different: one can follow
node references to go to the original document, so the original xml tree cannot be
discarded. Tang et al. [16] presented an algorithm for equivalently answering XPath
queries using multiple materialized views based on the assumption that the Dewey
codes are stored in the materialized views so that the common ancestors of nodes
in different views can be found. The paper also studied the view selection problem,
which is to, given a query, find a minimal subset of views to equivalently answer that
query. This is apparently related to the redundant views problem since any redundant
view should not be selected. However, since the way of utilizing the view in [16] is
different from ours, the redundant views are also different. Arion et al. [2] studied
a different type of equivalent rewriting using multiple views in the presence of
structural summaries and integrity constraints: the answer sets of the views are nodes
rather than subtrees, and the answers to the new query are obtained by combining
answers to the views through a number of algebraic operations. There have also
been works on rewriting XQuery queries using views [4, 13, 21]. In relational query
rewriting using views, the redundant views problem was studied in [8], which showed
similar properties for views which are redundant: a view is redundant if and only if
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it has an equivalent rewriting using the other views. We are not aware of any work
on the form of equivalent rewritings, neither for XPath rewritings nor for relational
rewritings.

7 Conclusion

We showed that some tree patterns observe the independence of containing patterns
property. Based on which, we showed that for some classes of tree patterns, the
equivalent rewriting using views can be expressed as a single tree pattern rather
than the union of multiple tree patterns. We also identified necessary and sufficient
conditions for a subset of views to be redundant. In doing this, we considered
different scenarios: the absence or presence of dtds, rewritings using multiple single
views, and rewritings using the intersection of views.

Acknowledgements This work is partially supported by grant from the Research Grant Council of
the Hong Kong Special Administrative Region, China (CUHK418205), and Griffith University New
Researcher’s Grant (GUNRG36621).

References

1. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree pattern
queries. In: SIGMOD, pp. 497–508. ACM, New York, USA (2001)

2. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured materialized views
for XML queries. In: VLDB, pp. 87–98. ACM, New York, USA (2007)

3. Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R., Pirahesh, H.: A framework for using ma-
terialized XPath views in XML query processing. In: VLDB, pp. 60–71. Morgan Kaufmann,
San Francisco, USA (2004)

4. Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints. In: ICDT, pp. 225–241.
Lecture Notes in Computer Science 2572, Springer, Germany (2003)

5. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294. Springer Berlin,
Germany (2001)

6. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using views. In:
VLDB, pp. 571–582. ACM, New York, USA (2006)

7. Lassez, J.-L., McAloon, K.: Independence of negative constraints. In: TAPSOFT, vol. 1,
pp. 19–27. Lecture Notes in Computer Science 352, Springer-Verlag, Germany (1989)

8. Li, C., Bawa, M., Ullman, J.D.: Minimizing view sets without losing query-answering power. In:
ICDT, pp. 99–113. Lecture Notes in Computer Science 1973, Springer, Germany (2001)

9. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases. In: VLDB,
pp. 469–480. ACM, New York, USA (2005)

10. Miklau, G., Suciu, D.: Containment and equivalence for an XPath fragment. In: PODS,
pp. 65–76. ACM, New York, USA (2002)

11. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. ACM 51(1),
2–45. ACM, New York, USA (2004)

12. Nash, A., Segoufin, L., Vianu, V.: Determinacy and rewriting of conjunctive queries using views:
a progress report. In: ICDT, pp. 59–73. Lecture Notes in Computer Science 4353, Springer,
Germany (2007)

13. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting nested XML queries
using nested views. In: SIGMOD, pp. 443–454. ACM, New York, USA (2006)

14. Tajima, K., Fukui, Y.: Answering XPath queries over networks by sending minimal views. In:
VLDB, pp. 48–59. Morgan Kaufmann, San Francisco, USA (2004)

15. Tang, J., Zhou, S.: A theoretic framework for answering XPath queries using views. In: XSym,
pp. 18–33. Lecture Notes in Computer Science 3671, Springer, Germany (2005)

16. Tang, N., Yu, J.X., Özsu, M.T., Choi, B., Wong, K.-F.: Multiple materialized view selection for
XPath query rewriting. In: ICDE, pp. 873–882. IEEE, USA (2008)



World Wide Web (2009) 12:87–105 105

17. Wang, J., Topor, R.W., Maher, M.J.: Rewriting union queries using views. Constraints 10(3),
219–251. Springer, The Netherlands (2005)

18. Wang, J., Xu, J.Y.: Tree pattern rewriting using multiple views. In: DEXA, pp. 493–507. Lecture
Notes in Computer Science 5181, Springer, Germany (2008)

19. Wang, J., Xu, J.Y., Liu, C.: Contained XPath rewriting using views revisited. In: WISE,
pp. 410–425. Lecture Notes in Computer Science 5175, Springer, Germany (2008)

20. Xu, W., Özsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In: VLDB,
pp. 121–132. ACM, New York, USA (2005)

21. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In: SIGMOD,
pp. 371–382. ACM, New York, USA (2004)


	Independence of Containing Patterns Property and Its Application in Tree Pattern Query Rewriting Using Views
	Abstract
	Introduction
	Preliminaries
	DTDs, XML trees, and tree patterns
	Tree pattern containment and containment mapping
	Contained rewriting, maximal contained rewriting and equivalent rewriting

	Independence of containing patterns property of tree patterns
	Equivalent rewritings, single pattern or union of patterns?
	The class  P{/,//,[]} 
	Other classes of tree patterns
	Rewritings using multiple individual views
	Rewritings using intersections of views
	The presence of dtds
	Discussion: answerability of Q using V

	Redundant views
	Redundant views when intersections of views are used for rewriting

	Related work
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


